at v2.6.12 826 lines 26 kB view raw
1/* 2 * 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. (for iSeries, we calibrate the timebase 22 * against the Titan chip's clock.) 23 * - for astronomical applications: add a new function to get 24 * non ambiguous timestamps even around leap seconds. This needs 25 * a new timestamp format and a good name. 26 * 27 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 28 * "A Kernel Model for Precision Timekeeping" by Dave Mills 29 * 30 * This program is free software; you can redistribute it and/or 31 * modify it under the terms of the GNU General Public License 32 * as published by the Free Software Foundation; either version 33 * 2 of the License, or (at your option) any later version. 34 */ 35 36#include <linux/config.h> 37#include <linux/errno.h> 38#include <linux/module.h> 39#include <linux/sched.h> 40#include <linux/kernel.h> 41#include <linux/param.h> 42#include <linux/string.h> 43#include <linux/mm.h> 44#include <linux/interrupt.h> 45#include <linux/timex.h> 46#include <linux/kernel_stat.h> 47#include <linux/mc146818rtc.h> 48#include <linux/time.h> 49#include <linux/init.h> 50#include <linux/profile.h> 51#include <linux/cpu.h> 52#include <linux/security.h> 53 54#include <asm/segment.h> 55#include <asm/io.h> 56#include <asm/processor.h> 57#include <asm/nvram.h> 58#include <asm/cache.h> 59#include <asm/machdep.h> 60#ifdef CONFIG_PPC_ISERIES 61#include <asm/iSeries/ItLpQueue.h> 62#include <asm/iSeries/HvCallXm.h> 63#endif 64#include <asm/uaccess.h> 65#include <asm/time.h> 66#include <asm/ppcdebug.h> 67#include <asm/prom.h> 68#include <asm/sections.h> 69#include <asm/systemcfg.h> 70 71u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 72 73EXPORT_SYMBOL(jiffies_64); 74 75/* keep track of when we need to update the rtc */ 76time_t last_rtc_update; 77extern int piranha_simulator; 78#ifdef CONFIG_PPC_ISERIES 79unsigned long iSeries_recal_titan = 0; 80unsigned long iSeries_recal_tb = 0; 81static unsigned long first_settimeofday = 1; 82#endif 83 84#define XSEC_PER_SEC (1024*1024) 85 86unsigned long tb_ticks_per_jiffy; 87unsigned long tb_ticks_per_usec = 100; /* sane default */ 88EXPORT_SYMBOL(tb_ticks_per_usec); 89unsigned long tb_ticks_per_sec; 90unsigned long tb_to_xs; 91unsigned tb_to_us; 92unsigned long processor_freq; 93DEFINE_SPINLOCK(rtc_lock); 94 95unsigned long tb_to_ns_scale; 96unsigned long tb_to_ns_shift; 97 98struct gettimeofday_struct do_gtod; 99 100extern unsigned long wall_jiffies; 101extern unsigned long lpevent_count; 102extern int smp_tb_synchronized; 103 104extern struct timezone sys_tz; 105 106void ppc_adjtimex(void); 107 108static unsigned adjusting_time = 0; 109 110static __inline__ void timer_check_rtc(void) 111{ 112 /* 113 * update the rtc when needed, this should be performed on the 114 * right fraction of a second. Half or full second ? 115 * Full second works on mk48t59 clocks, others need testing. 116 * Note that this update is basically only used through 117 * the adjtimex system calls. Setting the HW clock in 118 * any other way is a /dev/rtc and userland business. 119 * This is still wrong by -0.5/+1.5 jiffies because of the 120 * timer interrupt resolution and possible delay, but here we 121 * hit a quantization limit which can only be solved by higher 122 * resolution timers and decoupling time management from timer 123 * interrupts. This is also wrong on the clocks 124 * which require being written at the half second boundary. 125 * We should have an rtc call that only sets the minutes and 126 * seconds like on Intel to avoid problems with non UTC clocks. 127 */ 128 if ( (time_status & STA_UNSYNC) == 0 && 129 xtime.tv_sec - last_rtc_update >= 659 && 130 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ && 131 jiffies - wall_jiffies == 1) { 132 struct rtc_time tm; 133 to_tm(xtime.tv_sec+1, &tm); 134 tm.tm_year -= 1900; 135 tm.tm_mon -= 1; 136 if (ppc_md.set_rtc_time(&tm) == 0) 137 last_rtc_update = xtime.tv_sec+1; 138 else 139 /* Try again one minute later */ 140 last_rtc_update += 60; 141 } 142} 143 144/* 145 * This version of gettimeofday has microsecond resolution. 146 */ 147static inline void __do_gettimeofday(struct timeval *tv, unsigned long tb_val) 148{ 149 unsigned long sec, usec, tb_ticks; 150 unsigned long xsec, tb_xsec; 151 struct gettimeofday_vars * temp_varp; 152 unsigned long temp_tb_to_xs, temp_stamp_xsec; 153 154 /* 155 * These calculations are faster (gets rid of divides) 156 * if done in units of 1/2^20 rather than microseconds. 157 * The conversion to microseconds at the end is done 158 * without a divide (and in fact, without a multiply) 159 */ 160 temp_varp = do_gtod.varp; 161 tb_ticks = tb_val - temp_varp->tb_orig_stamp; 162 temp_tb_to_xs = temp_varp->tb_to_xs; 163 temp_stamp_xsec = temp_varp->stamp_xsec; 164 tb_xsec = mulhdu( tb_ticks, temp_tb_to_xs ); 165 xsec = temp_stamp_xsec + tb_xsec; 166 sec = xsec / XSEC_PER_SEC; 167 xsec -= sec * XSEC_PER_SEC; 168 usec = (xsec * USEC_PER_SEC)/XSEC_PER_SEC; 169 170 tv->tv_sec = sec; 171 tv->tv_usec = usec; 172} 173 174void do_gettimeofday(struct timeval *tv) 175{ 176 __do_gettimeofday(tv, get_tb()); 177} 178 179EXPORT_SYMBOL(do_gettimeofday); 180 181/* Synchronize xtime with do_gettimeofday */ 182 183static inline void timer_sync_xtime(unsigned long cur_tb) 184{ 185 struct timeval my_tv; 186 187 __do_gettimeofday(&my_tv, cur_tb); 188 189 if (xtime.tv_sec <= my_tv.tv_sec) { 190 xtime.tv_sec = my_tv.tv_sec; 191 xtime.tv_nsec = my_tv.tv_usec * 1000; 192 } 193} 194 195/* 196 * When the timebase - tb_orig_stamp gets too big, we do a manipulation 197 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the 198 * difference tb - tb_orig_stamp small enough to always fit inside a 199 * 32 bits number. This is a requirement of our fast 32 bits userland 200 * implementation in the vdso. If we "miss" a call to this function 201 * (interrupt latency, CPU locked in a spinlock, ...) and we end up 202 * with a too big difference, then the vdso will fallback to calling 203 * the syscall 204 */ 205static __inline__ void timer_recalc_offset(unsigned long cur_tb) 206{ 207 struct gettimeofday_vars * temp_varp; 208 unsigned temp_idx; 209 unsigned long offset, new_stamp_xsec, new_tb_orig_stamp; 210 211 if (((cur_tb - do_gtod.varp->tb_orig_stamp) & 0x80000000u) == 0) 212 return; 213 214 temp_idx = (do_gtod.var_idx == 0); 215 temp_varp = &do_gtod.vars[temp_idx]; 216 217 new_tb_orig_stamp = cur_tb; 218 offset = new_tb_orig_stamp - do_gtod.varp->tb_orig_stamp; 219 new_stamp_xsec = do_gtod.varp->stamp_xsec + mulhdu(offset, do_gtod.varp->tb_to_xs); 220 221 temp_varp->tb_to_xs = do_gtod.varp->tb_to_xs; 222 temp_varp->tb_orig_stamp = new_tb_orig_stamp; 223 temp_varp->stamp_xsec = new_stamp_xsec; 224 smp_mb(); 225 do_gtod.varp = temp_varp; 226 do_gtod.var_idx = temp_idx; 227 228 ++(systemcfg->tb_update_count); 229 smp_wmb(); 230 systemcfg->tb_orig_stamp = new_tb_orig_stamp; 231 systemcfg->stamp_xsec = new_stamp_xsec; 232 smp_wmb(); 233 ++(systemcfg->tb_update_count); 234} 235 236#ifdef CONFIG_SMP 237unsigned long profile_pc(struct pt_regs *regs) 238{ 239 unsigned long pc = instruction_pointer(regs); 240 241 if (in_lock_functions(pc)) 242 return regs->link; 243 244 return pc; 245} 246EXPORT_SYMBOL(profile_pc); 247#endif 248 249#ifdef CONFIG_PPC_ISERIES 250 251/* 252 * This function recalibrates the timebase based on the 49-bit time-of-day 253 * value in the Titan chip. The Titan is much more accurate than the value 254 * returned by the service processor for the timebase frequency. 255 */ 256 257static void iSeries_tb_recal(void) 258{ 259 struct div_result divres; 260 unsigned long titan, tb; 261 tb = get_tb(); 262 titan = HvCallXm_loadTod(); 263 if ( iSeries_recal_titan ) { 264 unsigned long tb_ticks = tb - iSeries_recal_tb; 265 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 266 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 267 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 268 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 269 char sign = '+'; 270 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 271 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 272 273 if ( tick_diff < 0 ) { 274 tick_diff = -tick_diff; 275 sign = '-'; 276 } 277 if ( tick_diff ) { 278 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 279 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 280 new_tb_ticks_per_jiffy, sign, tick_diff ); 281 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 282 tb_ticks_per_sec = new_tb_ticks_per_sec; 283 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 284 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 285 tb_to_xs = divres.result_low; 286 do_gtod.varp->tb_to_xs = tb_to_xs; 287 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; 288 systemcfg->tb_to_xs = tb_to_xs; 289 } 290 else { 291 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 292 " new tb_ticks_per_jiffy = %lu\n" 293 " old tb_ticks_per_jiffy = %lu\n", 294 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 295 } 296 } 297 } 298 iSeries_recal_titan = titan; 299 iSeries_recal_tb = tb; 300} 301#endif 302 303/* 304 * For iSeries shared processors, we have to let the hypervisor 305 * set the hardware decrementer. We set a virtual decrementer 306 * in the lppaca and call the hypervisor if the virtual 307 * decrementer is less than the current value in the hardware 308 * decrementer. (almost always the new decrementer value will 309 * be greater than the current hardware decementer so the hypervisor 310 * call will not be needed) 311 */ 312 313unsigned long tb_last_stamp __cacheline_aligned_in_smp; 314 315/* 316 * timer_interrupt - gets called when the decrementer overflows, 317 * with interrupts disabled. 318 */ 319int timer_interrupt(struct pt_regs * regs) 320{ 321 int next_dec; 322 unsigned long cur_tb; 323 struct paca_struct *lpaca = get_paca(); 324 unsigned long cpu = smp_processor_id(); 325 326 irq_enter(); 327 328 profile_tick(CPU_PROFILING, regs); 329 330 lpaca->lppaca.int_dword.fields.decr_int = 0; 331 332 while (lpaca->next_jiffy_update_tb <= (cur_tb = get_tb())) { 333 /* 334 * We cannot disable the decrementer, so in the period 335 * between this cpu's being marked offline in cpu_online_map 336 * and calling stop-self, it is taking timer interrupts. 337 * Avoid calling into the scheduler rebalancing code if this 338 * is the case. 339 */ 340 if (!cpu_is_offline(cpu)) 341 update_process_times(user_mode(regs)); 342 /* 343 * No need to check whether cpu is offline here; boot_cpuid 344 * should have been fixed up by now. 345 */ 346 if (cpu == boot_cpuid) { 347 write_seqlock(&xtime_lock); 348 tb_last_stamp = lpaca->next_jiffy_update_tb; 349 timer_recalc_offset(lpaca->next_jiffy_update_tb); 350 do_timer(regs); 351 timer_sync_xtime(lpaca->next_jiffy_update_tb); 352 timer_check_rtc(); 353 write_sequnlock(&xtime_lock); 354 if ( adjusting_time && (time_adjust == 0) ) 355 ppc_adjtimex(); 356 } 357 lpaca->next_jiffy_update_tb += tb_ticks_per_jiffy; 358 } 359 360 next_dec = lpaca->next_jiffy_update_tb - cur_tb; 361 if (next_dec > lpaca->default_decr) 362 next_dec = lpaca->default_decr; 363 set_dec(next_dec); 364 365#ifdef CONFIG_PPC_ISERIES 366 { 367 struct ItLpQueue *lpq = lpaca->lpqueue_ptr; 368 if (lpq && ItLpQueue_isLpIntPending(lpq)) 369 lpevent_count += ItLpQueue_process(lpq, regs); 370 } 371#endif 372 373/* collect purr register values often, for accurate calculations */ 374#if defined(CONFIG_PPC_PSERIES) 375 if (cur_cpu_spec->firmware_features & FW_FEATURE_SPLPAR) { 376 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 377 cu->current_tb = mfspr(SPRN_PURR); 378 } 379#endif 380 381 irq_exit(); 382 383 return 1; 384} 385 386/* 387 * Scheduler clock - returns current time in nanosec units. 388 * 389 * Note: mulhdu(a, b) (multiply high double unsigned) returns 390 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 391 * are 64-bit unsigned numbers. 392 */ 393unsigned long long sched_clock(void) 394{ 395 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; 396} 397 398int do_settimeofday(struct timespec *tv) 399{ 400 time_t wtm_sec, new_sec = tv->tv_sec; 401 long wtm_nsec, new_nsec = tv->tv_nsec; 402 unsigned long flags; 403 unsigned long delta_xsec; 404 long int tb_delta; 405 unsigned long new_xsec; 406 407 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 408 return -EINVAL; 409 410 write_seqlock_irqsave(&xtime_lock, flags); 411 /* Updating the RTC is not the job of this code. If the time is 412 * stepped under NTP, the RTC will be update after STA_UNSYNC 413 * is cleared. Tool like clock/hwclock either copy the RTC 414 * to the system time, in which case there is no point in writing 415 * to the RTC again, or write to the RTC but then they don't call 416 * settimeofday to perform this operation. 417 */ 418#ifdef CONFIG_PPC_ISERIES 419 if ( first_settimeofday ) { 420 iSeries_tb_recal(); 421 first_settimeofday = 0; 422 } 423#endif 424 tb_delta = tb_ticks_since(tb_last_stamp); 425 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; 426 427 new_nsec -= tb_delta / tb_ticks_per_usec / 1000; 428 429 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); 430 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); 431 432 set_normalized_timespec(&xtime, new_sec, new_nsec); 433 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 434 435 /* In case of a large backwards jump in time with NTP, we want the 436 * clock to be updated as soon as the PLL is again in lock. 437 */ 438 last_rtc_update = new_sec - 658; 439 440 time_adjust = 0; /* stop active adjtime() */ 441 time_status |= STA_UNSYNC; 442 time_maxerror = NTP_PHASE_LIMIT; 443 time_esterror = NTP_PHASE_LIMIT; 444 445 delta_xsec = mulhdu( (tb_last_stamp-do_gtod.varp->tb_orig_stamp), 446 do_gtod.varp->tb_to_xs ); 447 448 new_xsec = (new_nsec * XSEC_PER_SEC) / NSEC_PER_SEC; 449 new_xsec += new_sec * XSEC_PER_SEC; 450 if ( new_xsec > delta_xsec ) { 451 do_gtod.varp->stamp_xsec = new_xsec - delta_xsec; 452 systemcfg->stamp_xsec = new_xsec - delta_xsec; 453 } 454 else { 455 /* This is only for the case where the user is setting the time 456 * way back to a time such that the boot time would have been 457 * before 1970 ... eg. we booted ten days ago, and we are setting 458 * the time to Jan 5, 1970 */ 459 do_gtod.varp->stamp_xsec = new_xsec; 460 do_gtod.varp->tb_orig_stamp = tb_last_stamp; 461 systemcfg->stamp_xsec = new_xsec; 462 systemcfg->tb_orig_stamp = tb_last_stamp; 463 } 464 465 systemcfg->tz_minuteswest = sys_tz.tz_minuteswest; 466 systemcfg->tz_dsttime = sys_tz.tz_dsttime; 467 468 write_sequnlock_irqrestore(&xtime_lock, flags); 469 clock_was_set(); 470 return 0; 471} 472 473EXPORT_SYMBOL(do_settimeofday); 474 475void __init time_init(void) 476{ 477 /* This function is only called on the boot processor */ 478 unsigned long flags; 479 struct rtc_time tm; 480 struct div_result res; 481 unsigned long scale, shift; 482 483 ppc_md.calibrate_decr(); 484 485 /* 486 * Compute scale factor for sched_clock. 487 * The calibrate_decr() function has set tb_ticks_per_sec, 488 * which is the timebase frequency. 489 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 490 * the 128-bit result as a 64.64 fixed-point number. 491 * We then shift that number right until it is less than 1.0, 492 * giving us the scale factor and shift count to use in 493 * sched_clock(). 494 */ 495 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 496 scale = res.result_low; 497 for (shift = 0; res.result_high != 0; ++shift) { 498 scale = (scale >> 1) | (res.result_high << 63); 499 res.result_high >>= 1; 500 } 501 tb_to_ns_scale = scale; 502 tb_to_ns_shift = shift; 503 504#ifdef CONFIG_PPC_ISERIES 505 if (!piranha_simulator) 506#endif 507 ppc_md.get_boot_time(&tm); 508 509 write_seqlock_irqsave(&xtime_lock, flags); 510 xtime.tv_sec = mktime(tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, 511 tm.tm_hour, tm.tm_min, tm.tm_sec); 512 tb_last_stamp = get_tb(); 513 do_gtod.varp = &do_gtod.vars[0]; 514 do_gtod.var_idx = 0; 515 do_gtod.varp->tb_orig_stamp = tb_last_stamp; 516 get_paca()->next_jiffy_update_tb = tb_last_stamp + tb_ticks_per_jiffy; 517 do_gtod.varp->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; 518 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 519 do_gtod.varp->tb_to_xs = tb_to_xs; 520 do_gtod.tb_to_us = tb_to_us; 521 systemcfg->tb_orig_stamp = tb_last_stamp; 522 systemcfg->tb_update_count = 0; 523 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; 524 systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; 525 systemcfg->tb_to_xs = tb_to_xs; 526 527 time_freq = 0; 528 529 xtime.tv_nsec = 0; 530 last_rtc_update = xtime.tv_sec; 531 set_normalized_timespec(&wall_to_monotonic, 532 -xtime.tv_sec, -xtime.tv_nsec); 533 write_sequnlock_irqrestore(&xtime_lock, flags); 534 535 /* Not exact, but the timer interrupt takes care of this */ 536 set_dec(tb_ticks_per_jiffy); 537} 538 539/* 540 * After adjtimex is called, adjust the conversion of tb ticks 541 * to microseconds to keep do_gettimeofday synchronized 542 * with ntpd. 543 * 544 * Use the time_adjust, time_freq and time_offset computed by adjtimex to 545 * adjust the frequency. 546 */ 547 548/* #define DEBUG_PPC_ADJTIMEX 1 */ 549 550void ppc_adjtimex(void) 551{ 552 unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec, new_tb_to_xs, new_xsec, new_stamp_xsec; 553 unsigned long tb_ticks_per_sec_delta; 554 long delta_freq, ltemp; 555 struct div_result divres; 556 unsigned long flags; 557 struct gettimeofday_vars * temp_varp; 558 unsigned temp_idx; 559 long singleshot_ppm = 0; 560 561 /* Compute parts per million frequency adjustment to accomplish the time adjustment 562 implied by time_offset to be applied over the elapsed time indicated by time_constant. 563 Use SHIFT_USEC to get it into the same units as time_freq. */ 564 if ( time_offset < 0 ) { 565 ltemp = -time_offset; 566 ltemp <<= SHIFT_USEC - SHIFT_UPDATE; 567 ltemp >>= SHIFT_KG + time_constant; 568 ltemp = -ltemp; 569 } 570 else { 571 ltemp = time_offset; 572 ltemp <<= SHIFT_USEC - SHIFT_UPDATE; 573 ltemp >>= SHIFT_KG + time_constant; 574 } 575 576 /* If there is a single shot time adjustment in progress */ 577 if ( time_adjust ) { 578#ifdef DEBUG_PPC_ADJTIMEX 579 printk("ppc_adjtimex: "); 580 if ( adjusting_time == 0 ) 581 printk("starting "); 582 printk("single shot time_adjust = %ld\n", time_adjust); 583#endif 584 585 adjusting_time = 1; 586 587 /* Compute parts per million frequency adjustment to match time_adjust */ 588 singleshot_ppm = tickadj * HZ; 589 /* 590 * The adjustment should be tickadj*HZ to match the code in 591 * linux/kernel/timer.c, but experiments show that this is too 592 * large. 3/4 of tickadj*HZ seems about right 593 */ 594 singleshot_ppm -= singleshot_ppm / 4; 595 /* Use SHIFT_USEC to get it into the same units as time_freq */ 596 singleshot_ppm <<= SHIFT_USEC; 597 if ( time_adjust < 0 ) 598 singleshot_ppm = -singleshot_ppm; 599 } 600 else { 601#ifdef DEBUG_PPC_ADJTIMEX 602 if ( adjusting_time ) 603 printk("ppc_adjtimex: ending single shot time_adjust\n"); 604#endif 605 adjusting_time = 0; 606 } 607 608 /* Add up all of the frequency adjustments */ 609 delta_freq = time_freq + ltemp + singleshot_ppm; 610 611 /* Compute a new value for tb_ticks_per_sec based on the frequency adjustment */ 612 den = 1000000 * (1 << (SHIFT_USEC - 8)); 613 if ( delta_freq < 0 ) { 614 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den; 615 new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta; 616 } 617 else { 618 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den; 619 new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta; 620 } 621 622#ifdef DEBUG_PPC_ADJTIMEX 623 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm); 624 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec); 625#endif 626 627 /* Compute a new value of tb_to_xs (used to convert tb to microseconds and a new value of 628 stamp_xsec which is the time (in 1/2^20 second units) corresponding to tb_orig_stamp. This 629 new value of stamp_xsec compensates for the change in frequency (implied by the new tb_to_xs) 630 which guarantees that the current time remains the same */ 631 write_seqlock_irqsave( &xtime_lock, flags ); 632 tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp; 633 div128_by_32( 1024*1024, 0, new_tb_ticks_per_sec, &divres ); 634 new_tb_to_xs = divres.result_low; 635 new_xsec = mulhdu( tb_ticks, new_tb_to_xs ); 636 637 old_xsec = mulhdu( tb_ticks, do_gtod.varp->tb_to_xs ); 638 new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec; 639 640 /* There are two copies of tb_to_xs and stamp_xsec so that no lock is needed to access and use these 641 values in do_gettimeofday. We alternate the copies and as long as a reasonable time elapses between 642 changes, there will never be inconsistent values. ntpd has a minimum of one minute between updates */ 643 644 temp_idx = (do_gtod.var_idx == 0); 645 temp_varp = &do_gtod.vars[temp_idx]; 646 647 temp_varp->tb_to_xs = new_tb_to_xs; 648 temp_varp->stamp_xsec = new_stamp_xsec; 649 temp_varp->tb_orig_stamp = do_gtod.varp->tb_orig_stamp; 650 smp_mb(); 651 do_gtod.varp = temp_varp; 652 do_gtod.var_idx = temp_idx; 653 654 /* 655 * tb_update_count is used to allow the problem state gettimeofday code 656 * to assure itself that it sees a consistent view of the tb_to_xs and 657 * stamp_xsec variables. It reads the tb_update_count, then reads 658 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 659 * the two values of tb_update_count match and are even then the 660 * tb_to_xs and stamp_xsec values are consistent. If not, then it 661 * loops back and reads them again until this criteria is met. 662 */ 663 ++(systemcfg->tb_update_count); 664 smp_wmb(); 665 systemcfg->tb_to_xs = new_tb_to_xs; 666 systemcfg->stamp_xsec = new_stamp_xsec; 667 smp_wmb(); 668 ++(systemcfg->tb_update_count); 669 670 write_sequnlock_irqrestore( &xtime_lock, flags ); 671 672} 673 674 675#define TICK_SIZE tick 676#define FEBRUARY 2 677#define STARTOFTIME 1970 678#define SECDAY 86400L 679#define SECYR (SECDAY * 365) 680#define leapyear(year) ((year) % 4 == 0) 681#define days_in_year(a) (leapyear(a) ? 366 : 365) 682#define days_in_month(a) (month_days[(a) - 1]) 683 684static int month_days[12] = { 685 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 686}; 687 688/* 689 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 690 */ 691void GregorianDay(struct rtc_time * tm) 692{ 693 int leapsToDate; 694 int lastYear; 695 int day; 696 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 697 698 lastYear=tm->tm_year-1; 699 700 /* 701 * Number of leap corrections to apply up to end of last year 702 */ 703 leapsToDate = lastYear/4 - lastYear/100 + lastYear/400; 704 705 /* 706 * This year is a leap year if it is divisible by 4 except when it is 707 * divisible by 100 unless it is divisible by 400 708 * 709 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 will be 710 */ 711 if((tm->tm_year%4==0) && 712 ((tm->tm_year%100!=0) || (tm->tm_year%400==0)) && 713 (tm->tm_mon>2)) 714 { 715 /* 716 * We are past Feb. 29 in a leap year 717 */ 718 day=1; 719 } 720 else 721 { 722 day=0; 723 } 724 725 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 726 tm->tm_mday; 727 728 tm->tm_wday=day%7; 729} 730 731void to_tm(int tim, struct rtc_time * tm) 732{ 733 register int i; 734 register long hms, day; 735 736 day = tim / SECDAY; 737 hms = tim % SECDAY; 738 739 /* Hours, minutes, seconds are easy */ 740 tm->tm_hour = hms / 3600; 741 tm->tm_min = (hms % 3600) / 60; 742 tm->tm_sec = (hms % 3600) % 60; 743 744 /* Number of years in days */ 745 for (i = STARTOFTIME; day >= days_in_year(i); i++) 746 day -= days_in_year(i); 747 tm->tm_year = i; 748 749 /* Number of months in days left */ 750 if (leapyear(tm->tm_year)) 751 days_in_month(FEBRUARY) = 29; 752 for (i = 1; day >= days_in_month(i); i++) 753 day -= days_in_month(i); 754 days_in_month(FEBRUARY) = 28; 755 tm->tm_mon = i; 756 757 /* Days are what is left over (+1) from all that. */ 758 tm->tm_mday = day + 1; 759 760 /* 761 * Determine the day of week 762 */ 763 GregorianDay(tm); 764} 765 766/* Auxiliary function to compute scaling factors */ 767/* Actually the choice of a timebase running at 1/4 the of the bus 768 * frequency giving resolution of a few tens of nanoseconds is quite nice. 769 * It makes this computation very precise (27-28 bits typically) which 770 * is optimistic considering the stability of most processor clock 771 * oscillators and the precision with which the timebase frequency 772 * is measured but does not harm. 773 */ 774unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) { 775 unsigned mlt=0, tmp, err; 776 /* No concern for performance, it's done once: use a stupid 777 * but safe and compact method to find the multiplier. 778 */ 779 780 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 781 if (mulhwu(inscale, mlt|tmp) < outscale) mlt|=tmp; 782 } 783 784 /* We might still be off by 1 for the best approximation. 785 * A side effect of this is that if outscale is too large 786 * the returned value will be zero. 787 * Many corner cases have been checked and seem to work, 788 * some might have been forgotten in the test however. 789 */ 790 791 err = inscale*(mlt+1); 792 if (err <= inscale/2) mlt++; 793 return mlt; 794 } 795 796/* 797 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 798 * result. 799 */ 800 801void div128_by_32( unsigned long dividend_high, unsigned long dividend_low, 802 unsigned divisor, struct div_result *dr ) 803{ 804 unsigned long a,b,c,d, w,x,y,z, ra,rb,rc; 805 806 a = dividend_high >> 32; 807 b = dividend_high & 0xffffffff; 808 c = dividend_low >> 32; 809 d = dividend_low & 0xffffffff; 810 811 w = a/divisor; 812 ra = (a - (w * divisor)) << 32; 813 814 x = (ra + b)/divisor; 815 rb = ((ra + b) - (x * divisor)) << 32; 816 817 y = (rb + c)/divisor; 818 rc = ((rb + b) - (y * divisor)) << 32; 819 820 z = (rc + d)/divisor; 821 822 dr->result_high = (w << 32) + x; 823 dr->result_low = (y << 32) + z; 824 825} 826