at v2.6.13-rc4 227 lines 7.6 kB view raw
1/* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle 7 * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. 8 */ 9#ifndef _ASM_PGTABLE_64_H 10#define _ASM_PGTABLE_64_H 11 12#include <linux/config.h> 13#include <linux/linkage.h> 14 15#include <asm/addrspace.h> 16#include <asm/page.h> 17#include <asm/cachectl.h> 18 19/* 20 * Each address space has 2 4K pages as its page directory, giving 1024 21 * (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a 22 * pair of 4K pages, giving 1024 (== PTRS_PER_PMD) 8 byte pointers to 23 * page tables. Each page table is a single 4K page, giving 512 (== 24 * PTRS_PER_PTE) 8 byte ptes. Each pgde is initialized to point to 25 * invalid_pmd_table, each pmde is initialized to point to 26 * invalid_pte_table, each pte is initialized to 0. When memory is low, 27 * and a pmd table or a page table allocation fails, empty_bad_pmd_table 28 * and empty_bad_page_table is returned back to higher layer code, so 29 * that the failure is recognized later on. Linux does not seem to 30 * handle these failures very well though. The empty_bad_page_table has 31 * invalid pte entries in it, to force page faults. 32 * 33 * Kernel mappings: kernel mappings are held in the swapper_pg_table. 34 * The layout is identical to userspace except it's indexed with the 35 * fault address - VMALLOC_START. 36 */ 37 38/* PMD_SHIFT determines the size of the area a second-level page table can map */ 39#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3)) 40#define PMD_SIZE (1UL << PMD_SHIFT) 41#define PMD_MASK (~(PMD_SIZE-1)) 42 43/* PGDIR_SHIFT determines what a third-level page table entry can map */ 44#define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + 1 - 3)) 45#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 46#define PGDIR_MASK (~(PGDIR_SIZE-1)) 47 48/* 49 * For 4kB page size we use a 3 level page tree and a 8kB pmd and pgds which 50 * permits us mapping 40 bits of virtual address space. 51 * 52 * We used to implement 41 bits by having an order 1 pmd level but that seemed 53 * rather pointless. 54 * 55 * For 8kB page size we use a 3 level page tree which permits a total of 56 * 8TB of address space. Alternatively a 33-bit / 8GB organization using 57 * two levels would be easy to implement. 58 * 59 * For 16kB page size we use a 2 level page tree which permits a total of 60 * 36 bits of virtual address space. We could add a third leve. but it seems 61 * like at the moment there's no need for this. 62 * 63 * For 64kB page size we use a 2 level page table tree for a total of 42 bits 64 * of virtual address space. 65 */ 66#ifdef CONFIG_PAGE_SIZE_4KB 67#define PGD_ORDER 1 68#define PMD_ORDER 0 69#define PTE_ORDER 0 70#endif 71#ifdef CONFIG_PAGE_SIZE_8KB 72#define PGD_ORDER 0 73#define PMD_ORDER 0 74#define PTE_ORDER 0 75#endif 76#ifdef CONFIG_PAGE_SIZE_16KB 77#define PGD_ORDER 0 78#define PMD_ORDER 0 79#define PTE_ORDER 0 80#endif 81#ifdef CONFIG_PAGE_SIZE_64KB 82#define PGD_ORDER 0 83#define PMD_ORDER 0 84#define PTE_ORDER 0 85#endif 86 87#define PTRS_PER_PGD ((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t)) 88#define PTRS_PER_PMD ((PAGE_SIZE << PMD_ORDER) / sizeof(pmd_t)) 89#define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t)) 90 91#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 92#define FIRST_USER_ADDRESS 0 93 94#define VMALLOC_START XKSEG 95#define VMALLOC_END \ 96 (VMALLOC_START + PTRS_PER_PGD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE) 97 98#define pte_ERROR(e) \ 99 printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 100#define pmd_ERROR(e) \ 101 printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 102#define pgd_ERROR(e) \ 103 printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 104 105extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)]; 106extern pte_t empty_bad_page_table[PAGE_SIZE/sizeof(pte_t)]; 107extern pmd_t invalid_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)]; 108extern pmd_t empty_bad_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)]; 109 110/* 111 * Empty pmd entries point to the invalid_pte_table. 112 */ 113static inline int pmd_none(pmd_t pmd) 114{ 115 return pmd_val(pmd) == (unsigned long) invalid_pte_table; 116} 117 118#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 119 120static inline int pmd_present(pmd_t pmd) 121{ 122 return pmd_val(pmd) != (unsigned long) invalid_pte_table; 123} 124 125static inline void pmd_clear(pmd_t *pmdp) 126{ 127 pmd_val(*pmdp) = ((unsigned long) invalid_pte_table); 128} 129 130/* 131 * Empty pgd entries point to the invalid_pmd_table. 132 */ 133static inline int pgd_none(pgd_t pgd) 134{ 135 return pgd_val(pgd) == (unsigned long) invalid_pmd_table; 136} 137 138#define pgd_bad(pgd) (pgd_val(pgd) &~ PAGE_MASK) 139 140static inline int pgd_present(pgd_t pgd) 141{ 142 return pgd_val(pgd) != (unsigned long) invalid_pmd_table; 143} 144 145static inline void pgd_clear(pgd_t *pgdp) 146{ 147 pgd_val(*pgdp) = ((unsigned long) invalid_pmd_table); 148} 149 150#define pte_page(x) pfn_to_page((unsigned long)((pte_val(x) >> PAGE_SHIFT))) 151#ifdef CONFIG_CPU_VR41XX 152#define pte_pfn(x) ((unsigned long)((x).pte >> (PAGE_SHIFT + 2))) 153#define pfn_pte(pfn, prot) __pte(((pfn) << (PAGE_SHIFT + 2)) | pgprot_val(prot)) 154#else 155#define pte_pfn(x) ((unsigned long)((x).pte >> PAGE_SHIFT)) 156#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 157#endif 158 159#define __pgd_offset(address) pgd_index(address) 160#define page_pte(page) page_pte_prot(page, __pgprot(0)) 161 162/* to find an entry in a kernel page-table-directory */ 163#define pgd_offset_k(address) pgd_offset(&init_mm, 0) 164 165#define pgd_index(address) ((address) >> PGDIR_SHIFT) 166 167/* to find an entry in a page-table-directory */ 168#define pgd_offset(mm,addr) ((mm)->pgd + pgd_index(addr)) 169 170static inline unsigned long pgd_page(pgd_t pgd) 171{ 172 return pgd_val(pgd); 173} 174 175/* Find an entry in the second-level page table.. */ 176static inline pmd_t *pmd_offset(pgd_t * dir, unsigned long address) 177{ 178 return (pmd_t *) pgd_page(*dir) + 179 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 180} 181 182/* Find an entry in the third-level page table.. */ 183#define __pte_offset(address) \ 184 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 185#define pte_offset(dir, address) \ 186 ((pte_t *) (pmd_page_kernel(*dir)) + __pte_offset(address)) 187#define pte_offset_kernel(dir, address) \ 188 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address)) 189#define pte_offset_map(dir, address) \ 190 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 191#define pte_offset_map_nested(dir, address) \ 192 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 193#define pte_unmap(pte) ((void)(pte)) 194#define pte_unmap_nested(pte) ((void)(pte)) 195 196/* 197 * Initialize a new pgd / pmd table with invalid pointers. 198 */ 199extern void pgd_init(unsigned long page); 200extern void pmd_init(unsigned long page, unsigned long pagetable); 201 202/* 203 * Non-present pages: high 24 bits are offset, next 8 bits type, 204 * low 32 bits zero. 205 */ 206static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 207{ pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; } 208 209#define __swp_type(x) (((x).val >> 32) & 0xff) 210#define __swp_offset(x) ((x).val >> 40) 211#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 212#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 213#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 214 215/* 216 * Bits 0, 1, 2, 7 and 8 are taken, split up the 32 bits of offset 217 * into this range: 218 */ 219#define PTE_FILE_MAX_BITS 32 220 221#define pte_to_pgoff(_pte) \ 222 ((((_pte).pte >> 3) & 0x1f ) + (((_pte).pte >> 9) << 6 )) 223 224#define pgoff_to_pte(off) \ 225 ((pte_t) { (((off) & 0x1f) << 3) + (((off) >> 6) << 9) + _PAGE_FILE }) 226 227#endif /* _ASM_PGTABLE_64_H */