at v2.6.13-rc4 451 lines 12 kB view raw
1/* 2 * Cryptographic API. 3 * 4 * AES Cipher Algorithm. 5 * 6 * Based on Brian Gladman's code. 7 * 8 * Linux developers: 9 * Alexander Kjeldaas <astor@fast.no> 10 * Herbert Valerio Riedel <hvr@hvrlab.org> 11 * Kyle McMartin <kyle@debian.org> 12 * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API). 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or 17 * (at your option) any later version. 18 * 19 * --------------------------------------------------------------------------- 20 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. 21 * All rights reserved. 22 * 23 * LICENSE TERMS 24 * 25 * The free distribution and use of this software in both source and binary 26 * form is allowed (with or without changes) provided that: 27 * 28 * 1. distributions of this source code include the above copyright 29 * notice, this list of conditions and the following disclaimer; 30 * 31 * 2. distributions in binary form include the above copyright 32 * notice, this list of conditions and the following disclaimer 33 * in the documentation and/or other associated materials; 34 * 35 * 3. the copyright holder's name is not used to endorse products 36 * built using this software without specific written permission. 37 * 38 * ALTERNATIVELY, provided that this notice is retained in full, this product 39 * may be distributed under the terms of the GNU General Public License (GPL), 40 * in which case the provisions of the GPL apply INSTEAD OF those given above. 41 * 42 * DISCLAIMER 43 * 44 * This software is provided 'as is' with no explicit or implied warranties 45 * in respect of its properties, including, but not limited to, correctness 46 * and/or fitness for purpose. 47 * --------------------------------------------------------------------------- 48 */ 49 50/* Some changes from the Gladman version: 51 s/RIJNDAEL(e_key)/E_KEY/g 52 s/RIJNDAEL(d_key)/D_KEY/g 53*/ 54 55#include <linux/module.h> 56#include <linux/init.h> 57#include <linux/types.h> 58#include <linux/errno.h> 59#include <linux/crypto.h> 60#include <asm/byteorder.h> 61 62#define AES_MIN_KEY_SIZE 16 63#define AES_MAX_KEY_SIZE 32 64 65#define AES_BLOCK_SIZE 16 66 67/* 68 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 69 */ 70static inline u8 71byte(const u32 x, const unsigned n) 72{ 73 return x >> (n << 3); 74} 75 76#define u32_in(x) le32_to_cpu(*(const u32 *)(x)) 77#define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from)) 78 79struct aes_ctx { 80 int key_length; 81 u32 E[60]; 82 u32 D[60]; 83}; 84 85#define E_KEY ctx->E 86#define D_KEY ctx->D 87 88static u8 pow_tab[256] __initdata; 89static u8 log_tab[256] __initdata; 90static u8 sbx_tab[256] __initdata; 91static u8 isb_tab[256] __initdata; 92static u32 rco_tab[10]; 93static u32 ft_tab[4][256]; 94static u32 it_tab[4][256]; 95 96static u32 fl_tab[4][256]; 97static u32 il_tab[4][256]; 98 99static inline u8 __init 100f_mult (u8 a, u8 b) 101{ 102 u8 aa = log_tab[a], cc = aa + log_tab[b]; 103 104 return pow_tab[cc + (cc < aa ? 1 : 0)]; 105} 106 107#define ff_mult(a,b) (a && b ? f_mult(a, b) : 0) 108 109#define f_rn(bo, bi, n, k) \ 110 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ 111 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ 112 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ 113 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) 114 115#define i_rn(bo, bi, n, k) \ 116 bo[n] = it_tab[0][byte(bi[n],0)] ^ \ 117 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ 118 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ 119 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) 120 121#define ls_box(x) \ 122 ( fl_tab[0][byte(x, 0)] ^ \ 123 fl_tab[1][byte(x, 1)] ^ \ 124 fl_tab[2][byte(x, 2)] ^ \ 125 fl_tab[3][byte(x, 3)] ) 126 127#define f_rl(bo, bi, n, k) \ 128 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ 129 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ 130 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ 131 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) 132 133#define i_rl(bo, bi, n, k) \ 134 bo[n] = il_tab[0][byte(bi[n],0)] ^ \ 135 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ 136 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ 137 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) 138 139static void __init 140gen_tabs (void) 141{ 142 u32 i, t; 143 u8 p, q; 144 145 /* log and power tables for GF(2**8) finite field with 146 0x011b as modular polynomial - the simplest primitive 147 root is 0x03, used here to generate the tables */ 148 149 for (i = 0, p = 1; i < 256; ++i) { 150 pow_tab[i] = (u8) p; 151 log_tab[p] = (u8) i; 152 153 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); 154 } 155 156 log_tab[1] = 0; 157 158 for (i = 0, p = 1; i < 10; ++i) { 159 rco_tab[i] = p; 160 161 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); 162 } 163 164 for (i = 0; i < 256; ++i) { 165 p = (i ? pow_tab[255 - log_tab[i]] : 0); 166 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); 167 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); 168 sbx_tab[i] = p; 169 isb_tab[p] = (u8) i; 170 } 171 172 for (i = 0; i < 256; ++i) { 173 p = sbx_tab[i]; 174 175 t = p; 176 fl_tab[0][i] = t; 177 fl_tab[1][i] = rol32(t, 8); 178 fl_tab[2][i] = rol32(t, 16); 179 fl_tab[3][i] = rol32(t, 24); 180 181 t = ((u32) ff_mult (2, p)) | 182 ((u32) p << 8) | 183 ((u32) p << 16) | ((u32) ff_mult (3, p) << 24); 184 185 ft_tab[0][i] = t; 186 ft_tab[1][i] = rol32(t, 8); 187 ft_tab[2][i] = rol32(t, 16); 188 ft_tab[3][i] = rol32(t, 24); 189 190 p = isb_tab[i]; 191 192 t = p; 193 il_tab[0][i] = t; 194 il_tab[1][i] = rol32(t, 8); 195 il_tab[2][i] = rol32(t, 16); 196 il_tab[3][i] = rol32(t, 24); 197 198 t = ((u32) ff_mult (14, p)) | 199 ((u32) ff_mult (9, p) << 8) | 200 ((u32) ff_mult (13, p) << 16) | 201 ((u32) ff_mult (11, p) << 24); 202 203 it_tab[0][i] = t; 204 it_tab[1][i] = rol32(t, 8); 205 it_tab[2][i] = rol32(t, 16); 206 it_tab[3][i] = rol32(t, 24); 207 } 208} 209 210#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) 211 212#define imix_col(y,x) \ 213 u = star_x(x); \ 214 v = star_x(u); \ 215 w = star_x(v); \ 216 t = w ^ (x); \ 217 (y) = u ^ v ^ w; \ 218 (y) ^= ror32(u ^ t, 8) ^ \ 219 ror32(v ^ t, 16) ^ \ 220 ror32(t,24) 221 222/* initialise the key schedule from the user supplied key */ 223 224#define loop4(i) \ 225{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \ 226 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \ 227 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \ 228 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \ 229 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \ 230} 231 232#define loop6(i) \ 233{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \ 234 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \ 235 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \ 236 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \ 237 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \ 238 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \ 239 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \ 240} 241 242#define loop8(i) \ 243{ t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \ 244 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \ 245 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \ 246 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \ 247 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \ 248 t = E_KEY[8 * i + 4] ^ ls_box(t); \ 249 E_KEY[8 * i + 12] = t; \ 250 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \ 251 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \ 252 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \ 253} 254 255static int 256aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags) 257{ 258 struct aes_ctx *ctx = ctx_arg; 259 u32 i, t, u, v, w; 260 261 if (key_len != 16 && key_len != 24 && key_len != 32) { 262 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; 263 return -EINVAL; 264 } 265 266 ctx->key_length = key_len; 267 268 E_KEY[0] = u32_in (in_key); 269 E_KEY[1] = u32_in (in_key + 4); 270 E_KEY[2] = u32_in (in_key + 8); 271 E_KEY[3] = u32_in (in_key + 12); 272 273 switch (key_len) { 274 case 16: 275 t = E_KEY[3]; 276 for (i = 0; i < 10; ++i) 277 loop4 (i); 278 break; 279 280 case 24: 281 E_KEY[4] = u32_in (in_key + 16); 282 t = E_KEY[5] = u32_in (in_key + 20); 283 for (i = 0; i < 8; ++i) 284 loop6 (i); 285 break; 286 287 case 32: 288 E_KEY[4] = u32_in (in_key + 16); 289 E_KEY[5] = u32_in (in_key + 20); 290 E_KEY[6] = u32_in (in_key + 24); 291 t = E_KEY[7] = u32_in (in_key + 28); 292 for (i = 0; i < 7; ++i) 293 loop8 (i); 294 break; 295 } 296 297 D_KEY[0] = E_KEY[0]; 298 D_KEY[1] = E_KEY[1]; 299 D_KEY[2] = E_KEY[2]; 300 D_KEY[3] = E_KEY[3]; 301 302 for (i = 4; i < key_len + 24; ++i) { 303 imix_col (D_KEY[i], E_KEY[i]); 304 } 305 306 return 0; 307} 308 309/* encrypt a block of text */ 310 311#define f_nround(bo, bi, k) \ 312 f_rn(bo, bi, 0, k); \ 313 f_rn(bo, bi, 1, k); \ 314 f_rn(bo, bi, 2, k); \ 315 f_rn(bo, bi, 3, k); \ 316 k += 4 317 318#define f_lround(bo, bi, k) \ 319 f_rl(bo, bi, 0, k); \ 320 f_rl(bo, bi, 1, k); \ 321 f_rl(bo, bi, 2, k); \ 322 f_rl(bo, bi, 3, k) 323 324static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in) 325{ 326 const struct aes_ctx *ctx = ctx_arg; 327 u32 b0[4], b1[4]; 328 const u32 *kp = E_KEY + 4; 329 330 b0[0] = u32_in (in) ^ E_KEY[0]; 331 b0[1] = u32_in (in + 4) ^ E_KEY[1]; 332 b0[2] = u32_in (in + 8) ^ E_KEY[2]; 333 b0[3] = u32_in (in + 12) ^ E_KEY[3]; 334 335 if (ctx->key_length > 24) { 336 f_nround (b1, b0, kp); 337 f_nround (b0, b1, kp); 338 } 339 340 if (ctx->key_length > 16) { 341 f_nround (b1, b0, kp); 342 f_nround (b0, b1, kp); 343 } 344 345 f_nround (b1, b0, kp); 346 f_nround (b0, b1, kp); 347 f_nround (b1, b0, kp); 348 f_nround (b0, b1, kp); 349 f_nround (b1, b0, kp); 350 f_nround (b0, b1, kp); 351 f_nround (b1, b0, kp); 352 f_nround (b0, b1, kp); 353 f_nround (b1, b0, kp); 354 f_lround (b0, b1, kp); 355 356 u32_out (out, b0[0]); 357 u32_out (out + 4, b0[1]); 358 u32_out (out + 8, b0[2]); 359 u32_out (out + 12, b0[3]); 360} 361 362/* decrypt a block of text */ 363 364#define i_nround(bo, bi, k) \ 365 i_rn(bo, bi, 0, k); \ 366 i_rn(bo, bi, 1, k); \ 367 i_rn(bo, bi, 2, k); \ 368 i_rn(bo, bi, 3, k); \ 369 k -= 4 370 371#define i_lround(bo, bi, k) \ 372 i_rl(bo, bi, 0, k); \ 373 i_rl(bo, bi, 1, k); \ 374 i_rl(bo, bi, 2, k); \ 375 i_rl(bo, bi, 3, k) 376 377static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in) 378{ 379 const struct aes_ctx *ctx = ctx_arg; 380 u32 b0[4], b1[4]; 381 const int key_len = ctx->key_length; 382 const u32 *kp = D_KEY + key_len + 20; 383 384 b0[0] = u32_in (in) ^ E_KEY[key_len + 24]; 385 b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25]; 386 b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26]; 387 b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27]; 388 389 if (key_len > 24) { 390 i_nround (b1, b0, kp); 391 i_nround (b0, b1, kp); 392 } 393 394 if (key_len > 16) { 395 i_nround (b1, b0, kp); 396 i_nround (b0, b1, kp); 397 } 398 399 i_nround (b1, b0, kp); 400 i_nround (b0, b1, kp); 401 i_nround (b1, b0, kp); 402 i_nround (b0, b1, kp); 403 i_nround (b1, b0, kp); 404 i_nround (b0, b1, kp); 405 i_nround (b1, b0, kp); 406 i_nround (b0, b1, kp); 407 i_nround (b1, b0, kp); 408 i_lround (b0, b1, kp); 409 410 u32_out (out, b0[0]); 411 u32_out (out + 4, b0[1]); 412 u32_out (out + 8, b0[2]); 413 u32_out (out + 12, b0[3]); 414} 415 416 417static struct crypto_alg aes_alg = { 418 .cra_name = "aes", 419 .cra_flags = CRYPTO_ALG_TYPE_CIPHER, 420 .cra_blocksize = AES_BLOCK_SIZE, 421 .cra_ctxsize = sizeof(struct aes_ctx), 422 .cra_module = THIS_MODULE, 423 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), 424 .cra_u = { 425 .cipher = { 426 .cia_min_keysize = AES_MIN_KEY_SIZE, 427 .cia_max_keysize = AES_MAX_KEY_SIZE, 428 .cia_setkey = aes_set_key, 429 .cia_encrypt = aes_encrypt, 430 .cia_decrypt = aes_decrypt 431 } 432 } 433}; 434 435static int __init aes_init(void) 436{ 437 gen_tabs(); 438 return crypto_register_alg(&aes_alg); 439} 440 441static void __exit aes_fini(void) 442{ 443 crypto_unregister_alg(&aes_alg); 444} 445 446module_init(aes_init); 447module_exit(aes_fini); 448 449MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); 450MODULE_LICENSE("Dual BSD/GPL"); 451