at v2.6.12 537 lines 13 kB view raw
1/* $Id: bitops.h,v 1.67 2001/11/19 18:36:34 davem Exp $ 2 * bitops.h: Bit string operations on the Sparc. 3 * 4 * Copyright 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright 1996 Eddie C. Dost (ecd@skynet.be) 6 * Copyright 2001 Anton Blanchard (anton@samba.org) 7 */ 8 9#ifndef _SPARC_BITOPS_H 10#define _SPARC_BITOPS_H 11 12#include <linux/compiler.h> 13#include <asm/byteorder.h> 14 15#ifdef __KERNEL__ 16 17/* 18 * Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0' 19 * is in the highest of the four bytes and bit '31' is the high bit 20 * within the first byte. Sparc is BIG-Endian. Unless noted otherwise 21 * all bit-ops return 0 if bit was previously clear and != 0 otherwise. 22 */ 23static inline int test_and_set_bit(unsigned long nr, volatile unsigned long *addr) 24{ 25 register unsigned long mask asm("g2"); 26 register unsigned long *ADDR asm("g1"); 27 register int tmp1 asm("g3"); 28 register int tmp2 asm("g4"); 29 register int tmp3 asm("g5"); 30 register int tmp4 asm("g7"); 31 32 ADDR = ((unsigned long *) addr) + (nr >> 5); 33 mask = 1 << (nr & 31); 34 35 __asm__ __volatile__( 36 "mov %%o7, %%g4\n\t" 37 "call ___set_bit\n\t" 38 " add %%o7, 8, %%o7\n" 39 : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) 40 : "0" (mask), "r" (ADDR) 41 : "memory", "cc"); 42 43 return mask != 0; 44} 45 46static inline void set_bit(unsigned long nr, volatile unsigned long *addr) 47{ 48 register unsigned long mask asm("g2"); 49 register unsigned long *ADDR asm("g1"); 50 register int tmp1 asm("g3"); 51 register int tmp2 asm("g4"); 52 register int tmp3 asm("g5"); 53 register int tmp4 asm("g7"); 54 55 ADDR = ((unsigned long *) addr) + (nr >> 5); 56 mask = 1 << (nr & 31); 57 58 __asm__ __volatile__( 59 "mov %%o7, %%g4\n\t" 60 "call ___set_bit\n\t" 61 " add %%o7, 8, %%o7\n" 62 : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) 63 : "0" (mask), "r" (ADDR) 64 : "memory", "cc"); 65} 66 67static inline int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) 68{ 69 register unsigned long mask asm("g2"); 70 register unsigned long *ADDR asm("g1"); 71 register int tmp1 asm("g3"); 72 register int tmp2 asm("g4"); 73 register int tmp3 asm("g5"); 74 register int tmp4 asm("g7"); 75 76 ADDR = ((unsigned long *) addr) + (nr >> 5); 77 mask = 1 << (nr & 31); 78 79 __asm__ __volatile__( 80 "mov %%o7, %%g4\n\t" 81 "call ___clear_bit\n\t" 82 " add %%o7, 8, %%o7\n" 83 : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) 84 : "0" (mask), "r" (ADDR) 85 : "memory", "cc"); 86 87 return mask != 0; 88} 89 90static inline void clear_bit(unsigned long nr, volatile unsigned long *addr) 91{ 92 register unsigned long mask asm("g2"); 93 register unsigned long *ADDR asm("g1"); 94 register int tmp1 asm("g3"); 95 register int tmp2 asm("g4"); 96 register int tmp3 asm("g5"); 97 register int tmp4 asm("g7"); 98 99 ADDR = ((unsigned long *) addr) + (nr >> 5); 100 mask = 1 << (nr & 31); 101 102 __asm__ __volatile__( 103 "mov %%o7, %%g4\n\t" 104 "call ___clear_bit\n\t" 105 " add %%o7, 8, %%o7\n" 106 : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) 107 : "0" (mask), "r" (ADDR) 108 : "memory", "cc"); 109} 110 111static inline int test_and_change_bit(unsigned long nr, volatile unsigned long *addr) 112{ 113 register unsigned long mask asm("g2"); 114 register unsigned long *ADDR asm("g1"); 115 register int tmp1 asm("g3"); 116 register int tmp2 asm("g4"); 117 register int tmp3 asm("g5"); 118 register int tmp4 asm("g7"); 119 120 ADDR = ((unsigned long *) addr) + (nr >> 5); 121 mask = 1 << (nr & 31); 122 123 __asm__ __volatile__( 124 "mov %%o7, %%g4\n\t" 125 "call ___change_bit\n\t" 126 " add %%o7, 8, %%o7\n" 127 : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) 128 : "0" (mask), "r" (ADDR) 129 : "memory", "cc"); 130 131 return mask != 0; 132} 133 134static inline void change_bit(unsigned long nr, volatile unsigned long *addr) 135{ 136 register unsigned long mask asm("g2"); 137 register unsigned long *ADDR asm("g1"); 138 register int tmp1 asm("g3"); 139 register int tmp2 asm("g4"); 140 register int tmp3 asm("g5"); 141 register int tmp4 asm("g7"); 142 143 ADDR = ((unsigned long *) addr) + (nr >> 5); 144 mask = 1 << (nr & 31); 145 146 __asm__ __volatile__( 147 "mov %%o7, %%g4\n\t" 148 "call ___change_bit\n\t" 149 " add %%o7, 8, %%o7\n" 150 : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4) 151 : "0" (mask), "r" (ADDR) 152 : "memory", "cc"); 153} 154 155/* 156 * non-atomic versions 157 */ 158static inline void __set_bit(int nr, volatile unsigned long *addr) 159{ 160 unsigned long mask = 1UL << (nr & 0x1f); 161 unsigned long *p = ((unsigned long *)addr) + (nr >> 5); 162 163 *p |= mask; 164} 165 166static inline void __clear_bit(int nr, volatile unsigned long *addr) 167{ 168 unsigned long mask = 1UL << (nr & 0x1f); 169 unsigned long *p = ((unsigned long *)addr) + (nr >> 5); 170 171 *p &= ~mask; 172} 173 174static inline void __change_bit(int nr, volatile unsigned long *addr) 175{ 176 unsigned long mask = 1UL << (nr & 0x1f); 177 unsigned long *p = ((unsigned long *)addr) + (nr >> 5); 178 179 *p ^= mask; 180} 181 182static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) 183{ 184 unsigned long mask = 1UL << (nr & 0x1f); 185 unsigned long *p = ((unsigned long *)addr) + (nr >> 5); 186 unsigned long old = *p; 187 188 *p = old | mask; 189 return (old & mask) != 0; 190} 191 192static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) 193{ 194 unsigned long mask = 1UL << (nr & 0x1f); 195 unsigned long *p = ((unsigned long *)addr) + (nr >> 5); 196 unsigned long old = *p; 197 198 *p = old & ~mask; 199 return (old & mask) != 0; 200} 201 202static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) 203{ 204 unsigned long mask = 1UL << (nr & 0x1f); 205 unsigned long *p = ((unsigned long *)addr) + (nr >> 5); 206 unsigned long old = *p; 207 208 *p = old ^ mask; 209 return (old & mask) != 0; 210} 211 212#define smp_mb__before_clear_bit() do { } while(0) 213#define smp_mb__after_clear_bit() do { } while(0) 214 215/* The following routine need not be atomic. */ 216static inline int test_bit(int nr, __const__ volatile unsigned long *addr) 217{ 218 return (1UL & (((unsigned long *)addr)[nr >> 5] >> (nr & 31))) != 0UL; 219} 220 221/* The easy/cheese version for now. */ 222static inline unsigned long ffz(unsigned long word) 223{ 224 unsigned long result = 0; 225 226 while(word & 1) { 227 result++; 228 word >>= 1; 229 } 230 return result; 231} 232 233/** 234 * __ffs - find first bit in word. 235 * @word: The word to search 236 * 237 * Undefined if no bit exists, so code should check against 0 first. 238 */ 239static inline int __ffs(unsigned long word) 240{ 241 int num = 0; 242 243 if ((word & 0xffff) == 0) { 244 num += 16; 245 word >>= 16; 246 } 247 if ((word & 0xff) == 0) { 248 num += 8; 249 word >>= 8; 250 } 251 if ((word & 0xf) == 0) { 252 num += 4; 253 word >>= 4; 254 } 255 if ((word & 0x3) == 0) { 256 num += 2; 257 word >>= 2; 258 } 259 if ((word & 0x1) == 0) 260 num += 1; 261 return num; 262} 263 264/* 265 * Every architecture must define this function. It's the fastest 266 * way of searching a 140-bit bitmap where the first 100 bits are 267 * unlikely to be set. It's guaranteed that at least one of the 140 268 * bits is cleared. 269 */ 270static inline int sched_find_first_bit(unsigned long *b) 271{ 272 273 if (unlikely(b[0])) 274 return __ffs(b[0]); 275 if (unlikely(b[1])) 276 return __ffs(b[1]) + 32; 277 if (unlikely(b[2])) 278 return __ffs(b[2]) + 64; 279 if (b[3]) 280 return __ffs(b[3]) + 96; 281 return __ffs(b[4]) + 128; 282} 283 284/* 285 * ffs: find first bit set. This is defined the same way as 286 * the libc and compiler builtin ffs routines, therefore 287 * differs in spirit from the above ffz (man ffs). 288 */ 289static inline int ffs(int x) 290{ 291 if (!x) 292 return 0; 293 return __ffs((unsigned long)x) + 1; 294} 295 296/* 297 * fls: find last (most-significant) bit set. 298 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. 299 */ 300#define fls(x) generic_fls(x) 301 302/* 303 * hweightN: returns the hamming weight (i.e. the number 304 * of bits set) of a N-bit word 305 */ 306#define hweight32(x) generic_hweight32(x) 307#define hweight16(x) generic_hweight16(x) 308#define hweight8(x) generic_hweight8(x) 309 310/* 311 * find_next_zero_bit() finds the first zero bit in a bit string of length 312 * 'size' bits, starting the search at bit 'offset'. This is largely based 313 * on Linus's ALPHA routines, which are pretty portable BTW. 314 */ 315static inline unsigned long find_next_zero_bit(const unsigned long *addr, 316 unsigned long size, unsigned long offset) 317{ 318 const unsigned long *p = addr + (offset >> 5); 319 unsigned long result = offset & ~31UL; 320 unsigned long tmp; 321 322 if (offset >= size) 323 return size; 324 size -= result; 325 offset &= 31UL; 326 if (offset) { 327 tmp = *(p++); 328 tmp |= ~0UL >> (32-offset); 329 if (size < 32) 330 goto found_first; 331 if (~tmp) 332 goto found_middle; 333 size -= 32; 334 result += 32; 335 } 336 while (size & ~31UL) { 337 if (~(tmp = *(p++))) 338 goto found_middle; 339 result += 32; 340 size -= 32; 341 } 342 if (!size) 343 return result; 344 tmp = *p; 345 346found_first: 347 tmp |= ~0UL << size; 348 if (tmp == ~0UL) /* Are any bits zero? */ 349 return result + size; /* Nope. */ 350found_middle: 351 return result + ffz(tmp); 352} 353 354/* 355 * Linus sez that gcc can optimize the following correctly, we'll see if this 356 * holds on the Sparc as it does for the ALPHA. 357 */ 358#define find_first_zero_bit(addr, size) \ 359 find_next_zero_bit((addr), (size), 0) 360 361/** 362 * find_next_bit - find the first set bit in a memory region 363 * @addr: The address to base the search on 364 * @offset: The bitnumber to start searching at 365 * @size: The maximum size to search 366 * 367 * Scheduler induced bitop, do not use. 368 */ 369static inline int find_next_bit(const unsigned long *addr, int size, int offset) 370{ 371 const unsigned long *p = addr + (offset >> 5); 372 int num = offset & ~0x1f; 373 unsigned long word; 374 375 word = *p++; 376 word &= ~((1 << (offset & 0x1f)) - 1); 377 while (num < size) { 378 if (word != 0) { 379 return __ffs(word) + num; 380 } 381 word = *p++; 382 num += 0x20; 383 } 384 return num; 385} 386 387/** 388 * find_first_bit - find the first set bit in a memory region 389 * @addr: The address to start the search at 390 * @size: The maximum size to search 391 * 392 * Returns the bit-number of the first set bit, not the number of the byte 393 * containing a bit. 394 */ 395#define find_first_bit(addr, size) \ 396 find_next_bit((addr), (size), 0) 397 398/* 399 */ 400static inline int test_le_bit(int nr, __const__ unsigned long * addr) 401{ 402 __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; 403 return (ADDR[nr >> 3] >> (nr & 7)) & 1; 404} 405 406/* 407 * non-atomic versions 408 */ 409static inline void __set_le_bit(int nr, unsigned long *addr) 410{ 411 unsigned char *ADDR = (unsigned char *)addr; 412 413 ADDR += nr >> 3; 414 *ADDR |= 1 << (nr & 0x07); 415} 416 417static inline void __clear_le_bit(int nr, unsigned long *addr) 418{ 419 unsigned char *ADDR = (unsigned char *)addr; 420 421 ADDR += nr >> 3; 422 *ADDR &= ~(1 << (nr & 0x07)); 423} 424 425static inline int __test_and_set_le_bit(int nr, unsigned long *addr) 426{ 427 int mask, retval; 428 unsigned char *ADDR = (unsigned char *)addr; 429 430 ADDR += nr >> 3; 431 mask = 1 << (nr & 0x07); 432 retval = (mask & *ADDR) != 0; 433 *ADDR |= mask; 434 return retval; 435} 436 437static inline int __test_and_clear_le_bit(int nr, unsigned long *addr) 438{ 439 int mask, retval; 440 unsigned char *ADDR = (unsigned char *)addr; 441 442 ADDR += nr >> 3; 443 mask = 1 << (nr & 0x07); 444 retval = (mask & *ADDR) != 0; 445 *ADDR &= ~mask; 446 return retval; 447} 448 449static inline unsigned long find_next_zero_le_bit(const unsigned long *addr, 450 unsigned long size, unsigned long offset) 451{ 452 const unsigned long *p = addr + (offset >> 5); 453 unsigned long result = offset & ~31UL; 454 unsigned long tmp; 455 456 if (offset >= size) 457 return size; 458 size -= result; 459 offset &= 31UL; 460 if(offset) { 461 tmp = *(p++); 462 tmp |= __swab32(~0UL >> (32-offset)); 463 if(size < 32) 464 goto found_first; 465 if(~tmp) 466 goto found_middle; 467 size -= 32; 468 result += 32; 469 } 470 while(size & ~31UL) { 471 if(~(tmp = *(p++))) 472 goto found_middle; 473 result += 32; 474 size -= 32; 475 } 476 if(!size) 477 return result; 478 tmp = *p; 479 480found_first: 481 tmp = __swab32(tmp) | (~0UL << size); 482 if (tmp == ~0UL) /* Are any bits zero? */ 483 return result + size; /* Nope. */ 484 return result + ffz(tmp); 485 486found_middle: 487 return result + ffz(__swab32(tmp)); 488} 489 490#define find_first_zero_le_bit(addr, size) \ 491 find_next_zero_le_bit((addr), (size), 0) 492 493#define ext2_set_bit(nr,addr) \ 494 __test_and_set_le_bit((nr),(unsigned long *)(addr)) 495#define ext2_clear_bit(nr,addr) \ 496 __test_and_clear_le_bit((nr),(unsigned long *)(addr)) 497 498#define ext2_set_bit_atomic(lock, nr, addr) \ 499 ({ \ 500 int ret; \ 501 spin_lock(lock); \ 502 ret = ext2_set_bit((nr), (unsigned long *)(addr)); \ 503 spin_unlock(lock); \ 504 ret; \ 505 }) 506 507#define ext2_clear_bit_atomic(lock, nr, addr) \ 508 ({ \ 509 int ret; \ 510 spin_lock(lock); \ 511 ret = ext2_clear_bit((nr), (unsigned long *)(addr)); \ 512 spin_unlock(lock); \ 513 ret; \ 514 }) 515 516#define ext2_test_bit(nr,addr) \ 517 test_le_bit((nr),(unsigned long *)(addr)) 518#define ext2_find_first_zero_bit(addr, size) \ 519 find_first_zero_le_bit((unsigned long *)(addr), (size)) 520#define ext2_find_next_zero_bit(addr, size, off) \ 521 find_next_zero_le_bit((unsigned long *)(addr), (size), (off)) 522 523/* Bitmap functions for the minix filesystem. */ 524#define minix_test_and_set_bit(nr,addr) \ 525 test_and_set_bit((nr),(unsigned long *)(addr)) 526#define minix_set_bit(nr,addr) \ 527 set_bit((nr),(unsigned long *)(addr)) 528#define minix_test_and_clear_bit(nr,addr) \ 529 test_and_clear_bit((nr),(unsigned long *)(addr)) 530#define minix_test_bit(nr,addr) \ 531 test_bit((nr),(unsigned long *)(addr)) 532#define minix_find_first_zero_bit(addr,size) \ 533 find_first_zero_bit((unsigned long *)(addr),(size)) 534 535#endif /* __KERNEL__ */ 536 537#endif /* defined(_SPARC_BITOPS_H) */