at v2.6.13-rc2 1259 lines 35 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/config.h> 18#include <linux/kernel.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <asm/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/mm.h> 27#include <linux/highmem.h> 28#include <linux/poll.h> 29#include <linux/net.h> 30#include <linux/textsearch.h> 31#include <net/checksum.h> 32 33#define HAVE_ALLOC_SKB /* For the drivers to know */ 34#define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 35#define SLAB_SKB /* Slabified skbuffs */ 36 37#define CHECKSUM_NONE 0 38#define CHECKSUM_HW 1 39#define CHECKSUM_UNNECESSARY 2 40 41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \ 44 sizeof(struct skb_shared_info)) & \ 45 ~(SMP_CACHE_BYTES - 1)) 46#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 47#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 48 49/* A. Checksumming of received packets by device. 50 * 51 * NONE: device failed to checksum this packet. 52 * skb->csum is undefined. 53 * 54 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 55 * skb->csum is undefined. 56 * It is bad option, but, unfortunately, many of vendors do this. 57 * Apparently with secret goal to sell you new device, when you 58 * will add new protocol to your host. F.e. IPv6. 8) 59 * 60 * HW: the most generic way. Device supplied checksum of _all_ 61 * the packet as seen by netif_rx in skb->csum. 62 * NOTE: Even if device supports only some protocols, but 63 * is able to produce some skb->csum, it MUST use HW, 64 * not UNNECESSARY. 65 * 66 * B. Checksumming on output. 67 * 68 * NONE: skb is checksummed by protocol or csum is not required. 69 * 70 * HW: device is required to csum packet as seen by hard_start_xmit 71 * from skb->h.raw to the end and to record the checksum 72 * at skb->h.raw+skb->csum. 73 * 74 * Device must show its capabilities in dev->features, set 75 * at device setup time. 76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 77 * everything. 78 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 80 * TCP/UDP over IPv4. Sigh. Vendors like this 81 * way by an unknown reason. Though, see comment above 82 * about CHECKSUM_UNNECESSARY. 8) 83 * 84 * Any questions? No questions, good. --ANK 85 */ 86 87struct net_device; 88 89#ifdef CONFIG_NETFILTER 90struct nf_conntrack { 91 atomic_t use; 92 void (*destroy)(struct nf_conntrack *); 93}; 94 95#ifdef CONFIG_BRIDGE_NETFILTER 96struct nf_bridge_info { 97 atomic_t use; 98 struct net_device *physindev; 99 struct net_device *physoutdev; 100#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 101 struct net_device *netoutdev; 102#endif 103 unsigned int mask; 104 unsigned long data[32 / sizeof(unsigned long)]; 105}; 106#endif 107 108#endif 109 110struct sk_buff_head { 111 /* These two members must be first. */ 112 struct sk_buff *next; 113 struct sk_buff *prev; 114 115 __u32 qlen; 116 spinlock_t lock; 117}; 118 119struct sk_buff; 120 121/* To allow 64K frame to be packed as single skb without frag_list */ 122#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 123 124typedef struct skb_frag_struct skb_frag_t; 125 126struct skb_frag_struct { 127 struct page *page; 128 __u16 page_offset; 129 __u16 size; 130}; 131 132/* This data is invariant across clones and lives at 133 * the end of the header data, ie. at skb->end. 134 */ 135struct skb_shared_info { 136 atomic_t dataref; 137 unsigned int nr_frags; 138 unsigned short tso_size; 139 unsigned short tso_segs; 140 struct sk_buff *frag_list; 141 skb_frag_t frags[MAX_SKB_FRAGS]; 142}; 143 144/* We divide dataref into two halves. The higher 16 bits hold references 145 * to the payload part of skb->data. The lower 16 bits hold references to 146 * the entire skb->data. It is up to the users of the skb to agree on 147 * where the payload starts. 148 * 149 * All users must obey the rule that the skb->data reference count must be 150 * greater than or equal to the payload reference count. 151 * 152 * Holding a reference to the payload part means that the user does not 153 * care about modifications to the header part of skb->data. 154 */ 155#define SKB_DATAREF_SHIFT 16 156#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 157 158/** 159 * struct sk_buff - socket buffer 160 * @next: Next buffer in list 161 * @prev: Previous buffer in list 162 * @list: List we are on 163 * @sk: Socket we are owned by 164 * @stamp: Time we arrived 165 * @dev: Device we arrived on/are leaving by 166 * @input_dev: Device we arrived on 167 * @real_dev: The real device we are using 168 * @h: Transport layer header 169 * @nh: Network layer header 170 * @mac: Link layer header 171 * @dst: destination entry 172 * @sp: the security path, used for xfrm 173 * @cb: Control buffer. Free for use by every layer. Put private vars here 174 * @len: Length of actual data 175 * @data_len: Data length 176 * @mac_len: Length of link layer header 177 * @csum: Checksum 178 * @local_df: allow local fragmentation 179 * @cloned: Head may be cloned (check refcnt to be sure) 180 * @nohdr: Payload reference only, must not modify header 181 * @pkt_type: Packet class 182 * @ip_summed: Driver fed us an IP checksum 183 * @priority: Packet queueing priority 184 * @users: User count - see {datagram,tcp}.c 185 * @protocol: Packet protocol from driver 186 * @truesize: Buffer size 187 * @head: Head of buffer 188 * @data: Data head pointer 189 * @tail: Tail pointer 190 * @end: End pointer 191 * @destructor: Destruct function 192 * @nfmark: Can be used for communication between hooks 193 * @nfcache: Cache info 194 * @nfct: Associated connection, if any 195 * @nfctinfo: Relationship of this skb to the connection 196 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 197 * @private: Data which is private to the HIPPI implementation 198 * @tc_index: Traffic control index 199 * @tc_verd: traffic control verdict 200 * @tc_classid: traffic control classid 201 */ 202 203struct sk_buff { 204 /* These two members must be first. */ 205 struct sk_buff *next; 206 struct sk_buff *prev; 207 208 struct sk_buff_head *list; 209 struct sock *sk; 210 struct timeval stamp; 211 struct net_device *dev; 212 struct net_device *input_dev; 213 struct net_device *real_dev; 214 215 union { 216 struct tcphdr *th; 217 struct udphdr *uh; 218 struct icmphdr *icmph; 219 struct igmphdr *igmph; 220 struct iphdr *ipiph; 221 struct ipv6hdr *ipv6h; 222 unsigned char *raw; 223 } h; 224 225 union { 226 struct iphdr *iph; 227 struct ipv6hdr *ipv6h; 228 struct arphdr *arph; 229 unsigned char *raw; 230 } nh; 231 232 union { 233 unsigned char *raw; 234 } mac; 235 236 struct dst_entry *dst; 237 struct sec_path *sp; 238 239 /* 240 * This is the control buffer. It is free to use for every 241 * layer. Please put your private variables there. If you 242 * want to keep them across layers you have to do a skb_clone() 243 * first. This is owned by whoever has the skb queued ATM. 244 */ 245 char cb[40]; 246 247 unsigned int len, 248 data_len, 249 mac_len, 250 csum; 251 __u32 priority; 252 __u8 local_df:1, 253 cloned:1, 254 ip_summed:2, 255 nohdr:1; 256 /* 3 bits spare */ 257 __u8 pkt_type; 258 __u16 protocol; 259 260 void (*destructor)(struct sk_buff *skb); 261#ifdef CONFIG_NETFILTER 262 unsigned long nfmark; 263 __u32 nfcache; 264 __u32 nfctinfo; 265 struct nf_conntrack *nfct; 266#ifdef CONFIG_BRIDGE_NETFILTER 267 struct nf_bridge_info *nf_bridge; 268#endif 269#endif /* CONFIG_NETFILTER */ 270#if defined(CONFIG_HIPPI) 271 union { 272 __u32 ifield; 273 } private; 274#endif 275#ifdef CONFIG_NET_SCHED 276 __u32 tc_index; /* traffic control index */ 277#ifdef CONFIG_NET_CLS_ACT 278 __u32 tc_verd; /* traffic control verdict */ 279 __u32 tc_classid; /* traffic control classid */ 280#endif 281 282#endif 283 284 285 /* These elements must be at the end, see alloc_skb() for details. */ 286 unsigned int truesize; 287 atomic_t users; 288 unsigned char *head, 289 *data, 290 *tail, 291 *end; 292}; 293 294#ifdef __KERNEL__ 295/* 296 * Handling routines are only of interest to the kernel 297 */ 298#include <linux/slab.h> 299 300#include <asm/system.h> 301 302extern void __kfree_skb(struct sk_buff *skb); 303extern struct sk_buff *alloc_skb(unsigned int size, int priority); 304extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 305 unsigned int size, int priority); 306extern void kfree_skbmem(struct sk_buff *skb); 307extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority); 308extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority); 309extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask); 310extern int pskb_expand_head(struct sk_buff *skb, 311 int nhead, int ntail, int gfp_mask); 312extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 313 unsigned int headroom); 314extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 315 int newheadroom, int newtailroom, 316 int priority); 317extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad); 318#define dev_kfree_skb(a) kfree_skb(a) 319extern void skb_over_panic(struct sk_buff *skb, int len, 320 void *here); 321extern void skb_under_panic(struct sk_buff *skb, int len, 322 void *here); 323 324struct skb_seq_state 325{ 326 __u32 lower_offset; 327 __u32 upper_offset; 328 __u32 frag_idx; 329 __u32 stepped_offset; 330 struct sk_buff *root_skb; 331 struct sk_buff *cur_skb; 332 __u8 *frag_data; 333}; 334 335extern void skb_prepare_seq_read(struct sk_buff *skb, 336 unsigned int from, unsigned int to, 337 struct skb_seq_state *st); 338extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 339 struct skb_seq_state *st); 340extern void skb_abort_seq_read(struct skb_seq_state *st); 341 342extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 343 unsigned int to, struct ts_config *config, 344 struct ts_state *state); 345 346/* Internal */ 347#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end)) 348 349/** 350 * skb_queue_empty - check if a queue is empty 351 * @list: queue head 352 * 353 * Returns true if the queue is empty, false otherwise. 354 */ 355static inline int skb_queue_empty(const struct sk_buff_head *list) 356{ 357 return list->next == (struct sk_buff *)list; 358} 359 360/** 361 * skb_get - reference buffer 362 * @skb: buffer to reference 363 * 364 * Makes another reference to a socket buffer and returns a pointer 365 * to the buffer. 366 */ 367static inline struct sk_buff *skb_get(struct sk_buff *skb) 368{ 369 atomic_inc(&skb->users); 370 return skb; 371} 372 373/* 374 * If users == 1, we are the only owner and are can avoid redundant 375 * atomic change. 376 */ 377 378/** 379 * kfree_skb - free an sk_buff 380 * @skb: buffer to free 381 * 382 * Drop a reference to the buffer and free it if the usage count has 383 * hit zero. 384 */ 385static inline void kfree_skb(struct sk_buff *skb) 386{ 387 if (likely(atomic_read(&skb->users) == 1)) 388 smp_rmb(); 389 else if (likely(!atomic_dec_and_test(&skb->users))) 390 return; 391 __kfree_skb(skb); 392} 393 394/** 395 * skb_cloned - is the buffer a clone 396 * @skb: buffer to check 397 * 398 * Returns true if the buffer was generated with skb_clone() and is 399 * one of multiple shared copies of the buffer. Cloned buffers are 400 * shared data so must not be written to under normal circumstances. 401 */ 402static inline int skb_cloned(const struct sk_buff *skb) 403{ 404 return skb->cloned && 405 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 406} 407 408/** 409 * skb_header_cloned - is the header a clone 410 * @skb: buffer to check 411 * 412 * Returns true if modifying the header part of the buffer requires 413 * the data to be copied. 414 */ 415static inline int skb_header_cloned(const struct sk_buff *skb) 416{ 417 int dataref; 418 419 if (!skb->cloned) 420 return 0; 421 422 dataref = atomic_read(&skb_shinfo(skb)->dataref); 423 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 424 return dataref != 1; 425} 426 427/** 428 * skb_header_release - release reference to header 429 * @skb: buffer to operate on 430 * 431 * Drop a reference to the header part of the buffer. This is done 432 * by acquiring a payload reference. You must not read from the header 433 * part of skb->data after this. 434 */ 435static inline void skb_header_release(struct sk_buff *skb) 436{ 437 BUG_ON(skb->nohdr); 438 skb->nohdr = 1; 439 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 440} 441 442/** 443 * skb_shared - is the buffer shared 444 * @skb: buffer to check 445 * 446 * Returns true if more than one person has a reference to this 447 * buffer. 448 */ 449static inline int skb_shared(const struct sk_buff *skb) 450{ 451 return atomic_read(&skb->users) != 1; 452} 453 454/** 455 * skb_share_check - check if buffer is shared and if so clone it 456 * @skb: buffer to check 457 * @pri: priority for memory allocation 458 * 459 * If the buffer is shared the buffer is cloned and the old copy 460 * drops a reference. A new clone with a single reference is returned. 461 * If the buffer is not shared the original buffer is returned. When 462 * being called from interrupt status or with spinlocks held pri must 463 * be GFP_ATOMIC. 464 * 465 * NULL is returned on a memory allocation failure. 466 */ 467static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri) 468{ 469 might_sleep_if(pri & __GFP_WAIT); 470 if (skb_shared(skb)) { 471 struct sk_buff *nskb = skb_clone(skb, pri); 472 kfree_skb(skb); 473 skb = nskb; 474 } 475 return skb; 476} 477 478/* 479 * Copy shared buffers into a new sk_buff. We effectively do COW on 480 * packets to handle cases where we have a local reader and forward 481 * and a couple of other messy ones. The normal one is tcpdumping 482 * a packet thats being forwarded. 483 */ 484 485/** 486 * skb_unshare - make a copy of a shared buffer 487 * @skb: buffer to check 488 * @pri: priority for memory allocation 489 * 490 * If the socket buffer is a clone then this function creates a new 491 * copy of the data, drops a reference count on the old copy and returns 492 * the new copy with the reference count at 1. If the buffer is not a clone 493 * the original buffer is returned. When called with a spinlock held or 494 * from interrupt state @pri must be %GFP_ATOMIC 495 * 496 * %NULL is returned on a memory allocation failure. 497 */ 498static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri) 499{ 500 might_sleep_if(pri & __GFP_WAIT); 501 if (skb_cloned(skb)) { 502 struct sk_buff *nskb = skb_copy(skb, pri); 503 kfree_skb(skb); /* Free our shared copy */ 504 skb = nskb; 505 } 506 return skb; 507} 508 509/** 510 * skb_peek 511 * @list_: list to peek at 512 * 513 * Peek an &sk_buff. Unlike most other operations you _MUST_ 514 * be careful with this one. A peek leaves the buffer on the 515 * list and someone else may run off with it. You must hold 516 * the appropriate locks or have a private queue to do this. 517 * 518 * Returns %NULL for an empty list or a pointer to the head element. 519 * The reference count is not incremented and the reference is therefore 520 * volatile. Use with caution. 521 */ 522static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 523{ 524 struct sk_buff *list = ((struct sk_buff *)list_)->next; 525 if (list == (struct sk_buff *)list_) 526 list = NULL; 527 return list; 528} 529 530/** 531 * skb_peek_tail 532 * @list_: list to peek at 533 * 534 * Peek an &sk_buff. Unlike most other operations you _MUST_ 535 * be careful with this one. A peek leaves the buffer on the 536 * list and someone else may run off with it. You must hold 537 * the appropriate locks or have a private queue to do this. 538 * 539 * Returns %NULL for an empty list or a pointer to the tail element. 540 * The reference count is not incremented and the reference is therefore 541 * volatile. Use with caution. 542 */ 543static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 544{ 545 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 546 if (list == (struct sk_buff *)list_) 547 list = NULL; 548 return list; 549} 550 551/** 552 * skb_queue_len - get queue length 553 * @list_: list to measure 554 * 555 * Return the length of an &sk_buff queue. 556 */ 557static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 558{ 559 return list_->qlen; 560} 561 562static inline void skb_queue_head_init(struct sk_buff_head *list) 563{ 564 spin_lock_init(&list->lock); 565 list->prev = list->next = (struct sk_buff *)list; 566 list->qlen = 0; 567} 568 569/* 570 * Insert an sk_buff at the start of a list. 571 * 572 * The "__skb_xxxx()" functions are the non-atomic ones that 573 * can only be called with interrupts disabled. 574 */ 575 576/** 577 * __skb_queue_head - queue a buffer at the list head 578 * @list: list to use 579 * @newsk: buffer to queue 580 * 581 * Queue a buffer at the start of a list. This function takes no locks 582 * and you must therefore hold required locks before calling it. 583 * 584 * A buffer cannot be placed on two lists at the same time. 585 */ 586extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 587static inline void __skb_queue_head(struct sk_buff_head *list, 588 struct sk_buff *newsk) 589{ 590 struct sk_buff *prev, *next; 591 592 newsk->list = list; 593 list->qlen++; 594 prev = (struct sk_buff *)list; 595 next = prev->next; 596 newsk->next = next; 597 newsk->prev = prev; 598 next->prev = prev->next = newsk; 599} 600 601/** 602 * __skb_queue_tail - queue a buffer at the list tail 603 * @list: list to use 604 * @newsk: buffer to queue 605 * 606 * Queue a buffer at the end of a list. This function takes no locks 607 * and you must therefore hold required locks before calling it. 608 * 609 * A buffer cannot be placed on two lists at the same time. 610 */ 611extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 612static inline void __skb_queue_tail(struct sk_buff_head *list, 613 struct sk_buff *newsk) 614{ 615 struct sk_buff *prev, *next; 616 617 newsk->list = list; 618 list->qlen++; 619 next = (struct sk_buff *)list; 620 prev = next->prev; 621 newsk->next = next; 622 newsk->prev = prev; 623 next->prev = prev->next = newsk; 624} 625 626 627/** 628 * __skb_dequeue - remove from the head of the queue 629 * @list: list to dequeue from 630 * 631 * Remove the head of the list. This function does not take any locks 632 * so must be used with appropriate locks held only. The head item is 633 * returned or %NULL if the list is empty. 634 */ 635extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 636static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 637{ 638 struct sk_buff *next, *prev, *result; 639 640 prev = (struct sk_buff *) list; 641 next = prev->next; 642 result = NULL; 643 if (next != prev) { 644 result = next; 645 next = next->next; 646 list->qlen--; 647 next->prev = prev; 648 prev->next = next; 649 result->next = result->prev = NULL; 650 result->list = NULL; 651 } 652 return result; 653} 654 655 656/* 657 * Insert a packet on a list. 658 */ 659extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk); 660static inline void __skb_insert(struct sk_buff *newsk, 661 struct sk_buff *prev, struct sk_buff *next, 662 struct sk_buff_head *list) 663{ 664 newsk->next = next; 665 newsk->prev = prev; 666 next->prev = prev->next = newsk; 667 newsk->list = list; 668 list->qlen++; 669} 670 671/* 672 * Place a packet after a given packet in a list. 673 */ 674extern void skb_append(struct sk_buff *old, struct sk_buff *newsk); 675static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk) 676{ 677 __skb_insert(newsk, old, old->next, old->list); 678} 679 680/* 681 * remove sk_buff from list. _Must_ be called atomically, and with 682 * the list known.. 683 */ 684extern void skb_unlink(struct sk_buff *skb); 685static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 686{ 687 struct sk_buff *next, *prev; 688 689 list->qlen--; 690 next = skb->next; 691 prev = skb->prev; 692 skb->next = skb->prev = NULL; 693 skb->list = NULL; 694 next->prev = prev; 695 prev->next = next; 696} 697 698 699/* XXX: more streamlined implementation */ 700 701/** 702 * __skb_dequeue_tail - remove from the tail of the queue 703 * @list: list to dequeue from 704 * 705 * Remove the tail of the list. This function does not take any locks 706 * so must be used with appropriate locks held only. The tail item is 707 * returned or %NULL if the list is empty. 708 */ 709extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 710static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 711{ 712 struct sk_buff *skb = skb_peek_tail(list); 713 if (skb) 714 __skb_unlink(skb, list); 715 return skb; 716} 717 718 719static inline int skb_is_nonlinear(const struct sk_buff *skb) 720{ 721 return skb->data_len; 722} 723 724static inline unsigned int skb_headlen(const struct sk_buff *skb) 725{ 726 return skb->len - skb->data_len; 727} 728 729static inline int skb_pagelen(const struct sk_buff *skb) 730{ 731 int i, len = 0; 732 733 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 734 len += skb_shinfo(skb)->frags[i].size; 735 return len + skb_headlen(skb); 736} 737 738static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 739 struct page *page, int off, int size) 740{ 741 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 742 743 frag->page = page; 744 frag->page_offset = off; 745 frag->size = size; 746 skb_shinfo(skb)->nr_frags = i + 1; 747} 748 749#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 750#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 751#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 752 753/* 754 * Add data to an sk_buff 755 */ 756static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 757{ 758 unsigned char *tmp = skb->tail; 759 SKB_LINEAR_ASSERT(skb); 760 skb->tail += len; 761 skb->len += len; 762 return tmp; 763} 764 765/** 766 * skb_put - add data to a buffer 767 * @skb: buffer to use 768 * @len: amount of data to add 769 * 770 * This function extends the used data area of the buffer. If this would 771 * exceed the total buffer size the kernel will panic. A pointer to the 772 * first byte of the extra data is returned. 773 */ 774static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 775{ 776 unsigned char *tmp = skb->tail; 777 SKB_LINEAR_ASSERT(skb); 778 skb->tail += len; 779 skb->len += len; 780 if (unlikely(skb->tail>skb->end)) 781 skb_over_panic(skb, len, current_text_addr()); 782 return tmp; 783} 784 785static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 786{ 787 skb->data -= len; 788 skb->len += len; 789 return skb->data; 790} 791 792/** 793 * skb_push - add data to the start of a buffer 794 * @skb: buffer to use 795 * @len: amount of data to add 796 * 797 * This function extends the used data area of the buffer at the buffer 798 * start. If this would exceed the total buffer headroom the kernel will 799 * panic. A pointer to the first byte of the extra data is returned. 800 */ 801static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 802{ 803 skb->data -= len; 804 skb->len += len; 805 if (unlikely(skb->data<skb->head)) 806 skb_under_panic(skb, len, current_text_addr()); 807 return skb->data; 808} 809 810static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 811{ 812 skb->len -= len; 813 BUG_ON(skb->len < skb->data_len); 814 return skb->data += len; 815} 816 817/** 818 * skb_pull - remove data from the start of a buffer 819 * @skb: buffer to use 820 * @len: amount of data to remove 821 * 822 * This function removes data from the start of a buffer, returning 823 * the memory to the headroom. A pointer to the next data in the buffer 824 * is returned. Once the data has been pulled future pushes will overwrite 825 * the old data. 826 */ 827static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 828{ 829 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 830} 831 832extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 833 834static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 835{ 836 if (len > skb_headlen(skb) && 837 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 838 return NULL; 839 skb->len -= len; 840 return skb->data += len; 841} 842 843static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 844{ 845 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 846} 847 848static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 849{ 850 if (likely(len <= skb_headlen(skb))) 851 return 1; 852 if (unlikely(len > skb->len)) 853 return 0; 854 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 855} 856 857/** 858 * skb_headroom - bytes at buffer head 859 * @skb: buffer to check 860 * 861 * Return the number of bytes of free space at the head of an &sk_buff. 862 */ 863static inline int skb_headroom(const struct sk_buff *skb) 864{ 865 return skb->data - skb->head; 866} 867 868/** 869 * skb_tailroom - bytes at buffer end 870 * @skb: buffer to check 871 * 872 * Return the number of bytes of free space at the tail of an sk_buff 873 */ 874static inline int skb_tailroom(const struct sk_buff *skb) 875{ 876 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 877} 878 879/** 880 * skb_reserve - adjust headroom 881 * @skb: buffer to alter 882 * @len: bytes to move 883 * 884 * Increase the headroom of an empty &sk_buff by reducing the tail 885 * room. This is only allowed for an empty buffer. 886 */ 887static inline void skb_reserve(struct sk_buff *skb, unsigned int len) 888{ 889 skb->data += len; 890 skb->tail += len; 891} 892 893/* 894 * CPUs often take a performance hit when accessing unaligned memory 895 * locations. The actual performance hit varies, it can be small if the 896 * hardware handles it or large if we have to take an exception and fix it 897 * in software. 898 * 899 * Since an ethernet header is 14 bytes network drivers often end up with 900 * the IP header at an unaligned offset. The IP header can be aligned by 901 * shifting the start of the packet by 2 bytes. Drivers should do this 902 * with: 903 * 904 * skb_reserve(NET_IP_ALIGN); 905 * 906 * The downside to this alignment of the IP header is that the DMA is now 907 * unaligned. On some architectures the cost of an unaligned DMA is high 908 * and this cost outweighs the gains made by aligning the IP header. 909 * 910 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 911 * to be overridden. 912 */ 913#ifndef NET_IP_ALIGN 914#define NET_IP_ALIGN 2 915#endif 916 917extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc); 918 919static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 920{ 921 if (!skb->data_len) { 922 skb->len = len; 923 skb->tail = skb->data + len; 924 } else 925 ___pskb_trim(skb, len, 0); 926} 927 928/** 929 * skb_trim - remove end from a buffer 930 * @skb: buffer to alter 931 * @len: new length 932 * 933 * Cut the length of a buffer down by removing data from the tail. If 934 * the buffer is already under the length specified it is not modified. 935 */ 936static inline void skb_trim(struct sk_buff *skb, unsigned int len) 937{ 938 if (skb->len > len) 939 __skb_trim(skb, len); 940} 941 942 943static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 944{ 945 if (!skb->data_len) { 946 skb->len = len; 947 skb->tail = skb->data+len; 948 return 0; 949 } 950 return ___pskb_trim(skb, len, 1); 951} 952 953static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 954{ 955 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 956} 957 958/** 959 * skb_orphan - orphan a buffer 960 * @skb: buffer to orphan 961 * 962 * If a buffer currently has an owner then we call the owner's 963 * destructor function and make the @skb unowned. The buffer continues 964 * to exist but is no longer charged to its former owner. 965 */ 966static inline void skb_orphan(struct sk_buff *skb) 967{ 968 if (skb->destructor) 969 skb->destructor(skb); 970 skb->destructor = NULL; 971 skb->sk = NULL; 972} 973 974/** 975 * __skb_queue_purge - empty a list 976 * @list: list to empty 977 * 978 * Delete all buffers on an &sk_buff list. Each buffer is removed from 979 * the list and one reference dropped. This function does not take the 980 * list lock and the caller must hold the relevant locks to use it. 981 */ 982extern void skb_queue_purge(struct sk_buff_head *list); 983static inline void __skb_queue_purge(struct sk_buff_head *list) 984{ 985 struct sk_buff *skb; 986 while ((skb = __skb_dequeue(list)) != NULL) 987 kfree_skb(skb); 988} 989 990#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB 991/** 992 * __dev_alloc_skb - allocate an skbuff for sending 993 * @length: length to allocate 994 * @gfp_mask: get_free_pages mask, passed to alloc_skb 995 * 996 * Allocate a new &sk_buff and assign it a usage count of one. The 997 * buffer has unspecified headroom built in. Users should allocate 998 * the headroom they think they need without accounting for the 999 * built in space. The built in space is used for optimisations. 1000 * 1001 * %NULL is returned in there is no free memory. 1002 */ 1003static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1004 int gfp_mask) 1005{ 1006 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask); 1007 if (likely(skb)) 1008 skb_reserve(skb, 16); 1009 return skb; 1010} 1011#else 1012extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask); 1013#endif 1014 1015/** 1016 * dev_alloc_skb - allocate an skbuff for sending 1017 * @length: length to allocate 1018 * 1019 * Allocate a new &sk_buff and assign it a usage count of one. The 1020 * buffer has unspecified headroom built in. Users should allocate 1021 * the headroom they think they need without accounting for the 1022 * built in space. The built in space is used for optimisations. 1023 * 1024 * %NULL is returned in there is no free memory. Although this function 1025 * allocates memory it can be called from an interrupt. 1026 */ 1027static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1028{ 1029 return __dev_alloc_skb(length, GFP_ATOMIC); 1030} 1031 1032/** 1033 * skb_cow - copy header of skb when it is required 1034 * @skb: buffer to cow 1035 * @headroom: needed headroom 1036 * 1037 * If the skb passed lacks sufficient headroom or its data part 1038 * is shared, data is reallocated. If reallocation fails, an error 1039 * is returned and original skb is not changed. 1040 * 1041 * The result is skb with writable area skb->head...skb->tail 1042 * and at least @headroom of space at head. 1043 */ 1044static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1045{ 1046 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb); 1047 1048 if (delta < 0) 1049 delta = 0; 1050 1051 if (delta || skb_cloned(skb)) 1052 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC); 1053 return 0; 1054} 1055 1056/** 1057 * skb_padto - pad an skbuff up to a minimal size 1058 * @skb: buffer to pad 1059 * @len: minimal length 1060 * 1061 * Pads up a buffer to ensure the trailing bytes exist and are 1062 * blanked. If the buffer already contains sufficient data it 1063 * is untouched. Returns the buffer, which may be a replacement 1064 * for the original, or NULL for out of memory - in which case 1065 * the original buffer is still freed. 1066 */ 1067 1068static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len) 1069{ 1070 unsigned int size = skb->len; 1071 if (likely(size >= len)) 1072 return skb; 1073 return skb_pad(skb, len-size); 1074} 1075 1076static inline int skb_add_data(struct sk_buff *skb, 1077 char __user *from, int copy) 1078{ 1079 const int off = skb->len; 1080 1081 if (skb->ip_summed == CHECKSUM_NONE) { 1082 int err = 0; 1083 unsigned int csum = csum_and_copy_from_user(from, 1084 skb_put(skb, copy), 1085 copy, 0, &err); 1086 if (!err) { 1087 skb->csum = csum_block_add(skb->csum, csum, off); 1088 return 0; 1089 } 1090 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1091 return 0; 1092 1093 __skb_trim(skb, off); 1094 return -EFAULT; 1095} 1096 1097static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1098 struct page *page, int off) 1099{ 1100 if (i) { 1101 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1102 1103 return page == frag->page && 1104 off == frag->page_offset + frag->size; 1105 } 1106 return 0; 1107} 1108 1109/** 1110 * skb_linearize - convert paged skb to linear one 1111 * @skb: buffer to linarize 1112 * @gfp: allocation mode 1113 * 1114 * If there is no free memory -ENOMEM is returned, otherwise zero 1115 * is returned and the old skb data released. 1116 */ 1117extern int __skb_linearize(struct sk_buff *skb, int gfp); 1118static inline int skb_linearize(struct sk_buff *skb, int gfp) 1119{ 1120 return __skb_linearize(skb, gfp); 1121} 1122 1123/** 1124 * skb_postpull_rcsum - update checksum for received skb after pull 1125 * @skb: buffer to update 1126 * @start: start of data before pull 1127 * @len: length of data pulled 1128 * 1129 * After doing a pull on a received packet, you need to call this to 1130 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE 1131 * so that it can be recomputed from scratch. 1132 */ 1133 1134static inline void skb_postpull_rcsum(struct sk_buff *skb, 1135 const void *start, int len) 1136{ 1137 if (skb->ip_summed == CHECKSUM_HW) 1138 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1139} 1140 1141/** 1142 * pskb_trim_rcsum - trim received skb and update checksum 1143 * @skb: buffer to trim 1144 * @len: new length 1145 * 1146 * This is exactly the same as pskb_trim except that it ensures the 1147 * checksum of received packets are still valid after the operation. 1148 */ 1149 1150static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1151{ 1152 if (len >= skb->len) 1153 return 0; 1154 if (skb->ip_summed == CHECKSUM_HW) 1155 skb->ip_summed = CHECKSUM_NONE; 1156 return __pskb_trim(skb, len); 1157} 1158 1159static inline void *kmap_skb_frag(const skb_frag_t *frag) 1160{ 1161#ifdef CONFIG_HIGHMEM 1162 BUG_ON(in_irq()); 1163 1164 local_bh_disable(); 1165#endif 1166 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ); 1167} 1168 1169static inline void kunmap_skb_frag(void *vaddr) 1170{ 1171 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 1172#ifdef CONFIG_HIGHMEM 1173 local_bh_enable(); 1174#endif 1175} 1176 1177#define skb_queue_walk(queue, skb) \ 1178 for (skb = (queue)->next; \ 1179 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1180 skb = skb->next) 1181 1182 1183extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1184 int noblock, int *err); 1185extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1186 struct poll_table_struct *wait); 1187extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1188 int offset, struct iovec *to, 1189 int size); 1190extern int skb_copy_and_csum_datagram_iovec(const 1191 struct sk_buff *skb, 1192 int hlen, 1193 struct iovec *iov); 1194extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1195extern unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1196 int len, unsigned int csum); 1197extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1198 void *to, int len); 1199extern int skb_store_bits(const struct sk_buff *skb, int offset, 1200 void *from, int len); 1201extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, 1202 int offset, u8 *to, int len, 1203 unsigned int csum); 1204extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1205extern void skb_split(struct sk_buff *skb, 1206 struct sk_buff *skb1, const u32 len); 1207 1208static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1209 int len, void *buffer) 1210{ 1211 int hlen = skb_headlen(skb); 1212 1213 if (hlen - offset >= len) 1214 return skb->data + offset; 1215 1216 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1217 return NULL; 1218 1219 return buffer; 1220} 1221 1222extern void skb_init(void); 1223extern void skb_add_mtu(int mtu); 1224 1225#ifdef CONFIG_NETFILTER 1226static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1227{ 1228 if (nfct && atomic_dec_and_test(&nfct->use)) 1229 nfct->destroy(nfct); 1230} 1231static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1232{ 1233 if (nfct) 1234 atomic_inc(&nfct->use); 1235} 1236static inline void nf_reset(struct sk_buff *skb) 1237{ 1238 nf_conntrack_put(skb->nfct); 1239 skb->nfct = NULL; 1240} 1241 1242#ifdef CONFIG_BRIDGE_NETFILTER 1243static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1244{ 1245 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1246 kfree(nf_bridge); 1247} 1248static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1249{ 1250 if (nf_bridge) 1251 atomic_inc(&nf_bridge->use); 1252} 1253#endif /* CONFIG_BRIDGE_NETFILTER */ 1254#else /* CONFIG_NETFILTER */ 1255static inline void nf_reset(struct sk_buff *skb) {} 1256#endif /* CONFIG_NETFILTER */ 1257 1258#endif /* __KERNEL__ */ 1259#endif /* _LINUX_SKBUFF_H */