at v2.6.12 48 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb_ch9.h> 6 7#define USB_MAJOR 180 8 9 10#ifdef __KERNEL__ 11 12#include <linux/config.h> 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22 23struct usb_device; 24struct usb_driver; 25 26/*-------------------------------------------------------------------------*/ 27 28/* 29 * Host-side wrappers for standard USB descriptors ... these are parsed 30 * from the data provided by devices. Parsing turns them from a flat 31 * sequence of descriptors into a hierarchy: 32 * 33 * - devices have one (usually) or more configs; 34 * - configs have one (often) or more interfaces; 35 * - interfaces have one (usually) or more settings; 36 * - each interface setting has zero or (usually) more endpoints. 37 * 38 * And there might be other descriptors mixed in with those. 39 * 40 * Devices may also have class-specific or vendor-specific descriptors. 41 */ 42 43/** 44 * struct usb_host_endpoint - host-side endpoint descriptor and queue 45 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 46 * @urb_list: urbs queued to this endpoint; maintained by usbcore 47 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 48 * with one or more transfer descriptors (TDs) per urb 49 * @extra: descriptors following this endpoint in the configuration 50 * @extralen: how many bytes of "extra" are valid 51 * 52 * USB requests are always queued to a given endpoint, identified by a 53 * descriptor within an active interface in a given USB configuration. 54 */ 55struct usb_host_endpoint { 56 struct usb_endpoint_descriptor desc; 57 struct list_head urb_list; 58 void *hcpriv; 59 60 unsigned char *extra; /* Extra descriptors */ 61 int extralen; 62}; 63 64/* host-side wrapper for one interface setting's parsed descriptors */ 65struct usb_host_interface { 66 struct usb_interface_descriptor desc; 67 68 /* array of desc.bNumEndpoint endpoints associated with this 69 * interface setting. these will be in no particular order. 70 */ 71 struct usb_host_endpoint *endpoint; 72 73 char *string; /* iInterface string, if present */ 74 unsigned char *extra; /* Extra descriptors */ 75 int extralen; 76}; 77 78enum usb_interface_condition { 79 USB_INTERFACE_UNBOUND = 0, 80 USB_INTERFACE_BINDING, 81 USB_INTERFACE_BOUND, 82 USB_INTERFACE_UNBINDING, 83}; 84 85/** 86 * struct usb_interface - what usb device drivers talk to 87 * @altsetting: array of interface structures, one for each alternate 88 * setting that may be selected. Each one includes a set of 89 * endpoint configurations. They will be in no particular order. 90 * @num_altsetting: number of altsettings defined. 91 * @cur_altsetting: the current altsetting. 92 * @driver: the USB driver that is bound to this interface. 93 * @minor: the minor number assigned to this interface, if this 94 * interface is bound to a driver that uses the USB major number. 95 * If this interface does not use the USB major, this field should 96 * be unused. The driver should set this value in the probe() 97 * function of the driver, after it has been assigned a minor 98 * number from the USB core by calling usb_register_dev(). 99 * @condition: binding state of the interface: not bound, binding 100 * (in probe()), bound to a driver, or unbinding (in disconnect()) 101 * @dev: driver model's view of this device 102 * @class_dev: driver model's class view of this device. 103 * 104 * USB device drivers attach to interfaces on a physical device. Each 105 * interface encapsulates a single high level function, such as feeding 106 * an audio stream to a speaker or reporting a change in a volume control. 107 * Many USB devices only have one interface. The protocol used to talk to 108 * an interface's endpoints can be defined in a usb "class" specification, 109 * or by a product's vendor. The (default) control endpoint is part of 110 * every interface, but is never listed among the interface's descriptors. 111 * 112 * The driver that is bound to the interface can use standard driver model 113 * calls such as dev_get_drvdata() on the dev member of this structure. 114 * 115 * Each interface may have alternate settings. The initial configuration 116 * of a device sets altsetting 0, but the device driver can change 117 * that setting using usb_set_interface(). Alternate settings are often 118 * used to control the the use of periodic endpoints, such as by having 119 * different endpoints use different amounts of reserved USB bandwidth. 120 * All standards-conformant USB devices that use isochronous endpoints 121 * will use them in non-default settings. 122 * 123 * The USB specification says that alternate setting numbers must run from 124 * 0 to one less than the total number of alternate settings. But some 125 * devices manage to mess this up, and the structures aren't necessarily 126 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 127 * look up an alternate setting in the altsetting array based on its number. 128 */ 129struct usb_interface { 130 /* array of alternate settings for this interface, 131 * stored in no particular order */ 132 struct usb_host_interface *altsetting; 133 134 struct usb_host_interface *cur_altsetting; /* the currently 135 * active alternate setting */ 136 unsigned num_altsetting; /* number of alternate settings */ 137 138 int minor; /* minor number this interface is bound to */ 139 enum usb_interface_condition condition; /* state of binding */ 140 struct device dev; /* interface specific device info */ 141 struct class_device *class_dev; 142}; 143#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 144#define interface_to_usbdev(intf) \ 145 container_of(intf->dev.parent, struct usb_device, dev) 146 147static inline void *usb_get_intfdata (struct usb_interface *intf) 148{ 149 return dev_get_drvdata (&intf->dev); 150} 151 152static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 153{ 154 dev_set_drvdata(&intf->dev, data); 155} 156 157struct usb_interface *usb_get_intf(struct usb_interface *intf); 158void usb_put_intf(struct usb_interface *intf); 159 160/* this maximum is arbitrary */ 161#define USB_MAXINTERFACES 32 162 163/** 164 * struct usb_interface_cache - long-term representation of a device interface 165 * @num_altsetting: number of altsettings defined. 166 * @ref: reference counter. 167 * @altsetting: variable-length array of interface structures, one for 168 * each alternate setting that may be selected. Each one includes a 169 * set of endpoint configurations. They will be in no particular order. 170 * 171 * These structures persist for the lifetime of a usb_device, unlike 172 * struct usb_interface (which persists only as long as its configuration 173 * is installed). The altsetting arrays can be accessed through these 174 * structures at any time, permitting comparison of configurations and 175 * providing support for the /proc/bus/usb/devices pseudo-file. 176 */ 177struct usb_interface_cache { 178 unsigned num_altsetting; /* number of alternate settings */ 179 struct kref ref; /* reference counter */ 180 181 /* variable-length array of alternate settings for this interface, 182 * stored in no particular order */ 183 struct usb_host_interface altsetting[0]; 184}; 185#define ref_to_usb_interface_cache(r) \ 186 container_of(r, struct usb_interface_cache, ref) 187#define altsetting_to_usb_interface_cache(a) \ 188 container_of(a, struct usb_interface_cache, altsetting[0]) 189 190/** 191 * struct usb_host_config - representation of a device's configuration 192 * @desc: the device's configuration descriptor. 193 * @string: pointer to the cached version of the iConfiguration string, if 194 * present for this configuration. 195 * @interface: array of pointers to usb_interface structures, one for each 196 * interface in the configuration. The number of interfaces is stored 197 * in desc.bNumInterfaces. These pointers are valid only while the 198 * the configuration is active. 199 * @intf_cache: array of pointers to usb_interface_cache structures, one 200 * for each interface in the configuration. These structures exist 201 * for the entire life of the device. 202 * @extra: pointer to buffer containing all extra descriptors associated 203 * with this configuration (those preceding the first interface 204 * descriptor). 205 * @extralen: length of the extra descriptors buffer. 206 * 207 * USB devices may have multiple configurations, but only one can be active 208 * at any time. Each encapsulates a different operational environment; 209 * for example, a dual-speed device would have separate configurations for 210 * full-speed and high-speed operation. The number of configurations 211 * available is stored in the device descriptor as bNumConfigurations. 212 * 213 * A configuration can contain multiple interfaces. Each corresponds to 214 * a different function of the USB device, and all are available whenever 215 * the configuration is active. The USB standard says that interfaces 216 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 217 * of devices get this wrong. In addition, the interface array is not 218 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 219 * look up an interface entry based on its number. 220 * 221 * Device drivers should not attempt to activate configurations. The choice 222 * of which configuration to install is a policy decision based on such 223 * considerations as available power, functionality provided, and the user's 224 * desires (expressed through hotplug scripts). However, drivers can call 225 * usb_reset_configuration() to reinitialize the current configuration and 226 * all its interfaces. 227 */ 228struct usb_host_config { 229 struct usb_config_descriptor desc; 230 231 char *string; 232 /* the interfaces associated with this configuration, 233 * stored in no particular order */ 234 struct usb_interface *interface[USB_MAXINTERFACES]; 235 236 /* Interface information available even when this is not the 237 * active configuration */ 238 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 239 240 unsigned char *extra; /* Extra descriptors */ 241 int extralen; 242}; 243 244int __usb_get_extra_descriptor(char *buffer, unsigned size, 245 unsigned char type, void **ptr); 246#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 247 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 248 type,(void**)ptr) 249 250/* -------------------------------------------------------------------------- */ 251 252struct usb_operations; 253 254/* USB device number allocation bitmap */ 255struct usb_devmap { 256 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 257}; 258 259/* 260 * Allocated per bus (tree of devices) we have: 261 */ 262struct usb_bus { 263 struct device *controller; /* host/master side hardware */ 264 int busnum; /* Bus number (in order of reg) */ 265 char *bus_name; /* stable id (PCI slot_name etc) */ 266 u8 otg_port; /* 0, or number of OTG/HNP port */ 267 unsigned is_b_host:1; /* true during some HNP roleswitches */ 268 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 269 270 int devnum_next; /* Next open device number in round-robin allocation */ 271 272 struct usb_devmap devmap; /* device address allocation map */ 273 struct usb_operations *op; /* Operations (specific to the HC) */ 274 struct usb_device *root_hub; /* Root hub */ 275 struct list_head bus_list; /* list of busses */ 276 void *hcpriv; /* Host Controller private data */ 277 278 int bandwidth_allocated; /* on this bus: how much of the time 279 * reserved for periodic (intr/iso) 280 * requests is used, on average? 281 * Units: microseconds/frame. 282 * Limits: Full/low speed reserve 90%, 283 * while high speed reserves 80%. 284 */ 285 int bandwidth_int_reqs; /* number of Interrupt requests */ 286 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 287 288 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 289 290 struct class_device class_dev; /* class device for this bus */ 291 void (*release)(struct usb_bus *bus); /* function to destroy this bus's memory */ 292#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 293 struct mon_bus *mon_bus; /* non-null when associated */ 294 int monitored; /* non-zero when monitored */ 295#endif 296}; 297#define to_usb_bus(d) container_of(d, struct usb_bus, class_dev) 298 299 300/* -------------------------------------------------------------------------- */ 301 302/* This is arbitrary. 303 * From USB 2.0 spec Table 11-13, offset 7, a hub can 304 * have up to 255 ports. The most yet reported is 10. 305 */ 306#define USB_MAXCHILDREN (16) 307 308struct usb_tt; 309 310/* 311 * struct usb_device - kernel's representation of a USB device 312 * 313 * FIXME: Write the kerneldoc! 314 * 315 * Usbcore drivers should not set usbdev->state directly. Instead use 316 * usb_set_device_state(). 317 */ 318struct usb_device { 319 int devnum; /* Address on USB bus */ 320 char devpath [16]; /* Use in messages: /port/port/... */ 321 enum usb_device_state state; /* configured, not attached, etc */ 322 enum usb_device_speed speed; /* high/full/low (or error) */ 323 324 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 325 int ttport; /* device port on that tt hub */ 326 327 struct semaphore serialize; 328 329 unsigned int toggle[2]; /* one bit for each endpoint ([0] = IN, [1] = OUT) */ 330 331 struct usb_device *parent; /* our hub, unless we're the root */ 332 struct usb_bus *bus; /* Bus we're part of */ 333 struct usb_host_endpoint ep0; 334 335 struct device dev; /* Generic device interface */ 336 337 struct usb_device_descriptor descriptor;/* Descriptor */ 338 struct usb_host_config *config; /* All of the configs */ 339 340 struct usb_host_config *actconfig;/* the active configuration */ 341 struct usb_host_endpoint *ep_in[16]; 342 struct usb_host_endpoint *ep_out[16]; 343 344 char **rawdescriptors; /* Raw descriptors for each config */ 345 346 int have_langid; /* whether string_langid is valid yet */ 347 int string_langid; /* language ID for strings */ 348 349 char *product; 350 char *manufacturer; 351 char *serial; /* static strings from the device */ 352 struct list_head filelist; 353 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 354 355 /* 356 * Child devices - these can be either new devices 357 * (if this is a hub device), or different instances 358 * of this same device. 359 * 360 * Each instance needs its own set of data structures. 361 */ 362 363 int maxchild; /* Number of ports if hub */ 364 struct usb_device *children[USB_MAXCHILDREN]; 365}; 366#define to_usb_device(d) container_of(d, struct usb_device, dev) 367 368extern struct usb_device *usb_get_dev(struct usb_device *dev); 369extern void usb_put_dev(struct usb_device *dev); 370 371extern void usb_lock_device(struct usb_device *udev); 372extern int usb_trylock_device(struct usb_device *udev); 373extern int usb_lock_device_for_reset(struct usb_device *udev, 374 struct usb_interface *iface); 375extern void usb_unlock_device(struct usb_device *udev); 376 377/* USB port reset for device reinitialization */ 378extern int usb_reset_device(struct usb_device *dev); 379 380extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 381 382/*-------------------------------------------------------------------------*/ 383 384/* for drivers using iso endpoints */ 385extern int usb_get_current_frame_number (struct usb_device *usb_dev); 386 387/* used these for multi-interface device registration */ 388extern int usb_driver_claim_interface(struct usb_driver *driver, 389 struct usb_interface *iface, void* priv); 390 391/** 392 * usb_interface_claimed - returns true iff an interface is claimed 393 * @iface: the interface being checked 394 * 395 * Returns true (nonzero) iff the interface is claimed, else false (zero). 396 * Callers must own the driver model's usb bus readlock. So driver 397 * probe() entries don't need extra locking, but other call contexts 398 * may need to explicitly claim that lock. 399 * 400 */ 401static inline int usb_interface_claimed(struct usb_interface *iface) { 402 return (iface->dev.driver != NULL); 403} 404 405extern void usb_driver_release_interface(struct usb_driver *driver, 406 struct usb_interface *iface); 407const struct usb_device_id *usb_match_id(struct usb_interface *interface, 408 const struct usb_device_id *id); 409 410extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 411 int minor); 412extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, 413 unsigned ifnum); 414extern struct usb_host_interface *usb_altnum_to_altsetting( 415 struct usb_interface *intf, unsigned int altnum); 416 417 418/** 419 * usb_make_path - returns stable device path in the usb tree 420 * @dev: the device whose path is being constructed 421 * @buf: where to put the string 422 * @size: how big is "buf"? 423 * 424 * Returns length of the string (> 0) or negative if size was too small. 425 * 426 * This identifier is intended to be "stable", reflecting physical paths in 427 * hardware such as physical bus addresses for host controllers or ports on 428 * USB hubs. That makes it stay the same until systems are physically 429 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 430 * controllers. Adding and removing devices, including virtual root hubs 431 * in host controller driver modules, does not change these path identifers; 432 * neither does rebooting or re-enumerating. These are more useful identifiers 433 * than changeable ("unstable") ones like bus numbers or device addresses. 434 * 435 * With a partial exception for devices connected to USB 2.0 root hubs, these 436 * identifiers are also predictable. So long as the device tree isn't changed, 437 * plugging any USB device into a given hub port always gives it the same path. 438 * Because of the use of "companion" controllers, devices connected to ports on 439 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 440 * high speed, and a different one if they are full or low speed. 441 */ 442static inline int usb_make_path (struct usb_device *dev, char *buf, size_t size) 443{ 444 int actual; 445 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, dev->devpath); 446 return (actual >= (int)size) ? -1 : actual; 447} 448 449/*-------------------------------------------------------------------------*/ 450 451#define USB_DEVICE_ID_MATCH_DEVICE (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 452#define USB_DEVICE_ID_MATCH_DEV_RANGE (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 453#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 454#define USB_DEVICE_ID_MATCH_DEV_INFO \ 455 (USB_DEVICE_ID_MATCH_DEV_CLASS | USB_DEVICE_ID_MATCH_DEV_SUBCLASS | USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 456#define USB_DEVICE_ID_MATCH_INT_INFO \ 457 (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL) 458 459/** 460 * USB_DEVICE - macro used to describe a specific usb device 461 * @vend: the 16 bit USB Vendor ID 462 * @prod: the 16 bit USB Product ID 463 * 464 * This macro is used to create a struct usb_device_id that matches a 465 * specific device. 466 */ 467#define USB_DEVICE(vend,prod) \ 468 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), .idProduct = (prod) 469/** 470 * USB_DEVICE_VER - macro used to describe a specific usb device with a version range 471 * @vend: the 16 bit USB Vendor ID 472 * @prod: the 16 bit USB Product ID 473 * @lo: the bcdDevice_lo value 474 * @hi: the bcdDevice_hi value 475 * 476 * This macro is used to create a struct usb_device_id that matches a 477 * specific device, with a version range. 478 */ 479#define USB_DEVICE_VER(vend,prod,lo,hi) \ 480 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, .idVendor = (vend), .idProduct = (prod), .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 481 482/** 483 * USB_DEVICE_INFO - macro used to describe a class of usb devices 484 * @cl: bDeviceClass value 485 * @sc: bDeviceSubClass value 486 * @pr: bDeviceProtocol value 487 * 488 * This macro is used to create a struct usb_device_id that matches a 489 * specific class of devices. 490 */ 491#define USB_DEVICE_INFO(cl,sc,pr) \ 492 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 493 494/** 495 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 496 * @cl: bInterfaceClass value 497 * @sc: bInterfaceSubClass value 498 * @pr: bInterfaceProtocol value 499 * 500 * This macro is used to create a struct usb_device_id that matches a 501 * specific class of interfaces. 502 */ 503#define USB_INTERFACE_INFO(cl,sc,pr) \ 504 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 505 506/* -------------------------------------------------------------------------- */ 507 508/** 509 * struct usb_driver - identifies USB driver to usbcore 510 * @owner: Pointer to the module owner of this driver; initialize 511 * it using THIS_MODULE. 512 * @name: The driver name should be unique among USB drivers, 513 * and should normally be the same as the module name. 514 * @probe: Called to see if the driver is willing to manage a particular 515 * interface on a device. If it is, probe returns zero and uses 516 * dev_set_drvdata() to associate driver-specific data with the 517 * interface. It may also use usb_set_interface() to specify the 518 * appropriate altsetting. If unwilling to manage the interface, 519 * return a negative errno value. 520 * @disconnect: Called when the interface is no longer accessible, usually 521 * because its device has been (or is being) disconnected or the 522 * driver module is being unloaded. 523 * @ioctl: Used for drivers that want to talk to userspace through 524 * the "usbfs" filesystem. This lets devices provide ways to 525 * expose information to user space regardless of where they 526 * do (or don't) show up otherwise in the filesystem. 527 * @suspend: Called when the device is going to be suspended by the system. 528 * @resume: Called when the device is being resumed by the system. 529 * @id_table: USB drivers use ID table to support hotplugging. 530 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 531 * or your driver's probe function will never get called. 532 * @driver: the driver model core driver structure. 533 * 534 * USB drivers must provide a name, probe() and disconnect() methods, 535 * and an id_table. Other driver fields are optional. 536 * 537 * The id_table is used in hotplugging. It holds a set of descriptors, 538 * and specialized data may be associated with each entry. That table 539 * is used by both user and kernel mode hotplugging support. 540 * 541 * The probe() and disconnect() methods are called in a context where 542 * they can sleep, but they should avoid abusing the privilege. Most 543 * work to connect to a device should be done when the device is opened, 544 * and undone at the last close. The disconnect code needs to address 545 * concurrency issues with respect to open() and close() methods, as 546 * well as forcing all pending I/O requests to complete (by unlinking 547 * them as necessary, and blocking until the unlinks complete). 548 */ 549struct usb_driver { 550 struct module *owner; 551 552 const char *name; 553 554 int (*probe) (struct usb_interface *intf, 555 const struct usb_device_id *id); 556 557 void (*disconnect) (struct usb_interface *intf); 558 559 int (*ioctl) (struct usb_interface *intf, unsigned int code, void *buf); 560 561 int (*suspend) (struct usb_interface *intf, pm_message_t message); 562 int (*resume) (struct usb_interface *intf); 563 564 const struct usb_device_id *id_table; 565 566 struct device_driver driver; 567}; 568#define to_usb_driver(d) container_of(d, struct usb_driver, driver) 569 570extern struct bus_type usb_bus_type; 571 572/** 573 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 574 * @name: devfs name for this driver. Will also be used by the driver 575 * class code to create a usb class device. 576 * @fops: pointer to the struct file_operations of this driver. 577 * @mode: the mode for the devfs file to be created for this driver. 578 * @minor_base: the start of the minor range for this driver. 579 * 580 * This structure is used for the usb_register_dev() and 581 * usb_unregister_dev() functions, to consolidate a number of the 582 * parameters used for them. 583 */ 584struct usb_class_driver { 585 char *name; 586 struct file_operations *fops; 587 mode_t mode; 588 int minor_base; 589}; 590 591/* 592 * use these in module_init()/module_exit() 593 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 594 */ 595extern int usb_register(struct usb_driver *); 596extern void usb_deregister(struct usb_driver *); 597 598extern int usb_register_dev(struct usb_interface *intf, 599 struct usb_class_driver *class_driver); 600extern void usb_deregister_dev(struct usb_interface *intf, 601 struct usb_class_driver *class_driver); 602 603extern int usb_disabled(void); 604 605/* -------------------------------------------------------------------------- */ 606 607/* 608 * URB support, for asynchronous request completions 609 */ 610 611/* 612 * urb->transfer_flags: 613 */ 614#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 615#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame ignored */ 616#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 617#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 618#define URB_ASYNC_UNLINK 0x0010 /* usb_unlink_urb() returns asap */ 619#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 620#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUTs with short packet */ 621#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt needed */ 622 623struct usb_iso_packet_descriptor { 624 unsigned int offset; 625 unsigned int length; /* expected length */ 626 unsigned int actual_length; 627 unsigned int status; 628}; 629 630struct urb; 631struct pt_regs; 632 633typedef void (*usb_complete_t)(struct urb *, struct pt_regs *); 634 635/** 636 * struct urb - USB Request Block 637 * @urb_list: For use by current owner of the URB. 638 * @pipe: Holds endpoint number, direction, type, and more. 639 * Create these values with the eight macros available; 640 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 641 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 642 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 643 * numbers range from zero to fifteen. Note that "in" endpoint two 644 * is a different endpoint (and pipe) from "out" endpoint two. 645 * The current configuration controls the existence, type, and 646 * maximum packet size of any given endpoint. 647 * @dev: Identifies the USB device to perform the request. 648 * @status: This is read in non-iso completion functions to get the 649 * status of the particular request. ISO requests only use it 650 * to tell whether the URB was unlinked; detailed status for 651 * each frame is in the fields of the iso_frame-desc. 652 * @transfer_flags: A variety of flags may be used to affect how URB 653 * submission, unlinking, or operation are handled. Different 654 * kinds of URB can use different flags. 655 * @transfer_buffer: This identifies the buffer to (or from) which 656 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 657 * is set). This buffer must be suitable for DMA; allocate it with 658 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 659 * of this buffer will be modified. This buffer is used for the data 660 * stage of control transfers. 661 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 662 * the device driver is saying that it provided this DMA address, 663 * which the host controller driver should use in preference to the 664 * transfer_buffer. 665 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 666 * be broken up into chunks according to the current maximum packet 667 * size for the endpoint, which is a function of the configuration 668 * and is encoded in the pipe. When the length is zero, neither 669 * transfer_buffer nor transfer_dma is used. 670 * @actual_length: This is read in non-iso completion functions, and 671 * it tells how many bytes (out of transfer_buffer_length) were 672 * transferred. It will normally be the same as requested, unless 673 * either an error was reported or a short read was performed. 674 * The URB_SHORT_NOT_OK transfer flag may be used to make such 675 * short reads be reported as errors. 676 * @setup_packet: Only used for control transfers, this points to eight bytes 677 * of setup data. Control transfers always start by sending this data 678 * to the device. Then transfer_buffer is read or written, if needed. 679 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 680 * device driver has provided this DMA address for the setup packet. 681 * The host controller driver should use this in preference to 682 * setup_packet. 683 * @start_frame: Returns the initial frame for isochronous transfers. 684 * @number_of_packets: Lists the number of ISO transfer buffers. 685 * @interval: Specifies the polling interval for interrupt or isochronous 686 * transfers. The units are frames (milliseconds) for for full and low 687 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 688 * @error_count: Returns the number of ISO transfers that reported errors. 689 * @context: For use in completion functions. This normally points to 690 * request-specific driver context. 691 * @complete: Completion handler. This URB is passed as the parameter to the 692 * completion function. The completion function may then do what 693 * it likes with the URB, including resubmitting or freeing it. 694 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 695 * collect the transfer status for each buffer. 696 * 697 * This structure identifies USB transfer requests. URBs must be allocated by 698 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 699 * Initialization may be done using various usb_fill_*_urb() functions. URBs 700 * are submitted using usb_submit_urb(), and pending requests may be canceled 701 * using usb_unlink_urb() or usb_kill_urb(). 702 * 703 * Data Transfer Buffers: 704 * 705 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 706 * taken from the general page pool. That is provided by transfer_buffer 707 * (control requests also use setup_packet), and host controller drivers 708 * perform a dma mapping (and unmapping) for each buffer transferred. Those 709 * mapping operations can be expensive on some platforms (perhaps using a dma 710 * bounce buffer or talking to an IOMMU), 711 * although they're cheap on commodity x86 and ppc hardware. 712 * 713 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 714 * which tell the host controller driver that no such mapping is needed since 715 * the device driver is DMA-aware. For example, a device driver might 716 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 717 * When these transfer flags are provided, host controller drivers will 718 * attempt to use the dma addresses found in the transfer_dma and/or 719 * setup_dma fields rather than determining a dma address themselves. (Note 720 * that transfer_buffer and setup_packet must still be set because not all 721 * host controllers use DMA, nor do virtual root hubs). 722 * 723 * Initialization: 724 * 725 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 726 * zero), and complete fields. 727 * The URB_ASYNC_UNLINK transfer flag affects later invocations of 728 * the usb_unlink_urb() routine. Note: Failure to set URB_ASYNC_UNLINK 729 * with usb_unlink_urb() is deprecated. For synchronous unlinks use 730 * usb_kill_urb() instead. 731 * 732 * All URBs must also initialize 733 * transfer_buffer and transfer_buffer_length. They may provide the 734 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 735 * to be treated as errors; that flag is invalid for write requests. 736 * 737 * Bulk URBs may 738 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 739 * should always terminate with a short packet, even if it means adding an 740 * extra zero length packet. 741 * 742 * Control URBs must provide a setup_packet. The setup_packet and 743 * transfer_buffer may each be mapped for DMA or not, independently of 744 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 745 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 746 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 747 * 748 * Interrupt URBs must provide an interval, saying how often (in milliseconds 749 * or, for highspeed devices, 125 microsecond units) 750 * to poll for transfers. After the URB has been submitted, the interval 751 * field reflects how the transfer was actually scheduled. 752 * The polling interval may be more frequent than requested. 753 * For example, some controllers have a maximum interval of 32 milliseconds, 754 * while others support intervals of up to 1024 milliseconds. 755 * Isochronous URBs also have transfer intervals. (Note that for isochronous 756 * endpoints, as well as high speed interrupt endpoints, the encoding of 757 * the transfer interval in the endpoint descriptor is logarithmic. 758 * Device drivers must convert that value to linear units themselves.) 759 * 760 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 761 * the host controller to schedule the transfer as soon as bandwidth 762 * utilization allows, and then set start_frame to reflect the actual frame 763 * selected during submission. Otherwise drivers must specify the start_frame 764 * and handle the case where the transfer can't begin then. However, drivers 765 * won't know how bandwidth is currently allocated, and while they can 766 * find the current frame using usb_get_current_frame_number () they can't 767 * know the range for that frame number. (Ranges for frame counter values 768 * are HC-specific, and can go from 256 to 65536 frames from "now".) 769 * 770 * Isochronous URBs have a different data transfer model, in part because 771 * the quality of service is only "best effort". Callers provide specially 772 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 773 * at the end. Each such packet is an individual ISO transfer. Isochronous 774 * URBs are normally queued, submitted by drivers to arrange that 775 * transfers are at least double buffered, and then explicitly resubmitted 776 * in completion handlers, so 777 * that data (such as audio or video) streams at as constant a rate as the 778 * host controller scheduler can support. 779 * 780 * Completion Callbacks: 781 * 782 * The completion callback is made in_interrupt(), and one of the first 783 * things that a completion handler should do is check the status field. 784 * The status field is provided for all URBs. It is used to report 785 * unlinked URBs, and status for all non-ISO transfers. It should not 786 * be examined before the URB is returned to the completion handler. 787 * 788 * The context field is normally used to link URBs back to the relevant 789 * driver or request state. 790 * 791 * When the completion callback is invoked for non-isochronous URBs, the 792 * actual_length field tells how many bytes were transferred. This field 793 * is updated even when the URB terminated with an error or was unlinked. 794 * 795 * ISO transfer status is reported in the status and actual_length fields 796 * of the iso_frame_desc array, and the number of errors is reported in 797 * error_count. Completion callbacks for ISO transfers will normally 798 * (re)submit URBs to ensure a constant transfer rate. 799 * 800 * Note that even fields marked "public" should not be touched by the driver 801 * when the urb is owned by the hcd, that is, since the call to 802 * usb_submit_urb() till the entry into the completion routine. 803 */ 804struct urb 805{ 806 /* private, usb core and host controller only fields in the urb */ 807 struct kref kref; /* reference count of the URB */ 808 spinlock_t lock; /* lock for the URB */ 809 void *hcpriv; /* private data for host controller */ 810 int bandwidth; /* bandwidth for INT/ISO request */ 811 atomic_t use_count; /* concurrent submissions counter */ 812 u8 reject; /* submissions will fail */ 813 814 /* public, documented fields in the urb that can be used by drivers */ 815 struct list_head urb_list; /* list head for use by the urb owner */ 816 struct usb_device *dev; /* (in) pointer to associated device */ 817 unsigned int pipe; /* (in) pipe information */ 818 int status; /* (return) non-ISO status */ 819 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 820 void *transfer_buffer; /* (in) associated data buffer */ 821 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 822 int transfer_buffer_length; /* (in) data buffer length */ 823 int actual_length; /* (return) actual transfer length */ 824 unsigned char *setup_packet; /* (in) setup packet (control only) */ 825 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 826 int start_frame; /* (modify) start frame (ISO) */ 827 int number_of_packets; /* (in) number of ISO packets */ 828 int interval; /* (modify) transfer interval (INT/ISO) */ 829 int error_count; /* (return) number of ISO errors */ 830 void *context; /* (in) context for completion */ 831 usb_complete_t complete; /* (in) completion routine */ 832 struct usb_iso_packet_descriptor iso_frame_desc[0]; /* (in) ISO ONLY */ 833}; 834 835/* -------------------------------------------------------------------------- */ 836 837/** 838 * usb_fill_control_urb - initializes a control urb 839 * @urb: pointer to the urb to initialize. 840 * @dev: pointer to the struct usb_device for this urb. 841 * @pipe: the endpoint pipe 842 * @setup_packet: pointer to the setup_packet buffer 843 * @transfer_buffer: pointer to the transfer buffer 844 * @buffer_length: length of the transfer buffer 845 * @complete: pointer to the usb_complete_t function 846 * @context: what to set the urb context to. 847 * 848 * Initializes a control urb with the proper information needed to submit 849 * it to a device. 850 */ 851static inline void usb_fill_control_urb (struct urb *urb, 852 struct usb_device *dev, 853 unsigned int pipe, 854 unsigned char *setup_packet, 855 void *transfer_buffer, 856 int buffer_length, 857 usb_complete_t complete, 858 void *context) 859{ 860 spin_lock_init(&urb->lock); 861 urb->dev = dev; 862 urb->pipe = pipe; 863 urb->setup_packet = setup_packet; 864 urb->transfer_buffer = transfer_buffer; 865 urb->transfer_buffer_length = buffer_length; 866 urb->complete = complete; 867 urb->context = context; 868} 869 870/** 871 * usb_fill_bulk_urb - macro to help initialize a bulk urb 872 * @urb: pointer to the urb to initialize. 873 * @dev: pointer to the struct usb_device for this urb. 874 * @pipe: the endpoint pipe 875 * @transfer_buffer: pointer to the transfer buffer 876 * @buffer_length: length of the transfer buffer 877 * @complete: pointer to the usb_complete_t function 878 * @context: what to set the urb context to. 879 * 880 * Initializes a bulk urb with the proper information needed to submit it 881 * to a device. 882 */ 883static inline void usb_fill_bulk_urb (struct urb *urb, 884 struct usb_device *dev, 885 unsigned int pipe, 886 void *transfer_buffer, 887 int buffer_length, 888 usb_complete_t complete, 889 void *context) 890{ 891 spin_lock_init(&urb->lock); 892 urb->dev = dev; 893 urb->pipe = pipe; 894 urb->transfer_buffer = transfer_buffer; 895 urb->transfer_buffer_length = buffer_length; 896 urb->complete = complete; 897 urb->context = context; 898} 899 900/** 901 * usb_fill_int_urb - macro to help initialize a interrupt urb 902 * @urb: pointer to the urb to initialize. 903 * @dev: pointer to the struct usb_device for this urb. 904 * @pipe: the endpoint pipe 905 * @transfer_buffer: pointer to the transfer buffer 906 * @buffer_length: length of the transfer buffer 907 * @complete: pointer to the usb_complete_t function 908 * @context: what to set the urb context to. 909 * @interval: what to set the urb interval to, encoded like 910 * the endpoint descriptor's bInterval value. 911 * 912 * Initializes a interrupt urb with the proper information needed to submit 913 * it to a device. 914 * Note that high speed interrupt endpoints use a logarithmic encoding of 915 * the endpoint interval, and express polling intervals in microframes 916 * (eight per millisecond) rather than in frames (one per millisecond). 917 */ 918static inline void usb_fill_int_urb (struct urb *urb, 919 struct usb_device *dev, 920 unsigned int pipe, 921 void *transfer_buffer, 922 int buffer_length, 923 usb_complete_t complete, 924 void *context, 925 int interval) 926{ 927 spin_lock_init(&urb->lock); 928 urb->dev = dev; 929 urb->pipe = pipe; 930 urb->transfer_buffer = transfer_buffer; 931 urb->transfer_buffer_length = buffer_length; 932 urb->complete = complete; 933 urb->context = context; 934 if (dev->speed == USB_SPEED_HIGH) 935 urb->interval = 1 << (interval - 1); 936 else 937 urb->interval = interval; 938 urb->start_frame = -1; 939} 940 941extern void usb_init_urb(struct urb *urb); 942extern struct urb *usb_alloc_urb(int iso_packets, int mem_flags); 943extern void usb_free_urb(struct urb *urb); 944#define usb_put_urb usb_free_urb 945extern struct urb *usb_get_urb(struct urb *urb); 946extern int usb_submit_urb(struct urb *urb, int mem_flags); 947extern int usb_unlink_urb(struct urb *urb); 948extern void usb_kill_urb(struct urb *urb); 949 950#define HAVE_USB_BUFFERS 951void *usb_buffer_alloc (struct usb_device *dev, size_t size, 952 int mem_flags, dma_addr_t *dma); 953void usb_buffer_free (struct usb_device *dev, size_t size, 954 void *addr, dma_addr_t dma); 955 956#if 0 957struct urb *usb_buffer_map (struct urb *urb); 958void usb_buffer_dmasync (struct urb *urb); 959void usb_buffer_unmap (struct urb *urb); 960#endif 961 962struct scatterlist; 963int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, 964 struct scatterlist *sg, int nents); 965#if 0 966void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, 967 struct scatterlist *sg, int n_hw_ents); 968#endif 969void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, 970 struct scatterlist *sg, int n_hw_ents); 971 972/*-------------------------------------------------------------------* 973 * SYNCHRONOUS CALL SUPPORT * 974 *-------------------------------------------------------------------*/ 975 976extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 977 __u8 request, __u8 requesttype, __u16 value, __u16 index, 978 void *data, __u16 size, int timeout); 979extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 980 void *data, int len, int *actual_length, 981 int timeout); 982 983/* selective suspend/resume */ 984extern int usb_suspend_device(struct usb_device *dev, pm_message_t message); 985extern int usb_resume_device(struct usb_device *dev); 986 987 988/* wrappers around usb_control_msg() for the most common standard requests */ 989extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 990 unsigned char descindex, void *buf, int size); 991extern int usb_get_status(struct usb_device *dev, 992 int type, int target, void *data); 993extern int usb_get_string(struct usb_device *dev, 994 unsigned short langid, unsigned char index, void *buf, int size); 995extern int usb_string(struct usb_device *dev, int index, 996 char *buf, size_t size); 997 998/* wrappers that also update important state inside usbcore */ 999extern int usb_clear_halt(struct usb_device *dev, int pipe); 1000extern int usb_reset_configuration(struct usb_device *dev); 1001extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1002 1003/* 1004 * timeouts, in milliseconds, used for sending/receiving control messages 1005 * they typically complete within a few frames (msec) after they're issued 1006 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1007 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1008 */ 1009#define USB_CTRL_GET_TIMEOUT 5000 1010#define USB_CTRL_SET_TIMEOUT 5000 1011 1012 1013/** 1014 * struct usb_sg_request - support for scatter/gather I/O 1015 * @status: zero indicates success, else negative errno 1016 * @bytes: counts bytes transferred. 1017 * 1018 * These requests are initialized using usb_sg_init(), and then are used 1019 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1020 * members of the request object aren't for driver access. 1021 * 1022 * The status and bytecount values are valid only after usb_sg_wait() 1023 * returns. If the status is zero, then the bytecount matches the total 1024 * from the request. 1025 * 1026 * After an error completion, drivers may need to clear a halt condition 1027 * on the endpoint. 1028 */ 1029struct usb_sg_request { 1030 int status; 1031 size_t bytes; 1032 1033 /* 1034 * members below are private to usbcore, 1035 * and are not provided for driver access! 1036 */ 1037 spinlock_t lock; 1038 1039 struct usb_device *dev; 1040 int pipe; 1041 struct scatterlist *sg; 1042 int nents; 1043 1044 int entries; 1045 struct urb **urbs; 1046 1047 int count; 1048 struct completion complete; 1049}; 1050 1051int usb_sg_init ( 1052 struct usb_sg_request *io, 1053 struct usb_device *dev, 1054 unsigned pipe, 1055 unsigned period, 1056 struct scatterlist *sg, 1057 int nents, 1058 size_t length, 1059 int mem_flags 1060); 1061void usb_sg_cancel (struct usb_sg_request *io); 1062void usb_sg_wait (struct usb_sg_request *io); 1063 1064 1065/* -------------------------------------------------------------------------- */ 1066 1067/* 1068 * For various legacy reasons, Linux has a small cookie that's paired with 1069 * a struct usb_device to identify an endpoint queue. Queue characteristics 1070 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1071 * an unsigned int encoded as: 1072 * 1073 * - direction: bit 7 (0 = Host-to-Device [Out], 1074 * 1 = Device-to-Host [In] ... 1075 * like endpoint bEndpointAddress) 1076 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1077 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1078 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1079 * 10 = control, 11 = bulk) 1080 * 1081 * Given the device address and endpoint descriptor, pipes are redundant. 1082 */ 1083 1084/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1085/* (yet ... they're the values used by usbfs) */ 1086#define PIPE_ISOCHRONOUS 0 1087#define PIPE_INTERRUPT 1 1088#define PIPE_CONTROL 2 1089#define PIPE_BULK 3 1090 1091#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1092#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1093 1094#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1095#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1096 1097#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1098#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1099#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1100#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1101#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1102 1103/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1104#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1105#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1106#define usb_settoggle(dev, ep, out, bit) ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | ((bit) << (ep))) 1107 1108 1109static inline unsigned int __create_pipe(struct usb_device *dev, unsigned int endpoint) 1110{ 1111 return (dev->devnum << 8) | (endpoint << 15); 1112} 1113 1114/* Create various pipes... */ 1115#define usb_sndctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1116#define usb_rcvctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1117#define usb_sndisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1118#define usb_rcvisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1119#define usb_sndbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1120#define usb_rcvbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1121#define usb_sndintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1122#define usb_rcvintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1123 1124/*-------------------------------------------------------------------------*/ 1125 1126static inline __u16 1127usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1128{ 1129 struct usb_host_endpoint *ep; 1130 unsigned epnum = usb_pipeendpoint(pipe); 1131 1132 if (is_out) { 1133 WARN_ON(usb_pipein(pipe)); 1134 ep = udev->ep_out[epnum]; 1135 } else { 1136 WARN_ON(usb_pipeout(pipe)); 1137 ep = udev->ep_in[epnum]; 1138 } 1139 if (!ep) 1140 return 0; 1141 1142 /* NOTE: only 0x07ff bits are for packet size... */ 1143 return le16_to_cpu(ep->desc.wMaxPacketSize); 1144} 1145 1146/* -------------------------------------------------------------------------- */ 1147 1148#ifdef DEBUG 1149#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , __FILE__ , ## arg) 1150#else 1151#define dbg(format, arg...) do {} while (0) 1152#endif 1153 1154#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , __FILE__ , ## arg) 1155#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , __FILE__ , ## arg) 1156#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , __FILE__ , ## arg) 1157 1158 1159#endif /* __KERNEL__ */ 1160 1161#endif