at v2.6.13 1569 lines 54 kB view raw
1/* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5#include <linux/time.h> 6#include <linux/reiserfs_fs.h> 7#include <linux/reiserfs_acl.h> 8#include <linux/reiserfs_xattr.h> 9#include <linux/smp_lock.h> 10#include <asm/uaccess.h> 11#include <linux/pagemap.h> 12#include <linux/swap.h> 13#include <linux/writeback.h> 14#include <linux/blkdev.h> 15#include <linux/buffer_head.h> 16#include <linux/quotaops.h> 17 18/* 19** We pack the tails of files on file close, not at the time they are written. 20** This implies an unnecessary copy of the tail and an unnecessary indirect item 21** insertion/balancing, for files that are written in one write. 22** It avoids unnecessary tail packings (balances) for files that are written in 23** multiple writes and are small enough to have tails. 24** 25** file_release is called by the VFS layer when the file is closed. If 26** this is the last open file descriptor, and the file 27** small enough to have a tail, and the tail is currently in an 28** unformatted node, the tail is converted back into a direct item. 29** 30** We use reiserfs_truncate_file to pack the tail, since it already has 31** all the conditions coded. 32*/ 33static int reiserfs_file_release(struct inode *inode, struct file *filp) 34{ 35 36 struct reiserfs_transaction_handle th; 37 int err; 38 int jbegin_failure = 0; 39 40 if (!S_ISREG(inode->i_mode)) 41 BUG(); 42 43 /* fast out for when nothing needs to be done */ 44 if ((atomic_read(&inode->i_count) > 1 || 45 !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) || 46 !tail_has_to_be_packed(inode)) && 47 REISERFS_I(inode)->i_prealloc_count <= 0) { 48 return 0; 49 } 50 51 reiserfs_write_lock(inode->i_sb); 52 down(&inode->i_sem); 53 /* freeing preallocation only involves relogging blocks that 54 * are already in the current transaction. preallocation gets 55 * freed at the end of each transaction, so it is impossible for 56 * us to log any additional blocks (including quota blocks) 57 */ 58 err = journal_begin(&th, inode->i_sb, 1); 59 if (err) { 60 /* uh oh, we can't allow the inode to go away while there 61 * is still preallocation blocks pending. Try to join the 62 * aborted transaction 63 */ 64 jbegin_failure = err; 65 err = journal_join_abort(&th, inode->i_sb, 1); 66 67 if (err) { 68 /* hmpf, our choices here aren't good. We can pin the inode 69 * which will disallow unmount from every happening, we can 70 * do nothing, which will corrupt random memory on unmount, 71 * or we can forcibly remove the file from the preallocation 72 * list, which will leak blocks on disk. Lets pin the inode 73 * and let the admin know what is going on. 74 */ 75 igrab(inode); 76 reiserfs_warning(inode->i_sb, 77 "pinning inode %lu because the " 78 "preallocation can't be freed"); 79 goto out; 80 } 81 } 82 reiserfs_update_inode_transaction(inode); 83 84#ifdef REISERFS_PREALLOCATE 85 reiserfs_discard_prealloc(&th, inode); 86#endif 87 err = journal_end(&th, inode->i_sb, 1); 88 89 /* copy back the error code from journal_begin */ 90 if (!err) 91 err = jbegin_failure; 92 93 if (!err && atomic_read(&inode->i_count) <= 1 && 94 (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) && 95 tail_has_to_be_packed(inode)) { 96 /* if regular file is released by last holder and it has been 97 appended (we append by unformatted node only) or its direct 98 item(s) had to be converted, then it may have to be 99 indirect2direct converted */ 100 err = reiserfs_truncate_file(inode, 0); 101 } 102 out: 103 up(&inode->i_sem); 104 reiserfs_write_unlock(inode->i_sb); 105 return err; 106} 107 108static void reiserfs_vfs_truncate_file(struct inode *inode) 109{ 110 reiserfs_truncate_file(inode, 1); 111} 112 113/* Sync a reiserfs file. */ 114 115/* 116 * FIXME: sync_mapping_buffers() never has anything to sync. Can 117 * be removed... 118 */ 119 120static int reiserfs_sync_file(struct file *p_s_filp, 121 struct dentry *p_s_dentry, int datasync) 122{ 123 struct inode *p_s_inode = p_s_dentry->d_inode; 124 int n_err; 125 int barrier_done; 126 127 if (!S_ISREG(p_s_inode->i_mode)) 128 BUG(); 129 n_err = sync_mapping_buffers(p_s_inode->i_mapping); 130 reiserfs_write_lock(p_s_inode->i_sb); 131 barrier_done = reiserfs_commit_for_inode(p_s_inode); 132 reiserfs_write_unlock(p_s_inode->i_sb); 133 if (barrier_done != 1) 134 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL); 135 if (barrier_done < 0) 136 return barrier_done; 137 return (n_err < 0) ? -EIO : 0; 138} 139 140/* I really do not want to play with memory shortage right now, so 141 to simplify the code, we are not going to write more than this much pages at 142 a time. This still should considerably improve performance compared to 4k 143 at a time case. This is 32 pages of 4k size. */ 144#define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE 145 146/* Allocates blocks for a file to fulfil write request. 147 Maps all unmapped but prepared pages from the list. 148 Updates metadata with newly allocated blocknumbers as needed */ 149static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */ 150 loff_t pos, /* Writing position */ 151 int num_pages, /* number of pages write going 152 to touch */ 153 int write_bytes, /* amount of bytes to write */ 154 struct page **prepared_pages, /* array of 155 prepared pages 156 */ 157 int blocks_to_allocate /* Amount of blocks we 158 need to allocate to 159 fit the data into file 160 */ 161 ) 162{ 163 struct cpu_key key; // cpu key of item that we are going to deal with 164 struct item_head *ih; // pointer to item head that we are going to deal with 165 struct buffer_head *bh; // Buffer head that contains items that we are going to deal with 166 __le32 *item; // pointer to item we are going to deal with 167 INITIALIZE_PATH(path); // path to item, that we are going to deal with. 168 b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored. 169 reiserfs_blocknr_hint_t hint; // hint structure for block allocator. 170 size_t res; // return value of various functions that we call. 171 int curr_block; // current block used to keep track of unmapped blocks. 172 int i; // loop counter 173 int itempos; // position in item 174 unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in 175 // first page 176 unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */ 177 __u64 hole_size; // amount of blocks for a file hole, if it needed to be created. 178 int modifying_this_item = 0; // Flag for items traversal code to keep track 179 // of the fact that we already prepared 180 // current block for journal 181 int will_prealloc = 0; 182 RFALSE(!blocks_to_allocate, 183 "green-9004: tried to allocate zero blocks?"); 184 185 /* only preallocate if this is a small write */ 186 if (REISERFS_I(inode)->i_prealloc_count || 187 (!(write_bytes & (inode->i_sb->s_blocksize - 1)) && 188 blocks_to_allocate < 189 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize)) 190 will_prealloc = 191 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize; 192 193 allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) * 194 sizeof(b_blocknr_t), GFP_NOFS); 195 196 /* First we compose a key to point at the writing position, we want to do 197 that outside of any locking region. */ 198 make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ ); 199 200 /* If we came here, it means we absolutely need to open a transaction, 201 since we need to allocate some blocks */ 202 reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that. 203 res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough 204 if (res) 205 goto error_exit; 206 reiserfs_update_inode_transaction(inode); 207 208 /* Look for the in-tree position of our write, need path for block allocator */ 209 res = search_for_position_by_key(inode->i_sb, &key, &path); 210 if (res == IO_ERROR) { 211 res = -EIO; 212 goto error_exit; 213 } 214 215 /* Allocate blocks */ 216 /* First fill in "hint" structure for block allocator */ 217 hint.th = th; // transaction handle. 218 hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine. 219 hint.inode = inode; // Inode is needed by block allocator too. 220 hint.search_start = 0; // We have no hint on where to search free blocks for block allocator. 221 hint.key = key.on_disk_key; // on disk key of file. 222 hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already. 223 hint.formatted_node = 0; // We are allocating blocks for unformatted node. 224 hint.preallocate = will_prealloc; 225 226 /* Call block allocator to allocate blocks */ 227 res = 228 reiserfs_allocate_blocknrs(&hint, allocated_blocks, 229 blocks_to_allocate, blocks_to_allocate); 230 if (res != CARRY_ON) { 231 if (res == NO_DISK_SPACE) { 232 /* We flush the transaction in case of no space. This way some 233 blocks might become free */ 234 SB_JOURNAL(inode->i_sb)->j_must_wait = 1; 235 res = restart_transaction(th, inode, &path); 236 if (res) 237 goto error_exit; 238 239 /* We might have scheduled, so search again */ 240 res = 241 search_for_position_by_key(inode->i_sb, &key, 242 &path); 243 if (res == IO_ERROR) { 244 res = -EIO; 245 goto error_exit; 246 } 247 248 /* update changed info for hint structure. */ 249 res = 250 reiserfs_allocate_blocknrs(&hint, allocated_blocks, 251 blocks_to_allocate, 252 blocks_to_allocate); 253 if (res != CARRY_ON) { 254 res = -ENOSPC; 255 pathrelse(&path); 256 goto error_exit; 257 } 258 } else { 259 res = -ENOSPC; 260 pathrelse(&path); 261 goto error_exit; 262 } 263 } 264#ifdef __BIG_ENDIAN 265 // Too bad, I have not found any way to convert a given region from 266 // cpu format to little endian format 267 { 268 int i; 269 for (i = 0; i < blocks_to_allocate; i++) 270 allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]); 271 } 272#endif 273 274 /* Blocks allocating well might have scheduled and tree might have changed, 275 let's search the tree again */ 276 /* find where in the tree our write should go */ 277 res = search_for_position_by_key(inode->i_sb, &key, &path); 278 if (res == IO_ERROR) { 279 res = -EIO; 280 goto error_exit_free_blocks; 281 } 282 283 bh = get_last_bh(&path); // Get a bufferhead for last element in path. 284 ih = get_ih(&path); // Get a pointer to last item head in path. 285 item = get_item(&path); // Get a pointer to last item in path 286 287 /* Let's see what we have found */ 288 if (res != POSITION_FOUND) { /* position not found, this means that we 289 might need to append file with holes 290 first */ 291 // Since we are writing past the file's end, we need to find out if 292 // there is a hole that needs to be inserted before our writing 293 // position, and how many blocks it is going to cover (we need to 294 // populate pointers to file blocks representing the hole with zeros) 295 296 { 297 int item_offset = 1; 298 /* 299 * if ih is stat data, its offset is 0 and we don't want to 300 * add 1 to pos in the hole_size calculation 301 */ 302 if (is_statdata_le_ih(ih)) 303 item_offset = 0; 304 hole_size = (pos + item_offset - 305 (le_key_k_offset 306 (get_inode_item_key_version(inode), 307 &(ih->ih_key)) + op_bytes_number(ih, 308 inode-> 309 i_sb-> 310 s_blocksize))) 311 >> inode->i_sb->s_blocksize_bits; 312 } 313 314 if (hole_size > 0) { 315 int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time. 316 /* area filled with zeroes, to supply as list of zero blocknumbers 317 We allocate it outside of loop just in case loop would spin for 318 several iterations. */ 319 char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway. 320 if (!zeros) { 321 res = -ENOMEM; 322 goto error_exit_free_blocks; 323 } 324 memset(zeros, 0, to_paste * UNFM_P_SIZE); 325 do { 326 to_paste = 327 min_t(__u64, hole_size, 328 MAX_ITEM_LEN(inode->i_sb-> 329 s_blocksize) / 330 UNFM_P_SIZE); 331 if (is_indirect_le_ih(ih)) { 332 /* Ok, there is existing indirect item already. Need to append it */ 333 /* Calculate position past inserted item */ 334 make_cpu_key(&key, inode, 335 le_key_k_offset 336 (get_inode_item_key_version 337 (inode), 338 &(ih->ih_key)) + 339 op_bytes_number(ih, 340 inode-> 341 i_sb-> 342 s_blocksize), 343 TYPE_INDIRECT, 3); 344 res = 345 reiserfs_paste_into_item(th, &path, 346 &key, 347 inode, 348 (char *) 349 zeros, 350 UNFM_P_SIZE 351 * 352 to_paste); 353 if (res) { 354 kfree(zeros); 355 goto error_exit_free_blocks; 356 } 357 } else if (is_statdata_le_ih(ih)) { 358 /* No existing item, create it */ 359 /* item head for new item */ 360 struct item_head ins_ih; 361 362 /* create a key for our new item */ 363 make_cpu_key(&key, inode, 1, 364 TYPE_INDIRECT, 3); 365 366 /* Create new item head for our new item */ 367 make_le_item_head(&ins_ih, &key, 368 key.version, 1, 369 TYPE_INDIRECT, 370 to_paste * 371 UNFM_P_SIZE, 372 0 /* free space */ ); 373 374 /* Find where such item should live in the tree */ 375 res = 376 search_item(inode->i_sb, &key, 377 &path); 378 if (res != ITEM_NOT_FOUND) { 379 /* item should not exist, otherwise we have error */ 380 if (res != -ENOSPC) { 381 reiserfs_warning(inode-> 382 i_sb, 383 "green-9008: search_by_key (%K) returned %d", 384 &key, 385 res); 386 } 387 res = -EIO; 388 kfree(zeros); 389 goto error_exit_free_blocks; 390 } 391 res = 392 reiserfs_insert_item(th, &path, 393 &key, &ins_ih, 394 inode, 395 (char *)zeros); 396 } else { 397 reiserfs_panic(inode->i_sb, 398 "green-9011: Unexpected key type %K\n", 399 &key); 400 } 401 if (res) { 402 kfree(zeros); 403 goto error_exit_free_blocks; 404 } 405 /* Now we want to check if transaction is too full, and if it is 406 we restart it. This will also free the path. */ 407 if (journal_transaction_should_end 408 (th, th->t_blocks_allocated)) { 409 res = 410 restart_transaction(th, inode, 411 &path); 412 if (res) { 413 pathrelse(&path); 414 kfree(zeros); 415 goto error_exit; 416 } 417 } 418 419 /* Well, need to recalculate path and stuff */ 420 set_cpu_key_k_offset(&key, 421 cpu_key_k_offset(&key) + 422 (to_paste << inode-> 423 i_blkbits)); 424 res = 425 search_for_position_by_key(inode->i_sb, 426 &key, &path); 427 if (res == IO_ERROR) { 428 res = -EIO; 429 kfree(zeros); 430 goto error_exit_free_blocks; 431 } 432 bh = get_last_bh(&path); 433 ih = get_ih(&path); 434 item = get_item(&path); 435 hole_size -= to_paste; 436 } while (hole_size); 437 kfree(zeros); 438 } 439 } 440 // Go through existing indirect items first 441 // replace all zeroes with blocknumbers from list 442 // Note that if no corresponding item was found, by previous search, 443 // it means there are no existing in-tree representation for file area 444 // we are going to overwrite, so there is nothing to scan through for holes. 445 for (curr_block = 0, itempos = path.pos_in_item; 446 curr_block < blocks_to_allocate && res == POSITION_FOUND;) { 447 retry: 448 449 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) { 450 /* We run out of data in this indirect item, let's look for another 451 one. */ 452 /* First if we are already modifying current item, log it */ 453 if (modifying_this_item) { 454 journal_mark_dirty(th, inode->i_sb, bh); 455 modifying_this_item = 0; 456 } 457 /* Then set the key to look for a new indirect item (offset of old 458 item is added to old item length */ 459 set_cpu_key_k_offset(&key, 460 le_key_k_offset 461 (get_inode_item_key_version(inode), 462 &(ih->ih_key)) + 463 op_bytes_number(ih, 464 inode->i_sb-> 465 s_blocksize)); 466 /* Search ofor position of new key in the tree. */ 467 res = 468 search_for_position_by_key(inode->i_sb, &key, 469 &path); 470 if (res == IO_ERROR) { 471 res = -EIO; 472 goto error_exit_free_blocks; 473 } 474 bh = get_last_bh(&path); 475 ih = get_ih(&path); 476 item = get_item(&path); 477 itempos = path.pos_in_item; 478 continue; // loop to check all kinds of conditions and so on. 479 } 480 /* Ok, we have correct position in item now, so let's see if it is 481 representing file hole (blocknumber is zero) and fill it if needed */ 482 if (!item[itempos]) { 483 /* Ok, a hole. Now we need to check if we already prepared this 484 block to be journaled */ 485 while (!modifying_this_item) { // loop until succeed 486 /* Well, this item is not journaled yet, so we must prepare 487 it for journal first, before we can change it */ 488 struct item_head tmp_ih; // We copy item head of found item, 489 // here to detect if fs changed under 490 // us while we were preparing for 491 // journal. 492 int fs_gen; // We store fs generation here to find if someone 493 // changes fs under our feet 494 495 copy_item_head(&tmp_ih, ih); // Remember itemhead 496 fs_gen = get_generation(inode->i_sb); // remember fs generation 497 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing. 498 if (fs_changed(fs_gen, inode->i_sb) 499 && item_moved(&tmp_ih, &path)) { 500 // Sigh, fs was changed under us, we need to look for new 501 // location of item we are working with 502 503 /* unmark prepaerd area as journaled and search for it's 504 new position */ 505 reiserfs_restore_prepared_buffer(inode-> 506 i_sb, 507 bh); 508 res = 509 search_for_position_by_key(inode-> 510 i_sb, 511 &key, 512 &path); 513 if (res == IO_ERROR) { 514 res = -EIO; 515 goto error_exit_free_blocks; 516 } 517 bh = get_last_bh(&path); 518 ih = get_ih(&path); 519 item = get_item(&path); 520 itempos = path.pos_in_item; 521 goto retry; 522 } 523 modifying_this_item = 1; 524 } 525 item[itempos] = allocated_blocks[curr_block]; // Assign new block 526 curr_block++; 527 } 528 itempos++; 529 } 530 531 if (modifying_this_item) { // We need to log last-accessed block, if it 532 // was modified, but not logged yet. 533 journal_mark_dirty(th, inode->i_sb, bh); 534 } 535 536 if (curr_block < blocks_to_allocate) { 537 // Oh, well need to append to indirect item, or to create indirect item 538 // if there weren't any 539 if (is_indirect_le_ih(ih)) { 540 // Existing indirect item - append. First calculate key for append 541 // position. We do not need to recalculate path as it should 542 // already point to correct place. 543 make_cpu_key(&key, inode, 544 le_key_k_offset(get_inode_item_key_version 545 (inode), 546 &(ih->ih_key)) + 547 op_bytes_number(ih, 548 inode->i_sb->s_blocksize), 549 TYPE_INDIRECT, 3); 550 res = 551 reiserfs_paste_into_item(th, &path, &key, inode, 552 (char *)(allocated_blocks + 553 curr_block), 554 UNFM_P_SIZE * 555 (blocks_to_allocate - 556 curr_block)); 557 if (res) { 558 goto error_exit_free_blocks; 559 } 560 } else if (is_statdata_le_ih(ih)) { 561 // Last found item was statdata. That means we need to create indirect item. 562 struct item_head ins_ih; /* itemhead for new item */ 563 564 /* create a key for our new item */ 565 make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one, 566 // because that's 567 // where first 568 // indirect item 569 // begins 570 /* Create new item head for our new item */ 571 make_le_item_head(&ins_ih, &key, key.version, 1, 572 TYPE_INDIRECT, 573 (blocks_to_allocate - 574 curr_block) * UNFM_P_SIZE, 575 0 /* free space */ ); 576 /* Find where such item should live in the tree */ 577 res = search_item(inode->i_sb, &key, &path); 578 if (res != ITEM_NOT_FOUND) { 579 /* Well, if we have found such item already, or some error 580 occured, we need to warn user and return error */ 581 if (res != -ENOSPC) { 582 reiserfs_warning(inode->i_sb, 583 "green-9009: search_by_key (%K) " 584 "returned %d", &key, 585 res); 586 } 587 res = -EIO; 588 goto error_exit_free_blocks; 589 } 590 /* Insert item into the tree with the data as its body */ 591 res = 592 reiserfs_insert_item(th, &path, &key, &ins_ih, 593 inode, 594 (char *)(allocated_blocks + 595 curr_block)); 596 } else { 597 reiserfs_panic(inode->i_sb, 598 "green-9010: unexpected item type for key %K\n", 599 &key); 600 } 601 } 602 // the caller is responsible for closing the transaction 603 // unless we return an error, they are also responsible for logging 604 // the inode. 605 // 606 pathrelse(&path); 607 /* 608 * cleanup prellocation from previous writes 609 * if this is a partial block write 610 */ 611 if (write_bytes & (inode->i_sb->s_blocksize - 1)) 612 reiserfs_discard_prealloc(th, inode); 613 reiserfs_write_unlock(inode->i_sb); 614 615 // go through all the pages/buffers and map the buffers to newly allocated 616 // blocks (so that system knows where to write these pages later). 617 curr_block = 0; 618 for (i = 0; i < num_pages; i++) { 619 struct page *page = prepared_pages[i]; //current page 620 struct buffer_head *head = page_buffers(page); // first buffer for a page 621 int block_start, block_end; // in-page offsets for buffers. 622 623 if (!page_buffers(page)) 624 reiserfs_panic(inode->i_sb, 625 "green-9005: No buffers for prepared page???"); 626 627 /* For each buffer in page */ 628 for (bh = head, block_start = 0; bh != head || !block_start; 629 block_start = block_end, bh = bh->b_this_page) { 630 if (!bh) 631 reiserfs_panic(inode->i_sb, 632 "green-9006: Allocated but absent buffer for a page?"); 633 block_end = block_start + inode->i_sb->s_blocksize; 634 if (i == 0 && block_end <= from) 635 /* if this buffer is before requested data to map, skip it */ 636 continue; 637 if (i == num_pages - 1 && block_start >= to) 638 /* If this buffer is after requested data to map, abort 639 processing of current page */ 640 break; 641 642 if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it 643 map_bh(bh, inode->i_sb, 644 le32_to_cpu(allocated_blocks 645 [curr_block])); 646 curr_block++; 647 set_buffer_new(bh); 648 } 649 } 650 } 651 652 RFALSE(curr_block > blocks_to_allocate, 653 "green-9007: Used too many blocks? weird"); 654 655 kfree(allocated_blocks); 656 return 0; 657 658// Need to deal with transaction here. 659 error_exit_free_blocks: 660 pathrelse(&path); 661 // free blocks 662 for (i = 0; i < blocks_to_allocate; i++) 663 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]), 664 1); 665 666 error_exit: 667 if (th->t_trans_id) { 668 int err; 669 // update any changes we made to blk count 670 reiserfs_update_sd(th, inode); 671 err = 672 journal_end(th, inode->i_sb, 673 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 674 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); 675 if (err) 676 res = err; 677 } 678 reiserfs_write_unlock(inode->i_sb); 679 kfree(allocated_blocks); 680 681 return res; 682} 683 684/* Unlock pages prepared by reiserfs_prepare_file_region_for_write */ 685static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */ 686 size_t num_pages /* amount of pages */ ) 687{ 688 int i; // loop counter 689 690 for (i = 0; i < num_pages; i++) { 691 struct page *page = prepared_pages[i]; 692 693 try_to_free_buffers(page); 694 unlock_page(page); 695 page_cache_release(page); 696 } 697} 698 699/* This function will copy data from userspace to specified pages within 700 supplied byte range */ 701static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */ 702 int num_pages, /* Number of pages affected */ 703 int write_bytes, /* Amount of bytes to write */ 704 struct page **prepared_pages, /* pointer to 705 array to 706 prepared pages 707 */ 708 const char __user * buf /* Pointer to user-supplied 709 data */ 710 ) 711{ 712 long page_fault = 0; // status of copy_from_user. 713 int i; // loop counter. 714 int offset; // offset in page 715 716 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; 717 i++, offset = 0) { 718 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page 719 struct page *page = prepared_pages[i]; // Current page we process. 720 721 fault_in_pages_readable(buf, count); 722 723 /* Copy data from userspace to the current page */ 724 kmap(page); 725 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data. 726 /* Flush processor's dcache for this page */ 727 flush_dcache_page(page); 728 kunmap(page); 729 buf += count; 730 write_bytes -= count; 731 732 if (page_fault) 733 break; // Was there a fault? abort. 734 } 735 736 return page_fault ? -EFAULT : 0; 737} 738 739/* taken fs/buffer.c:__block_commit_write */ 740int reiserfs_commit_page(struct inode *inode, struct page *page, 741 unsigned from, unsigned to) 742{ 743 unsigned block_start, block_end; 744 int partial = 0; 745 unsigned blocksize; 746 struct buffer_head *bh, *head; 747 unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT; 748 int new; 749 int logit = reiserfs_file_data_log(inode); 750 struct super_block *s = inode->i_sb; 751 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 752 struct reiserfs_transaction_handle th; 753 int ret = 0; 754 755 th.t_trans_id = 0; 756 blocksize = 1 << inode->i_blkbits; 757 758 if (logit) { 759 reiserfs_write_lock(s); 760 ret = journal_begin(&th, s, bh_per_page + 1); 761 if (ret) 762 goto drop_write_lock; 763 reiserfs_update_inode_transaction(inode); 764 } 765 for (bh = head = page_buffers(page), block_start = 0; 766 bh != head || !block_start; 767 block_start = block_end, bh = bh->b_this_page) { 768 769 new = buffer_new(bh); 770 clear_buffer_new(bh); 771 block_end = block_start + blocksize; 772 if (block_end <= from || block_start >= to) { 773 if (!buffer_uptodate(bh)) 774 partial = 1; 775 } else { 776 set_buffer_uptodate(bh); 777 if (logit) { 778 reiserfs_prepare_for_journal(s, bh, 1); 779 journal_mark_dirty(&th, s, bh); 780 } else if (!buffer_dirty(bh)) { 781 mark_buffer_dirty(bh); 782 /* do data=ordered on any page past the end 783 * of file and any buffer marked BH_New. 784 */ 785 if (reiserfs_data_ordered(inode->i_sb) && 786 (new || page->index >= i_size_index)) { 787 reiserfs_add_ordered_list(inode, bh); 788 } 789 } 790 } 791 } 792 if (logit) { 793 ret = journal_end(&th, s, bh_per_page + 1); 794 drop_write_lock: 795 reiserfs_write_unlock(s); 796 } 797 /* 798 * If this is a partial write which happened to make all buffers 799 * uptodate then we can optimize away a bogus readpage() for 800 * the next read(). Here we 'discover' whether the page went 801 * uptodate as a result of this (potentially partial) write. 802 */ 803 if (!partial) 804 SetPageUptodate(page); 805 return ret; 806} 807 808/* Submit pages for write. This was separated from actual file copying 809 because we might want to allocate block numbers in-between. 810 This function assumes that caller will adjust file size to correct value. */ 811static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */ 812 size_t num_pages, /* Number of pages to write */ 813 size_t write_bytes, /* number of bytes to write */ 814 struct page **prepared_pages /* list of pages */ 815 ) 816{ 817 int status; // return status of block_commit_write. 818 int retval = 0; // Return value we are going to return. 819 int i; // loop counter 820 int offset; // Writing offset in page. 821 int orig_write_bytes = write_bytes; 822 int sd_update = 0; 823 824 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; 825 i++, offset = 0) { 826 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page 827 struct page *page = prepared_pages[i]; // Current page we process. 828 829 status = 830 reiserfs_commit_page(inode, page, offset, offset + count); 831 if (status) 832 retval = status; // To not overcomplicate matters We are going to 833 // submit all the pages even if there was error. 834 // we only remember error status to report it on 835 // exit. 836 write_bytes -= count; 837 } 838 /* now that we've gotten all the ordered buffers marked dirty, 839 * we can safely update i_size and close any running transaction 840 */ 841 if (pos + orig_write_bytes > inode->i_size) { 842 inode->i_size = pos + orig_write_bytes; // Set new size 843 /* If the file have grown so much that tail packing is no 844 * longer possible, reset "need to pack" flag */ 845 if ((have_large_tails(inode->i_sb) && 846 inode->i_size > i_block_size(inode) * 4) || 847 (have_small_tails(inode->i_sb) && 848 inode->i_size > i_block_size(inode))) 849 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 850 else if ((have_large_tails(inode->i_sb) && 851 inode->i_size < i_block_size(inode) * 4) || 852 (have_small_tails(inode->i_sb) && 853 inode->i_size < i_block_size(inode))) 854 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 855 856 if (th->t_trans_id) { 857 reiserfs_write_lock(inode->i_sb); 858 reiserfs_update_sd(th, inode); // And update on-disk metadata 859 reiserfs_write_unlock(inode->i_sb); 860 } else 861 inode->i_sb->s_op->dirty_inode(inode); 862 863 sd_update = 1; 864 } 865 if (th->t_trans_id) { 866 reiserfs_write_lock(inode->i_sb); 867 if (!sd_update) 868 reiserfs_update_sd(th, inode); 869 status = journal_end(th, th->t_super, th->t_blocks_allocated); 870 if (status) 871 retval = status; 872 reiserfs_write_unlock(inode->i_sb); 873 } 874 th->t_trans_id = 0; 875 876 /* 877 * we have to unlock the pages after updating i_size, otherwise 878 * we race with writepage 879 */ 880 for (i = 0; i < num_pages; i++) { 881 struct page *page = prepared_pages[i]; 882 unlock_page(page); 883 mark_page_accessed(page); 884 page_cache_release(page); 885 } 886 return retval; 887} 888 889/* Look if passed writing region is going to touch file's tail 890 (if it is present). And if it is, convert the tail to unformatted node */ 891static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */ 892 loff_t pos, /* Writing position */ 893 int write_bytes /* amount of bytes to write */ 894 ) 895{ 896 INITIALIZE_PATH(path); // needed for search_for_position 897 struct cpu_key key; // Key that would represent last touched writing byte. 898 struct item_head *ih; // item header of found block; 899 int res; // Return value of various functions we call. 900 int cont_expand_offset; // We will put offset for generic_cont_expand here 901 // This can be int just because tails are created 902 // only for small files. 903 904/* this embodies a dependency on a particular tail policy */ 905 if (inode->i_size >= inode->i_sb->s_blocksize * 4) { 906 /* such a big files do not have tails, so we won't bother ourselves 907 to look for tails, simply return */ 908 return 0; 909 } 910 911 reiserfs_write_lock(inode->i_sb); 912 /* find the item containing the last byte to be written, or if 913 * writing past the end of the file then the last item of the 914 * file (and then we check its type). */ 915 make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY, 916 3 /*key length */ ); 917 res = search_for_position_by_key(inode->i_sb, &key, &path); 918 if (res == IO_ERROR) { 919 reiserfs_write_unlock(inode->i_sb); 920 return -EIO; 921 } 922 ih = get_ih(&path); 923 res = 0; 924 if (is_direct_le_ih(ih)) { 925 /* Ok, closest item is file tail (tails are stored in "direct" 926 * items), so we need to unpack it. */ 927 /* To not overcomplicate matters, we just call generic_cont_expand 928 which will in turn call other stuff and finally will boil down to 929 reiserfs_get_block() that would do necessary conversion. */ 930 cont_expand_offset = 931 le_key_k_offset(get_inode_item_key_version(inode), 932 &(ih->ih_key)); 933 pathrelse(&path); 934 res = generic_cont_expand(inode, cont_expand_offset); 935 } else 936 pathrelse(&path); 937 938 reiserfs_write_unlock(inode->i_sb); 939 return res; 940} 941 942/* This function locks pages starting from @pos for @inode. 943 @num_pages pages are locked and stored in 944 @prepared_pages array. Also buffers are allocated for these pages. 945 First and last page of the region is read if it is overwritten only 946 partially. If last page did not exist before write (file hole or file 947 append), it is zeroed, then. 948 Returns number of unallocated blocks that should be allocated to cover 949 new file data.*/ 950static int reiserfs_prepare_file_region_for_write(struct inode *inode 951 /* Inode of the file */ , 952 loff_t pos, /* position in the file */ 953 size_t num_pages, /* number of pages to 954 prepare */ 955 size_t write_bytes, /* Amount of bytes to be 956 overwritten from 957 @pos */ 958 struct page **prepared_pages /* pointer to array 959 where to store 960 prepared pages */ 961 ) 962{ 963 int res = 0; // Return values of different functions we call. 964 unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages. 965 int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page 966 int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; 967 /* offset of last modified byte in last 968 page */ 969 struct address_space *mapping = inode->i_mapping; // Pages are mapped here. 970 int i; // Simple counter 971 int blocks = 0; /* Return value (blocks that should be allocated) */ 972 struct buffer_head *bh, *head; // Current bufferhead and first bufferhead 973 // of a page. 974 unsigned block_start, block_end; // Starting and ending offsets of current 975 // buffer in the page. 976 struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if 977 // Page appeared to be not up 978 // to date. Note how we have 979 // at most 2 buffers, this is 980 // because we at most may 981 // partially overwrite two 982 // buffers for one page. One at // the beginning of write area 983 // and one at the end. 984 // Everything inthe middle gets // overwritten totally. 985 986 struct cpu_key key; // cpu key of item that we are going to deal with 987 struct item_head *ih = NULL; // pointer to item head that we are going to deal with 988 struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with 989 INITIALIZE_PATH(path); // path to item, that we are going to deal with. 990 __le32 *item = NULL; // pointer to item we are going to deal with 991 int item_pos = -1; /* Position in indirect item */ 992 993 if (num_pages < 1) { 994 reiserfs_warning(inode->i_sb, 995 "green-9001: reiserfs_prepare_file_region_for_write " 996 "called with zero number of pages to process"); 997 return -EFAULT; 998 } 999 1000 /* We have 2 loops for pages. In first loop we grab and lock the pages, so 1001 that nobody would touch these until we release the pages. Then 1002 we'd start to deal with mapping buffers to blocks. */ 1003 for (i = 0; i < num_pages; i++) { 1004 prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page 1005 if (!prepared_pages[i]) { 1006 res = -ENOMEM; 1007 goto failed_page_grabbing; 1008 } 1009 if (!page_has_buffers(prepared_pages[i])) 1010 create_empty_buffers(prepared_pages[i], 1011 inode->i_sb->s_blocksize, 0); 1012 } 1013 1014 /* Let's count amount of blocks for a case where all the blocks 1015 overwritten are new (we will substract already allocated blocks later) */ 1016 if (num_pages > 2) 1017 /* These are full-overwritten pages so we count all the blocks in 1018 these pages are counted as needed to be allocated */ 1019 blocks = 1020 (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1021 1022 /* count blocks needed for first page (possibly partially written) */ 1023 blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */ 1024 1025 /* Now we account for last page. If last page == first page (we 1026 overwrite only one page), we substract all the blocks past the 1027 last writing position in a page out of already calculated number 1028 of blocks */ 1029 blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - 1030 ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits); 1031 /* Note how we do not roundup here since partial blocks still 1032 should be allocated */ 1033 1034 /* Now if all the write area lies past the file end, no point in 1035 maping blocks, since there is none, so we just zero out remaining 1036 parts of first and last pages in write area (if needed) */ 1037 if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) { 1038 if (from != 0) { /* First page needs to be partially zeroed */ 1039 char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0); 1040 memset(kaddr, 0, from); 1041 kunmap_atomic(kaddr, KM_USER0); 1042 } 1043 if (to != PAGE_CACHE_SIZE) { /* Last page needs to be partially zeroed */ 1044 char *kaddr = 1045 kmap_atomic(prepared_pages[num_pages - 1], 1046 KM_USER0); 1047 memset(kaddr + to, 0, PAGE_CACHE_SIZE - to); 1048 kunmap_atomic(kaddr, KM_USER0); 1049 } 1050 1051 /* Since all blocks are new - use already calculated value */ 1052 return blocks; 1053 } 1054 1055 /* Well, since we write somewhere into the middle of a file, there is 1056 possibility we are writing over some already allocated blocks, so 1057 let's map these blocks and substract number of such blocks out of blocks 1058 we need to allocate (calculated above) */ 1059 /* Mask write position to start on blocksize, we do it out of the 1060 loop for performance reasons */ 1061 pos &= ~((loff_t) inode->i_sb->s_blocksize - 1); 1062 /* Set cpu key to the starting position in a file (on left block boundary) */ 1063 make_cpu_key(&key, inode, 1064 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)), 1065 TYPE_ANY, 3 /*key length */ ); 1066 1067 reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key() 1068 for (i = 0; i < num_pages; i++) { 1069 1070 head = page_buffers(prepared_pages[i]); 1071 /* For each buffer in the page */ 1072 for (bh = head, block_start = 0; bh != head || !block_start; 1073 block_start = block_end, bh = bh->b_this_page) { 1074 if (!bh) 1075 reiserfs_panic(inode->i_sb, 1076 "green-9002: Allocated but absent buffer for a page?"); 1077 /* Find where this buffer ends */ 1078 block_end = block_start + inode->i_sb->s_blocksize; 1079 if (i == 0 && block_end <= from) 1080 /* if this buffer is before requested data to map, skip it */ 1081 continue; 1082 1083 if (i == num_pages - 1 && block_start >= to) { 1084 /* If this buffer is after requested data to map, abort 1085 processing of current page */ 1086 break; 1087 } 1088 1089 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 1090 /* This is optimisation for a case where buffer is mapped 1091 and have blocknumber assigned. In case significant amount 1092 of such buffers are present, we may avoid some amount 1093 of search_by_key calls. 1094 Probably it would be possible to move parts of this code 1095 out of BKL, but I afraid that would overcomplicate code 1096 without any noticeable benefit. 1097 */ 1098 item_pos++; 1099 /* Update the key */ 1100 set_cpu_key_k_offset(&key, 1101 cpu_key_k_offset(&key) + 1102 inode->i_sb->s_blocksize); 1103 blocks--; // Decrease the amount of blocks that need to be 1104 // allocated 1105 continue; // Go to the next buffer 1106 } 1107 1108 if (!itembuf || /* if first iteration */ 1109 item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the 1110 current unformatted_item */ 1111 /* Try to find next item */ 1112 res = 1113 search_for_position_by_key(inode->i_sb, 1114 &key, &path); 1115 /* Abort if no more items */ 1116 if (res != POSITION_FOUND) { 1117 /* make sure later loops don't use this item */ 1118 itembuf = NULL; 1119 item = NULL; 1120 break; 1121 } 1122 1123 /* Update information about current indirect item */ 1124 itembuf = get_last_bh(&path); 1125 ih = get_ih(&path); 1126 item = get_item(&path); 1127 item_pos = path.pos_in_item; 1128 1129 RFALSE(!is_indirect_le_ih(ih), 1130 "green-9003: indirect item expected"); 1131 } 1132 1133 /* See if there is some block associated with the file 1134 at that position, map the buffer to this block */ 1135 if (get_block_num(item, item_pos)) { 1136 map_bh(bh, inode->i_sb, 1137 get_block_num(item, item_pos)); 1138 blocks--; // Decrease the amount of blocks that need to be 1139 // allocated 1140 } 1141 item_pos++; 1142 /* Update the key */ 1143 set_cpu_key_k_offset(&key, 1144 cpu_key_k_offset(&key) + 1145 inode->i_sb->s_blocksize); 1146 } 1147 } 1148 pathrelse(&path); // Free the path 1149 reiserfs_write_unlock(inode->i_sb); 1150 1151 /* Now zero out unmappend buffers for the first and last pages of 1152 write area or issue read requests if page is mapped. */ 1153 /* First page, see if it is not uptodate */ 1154 if (!PageUptodate(prepared_pages[0])) { 1155 head = page_buffers(prepared_pages[0]); 1156 1157 /* For each buffer in page */ 1158 for (bh = head, block_start = 0; bh != head || !block_start; 1159 block_start = block_end, bh = bh->b_this_page) { 1160 1161 if (!bh) 1162 reiserfs_panic(inode->i_sb, 1163 "green-9002: Allocated but absent buffer for a page?"); 1164 /* Find where this buffer ends */ 1165 block_end = block_start + inode->i_sb->s_blocksize; 1166 if (block_end <= from) 1167 /* if this buffer is before requested data to map, skip it */ 1168 continue; 1169 if (block_start < from) { /* Aha, our partial buffer */ 1170 if (buffer_mapped(bh)) { /* If it is mapped, we need to 1171 issue READ request for it to 1172 not loose data */ 1173 ll_rw_block(READ, 1, &bh); 1174 *wait_bh++ = bh; 1175 } else { /* Not mapped, zero it */ 1176 char *kaddr = 1177 kmap_atomic(prepared_pages[0], 1178 KM_USER0); 1179 memset(kaddr + block_start, 0, 1180 from - block_start); 1181 kunmap_atomic(kaddr, KM_USER0); 1182 set_buffer_uptodate(bh); 1183 } 1184 } 1185 } 1186 } 1187 1188 /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */ 1189 if (!PageUptodate(prepared_pages[num_pages - 1]) || 1190 ((pos + write_bytes) >> PAGE_CACHE_SHIFT) > 1191 (inode->i_size >> PAGE_CACHE_SHIFT)) { 1192 head = page_buffers(prepared_pages[num_pages - 1]); 1193 1194 /* for each buffer in page */ 1195 for (bh = head, block_start = 0; bh != head || !block_start; 1196 block_start = block_end, bh = bh->b_this_page) { 1197 1198 if (!bh) 1199 reiserfs_panic(inode->i_sb, 1200 "green-9002: Allocated but absent buffer for a page?"); 1201 /* Find where this buffer ends */ 1202 block_end = block_start + inode->i_sb->s_blocksize; 1203 if (block_start >= to) 1204 /* if this buffer is after requested data to map, skip it */ 1205 break; 1206 if (block_end > to) { /* Aha, our partial buffer */ 1207 if (buffer_mapped(bh)) { /* If it is mapped, we need to 1208 issue READ request for it to 1209 not loose data */ 1210 ll_rw_block(READ, 1, &bh); 1211 *wait_bh++ = bh; 1212 } else { /* Not mapped, zero it */ 1213 char *kaddr = 1214 kmap_atomic(prepared_pages 1215 [num_pages - 1], 1216 KM_USER0); 1217 memset(kaddr + to, 0, block_end - to); 1218 kunmap_atomic(kaddr, KM_USER0); 1219 set_buffer_uptodate(bh); 1220 } 1221 } 1222 } 1223 } 1224 1225 /* Wait for read requests we made to happen, if necessary */ 1226 while (wait_bh > wait) { 1227 wait_on_buffer(*--wait_bh); 1228 if (!buffer_uptodate(*wait_bh)) { 1229 res = -EIO; 1230 goto failed_read; 1231 } 1232 } 1233 1234 return blocks; 1235 failed_page_grabbing: 1236 num_pages = i; 1237 failed_read: 1238 reiserfs_unprepare_pages(prepared_pages, num_pages); 1239 return res; 1240} 1241 1242/* Write @count bytes at position @ppos in a file indicated by @file 1243 from the buffer @buf. 1244 1245 generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want 1246 something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was 1247 written for (ext2/3). This is for several reasons: 1248 1249 * It has no understanding of any filesystem specific optimizations. 1250 1251 * It enters the filesystem repeatedly for each page that is written. 1252 1253 * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key 1254 * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time 1255 * to reiserfs which allows for fewer tree traversals. 1256 1257 * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks. 1258 1259 * Asking the block allocation code for blocks one at a time is slightly less efficient. 1260 1261 All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to 1262 use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make 1263 things right finally. 1264 1265 Future Features: providing search_by_key with hints. 1266 1267*/ 1268static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */ 1269 const char __user * buf, /* pointer to user supplied data 1270 (in userspace) */ 1271 size_t count, /* amount of bytes to write */ 1272 loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to 1273 * new current position before returning. */ 1274 ) 1275{ 1276 size_t already_written = 0; // Number of bytes already written to the file. 1277 loff_t pos; // Current position in the file. 1278 ssize_t res; // return value of various functions that we call. 1279 int err = 0; 1280 struct inode *inode = file->f_dentry->d_inode; // Inode of the file that we are writing to. 1281 /* To simplify coding at this time, we store 1282 locked pages in array for now */ 1283 struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME]; 1284 struct reiserfs_transaction_handle th; 1285 th.t_trans_id = 0; 1286 1287 if (file->f_flags & O_DIRECT) { // Direct IO needs treatment 1288 ssize_t result, after_file_end = 0; 1289 if ((*ppos + count >= inode->i_size) 1290 || (file->f_flags & O_APPEND)) { 1291 /* If we are appending a file, we need to put this savelink in here. 1292 If we will crash while doing direct io, finish_unfinished will 1293 cut the garbage from the file end. */ 1294 reiserfs_write_lock(inode->i_sb); 1295 err = 1296 journal_begin(&th, inode->i_sb, 1297 JOURNAL_PER_BALANCE_CNT); 1298 if (err) { 1299 reiserfs_write_unlock(inode->i_sb); 1300 return err; 1301 } 1302 reiserfs_update_inode_transaction(inode); 1303 add_save_link(&th, inode, 1 /* Truncate */ ); 1304 after_file_end = 1; 1305 err = 1306 journal_end(&th, inode->i_sb, 1307 JOURNAL_PER_BALANCE_CNT); 1308 reiserfs_write_unlock(inode->i_sb); 1309 if (err) 1310 return err; 1311 } 1312 result = generic_file_write(file, buf, count, ppos); 1313 1314 if (after_file_end) { /* Now update i_size and remove the savelink */ 1315 struct reiserfs_transaction_handle th; 1316 reiserfs_write_lock(inode->i_sb); 1317 err = journal_begin(&th, inode->i_sb, 1); 1318 if (err) { 1319 reiserfs_write_unlock(inode->i_sb); 1320 return err; 1321 } 1322 reiserfs_update_inode_transaction(inode); 1323 reiserfs_update_sd(&th, inode); 1324 err = journal_end(&th, inode->i_sb, 1); 1325 if (err) { 1326 reiserfs_write_unlock(inode->i_sb); 1327 return err; 1328 } 1329 err = remove_save_link(inode, 1 /* truncate */ ); 1330 reiserfs_write_unlock(inode->i_sb); 1331 if (err) 1332 return err; 1333 } 1334 1335 return result; 1336 } 1337 1338 if (unlikely((ssize_t) count < 0)) 1339 return -EINVAL; 1340 1341 if (unlikely(!access_ok(VERIFY_READ, buf, count))) 1342 return -EFAULT; 1343 1344 down(&inode->i_sem); // locks the entire file for just us 1345 1346 pos = *ppos; 1347 1348 /* Check if we can write to specified region of file, file 1349 is not overly big and this kind of stuff. Adjust pos and 1350 count, if needed */ 1351 res = generic_write_checks(file, &pos, &count, 0); 1352 if (res) 1353 goto out; 1354 1355 if (count == 0) 1356 goto out; 1357 1358 res = remove_suid(file->f_dentry); 1359 if (res) 1360 goto out; 1361 1362 inode_update_time(inode, 1); /* Both mtime and ctime */ 1363 1364 // Ok, we are done with all the checks. 1365 1366 // Now we should start real work 1367 1368 /* If we are going to write past the file's packed tail or if we are going 1369 to overwrite part of the tail, we need that tail to be converted into 1370 unformatted node */ 1371 res = reiserfs_check_for_tail_and_convert(inode, pos, count); 1372 if (res) 1373 goto out; 1374 1375 while (count > 0) { 1376 /* This is the main loop in which we running until some error occures 1377 or until we write all of the data. */ 1378 size_t num_pages; /* amount of pages we are going to write this iteration */ 1379 size_t write_bytes; /* amount of bytes to write during this iteration */ 1380 size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */ 1381 1382 /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */ 1383 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial 1384 pages */ 1385 ((count + 1386 (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT); 1387 /* convert size to amount of 1388 pages */ 1389 reiserfs_write_lock(inode->i_sb); 1390 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME 1391 || num_pages > reiserfs_can_fit_pages(inode->i_sb)) { 1392 /* If we were asked to write more data than we want to or if there 1393 is not that much space, then we shorten amount of data to write 1394 for this iteration. */ 1395 num_pages = 1396 min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME, 1397 reiserfs_can_fit_pages(inode->i_sb)); 1398 /* Also we should not forget to set size in bytes accordingly */ 1399 write_bytes = (num_pages << PAGE_CACHE_SHIFT) - 1400 (pos & (PAGE_CACHE_SIZE - 1)); 1401 /* If position is not on the 1402 start of the page, we need 1403 to substract the offset 1404 within page */ 1405 } else 1406 write_bytes = count; 1407 1408 /* reserve the blocks to be allocated later, so that later on 1409 we still have the space to write the blocks to */ 1410 reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1411 num_pages << 1412 (PAGE_CACHE_SHIFT - 1413 inode->i_blkbits)); 1414 reiserfs_write_unlock(inode->i_sb); 1415 1416 if (!num_pages) { /* If we do not have enough space even for a single page... */ 1417 if (pos > 1418 inode->i_size + inode->i_sb->s_blocksize - 1419 (pos & (inode->i_sb->s_blocksize - 1))) { 1420 res = -ENOSPC; 1421 break; // In case we are writing past the end of the last file block, break. 1422 } 1423 // Otherwise we are possibly overwriting the file, so 1424 // let's set write size to be equal or less than blocksize. 1425 // This way we get it correctly for file holes. 1426 // But overwriting files on absolutelly full volumes would not 1427 // be very efficient. Well, people are not supposed to fill 1428 // 100% of disk space anyway. 1429 write_bytes = 1430 min_t(size_t, count, 1431 inode->i_sb->s_blocksize - 1432 (pos & (inode->i_sb->s_blocksize - 1))); 1433 num_pages = 1; 1434 // No blocks were claimed before, so do it now. 1435 reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1436 1 << 1437 (PAGE_CACHE_SHIFT 1438 - 1439 inode-> 1440 i_blkbits)); 1441 } 1442 1443 /* Prepare for writing into the region, read in all the 1444 partially overwritten pages, if needed. And lock the pages, 1445 so that nobody else can access these until we are done. 1446 We get number of actual blocks needed as a result. */ 1447 blocks_to_allocate = 1448 reiserfs_prepare_file_region_for_write(inode, pos, 1449 num_pages, 1450 write_bytes, 1451 prepared_pages); 1452 if (blocks_to_allocate < 0) { 1453 res = blocks_to_allocate; 1454 reiserfs_release_claimed_blocks(inode->i_sb, 1455 num_pages << 1456 (PAGE_CACHE_SHIFT - 1457 inode->i_blkbits)); 1458 break; 1459 } 1460 1461 /* First we correct our estimate of how many blocks we need */ 1462 reiserfs_release_claimed_blocks(inode->i_sb, 1463 (num_pages << 1464 (PAGE_CACHE_SHIFT - 1465 inode->i_sb-> 1466 s_blocksize_bits)) - 1467 blocks_to_allocate); 1468 1469 if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */ 1470 /* Fill in all the possible holes and append the file if needed */ 1471 res = 1472 reiserfs_allocate_blocks_for_region(&th, inode, pos, 1473 num_pages, 1474 write_bytes, 1475 prepared_pages, 1476 blocks_to_allocate); 1477 } 1478 1479 /* well, we have allocated the blocks, so it is time to free 1480 the reservation we made earlier. */ 1481 reiserfs_release_claimed_blocks(inode->i_sb, 1482 blocks_to_allocate); 1483 if (res) { 1484 reiserfs_unprepare_pages(prepared_pages, num_pages); 1485 break; 1486 } 1487 1488/* NOTE that allocating blocks and filling blocks can be done in reverse order 1489 and probably we would do that just to get rid of garbage in files after a 1490 crash */ 1491 1492 /* Copy data from user-supplied buffer to file's pages */ 1493 res = 1494 reiserfs_copy_from_user_to_file_region(pos, num_pages, 1495 write_bytes, 1496 prepared_pages, buf); 1497 if (res) { 1498 reiserfs_unprepare_pages(prepared_pages, num_pages); 1499 break; 1500 } 1501 1502 /* Send the pages to disk and unlock them. */ 1503 res = 1504 reiserfs_submit_file_region_for_write(&th, inode, pos, 1505 num_pages, 1506 write_bytes, 1507 prepared_pages); 1508 if (res) 1509 break; 1510 1511 already_written += write_bytes; 1512 buf += write_bytes; 1513 *ppos = pos += write_bytes; 1514 count -= write_bytes; 1515 balance_dirty_pages_ratelimited(inode->i_mapping); 1516 } 1517 1518 /* this is only true on error */ 1519 if (th.t_trans_id) { 1520 reiserfs_write_lock(inode->i_sb); 1521 err = journal_end(&th, th.t_super, th.t_blocks_allocated); 1522 reiserfs_write_unlock(inode->i_sb); 1523 if (err) { 1524 res = err; 1525 goto out; 1526 } 1527 } 1528 1529 if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) 1530 res = 1531 generic_osync_inode(inode, file->f_mapping, 1532 OSYNC_METADATA | OSYNC_DATA); 1533 1534 up(&inode->i_sem); 1535 reiserfs_async_progress_wait(inode->i_sb); 1536 return (already_written != 0) ? already_written : res; 1537 1538 out: 1539 up(&inode->i_sem); // unlock the file on exit. 1540 return res; 1541} 1542 1543static ssize_t reiserfs_aio_write(struct kiocb *iocb, const char __user * buf, 1544 size_t count, loff_t pos) 1545{ 1546 return generic_file_aio_write(iocb, buf, count, pos); 1547} 1548 1549struct file_operations reiserfs_file_operations = { 1550 .read = generic_file_read, 1551 .write = reiserfs_file_write, 1552 .ioctl = reiserfs_ioctl, 1553 .mmap = generic_file_mmap, 1554 .release = reiserfs_file_release, 1555 .fsync = reiserfs_sync_file, 1556 .sendfile = generic_file_sendfile, 1557 .aio_read = generic_file_aio_read, 1558 .aio_write = reiserfs_aio_write, 1559}; 1560 1561struct inode_operations reiserfs_file_inode_operations = { 1562 .truncate = reiserfs_vfs_truncate_file, 1563 .setattr = reiserfs_setattr, 1564 .setxattr = reiserfs_setxattr, 1565 .getxattr = reiserfs_getxattr, 1566 .listxattr = reiserfs_listxattr, 1567 .removexattr = reiserfs_removexattr, 1568 .permission = reiserfs_permission, 1569};