at v2.6.12 14 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifdef __KERNEL__ 5#ifndef __ASSEMBLY__ 6 7#include <linux/config.h> 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <asm/atomic.h> 16 17/* Free memory management - zoned buddy allocator. */ 18#ifndef CONFIG_FORCE_MAX_ZONEORDER 19#define MAX_ORDER 11 20#else 21#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 22#endif 23 24struct free_area { 25 struct list_head free_list; 26 unsigned long nr_free; 27}; 28 29struct pglist_data; 30 31/* 32 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 33 * So add a wild amount of padding here to ensure that they fall into separate 34 * cachelines. There are very few zone structures in the machine, so space 35 * consumption is not a concern here. 36 */ 37#if defined(CONFIG_SMP) 38struct zone_padding { 39 char x[0]; 40} ____cacheline_maxaligned_in_smp; 41#define ZONE_PADDING(name) struct zone_padding name; 42#else 43#define ZONE_PADDING(name) 44#endif 45 46struct per_cpu_pages { 47 int count; /* number of pages in the list */ 48 int low; /* low watermark, refill needed */ 49 int high; /* high watermark, emptying needed */ 50 int batch; /* chunk size for buddy add/remove */ 51 struct list_head list; /* the list of pages */ 52}; 53 54struct per_cpu_pageset { 55 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 56#ifdef CONFIG_NUMA 57 unsigned long numa_hit; /* allocated in intended node */ 58 unsigned long numa_miss; /* allocated in non intended node */ 59 unsigned long numa_foreign; /* was intended here, hit elsewhere */ 60 unsigned long interleave_hit; /* interleaver prefered this zone */ 61 unsigned long local_node; /* allocation from local node */ 62 unsigned long other_node; /* allocation from other node */ 63#endif 64} ____cacheline_aligned_in_smp; 65 66#define ZONE_DMA 0 67#define ZONE_NORMAL 1 68#define ZONE_HIGHMEM 2 69 70#define MAX_NR_ZONES 3 /* Sync this with ZONES_SHIFT */ 71#define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */ 72 73 74/* 75 * When a memory allocation must conform to specific limitations (such 76 * as being suitable for DMA) the caller will pass in hints to the 77 * allocator in the gfp_mask, in the zone modifier bits. These bits 78 * are used to select a priority ordered list of memory zones which 79 * match the requested limits. GFP_ZONEMASK defines which bits within 80 * the gfp_mask should be considered as zone modifiers. Each valid 81 * combination of the zone modifier bits has a corresponding list 82 * of zones (in node_zonelists). Thus for two zone modifiers there 83 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will 84 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible 85 * combinations of zone modifiers in "zone modifier space". 86 */ 87#define GFP_ZONEMASK 0x03 88/* 89 * As an optimisation any zone modifier bits which are only valid when 90 * no other zone modifier bits are set (loners) should be placed in 91 * the highest order bits of this field. This allows us to reduce the 92 * extent of the zonelists thus saving space. For example in the case 93 * of three zone modifier bits, we could require up to eight zonelists. 94 * If the left most zone modifier is a "loner" then the highest valid 95 * zonelist would be four allowing us to allocate only five zonelists. 96 * Use the first form when the left most bit is not a "loner", otherwise 97 * use the second. 98 */ 99/* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */ 100#define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */ 101 102/* 103 * On machines where it is needed (eg PCs) we divide physical memory 104 * into multiple physical zones. On a PC we have 3 zones: 105 * 106 * ZONE_DMA < 16 MB ISA DMA capable memory 107 * ZONE_NORMAL 16-896 MB direct mapped by the kernel 108 * ZONE_HIGHMEM > 896 MB only page cache and user processes 109 */ 110 111struct zone { 112 /* Fields commonly accessed by the page allocator */ 113 unsigned long free_pages; 114 unsigned long pages_min, pages_low, pages_high; 115 /* 116 * We don't know if the memory that we're going to allocate will be freeable 117 * or/and it will be released eventually, so to avoid totally wasting several 118 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 119 * to run OOM on the lower zones despite there's tons of freeable ram 120 * on the higher zones). This array is recalculated at runtime if the 121 * sysctl_lowmem_reserve_ratio sysctl changes. 122 */ 123 unsigned long lowmem_reserve[MAX_NR_ZONES]; 124 125 struct per_cpu_pageset pageset[NR_CPUS]; 126 127 /* 128 * free areas of different sizes 129 */ 130 spinlock_t lock; 131 struct free_area free_area[MAX_ORDER]; 132 133 134 ZONE_PADDING(_pad1_) 135 136 /* Fields commonly accessed by the page reclaim scanner */ 137 spinlock_t lru_lock; 138 struct list_head active_list; 139 struct list_head inactive_list; 140 unsigned long nr_scan_active; 141 unsigned long nr_scan_inactive; 142 unsigned long nr_active; 143 unsigned long nr_inactive; 144 unsigned long pages_scanned; /* since last reclaim */ 145 int all_unreclaimable; /* All pages pinned */ 146 147 /* 148 * prev_priority holds the scanning priority for this zone. It is 149 * defined as the scanning priority at which we achieved our reclaim 150 * target at the previous try_to_free_pages() or balance_pgdat() 151 * invokation. 152 * 153 * We use prev_priority as a measure of how much stress page reclaim is 154 * under - it drives the swappiness decision: whether to unmap mapped 155 * pages. 156 * 157 * temp_priority is used to remember the scanning priority at which 158 * this zone was successfully refilled to free_pages == pages_high. 159 * 160 * Access to both these fields is quite racy even on uniprocessor. But 161 * it is expected to average out OK. 162 */ 163 int temp_priority; 164 int prev_priority; 165 166 167 ZONE_PADDING(_pad2_) 168 /* Rarely used or read-mostly fields */ 169 170 /* 171 * wait_table -- the array holding the hash table 172 * wait_table_size -- the size of the hash table array 173 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 174 * 175 * The purpose of all these is to keep track of the people 176 * waiting for a page to become available and make them 177 * runnable again when possible. The trouble is that this 178 * consumes a lot of space, especially when so few things 179 * wait on pages at a given time. So instead of using 180 * per-page waitqueues, we use a waitqueue hash table. 181 * 182 * The bucket discipline is to sleep on the same queue when 183 * colliding and wake all in that wait queue when removing. 184 * When something wakes, it must check to be sure its page is 185 * truly available, a la thundering herd. The cost of a 186 * collision is great, but given the expected load of the 187 * table, they should be so rare as to be outweighed by the 188 * benefits from the saved space. 189 * 190 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 191 * primary users of these fields, and in mm/page_alloc.c 192 * free_area_init_core() performs the initialization of them. 193 */ 194 wait_queue_head_t * wait_table; 195 unsigned long wait_table_size; 196 unsigned long wait_table_bits; 197 198 /* 199 * Discontig memory support fields. 200 */ 201 struct pglist_data *zone_pgdat; 202 struct page *zone_mem_map; 203 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 204 unsigned long zone_start_pfn; 205 206 unsigned long spanned_pages; /* total size, including holes */ 207 unsigned long present_pages; /* amount of memory (excluding holes) */ 208 209 /* 210 * rarely used fields: 211 */ 212 char *name; 213} ____cacheline_maxaligned_in_smp; 214 215 216/* 217 * The "priority" of VM scanning is how much of the queues we will scan in one 218 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 219 * queues ("queue_length >> 12") during an aging round. 220 */ 221#define DEF_PRIORITY 12 222 223/* 224 * One allocation request operates on a zonelist. A zonelist 225 * is a list of zones, the first one is the 'goal' of the 226 * allocation, the other zones are fallback zones, in decreasing 227 * priority. 228 * 229 * Right now a zonelist takes up less than a cacheline. We never 230 * modify it apart from boot-up, and only a few indices are used, 231 * so despite the zonelist table being relatively big, the cache 232 * footprint of this construct is very small. 233 */ 234struct zonelist { 235 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited 236}; 237 238 239/* 240 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 241 * (mostly NUMA machines?) to denote a higher-level memory zone than the 242 * zone denotes. 243 * 244 * On NUMA machines, each NUMA node would have a pg_data_t to describe 245 * it's memory layout. 246 * 247 * Memory statistics and page replacement data structures are maintained on a 248 * per-zone basis. 249 */ 250struct bootmem_data; 251typedef struct pglist_data { 252 struct zone node_zones[MAX_NR_ZONES]; 253 struct zonelist node_zonelists[GFP_ZONETYPES]; 254 int nr_zones; 255 struct page *node_mem_map; 256 struct bootmem_data *bdata; 257 unsigned long node_start_pfn; 258 unsigned long node_present_pages; /* total number of physical pages */ 259 unsigned long node_spanned_pages; /* total size of physical page 260 range, including holes */ 261 int node_id; 262 struct pglist_data *pgdat_next; 263 wait_queue_head_t kswapd_wait; 264 struct task_struct *kswapd; 265 int kswapd_max_order; 266} pg_data_t; 267 268#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 269#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 270 271extern struct pglist_data *pgdat_list; 272 273void __get_zone_counts(unsigned long *active, unsigned long *inactive, 274 unsigned long *free, struct pglist_data *pgdat); 275void get_zone_counts(unsigned long *active, unsigned long *inactive, 276 unsigned long *free); 277void build_all_zonelists(void); 278void wakeup_kswapd(struct zone *zone, int order); 279int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 280 int alloc_type, int can_try_harder, int gfp_high); 281 282#ifdef CONFIG_HAVE_MEMORY_PRESENT 283void memory_present(int nid, unsigned long start, unsigned long end); 284#else 285static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 286#endif 287 288#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 289unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 290#endif 291 292/* 293 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 294 */ 295#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 296 297/** 298 * for_each_pgdat - helper macro to iterate over all nodes 299 * @pgdat - pointer to a pg_data_t variable 300 * 301 * Meant to help with common loops of the form 302 * pgdat = pgdat_list; 303 * while(pgdat) { 304 * ... 305 * pgdat = pgdat->pgdat_next; 306 * } 307 */ 308#define for_each_pgdat(pgdat) \ 309 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next) 310 311/* 312 * next_zone - helper magic for for_each_zone() 313 * Thanks to William Lee Irwin III for this piece of ingenuity. 314 */ 315static inline struct zone *next_zone(struct zone *zone) 316{ 317 pg_data_t *pgdat = zone->zone_pgdat; 318 319 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1) 320 zone++; 321 else if (pgdat->pgdat_next) { 322 pgdat = pgdat->pgdat_next; 323 zone = pgdat->node_zones; 324 } else 325 zone = NULL; 326 327 return zone; 328} 329 330/** 331 * for_each_zone - helper macro to iterate over all memory zones 332 * @zone - pointer to struct zone variable 333 * 334 * The user only needs to declare the zone variable, for_each_zone 335 * fills it in. This basically means for_each_zone() is an 336 * easier to read version of this piece of code: 337 * 338 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next) 339 * for (i = 0; i < MAX_NR_ZONES; ++i) { 340 * struct zone * z = pgdat->node_zones + i; 341 * ... 342 * } 343 * } 344 */ 345#define for_each_zone(zone) \ 346 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone)) 347 348static inline int is_highmem_idx(int idx) 349{ 350 return (idx == ZONE_HIGHMEM); 351} 352 353static inline int is_normal_idx(int idx) 354{ 355 return (idx == ZONE_NORMAL); 356} 357/** 358 * is_highmem - helper function to quickly check if a struct zone is a 359 * highmem zone or not. This is an attempt to keep references 360 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 361 * @zone - pointer to struct zone variable 362 */ 363static inline int is_highmem(struct zone *zone) 364{ 365 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; 366} 367 368static inline int is_normal(struct zone *zone) 369{ 370 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 371} 372 373/* These two functions are used to setup the per zone pages min values */ 374struct ctl_table; 375struct file; 376int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 377 void __user *, size_t *, loff_t *); 378extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 379int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 380 void __user *, size_t *, loff_t *); 381 382#include <linux/topology.h> 383/* Returns the number of the current Node. */ 384#define numa_node_id() (cpu_to_node(_smp_processor_id())) 385 386#ifndef CONFIG_DISCONTIGMEM 387 388extern struct pglist_data contig_page_data; 389#define NODE_DATA(nid) (&contig_page_data) 390#define NODE_MEM_MAP(nid) mem_map 391#define MAX_NODES_SHIFT 1 392#define pfn_to_nid(pfn) (0) 393 394#else /* CONFIG_DISCONTIGMEM */ 395 396#include <asm/mmzone.h> 397 398#if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED) 399/* 400 * with 32 bit page->flags field, we reserve 8 bits for node/zone info. 401 * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes. 402 */ 403#define MAX_NODES_SHIFT 6 404#elif BITS_PER_LONG == 64 405/* 406 * with 64 bit flags field, there's plenty of room. 407 */ 408#define MAX_NODES_SHIFT 10 409#endif 410 411#endif /* !CONFIG_DISCONTIGMEM */ 412 413#if NODES_SHIFT > MAX_NODES_SHIFT 414#error NODES_SHIFT > MAX_NODES_SHIFT 415#endif 416 417/* There are currently 3 zones: DMA, Normal & Highmem, thus we need 2 bits */ 418#define MAX_ZONES_SHIFT 2 419 420#if ZONES_SHIFT > MAX_ZONES_SHIFT 421#error ZONES_SHIFT > MAX_ZONES_SHIFT 422#endif 423 424#endif /* !__ASSEMBLY__ */ 425#endif /* __KERNEL__ */ 426#endif /* _LINUX_MMZONE_H */