at v2.6.13 1309 lines 36 kB view raw
1 2/* 3 * Linux driver for Disk-On-Chip 2000 and Millennium 4 * (c) 1999 Machine Vision Holdings, Inc. 5 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> 6 * 7 * $Id: doc2000.c,v 1.66 2005/01/05 18:05:12 dwmw2 Exp $ 8 */ 9 10#include <linux/kernel.h> 11#include <linux/module.h> 12#include <asm/errno.h> 13#include <asm/io.h> 14#include <asm/uaccess.h> 15#include <linux/miscdevice.h> 16#include <linux/pci.h> 17#include <linux/delay.h> 18#include <linux/slab.h> 19#include <linux/sched.h> 20#include <linux/init.h> 21#include <linux/types.h> 22#include <linux/bitops.h> 23 24#include <linux/mtd/mtd.h> 25#include <linux/mtd/nand.h> 26#include <linux/mtd/doc2000.h> 27 28#define DOC_SUPPORT_2000 29#define DOC_SUPPORT_2000TSOP 30#define DOC_SUPPORT_MILLENNIUM 31 32#ifdef DOC_SUPPORT_2000 33#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) 34#else 35#define DoC_is_2000(doc) (0) 36#endif 37 38#if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM) 39#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) 40#else 41#define DoC_is_Millennium(doc) (0) 42#endif 43 44/* #define ECC_DEBUG */ 45 46/* I have no idea why some DoC chips can not use memcpy_from|to_io(). 47 * This may be due to the different revisions of the ASIC controller built-in or 48 * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment 49 * this: 50 #undef USE_MEMCPY 51*/ 52 53static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, 54 size_t *retlen, u_char *buf); 55static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, 56 size_t *retlen, const u_char *buf); 57static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, 58 size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); 59static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len, 60 size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); 61static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, 62 unsigned long count, loff_t to, size_t *retlen, 63 u_char *eccbuf, struct nand_oobinfo *oobsel); 64static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len, 65 size_t *retlen, u_char *buf); 66static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len, 67 size_t *retlen, const u_char *buf); 68static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, 69 size_t *retlen, const u_char *buf); 70static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); 71 72static struct mtd_info *doc2klist = NULL; 73 74/* Perform the required delay cycles by reading from the appropriate register */ 75static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) 76{ 77 volatile char dummy; 78 int i; 79 80 for (i = 0; i < cycles; i++) { 81 if (DoC_is_Millennium(doc)) 82 dummy = ReadDOC(doc->virtadr, NOP); 83 else 84 dummy = ReadDOC(doc->virtadr, DOCStatus); 85 } 86 87} 88 89/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ 90static int _DoC_WaitReady(struct DiskOnChip *doc) 91{ 92 void __iomem *docptr = doc->virtadr; 93 unsigned long timeo = jiffies + (HZ * 10); 94 95 DEBUG(MTD_DEBUG_LEVEL3, 96 "_DoC_WaitReady called for out-of-line wait\n"); 97 98 /* Out-of-line routine to wait for chip response */ 99 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 100 /* issue 2 read from NOP register after reading from CDSNControl register 101 see Software Requirement 11.4 item 2. */ 102 DoC_Delay(doc, 2); 103 104 if (time_after(jiffies, timeo)) { 105 DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); 106 return -EIO; 107 } 108 udelay(1); 109 cond_resched(); 110 } 111 112 return 0; 113} 114 115static inline int DoC_WaitReady(struct DiskOnChip *doc) 116{ 117 void __iomem *docptr = doc->virtadr; 118 119 /* This is inline, to optimise the common case, where it's ready instantly */ 120 int ret = 0; 121 122 /* 4 read form NOP register should be issued in prior to the read from CDSNControl 123 see Software Requirement 11.4 item 2. */ 124 DoC_Delay(doc, 4); 125 126 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) 127 /* Call the out-of-line routine to wait */ 128 ret = _DoC_WaitReady(doc); 129 130 /* issue 2 read from NOP register after reading from CDSNControl register 131 see Software Requirement 11.4 item 2. */ 132 DoC_Delay(doc, 2); 133 134 return ret; 135} 136 137/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to 138 bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is 139 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ 140 141static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command, 142 unsigned char xtraflags) 143{ 144 void __iomem *docptr = doc->virtadr; 145 146 if (DoC_is_2000(doc)) 147 xtraflags |= CDSN_CTRL_FLASH_IO; 148 149 /* Assert the CLE (Command Latch Enable) line to the flash chip */ 150 WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); 151 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ 152 153 if (DoC_is_Millennium(doc)) 154 WriteDOC(command, docptr, CDSNSlowIO); 155 156 /* Send the command */ 157 WriteDOC_(command, docptr, doc->ioreg); 158 if (DoC_is_Millennium(doc)) 159 WriteDOC(command, docptr, WritePipeTerm); 160 161 /* Lower the CLE line */ 162 WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); 163 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ 164 165 /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ 166 return DoC_WaitReady(doc); 167} 168 169/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to 170 bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is 171 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ 172 173static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, 174 unsigned char xtraflags1, unsigned char xtraflags2) 175{ 176 int i; 177 void __iomem *docptr = doc->virtadr; 178 179 if (DoC_is_2000(doc)) 180 xtraflags1 |= CDSN_CTRL_FLASH_IO; 181 182 /* Assert the ALE (Address Latch Enable) line to the flash chip */ 183 WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); 184 185 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ 186 187 /* Send the address */ 188 /* Devices with 256-byte page are addressed as: 189 Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) 190 * there is no device on the market with page256 191 and more than 24 bits. 192 Devices with 512-byte page are addressed as: 193 Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) 194 * 25-31 is sent only if the chip support it. 195 * bit 8 changes the read command to be sent 196 (NAND_CMD_READ0 or NAND_CMD_READ1). 197 */ 198 199 if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { 200 if (DoC_is_Millennium(doc)) 201 WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); 202 WriteDOC_(ofs & 0xff, docptr, doc->ioreg); 203 } 204 205 if (doc->page256) { 206 ofs = ofs >> 8; 207 } else { 208 ofs = ofs >> 9; 209 } 210 211 if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { 212 for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { 213 if (DoC_is_Millennium(doc)) 214 WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); 215 WriteDOC_(ofs & 0xff, docptr, doc->ioreg); 216 } 217 } 218 219 if (DoC_is_Millennium(doc)) 220 WriteDOC(ofs & 0xff, docptr, WritePipeTerm); 221 222 DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ 223 224 /* FIXME: The SlowIO's for millennium could be replaced by 225 a single WritePipeTerm here. mf. */ 226 227 /* Lower the ALE line */ 228 WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, 229 CDSNControl); 230 231 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ 232 233 /* Wait for the chip to respond - Software requirement 11.4.1 */ 234 return DoC_WaitReady(doc); 235} 236 237/* Read a buffer from DoC, taking care of Millennium odditys */ 238static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) 239{ 240 volatile int dummy; 241 int modulus = 0xffff; 242 void __iomem *docptr = doc->virtadr; 243 int i; 244 245 if (len <= 0) 246 return; 247 248 if (DoC_is_Millennium(doc)) { 249 /* Read the data via the internal pipeline through CDSN IO register, 250 see Pipelined Read Operations 11.3 */ 251 dummy = ReadDOC(docptr, ReadPipeInit); 252 253 /* Millennium should use the LastDataRead register - Pipeline Reads */ 254 len--; 255 256 /* This is needed for correctly ECC calculation */ 257 modulus = 0xff; 258 } 259 260 for (i = 0; i < len; i++) 261 buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); 262 263 if (DoC_is_Millennium(doc)) { 264 buf[i] = ReadDOC(docptr, LastDataRead); 265 } 266} 267 268/* Write a buffer to DoC, taking care of Millennium odditys */ 269static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) 270{ 271 void __iomem *docptr = doc->virtadr; 272 int i; 273 274 if (len <= 0) 275 return; 276 277 for (i = 0; i < len; i++) 278 WriteDOC_(buf[i], docptr, doc->ioreg + i); 279 280 if (DoC_is_Millennium(doc)) { 281 WriteDOC(0x00, docptr, WritePipeTerm); 282 } 283} 284 285 286/* DoC_SelectChip: Select a given flash chip within the current floor */ 287 288static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) 289{ 290 void __iomem *docptr = doc->virtadr; 291 292 /* Software requirement 11.4.4 before writing DeviceSelect */ 293 /* Deassert the CE line to eliminate glitches on the FCE# outputs */ 294 WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); 295 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ 296 297 /* Select the individual flash chip requested */ 298 WriteDOC(chip, docptr, CDSNDeviceSelect); 299 DoC_Delay(doc, 4); 300 301 /* Reassert the CE line */ 302 WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, 303 CDSNControl); 304 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ 305 306 /* Wait for it to be ready */ 307 return DoC_WaitReady(doc); 308} 309 310/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ 311 312static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) 313{ 314 void __iomem *docptr = doc->virtadr; 315 316 /* Select the floor (bank) of chips required */ 317 WriteDOC(floor, docptr, FloorSelect); 318 319 /* Wait for the chip to be ready */ 320 return DoC_WaitReady(doc); 321} 322 323/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ 324 325static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) 326{ 327 int mfr, id, i, j; 328 volatile char dummy; 329 330 /* Page in the required floor/chip */ 331 DoC_SelectFloor(doc, floor); 332 DoC_SelectChip(doc, chip); 333 334 /* Reset the chip */ 335 if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { 336 DEBUG(MTD_DEBUG_LEVEL2, 337 "DoC_Command (reset) for %d,%d returned true\n", 338 floor, chip); 339 return 0; 340 } 341 342 343 /* Read the NAND chip ID: 1. Send ReadID command */ 344 if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { 345 DEBUG(MTD_DEBUG_LEVEL2, 346 "DoC_Command (ReadID) for %d,%d returned true\n", 347 floor, chip); 348 return 0; 349 } 350 351 /* Read the NAND chip ID: 2. Send address byte zero */ 352 DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); 353 354 /* Read the manufacturer and device id codes from the device */ 355 356 if (DoC_is_Millennium(doc)) { 357 DoC_Delay(doc, 2); 358 dummy = ReadDOC(doc->virtadr, ReadPipeInit); 359 mfr = ReadDOC(doc->virtadr, LastDataRead); 360 361 DoC_Delay(doc, 2); 362 dummy = ReadDOC(doc->virtadr, ReadPipeInit); 363 id = ReadDOC(doc->virtadr, LastDataRead); 364 } else { 365 /* CDSN Slow IO register see Software Req 11.4 item 5. */ 366 dummy = ReadDOC(doc->virtadr, CDSNSlowIO); 367 DoC_Delay(doc, 2); 368 mfr = ReadDOC_(doc->virtadr, doc->ioreg); 369 370 /* CDSN Slow IO register see Software Req 11.4 item 5. */ 371 dummy = ReadDOC(doc->virtadr, CDSNSlowIO); 372 DoC_Delay(doc, 2); 373 id = ReadDOC_(doc->virtadr, doc->ioreg); 374 } 375 376 /* No response - return failure */ 377 if (mfr == 0xff || mfr == 0) 378 return 0; 379 380 /* Check it's the same as the first chip we identified. 381 * M-Systems say that any given DiskOnChip device should only 382 * contain _one_ type of flash part, although that's not a 383 * hardware restriction. */ 384 if (doc->mfr) { 385 if (doc->mfr == mfr && doc->id == id) 386 return 1; /* This is another the same the first */ 387 else 388 printk(KERN_WARNING 389 "Flash chip at floor %d, chip %d is different:\n", 390 floor, chip); 391 } 392 393 /* Print and store the manufacturer and ID codes. */ 394 for (i = 0; nand_flash_ids[i].name != NULL; i++) { 395 if (id == nand_flash_ids[i].id) { 396 /* Try to identify manufacturer */ 397 for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { 398 if (nand_manuf_ids[j].id == mfr) 399 break; 400 } 401 printk(KERN_INFO 402 "Flash chip found: Manufacturer ID: %2.2X, " 403 "Chip ID: %2.2X (%s:%s)\n", mfr, id, 404 nand_manuf_ids[j].name, nand_flash_ids[i].name); 405 if (!doc->mfr) { 406 doc->mfr = mfr; 407 doc->id = id; 408 doc->chipshift = 409 ffs((nand_flash_ids[i].chipsize << 20)) - 1; 410 doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0; 411 doc->pageadrlen = doc->chipshift > 25 ? 3 : 2; 412 doc->erasesize = 413 nand_flash_ids[i].erasesize; 414 return 1; 415 } 416 return 0; 417 } 418 } 419 420 421 /* We haven't fully identified the chip. Print as much as we know. */ 422 printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n", 423 id, mfr); 424 425 printk(KERN_WARNING "Please report to dwmw2@infradead.org\n"); 426 return 0; 427} 428 429/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ 430 431static void DoC_ScanChips(struct DiskOnChip *this, int maxchips) 432{ 433 int floor, chip; 434 int numchips[MAX_FLOORS]; 435 int ret = 1; 436 437 this->numchips = 0; 438 this->mfr = 0; 439 this->id = 0; 440 441 /* For each floor, find the number of valid chips it contains */ 442 for (floor = 0; floor < MAX_FLOORS; floor++) { 443 ret = 1; 444 numchips[floor] = 0; 445 for (chip = 0; chip < maxchips && ret != 0; chip++) { 446 447 ret = DoC_IdentChip(this, floor, chip); 448 if (ret) { 449 numchips[floor]++; 450 this->numchips++; 451 } 452 } 453 } 454 455 /* If there are none at all that we recognise, bail */ 456 if (!this->numchips) { 457 printk(KERN_NOTICE "No flash chips recognised.\n"); 458 return; 459 } 460 461 /* Allocate an array to hold the information for each chip */ 462 this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); 463 if (!this->chips) { 464 printk(KERN_NOTICE "No memory for allocating chip info structures\n"); 465 return; 466 } 467 468 ret = 0; 469 470 /* Fill out the chip array with {floor, chipno} for each 471 * detected chip in the device. */ 472 for (floor = 0; floor < MAX_FLOORS; floor++) { 473 for (chip = 0; chip < numchips[floor]; chip++) { 474 this->chips[ret].floor = floor; 475 this->chips[ret].chip = chip; 476 this->chips[ret].curadr = 0; 477 this->chips[ret].curmode = 0x50; 478 ret++; 479 } 480 } 481 482 /* Calculate and print the total size of the device */ 483 this->totlen = this->numchips * (1 << this->chipshift); 484 485 printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", 486 this->numchips, this->totlen >> 20); 487} 488 489static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) 490{ 491 int tmp1, tmp2, retval; 492 if (doc1->physadr == doc2->physadr) 493 return 1; 494 495 /* Use the alias resolution register which was set aside for this 496 * purpose. If it's value is the same on both chips, they might 497 * be the same chip, and we write to one and check for a change in 498 * the other. It's unclear if this register is usuable in the 499 * DoC 2000 (it's in the Millennium docs), but it seems to work. */ 500 tmp1 = ReadDOC(doc1->virtadr, AliasResolution); 501 tmp2 = ReadDOC(doc2->virtadr, AliasResolution); 502 if (tmp1 != tmp2) 503 return 0; 504 505 WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution); 506 tmp2 = ReadDOC(doc2->virtadr, AliasResolution); 507 if (tmp2 == (tmp1 + 1) % 0xff) 508 retval = 1; 509 else 510 retval = 0; 511 512 /* Restore register contents. May not be necessary, but do it just to 513 * be safe. */ 514 WriteDOC(tmp1, doc1->virtadr, AliasResolution); 515 516 return retval; 517} 518 519static const char im_name[] = "DoC2k_init"; 520 521/* This routine is made available to other mtd code via 522 * inter_module_register. It must only be accessed through 523 * inter_module_get which will bump the use count of this module. The 524 * addresses passed back in mtd are valid as long as the use count of 525 * this module is non-zero, i.e. between inter_module_get and 526 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. 527 */ 528static void DoC2k_init(struct mtd_info *mtd) 529{ 530 struct DiskOnChip *this = mtd->priv; 531 struct DiskOnChip *old = NULL; 532 int maxchips; 533 534 /* We must avoid being called twice for the same device. */ 535 536 if (doc2klist) 537 old = doc2klist->priv; 538 539 while (old) { 540 if (DoC2k_is_alias(old, this)) { 541 printk(KERN_NOTICE 542 "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n", 543 this->physadr); 544 iounmap(this->virtadr); 545 kfree(mtd); 546 return; 547 } 548 if (old->nextdoc) 549 old = old->nextdoc->priv; 550 else 551 old = NULL; 552 } 553 554 555 switch (this->ChipID) { 556 case DOC_ChipID_Doc2kTSOP: 557 mtd->name = "DiskOnChip 2000 TSOP"; 558 this->ioreg = DoC_Mil_CDSN_IO; 559 /* Pretend it's a Millennium */ 560 this->ChipID = DOC_ChipID_DocMil; 561 maxchips = MAX_CHIPS; 562 break; 563 case DOC_ChipID_Doc2k: 564 mtd->name = "DiskOnChip 2000"; 565 this->ioreg = DoC_2k_CDSN_IO; 566 maxchips = MAX_CHIPS; 567 break; 568 case DOC_ChipID_DocMil: 569 mtd->name = "DiskOnChip Millennium"; 570 this->ioreg = DoC_Mil_CDSN_IO; 571 maxchips = MAX_CHIPS_MIL; 572 break; 573 default: 574 printk("Unknown ChipID 0x%02x\n", this->ChipID); 575 kfree(mtd); 576 iounmap(this->virtadr); 577 return; 578 } 579 580 printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name, 581 this->physadr); 582 583 mtd->type = MTD_NANDFLASH; 584 mtd->flags = MTD_CAP_NANDFLASH; 585 mtd->ecctype = MTD_ECC_RS_DiskOnChip; 586 mtd->size = 0; 587 mtd->erasesize = 0; 588 mtd->oobblock = 512; 589 mtd->oobsize = 16; 590 mtd->owner = THIS_MODULE; 591 mtd->erase = doc_erase; 592 mtd->point = NULL; 593 mtd->unpoint = NULL; 594 mtd->read = doc_read; 595 mtd->write = doc_write; 596 mtd->read_ecc = doc_read_ecc; 597 mtd->write_ecc = doc_write_ecc; 598 mtd->writev_ecc = doc_writev_ecc; 599 mtd->read_oob = doc_read_oob; 600 mtd->write_oob = doc_write_oob; 601 mtd->sync = NULL; 602 603 this->totlen = 0; 604 this->numchips = 0; 605 606 this->curfloor = -1; 607 this->curchip = -1; 608 init_MUTEX(&this->lock); 609 610 /* Ident all the chips present. */ 611 DoC_ScanChips(this, maxchips); 612 613 if (!this->totlen) { 614 kfree(mtd); 615 iounmap(this->virtadr); 616 } else { 617 this->nextdoc = doc2klist; 618 doc2klist = mtd; 619 mtd->size = this->totlen; 620 mtd->erasesize = this->erasesize; 621 add_mtd_device(mtd); 622 return; 623 } 624} 625 626static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, 627 size_t * retlen, u_char * buf) 628{ 629 /* Just a special case of doc_read_ecc */ 630 return doc_read_ecc(mtd, from, len, retlen, buf, NULL, NULL); 631} 632 633static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, 634 size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel) 635{ 636 struct DiskOnChip *this = mtd->priv; 637 void __iomem *docptr = this->virtadr; 638 struct Nand *mychip; 639 unsigned char syndrome[6]; 640 volatile char dummy; 641 int i, len256 = 0, ret=0; 642 size_t left = len; 643 644 /* Don't allow read past end of device */ 645 if (from >= this->totlen) 646 return -EINVAL; 647 648 down(&this->lock); 649 650 *retlen = 0; 651 while (left) { 652 len = left; 653 654 /* Don't allow a single read to cross a 512-byte block boundary */ 655 if (from + len > ((from | 0x1ff) + 1)) 656 len = ((from | 0x1ff) + 1) - from; 657 658 /* The ECC will not be calculated correctly if less than 512 is read */ 659 if (len != 0x200 && eccbuf) 660 printk(KERN_WARNING 661 "ECC needs a full sector read (adr: %lx size %lx)\n", 662 (long) from, (long) len); 663 664 /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */ 665 666 667 /* Find the chip which is to be used and select it */ 668 mychip = &this->chips[from >> (this->chipshift)]; 669 670 if (this->curfloor != mychip->floor) { 671 DoC_SelectFloor(this, mychip->floor); 672 DoC_SelectChip(this, mychip->chip); 673 } else if (this->curchip != mychip->chip) { 674 DoC_SelectChip(this, mychip->chip); 675 } 676 677 this->curfloor = mychip->floor; 678 this->curchip = mychip->chip; 679 680 DoC_Command(this, 681 (!this->page256 682 && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, 683 CDSN_CTRL_WP); 684 DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, 685 CDSN_CTRL_ECC_IO); 686 687 if (eccbuf) { 688 /* Prime the ECC engine */ 689 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 690 WriteDOC(DOC_ECC_EN, docptr, ECCConf); 691 } else { 692 /* disable the ECC engine */ 693 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 694 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 695 } 696 697 /* treat crossing 256-byte sector for 2M x 8bits devices */ 698 if (this->page256 && from + len > (from | 0xff) + 1) { 699 len256 = (from | 0xff) + 1 - from; 700 DoC_ReadBuf(this, buf, len256); 701 702 DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); 703 DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, 704 CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); 705 } 706 707 DoC_ReadBuf(this, &buf[len256], len - len256); 708 709 /* Let the caller know we completed it */ 710 *retlen += len; 711 712 if (eccbuf) { 713 /* Read the ECC data through the DiskOnChip ECC logic */ 714 /* Note: this will work even with 2M x 8bit devices as */ 715 /* they have 8 bytes of OOB per 256 page. mf. */ 716 DoC_ReadBuf(this, eccbuf, 6); 717 718 /* Flush the pipeline */ 719 if (DoC_is_Millennium(this)) { 720 dummy = ReadDOC(docptr, ECCConf); 721 dummy = ReadDOC(docptr, ECCConf); 722 i = ReadDOC(docptr, ECCConf); 723 } else { 724 dummy = ReadDOC(docptr, 2k_ECCStatus); 725 dummy = ReadDOC(docptr, 2k_ECCStatus); 726 i = ReadDOC(docptr, 2k_ECCStatus); 727 } 728 729 /* Check the ECC Status */ 730 if (i & 0x80) { 731 int nb_errors; 732 /* There was an ECC error */ 733#ifdef ECC_DEBUG 734 printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from); 735#endif 736 /* Read the ECC syndrom through the DiskOnChip ECC logic. 737 These syndrome will be all ZERO when there is no error */ 738 for (i = 0; i < 6; i++) { 739 syndrome[i] = 740 ReadDOC(docptr, ECCSyndrome0 + i); 741 } 742 nb_errors = doc_decode_ecc(buf, syndrome); 743 744#ifdef ECC_DEBUG 745 printk(KERN_ERR "Errors corrected: %x\n", nb_errors); 746#endif 747 if (nb_errors < 0) { 748 /* We return error, but have actually done the read. Not that 749 this can be told to user-space, via sys_read(), but at least 750 MTD-aware stuff can know about it by checking *retlen */ 751 ret = -EIO; 752 } 753 } 754 755#ifdef PSYCHO_DEBUG 756 printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", 757 (long)from, eccbuf[0], eccbuf[1], eccbuf[2], 758 eccbuf[3], eccbuf[4], eccbuf[5]); 759#endif 760 761 /* disable the ECC engine */ 762 WriteDOC(DOC_ECC_DIS, docptr , ECCConf); 763 } 764 765 /* according to 11.4.1, we need to wait for the busy line 766 * drop if we read to the end of the page. */ 767 if(0 == ((from + len) & 0x1ff)) 768 { 769 DoC_WaitReady(this); 770 } 771 772 from += len; 773 left -= len; 774 buf += len; 775 } 776 777 up(&this->lock); 778 779 return ret; 780} 781 782static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, 783 size_t * retlen, const u_char * buf) 784{ 785 char eccbuf[6]; 786 return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, NULL); 787} 788 789static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len, 790 size_t * retlen, const u_char * buf, 791 u_char * eccbuf, struct nand_oobinfo *oobsel) 792{ 793 struct DiskOnChip *this = mtd->priv; 794 int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ 795 void __iomem *docptr = this->virtadr; 796 volatile char dummy; 797 int len256 = 0; 798 struct Nand *mychip; 799 size_t left = len; 800 int status; 801 802 /* Don't allow write past end of device */ 803 if (to >= this->totlen) 804 return -EINVAL; 805 806 down(&this->lock); 807 808 *retlen = 0; 809 while (left) { 810 len = left; 811 812 /* Don't allow a single write to cross a 512-byte block boundary */ 813 if (to + len > ((to | 0x1ff) + 1)) 814 len = ((to | 0x1ff) + 1) - to; 815 816 /* The ECC will not be calculated correctly if less than 512 is written */ 817/* DBB- 818 if (len != 0x200 && eccbuf) 819 printk(KERN_WARNING 820 "ECC needs a full sector write (adr: %lx size %lx)\n", 821 (long) to, (long) len); 822 -DBB */ 823 824 /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ 825 826 /* Find the chip which is to be used and select it */ 827 mychip = &this->chips[to >> (this->chipshift)]; 828 829 if (this->curfloor != mychip->floor) { 830 DoC_SelectFloor(this, mychip->floor); 831 DoC_SelectChip(this, mychip->chip); 832 } else if (this->curchip != mychip->chip) { 833 DoC_SelectChip(this, mychip->chip); 834 } 835 836 this->curfloor = mychip->floor; 837 this->curchip = mychip->chip; 838 839 /* Set device to main plane of flash */ 840 DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); 841 DoC_Command(this, 842 (!this->page256 843 && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, 844 CDSN_CTRL_WP); 845 846 DoC_Command(this, NAND_CMD_SEQIN, 0); 847 DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); 848 849 if (eccbuf) { 850 /* Prime the ECC engine */ 851 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 852 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); 853 } else { 854 /* disable the ECC engine */ 855 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 856 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 857 } 858 859 /* treat crossing 256-byte sector for 2M x 8bits devices */ 860 if (this->page256 && to + len > (to | 0xff) + 1) { 861 len256 = (to | 0xff) + 1 - to; 862 DoC_WriteBuf(this, buf, len256); 863 864 DoC_Command(this, NAND_CMD_PAGEPROG, 0); 865 866 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); 867 /* There's an implicit DoC_WaitReady() in DoC_Command */ 868 869 dummy = ReadDOC(docptr, CDSNSlowIO); 870 DoC_Delay(this, 2); 871 872 if (ReadDOC_(docptr, this->ioreg) & 1) { 873 printk(KERN_ERR "Error programming flash\n"); 874 /* Error in programming */ 875 *retlen = 0; 876 up(&this->lock); 877 return -EIO; 878 } 879 880 DoC_Command(this, NAND_CMD_SEQIN, 0); 881 DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, 882 CDSN_CTRL_ECC_IO); 883 } 884 885 DoC_WriteBuf(this, &buf[len256], len - len256); 886 887 if (eccbuf) { 888 WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, 889 CDSNControl); 890 891 if (DoC_is_Millennium(this)) { 892 WriteDOC(0, docptr, NOP); 893 WriteDOC(0, docptr, NOP); 894 WriteDOC(0, docptr, NOP); 895 } else { 896 WriteDOC_(0, docptr, this->ioreg); 897 WriteDOC_(0, docptr, this->ioreg); 898 WriteDOC_(0, docptr, this->ioreg); 899 } 900 901 WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr, 902 CDSNControl); 903 904 /* Read the ECC data through the DiskOnChip ECC logic */ 905 for (di = 0; di < 6; di++) { 906 eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); 907 } 908 909 /* Reset the ECC engine */ 910 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 911 912#ifdef PSYCHO_DEBUG 913 printk 914 ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", 915 (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], 916 eccbuf[4], eccbuf[5]); 917#endif 918 } 919 920 DoC_Command(this, NAND_CMD_PAGEPROG, 0); 921 922 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); 923 /* There's an implicit DoC_WaitReady() in DoC_Command */ 924 925 if (DoC_is_Millennium(this)) { 926 ReadDOC(docptr, ReadPipeInit); 927 status = ReadDOC(docptr, LastDataRead); 928 } else { 929 dummy = ReadDOC(docptr, CDSNSlowIO); 930 DoC_Delay(this, 2); 931 status = ReadDOC_(docptr, this->ioreg); 932 } 933 934 if (status & 1) { 935 printk(KERN_ERR "Error programming flash\n"); 936 /* Error in programming */ 937 *retlen = 0; 938 up(&this->lock); 939 return -EIO; 940 } 941 942 /* Let the caller know we completed it */ 943 *retlen += len; 944 945 if (eccbuf) { 946 unsigned char x[8]; 947 size_t dummy; 948 int ret; 949 950 /* Write the ECC data to flash */ 951 for (di=0; di<6; di++) 952 x[di] = eccbuf[di]; 953 954 x[6]=0x55; 955 x[7]=0x55; 956 957 ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x); 958 if (ret) { 959 up(&this->lock); 960 return ret; 961 } 962 } 963 964 to += len; 965 left -= len; 966 buf += len; 967 } 968 969 up(&this->lock); 970 return 0; 971} 972 973static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, 974 unsigned long count, loff_t to, size_t *retlen, 975 u_char *eccbuf, struct nand_oobinfo *oobsel) 976{ 977 static char static_buf[512]; 978 static DECLARE_MUTEX(writev_buf_sem); 979 980 size_t totretlen = 0; 981 size_t thisvecofs = 0; 982 int ret= 0; 983 984 down(&writev_buf_sem); 985 986 while(count) { 987 size_t thislen, thisretlen; 988 unsigned char *buf; 989 990 buf = vecs->iov_base + thisvecofs; 991 thislen = vecs->iov_len - thisvecofs; 992 993 994 if (thislen >= 512) { 995 thislen = thislen & ~(512-1); 996 thisvecofs += thislen; 997 } else { 998 /* Not enough to fill a page. Copy into buf */ 999 memcpy(static_buf, buf, thislen); 1000 buf = &static_buf[thislen]; 1001 1002 while(count && thislen < 512) { 1003 vecs++; 1004 count--; 1005 thisvecofs = min((512-thislen), vecs->iov_len); 1006 memcpy(buf, vecs->iov_base, thisvecofs); 1007 thislen += thisvecofs; 1008 buf += thisvecofs; 1009 } 1010 buf = static_buf; 1011 } 1012 if (count && thisvecofs == vecs->iov_len) { 1013 thisvecofs = 0; 1014 vecs++; 1015 count--; 1016 } 1017 ret = doc_write_ecc(mtd, to, thislen, &thisretlen, buf, eccbuf, oobsel); 1018 1019 totretlen += thisretlen; 1020 1021 if (ret || thisretlen != thislen) 1022 break; 1023 1024 to += thislen; 1025 } 1026 1027 up(&writev_buf_sem); 1028 *retlen = totretlen; 1029 return ret; 1030} 1031 1032 1033static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len, 1034 size_t * retlen, u_char * buf) 1035{ 1036 struct DiskOnChip *this = mtd->priv; 1037 int len256 = 0, ret; 1038 struct Nand *mychip; 1039 1040 down(&this->lock); 1041 1042 mychip = &this->chips[ofs >> this->chipshift]; 1043 1044 if (this->curfloor != mychip->floor) { 1045 DoC_SelectFloor(this, mychip->floor); 1046 DoC_SelectChip(this, mychip->chip); 1047 } else if (this->curchip != mychip->chip) { 1048 DoC_SelectChip(this, mychip->chip); 1049 } 1050 this->curfloor = mychip->floor; 1051 this->curchip = mychip->chip; 1052 1053 /* update address for 2M x 8bit devices. OOB starts on the second */ 1054 /* page to maintain compatibility with doc_read_ecc. */ 1055 if (this->page256) { 1056 if (!(ofs & 0x8)) 1057 ofs += 0x100; 1058 else 1059 ofs -= 0x8; 1060 } 1061 1062 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); 1063 DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); 1064 1065 /* treat crossing 8-byte OOB data for 2M x 8bit devices */ 1066 /* Note: datasheet says it should automaticaly wrap to the */ 1067 /* next OOB block, but it didn't work here. mf. */ 1068 if (this->page256 && ofs + len > (ofs | 0x7) + 1) { 1069 len256 = (ofs | 0x7) + 1 - ofs; 1070 DoC_ReadBuf(this, buf, len256); 1071 1072 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); 1073 DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 1074 CDSN_CTRL_WP, 0); 1075 } 1076 1077 DoC_ReadBuf(this, &buf[len256], len - len256); 1078 1079 *retlen = len; 1080 /* Reading the full OOB data drops us off of the end of the page, 1081 * causing the flash device to go into busy mode, so we need 1082 * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ 1083 1084 ret = DoC_WaitReady(this); 1085 1086 up(&this->lock); 1087 return ret; 1088 1089} 1090 1091static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, 1092 size_t * retlen, const u_char * buf) 1093{ 1094 struct DiskOnChip *this = mtd->priv; 1095 int len256 = 0; 1096 void __iomem *docptr = this->virtadr; 1097 struct Nand *mychip = &this->chips[ofs >> this->chipshift]; 1098 volatile int dummy; 1099 int status; 1100 1101 // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len, 1102 // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]); 1103 1104 /* Find the chip which is to be used and select it */ 1105 if (this->curfloor != mychip->floor) { 1106 DoC_SelectFloor(this, mychip->floor); 1107 DoC_SelectChip(this, mychip->chip); 1108 } else if (this->curchip != mychip->chip) { 1109 DoC_SelectChip(this, mychip->chip); 1110 } 1111 this->curfloor = mychip->floor; 1112 this->curchip = mychip->chip; 1113 1114 /* disable the ECC engine */ 1115 WriteDOC (DOC_ECC_RESET, docptr, ECCConf); 1116 WriteDOC (DOC_ECC_DIS, docptr, ECCConf); 1117 1118 /* Reset the chip, see Software Requirement 11.4 item 1. */ 1119 DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); 1120 1121 /* issue the Read2 command to set the pointer to the Spare Data Area. */ 1122 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); 1123 1124 /* update address for 2M x 8bit devices. OOB starts on the second */ 1125 /* page to maintain compatibility with doc_read_ecc. */ 1126 if (this->page256) { 1127 if (!(ofs & 0x8)) 1128 ofs += 0x100; 1129 else 1130 ofs -= 0x8; 1131 } 1132 1133 /* issue the Serial Data In command to initial the Page Program process */ 1134 DoC_Command(this, NAND_CMD_SEQIN, 0); 1135 DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); 1136 1137 /* treat crossing 8-byte OOB data for 2M x 8bit devices */ 1138 /* Note: datasheet says it should automaticaly wrap to the */ 1139 /* next OOB block, but it didn't work here. mf. */ 1140 if (this->page256 && ofs + len > (ofs | 0x7) + 1) { 1141 len256 = (ofs | 0x7) + 1 - ofs; 1142 DoC_WriteBuf(this, buf, len256); 1143 1144 DoC_Command(this, NAND_CMD_PAGEPROG, 0); 1145 DoC_Command(this, NAND_CMD_STATUS, 0); 1146 /* DoC_WaitReady() is implicit in DoC_Command */ 1147 1148 if (DoC_is_Millennium(this)) { 1149 ReadDOC(docptr, ReadPipeInit); 1150 status = ReadDOC(docptr, LastDataRead); 1151 } else { 1152 dummy = ReadDOC(docptr, CDSNSlowIO); 1153 DoC_Delay(this, 2); 1154 status = ReadDOC_(docptr, this->ioreg); 1155 } 1156 1157 if (status & 1) { 1158 printk(KERN_ERR "Error programming oob data\n"); 1159 /* There was an error */ 1160 *retlen = 0; 1161 return -EIO; 1162 } 1163 DoC_Command(this, NAND_CMD_SEQIN, 0); 1164 DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); 1165 } 1166 1167 DoC_WriteBuf(this, &buf[len256], len - len256); 1168 1169 DoC_Command(this, NAND_CMD_PAGEPROG, 0); 1170 DoC_Command(this, NAND_CMD_STATUS, 0); 1171 /* DoC_WaitReady() is implicit in DoC_Command */ 1172 1173 if (DoC_is_Millennium(this)) { 1174 ReadDOC(docptr, ReadPipeInit); 1175 status = ReadDOC(docptr, LastDataRead); 1176 } else { 1177 dummy = ReadDOC(docptr, CDSNSlowIO); 1178 DoC_Delay(this, 2); 1179 status = ReadDOC_(docptr, this->ioreg); 1180 } 1181 1182 if (status & 1) { 1183 printk(KERN_ERR "Error programming oob data\n"); 1184 /* There was an error */ 1185 *retlen = 0; 1186 return -EIO; 1187 } 1188 1189 *retlen = len; 1190 return 0; 1191 1192} 1193 1194static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len, 1195 size_t * retlen, const u_char * buf) 1196{ 1197 struct DiskOnChip *this = mtd->priv; 1198 int ret; 1199 1200 down(&this->lock); 1201 ret = doc_write_oob_nolock(mtd, ofs, len, retlen, buf); 1202 1203 up(&this->lock); 1204 return ret; 1205} 1206 1207static int doc_erase(struct mtd_info *mtd, struct erase_info *instr) 1208{ 1209 struct DiskOnChip *this = mtd->priv; 1210 __u32 ofs = instr->addr; 1211 __u32 len = instr->len; 1212 volatile int dummy; 1213 void __iomem *docptr = this->virtadr; 1214 struct Nand *mychip; 1215 int status; 1216 1217 down(&this->lock); 1218 1219 if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) { 1220 up(&this->lock); 1221 return -EINVAL; 1222 } 1223 1224 instr->state = MTD_ERASING; 1225 1226 /* FIXME: Do this in the background. Use timers or schedule_task() */ 1227 while(len) { 1228 mychip = &this->chips[ofs >> this->chipshift]; 1229 1230 if (this->curfloor != mychip->floor) { 1231 DoC_SelectFloor(this, mychip->floor); 1232 DoC_SelectChip(this, mychip->chip); 1233 } else if (this->curchip != mychip->chip) { 1234 DoC_SelectChip(this, mychip->chip); 1235 } 1236 this->curfloor = mychip->floor; 1237 this->curchip = mychip->chip; 1238 1239 DoC_Command(this, NAND_CMD_ERASE1, 0); 1240 DoC_Address(this, ADDR_PAGE, ofs, 0, 0); 1241 DoC_Command(this, NAND_CMD_ERASE2, 0); 1242 1243 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); 1244 1245 if (DoC_is_Millennium(this)) { 1246 ReadDOC(docptr, ReadPipeInit); 1247 status = ReadDOC(docptr, LastDataRead); 1248 } else { 1249 dummy = ReadDOC(docptr, CDSNSlowIO); 1250 DoC_Delay(this, 2); 1251 status = ReadDOC_(docptr, this->ioreg); 1252 } 1253 1254 if (status & 1) { 1255 printk(KERN_ERR "Error erasing at 0x%x\n", ofs); 1256 /* There was an error */ 1257 instr->state = MTD_ERASE_FAILED; 1258 goto callback; 1259 } 1260 ofs += mtd->erasesize; 1261 len -= mtd->erasesize; 1262 } 1263 instr->state = MTD_ERASE_DONE; 1264 1265 callback: 1266 mtd_erase_callback(instr); 1267 1268 up(&this->lock); 1269 return 0; 1270} 1271 1272 1273/**************************************************************************** 1274 * 1275 * Module stuff 1276 * 1277 ****************************************************************************/ 1278 1279static int __init init_doc2000(void) 1280{ 1281 inter_module_register(im_name, THIS_MODULE, &DoC2k_init); 1282 return 0; 1283} 1284 1285static void __exit cleanup_doc2000(void) 1286{ 1287 struct mtd_info *mtd; 1288 struct DiskOnChip *this; 1289 1290 while ((mtd = doc2klist)) { 1291 this = mtd->priv; 1292 doc2klist = this->nextdoc; 1293 1294 del_mtd_device(mtd); 1295 1296 iounmap(this->virtadr); 1297 kfree(this->chips); 1298 kfree(mtd); 1299 } 1300 inter_module_unregister(im_name); 1301} 1302 1303module_exit(cleanup_doc2000); 1304module_init(init_doc2000); 1305 1306MODULE_LICENSE("GPL"); 1307MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); 1308MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium"); 1309