at v2.6.12-rc2 776 lines 29 kB view raw
1#ifdef __KERNEL__ 2#ifndef _PPC_PGTABLE_H 3#define _PPC_PGTABLE_H 4 5#include <asm-generic/4level-fixup.h> 6 7#include <linux/config.h> 8 9#ifndef __ASSEMBLY__ 10#include <linux/sched.h> 11#include <linux/threads.h> 12#include <asm/processor.h> /* For TASK_SIZE */ 13#include <asm/mmu.h> 14#include <asm/page.h> 15 16extern unsigned long va_to_phys(unsigned long address); 17extern pte_t *va_to_pte(unsigned long address); 18extern unsigned long ioremap_bot, ioremap_base; 19#endif /* __ASSEMBLY__ */ 20 21/* 22 * The PowerPC MMU uses a hash table containing PTEs, together with 23 * a set of 16 segment registers (on 32-bit implementations), to define 24 * the virtual to physical address mapping. 25 * 26 * We use the hash table as an extended TLB, i.e. a cache of currently 27 * active mappings. We maintain a two-level page table tree, much 28 * like that used by the i386, for the sake of the Linux memory 29 * management code. Low-level assembler code in hashtable.S 30 * (procedure hash_page) is responsible for extracting ptes from the 31 * tree and putting them into the hash table when necessary, and 32 * updating the accessed and modified bits in the page table tree. 33 */ 34 35/* 36 * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. 37 * We also use the two level tables, but we can put the real bits in them 38 * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, 39 * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has 40 * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit 41 * based upon user/super access. The TLB does not have accessed nor write 42 * protect. We assume that if the TLB get loaded with an entry it is 43 * accessed, and overload the changed bit for write protect. We use 44 * two bits in the software pte that are supposed to be set to zero in 45 * the TLB entry (24 and 25) for these indicators. Although the level 1 46 * descriptor contains the guarded and writethrough/copyback bits, we can 47 * set these at the page level since they get copied from the Mx_TWC 48 * register when the TLB entry is loaded. We will use bit 27 for guard, since 49 * that is where it exists in the MD_TWC, and bit 26 for writethrough. 50 * These will get masked from the level 2 descriptor at TLB load time, and 51 * copied to the MD_TWC before it gets loaded. 52 * Large page sizes added. We currently support two sizes, 4K and 8M. 53 * This also allows a TLB hander optimization because we can directly 54 * load the PMD into MD_TWC. The 8M pages are only used for kernel 55 * mapping of well known areas. The PMD (PGD) entries contain control 56 * flags in addition to the address, so care must be taken that the 57 * software no longer assumes these are only pointers. 58 */ 59 60/* 61 * At present, all PowerPC 400-class processors share a similar TLB 62 * architecture. The instruction and data sides share a unified, 63 * 64-entry, fully-associative TLB which is maintained totally under 64 * software control. In addition, the instruction side has a 65 * hardware-managed, 4-entry, fully-associative TLB which serves as a 66 * first level to the shared TLB. These two TLBs are known as the UTLB 67 * and ITLB, respectively (see "mmu.h" for definitions). 68 */ 69 70/* 71 * The normal case is that PTEs are 32-bits and we have a 1-page 72 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 73 * 74 * For any >32-bit physical address platform, we can use the following 75 * two level page table layout where the pgdir is 8KB and the MS 13 bits 76 * are an index to the second level table. The combined pgdir/pmd first 77 * level has 2048 entries and the second level has 512 64-bit PTE entries. 78 * -Matt 79 */ 80/* PMD_SHIFT determines the size of the area mapped by the PTE pages */ 81#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) 82#define PMD_SIZE (1UL << PMD_SHIFT) 83#define PMD_MASK (~(PMD_SIZE-1)) 84 85/* PGDIR_SHIFT determines what a top-level page table entry can map */ 86#define PGDIR_SHIFT PMD_SHIFT 87#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 88#define PGDIR_MASK (~(PGDIR_SIZE-1)) 89 90/* 91 * entries per page directory level: our page-table tree is two-level, so 92 * we don't really have any PMD directory. 93 */ 94#define PTRS_PER_PTE (1 << PTE_SHIFT) 95#define PTRS_PER_PMD 1 96#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 97 98#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 99#define FIRST_USER_PGD_NR 0 100 101#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 102#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 103 104#define pte_ERROR(e) \ 105 printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e)) 106#define pmd_ERROR(e) \ 107 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 108#define pgd_ERROR(e) \ 109 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 110 111/* 112 * Just any arbitrary offset to the start of the vmalloc VM area: the 113 * current 64MB value just means that there will be a 64MB "hole" after the 114 * physical memory until the kernel virtual memory starts. That means that 115 * any out-of-bounds memory accesses will hopefully be caught. 116 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 117 * area for the same reason. ;) 118 * 119 * We no longer map larger than phys RAM with the BATs so we don't have 120 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry 121 * about clashes between our early calls to ioremap() that start growing down 122 * from ioremap_base being run into the VM area allocations (growing upwards 123 * from VMALLOC_START). For this reason we have ioremap_bot to check when 124 * we actually run into our mappings setup in the early boot with the VM 125 * system. This really does become a problem for machines with good amounts 126 * of RAM. -- Cort 127 */ 128#define VMALLOC_OFFSET (0x1000000) /* 16M */ 129#ifdef CONFIG_44x 130#include <asm/ibm44x.h> 131#define VMALLOC_START (((_ALIGN((long)high_memory, PPC44x_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 132#else 133#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 134#endif 135#define VMALLOC_END ioremap_bot 136 137/* 138 * Bits in a linux-style PTE. These match the bits in the 139 * (hardware-defined) PowerPC PTE as closely as possible. 140 */ 141 142#if defined(CONFIG_40x) 143 144/* There are several potential gotchas here. The 40x hardware TLBLO 145 field looks like this: 146 147 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 148 RPN..................... 0 0 EX WR ZSEL....... W I M G 149 150 Where possible we make the Linux PTE bits match up with this 151 152 - bits 20 and 21 must be cleared, because we use 4k pages (40x can 153 support down to 1k pages), this is done in the TLBMiss exception 154 handler. 155 - We use only zones 0 (for kernel pages) and 1 (for user pages) 156 of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 157 miss handler. Bit 27 is PAGE_USER, thus selecting the correct 158 zone. 159 - PRESENT *must* be in the bottom two bits because swap cache 160 entries use the top 30 bits. Because 40x doesn't support SMP 161 anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 162 is cleared in the TLB miss handler before the TLB entry is loaded. 163 - All other bits of the PTE are loaded into TLBLO without 164 modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 165 software PTE bits. We actually use use bits 21, 24, 25, and 166 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 167 PRESENT. 168*/ 169 170/* Definitions for 40x embedded chips. */ 171#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 172#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */ 173#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 174#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 175#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 176#define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 177#define _PAGE_RW 0x040 /* software: Writes permitted */ 178#define _PAGE_DIRTY 0x080 /* software: dirty page */ 179#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 180#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 181#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 182 183#define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */ 184#define _PMD_BAD 0x802 185#define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */ 186#define _PMD_SIZE_4M 0x0c0 187#define _PMD_SIZE_16M 0x0e0 188#define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4)) 189 190#elif defined(CONFIG_44x) 191/* 192 * Definitions for PPC440 193 * 194 * Because of the 3 word TLB entries to support 36-bit addressing, 195 * the attribute are difficult to map in such a fashion that they 196 * are easily loaded during exception processing. I decided to 197 * organize the entry so the ERPN is the only portion in the 198 * upper word of the PTE and the attribute bits below are packed 199 * in as sensibly as they can be in the area below a 4KB page size 200 * oriented RPN. This at least makes it easy to load the RPN and 201 * ERPN fields in the TLB. -Matt 202 * 203 * Note that these bits preclude future use of a page size 204 * less than 4KB. 205 */ 206#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */ 207#define _PAGE_RW 0x00000002 /* S: Write permission */ 208#define _PAGE_DIRTY 0x00000004 /* S: Page dirty */ 209#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */ 210#define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */ 211#define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */ 212#define _PAGE_USER 0x00000040 /* S: User page */ 213#define _PAGE_ENDIAN 0x00000080 /* H: E bit */ 214#define _PAGE_GUARDED 0x00000100 /* H: G bit */ 215#define _PAGE_COHERENT 0x00000200 /* H: M bit */ 216#define _PAGE_FILE 0x00000400 /* S: nonlinear file mapping */ 217#define _PAGE_NO_CACHE 0x00000400 /* H: I bit */ 218#define _PAGE_WRITETHRU 0x00000800 /* H: W bit */ 219 220/* TODO: Add large page lowmem mapping support */ 221#define _PMD_PRESENT 0 222#define _PMD_PRESENT_MASK (PAGE_MASK) 223#define _PMD_BAD (~PAGE_MASK) 224 225/* ERPN in a PTE never gets cleared, ignore it */ 226#define _PTE_NONE_MASK 0xffffffff00000000ULL 227 228#elif defined(CONFIG_E500) 229 230/* 231 MMU Assist Register 3: 232 233 32 33 34 35 36 ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63 234 RPN...................... 0 0 U0 U1 U2 U3 UX SX UW SW UR SR 235 236 - PRESENT *must* be in the bottom three bits because swap cache 237 entries use the top 29 bits. 238 239 - FILE *must* be in the bottom three bits because swap cache 240 entries use the top 29 bits. 241*/ 242 243/* Definitions for e500 core */ 244#define _PAGE_PRESENT 0x001 /* S: PTE contains a translation */ 245#define _PAGE_USER 0x002 /* S: User page (maps to UR) */ 246#define _PAGE_FILE 0x002 /* S: when !present: nonlinear file mapping */ 247#define _PAGE_ACCESSED 0x004 /* S: Page referenced */ 248#define _PAGE_HWWRITE 0x008 /* H: Dirty & RW, set in exception */ 249#define _PAGE_RW 0x010 /* S: Write permission */ 250#define _PAGE_HWEXEC 0x020 /* H: UX permission */ 251 252#define _PAGE_ENDIAN 0x040 /* H: E bit */ 253#define _PAGE_GUARDED 0x080 /* H: G bit */ 254#define _PAGE_COHERENT 0x100 /* H: M bit */ 255#define _PAGE_NO_CACHE 0x200 /* H: I bit */ 256#define _PAGE_WRITETHRU 0x400 /* H: W bit */ 257#define _PAGE_DIRTY 0x800 /* S: Page dirty */ 258 259#define _PMD_PRESENT 0 260#define _PMD_PRESENT_MASK (PAGE_MASK) 261#define _PMD_BAD (~PAGE_MASK) 262 263#define NUM_TLBCAMS (16) 264 265#elif defined(CONFIG_8xx) 266/* Definitions for 8xx embedded chips. */ 267#define _PAGE_PRESENT 0x0001 /* Page is valid */ 268#define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */ 269#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */ 270#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */ 271 272/* These five software bits must be masked out when the entry is loaded 273 * into the TLB. 274 */ 275#define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */ 276#define _PAGE_GUARDED 0x0010 /* software: guarded access */ 277#define _PAGE_DIRTY 0x0020 /* software: page changed */ 278#define _PAGE_RW 0x0040 /* software: user write access allowed */ 279#define _PAGE_ACCESSED 0x0080 /* software: page referenced */ 280 281/* Setting any bits in the nibble with the follow two controls will 282 * require a TLB exception handler change. It is assumed unused bits 283 * are always zero. 284 */ 285#define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */ 286#define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */ 287 288#define _PMD_PRESENT 0x0001 289#define _PMD_BAD 0x0ff0 290#define _PMD_PAGE_MASK 0x000c 291#define _PMD_PAGE_8M 0x000c 292 293/* 294 * The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE 295 * for an address even if _PAGE_PRESENT is not set, as a performance 296 * optimization. This is a bug if you ever want to use swap unless 297 * _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific 298 * definitions for __swp_entry etc. below, which would be gross. 299 * -- paulus 300 */ 301#define _PTE_NONE_MASK _PAGE_ACCESSED 302 303#else /* CONFIG_6xx */ 304/* Definitions for 60x, 740/750, etc. */ 305#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ 306#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ 307#define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */ 308#define _PAGE_USER 0x004 /* usermode access allowed */ 309#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ 310#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ 311#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ 312#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ 313#define _PAGE_DIRTY 0x080 /* C: page changed */ 314#define _PAGE_ACCESSED 0x100 /* R: page referenced */ 315#define _PAGE_EXEC 0x200 /* software: i-cache coherency required */ 316#define _PAGE_RW 0x400 /* software: user write access allowed */ 317 318#define _PTE_NONE_MASK _PAGE_HASHPTE 319 320#define _PMD_PRESENT 0 321#define _PMD_PRESENT_MASK (PAGE_MASK) 322#define _PMD_BAD (~PAGE_MASK) 323#endif 324 325/* 326 * Some bits are only used on some cpu families... 327 */ 328#ifndef _PAGE_HASHPTE 329#define _PAGE_HASHPTE 0 330#endif 331#ifndef _PTE_NONE_MASK 332#define _PTE_NONE_MASK 0 333#endif 334#ifndef _PAGE_SHARED 335#define _PAGE_SHARED 0 336#endif 337#ifndef _PAGE_HWWRITE 338#define _PAGE_HWWRITE 0 339#endif 340#ifndef _PAGE_HWEXEC 341#define _PAGE_HWEXEC 0 342#endif 343#ifndef _PAGE_EXEC 344#define _PAGE_EXEC 0 345#endif 346#ifndef _PMD_PRESENT_MASK 347#define _PMD_PRESENT_MASK _PMD_PRESENT 348#endif 349#ifndef _PMD_SIZE 350#define _PMD_SIZE 0 351#define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE() 352#endif 353 354#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 355 356/* 357 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 358 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 359 * to have it in the Linux PTE, and in fact the bit could be reused for 360 * another purpose. -- paulus. 361 */ 362 363#ifdef CONFIG_44x 364#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED) 365#else 366#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 367#endif 368#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 369#define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE) 370 371#ifdef CONFIG_PPC_STD_MMU 372/* On standard PPC MMU, no user access implies kernel read/write access, 373 * so to write-protect kernel memory we must turn on user access */ 374#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER) 375#else 376#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED) 377#endif 378 379#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 380#define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC) 381 382#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) 383/* We want the debuggers to be able to set breakpoints anywhere, so 384 * don't write protect the kernel text */ 385#define _PAGE_RAM_TEXT _PAGE_RAM 386#else 387#define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC) 388#endif 389 390#define PAGE_NONE __pgprot(_PAGE_BASE) 391#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 392#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 393#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 394#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 395#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 396#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 397 398#define PAGE_KERNEL __pgprot(_PAGE_RAM) 399#define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO) 400 401/* 402 * The PowerPC can only do execute protection on a segment (256MB) basis, 403 * not on a page basis. So we consider execute permission the same as read. 404 * Also, write permissions imply read permissions. 405 * This is the closest we can get.. 406 */ 407#define __P000 PAGE_NONE 408#define __P001 PAGE_READONLY_X 409#define __P010 PAGE_COPY 410#define __P011 PAGE_COPY_X 411#define __P100 PAGE_READONLY 412#define __P101 PAGE_READONLY_X 413#define __P110 PAGE_COPY 414#define __P111 PAGE_COPY_X 415 416#define __S000 PAGE_NONE 417#define __S001 PAGE_READONLY_X 418#define __S010 PAGE_SHARED 419#define __S011 PAGE_SHARED_X 420#define __S100 PAGE_READONLY 421#define __S101 PAGE_READONLY_X 422#define __S110 PAGE_SHARED 423#define __S111 PAGE_SHARED_X 424 425#ifndef __ASSEMBLY__ 426/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a 427 * kernel without large page PMD support */ 428extern unsigned long bad_call_to_PMD_PAGE_SIZE(void); 429 430/* 431 * Conversions between PTE values and page frame numbers. 432 */ 433 434#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 435#define pte_page(x) pfn_to_page(pte_pfn(x)) 436 437#define pfn_pte(pfn, prot) __pte(((pte_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 438#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 439 440/* 441 * ZERO_PAGE is a global shared page that is always zero: used 442 * for zero-mapped memory areas etc.. 443 */ 444extern unsigned long empty_zero_page[1024]; 445#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 446 447#endif /* __ASSEMBLY__ */ 448 449#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 450#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 451#define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 452 453#define pmd_none(pmd) (!pmd_val(pmd)) 454#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) 455#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) 456#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 457 458#ifndef __ASSEMBLY__ 459/* 460 * The "pgd_xxx()" functions here are trivial for a folded two-level 461 * setup: the pgd is never bad, and a pmd always exists (as it's folded 462 * into the pgd entry) 463 */ 464static inline int pgd_none(pgd_t pgd) { return 0; } 465static inline int pgd_bad(pgd_t pgd) { return 0; } 466static inline int pgd_present(pgd_t pgd) { return 1; } 467#define pgd_clear(xp) do { } while (0) 468 469#define pgd_page(pgd) \ 470 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) 471 472/* 473 * The following only work if pte_present() is true. 474 * Undefined behaviour if not.. 475 */ 476static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 477static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 478static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 479static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 480static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 481static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 482 483static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 484static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 485 486static inline pte_t pte_rdprotect(pte_t pte) { 487 pte_val(pte) &= ~_PAGE_USER; return pte; } 488static inline pte_t pte_wrprotect(pte_t pte) { 489 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 490static inline pte_t pte_exprotect(pte_t pte) { 491 pte_val(pte) &= ~_PAGE_EXEC; return pte; } 492static inline pte_t pte_mkclean(pte_t pte) { 493 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 494static inline pte_t pte_mkold(pte_t pte) { 495 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 496 497static inline pte_t pte_mkread(pte_t pte) { 498 pte_val(pte) |= _PAGE_USER; return pte; } 499static inline pte_t pte_mkexec(pte_t pte) { 500 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 501static inline pte_t pte_mkwrite(pte_t pte) { 502 pte_val(pte) |= _PAGE_RW; return pte; } 503static inline pte_t pte_mkdirty(pte_t pte) { 504 pte_val(pte) |= _PAGE_DIRTY; return pte; } 505static inline pte_t pte_mkyoung(pte_t pte) { 506 pte_val(pte) |= _PAGE_ACCESSED; return pte; } 507 508static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 509{ 510 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 511 return pte; 512} 513 514/* 515 * When flushing the tlb entry for a page, we also need to flush the hash 516 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. 517 */ 518extern int flush_hash_pages(unsigned context, unsigned long va, 519 unsigned long pmdval, int count); 520 521/* Add an HPTE to the hash table */ 522extern void add_hash_page(unsigned context, unsigned long va, 523 unsigned long pmdval); 524 525/* 526 * Atomic PTE updates. 527 * 528 * pte_update clears and sets bit atomically, and returns 529 * the old pte value. 530 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant 531 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. 532 */ 533static inline unsigned long pte_update(pte_t *p, unsigned long clr, 534 unsigned long set) 535{ 536 unsigned long old, tmp; 537 538 __asm__ __volatile__("\ 5391: lwarx %0,0,%3\n\ 540 andc %1,%0,%4\n\ 541 or %1,%1,%5\n" 542 PPC405_ERR77(0,%3) 543" stwcx. %1,0,%3\n\ 544 bne- 1b" 545 : "=&r" (old), "=&r" (tmp), "=m" (*p) 546 : "r" ((unsigned long)(p+1) - 4), "r" (clr), "r" (set), "m" (*p) 547 : "cc" ); 548 return old; 549} 550 551/* 552 * set_pte stores a linux PTE into the linux page table. 553 * On machines which use an MMU hash table we avoid changing the 554 * _PAGE_HASHPTE bit. 555 */ 556static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 557 pte_t *ptep, pte_t pte) 558{ 559#if _PAGE_HASHPTE != 0 560 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE); 561#else 562 *ptep = pte; 563#endif 564} 565 566/* 567 * 2.6 calles this without flushing the TLB entry, this is wrong 568 * for our hash-based implementation, we fix that up here 569 */ 570#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 571static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) 572{ 573 unsigned long old; 574 old = pte_update(ptep, _PAGE_ACCESSED, 0); 575#if _PAGE_HASHPTE != 0 576 if (old & _PAGE_HASHPTE) { 577 unsigned long ptephys = __pa(ptep) & PAGE_MASK; 578 flush_hash_pages(context, addr, ptephys, 1); 579 } 580#endif 581 return (old & _PAGE_ACCESSED) != 0; 582} 583#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 584 __ptep_test_and_clear_young((__vma)->vm_mm->context, __addr, __ptep) 585 586#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 587static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, 588 unsigned long addr, pte_t *ptep) 589{ 590 return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; 591} 592 593#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 594static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 595 pte_t *ptep) 596{ 597 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 598} 599 600#define __HAVE_ARCH_PTEP_SET_WRPROTECT 601static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 602 pte_t *ptep) 603{ 604 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 605} 606 607#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 608static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) 609{ 610 unsigned long bits = pte_val(entry) & 611 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW); 612 pte_update(ptep, 0, bits); 613} 614 615#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ 616 do { \ 617 __ptep_set_access_flags(__ptep, __entry, __dirty); \ 618 flush_tlb_page_nohash(__vma, __address); \ 619 } while(0) 620 621/* 622 * Macro to mark a page protection value as "uncacheable". 623 */ 624#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) 625 626struct file; 627extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr, 628 unsigned long size, pgprot_t vma_prot); 629#define __HAVE_PHYS_MEM_ACCESS_PROT 630 631#define __HAVE_ARCH_PTE_SAME 632#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) 633 634/* 635 * Note that on Book E processors, the pmd contains the kernel virtual 636 * (lowmem) address of the pte page. The physical address is less useful 637 * because everything runs with translation enabled (even the TLB miss 638 * handler). On everything else the pmd contains the physical address 639 * of the pte page. -- paulus 640 */ 641#ifndef CONFIG_BOOKE 642#define pmd_page_kernel(pmd) \ 643 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 644#define pmd_page(pmd) \ 645 (mem_map + (pmd_val(pmd) >> PAGE_SHIFT)) 646#else 647#define pmd_page_kernel(pmd) \ 648 ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 649#define pmd_page(pmd) \ 650 (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 651#endif 652 653/* to find an entry in a kernel page-table-directory */ 654#define pgd_offset_k(address) pgd_offset(&init_mm, address) 655 656/* to find an entry in a page-table-directory */ 657#define pgd_index(address) ((address) >> PGDIR_SHIFT) 658#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 659 660/* Find an entry in the second-level page table.. */ 661static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 662{ 663 return (pmd_t *) dir; 664} 665 666/* Find an entry in the third-level page table.. */ 667#define pte_index(address) \ 668 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 669#define pte_offset_kernel(dir, addr) \ 670 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) 671#define pte_offset_map(dir, addr) \ 672 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr)) 673#define pte_offset_map_nested(dir, addr) \ 674 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr)) 675 676#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) 677#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) 678 679extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 680 681extern void paging_init(void); 682 683/* 684 * Encode and decode a swap entry. 685 * Note that the bits we use in a PTE for representing a swap entry 686 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the 687 *_PAGE_HASHPTE bit (if used). -- paulus 688 */ 689#define __swp_type(entry) ((entry).val & 0x1f) 690#define __swp_offset(entry) ((entry).val >> 5) 691#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) 692#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) 693#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) 694 695/* Encode and decode a nonlinear file mapping entry */ 696#define PTE_FILE_MAX_BITS 29 697#define pte_to_pgoff(pte) (pte_val(pte) >> 3) 698#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) 699 700/* CONFIG_APUS */ 701/* For virtual address to physical address conversion */ 702extern void cache_clear(__u32 addr, int length); 703extern void cache_push(__u32 addr, int length); 704extern int mm_end_of_chunk (unsigned long addr, int len); 705extern unsigned long iopa(unsigned long addr); 706extern unsigned long mm_ptov(unsigned long addr) __attribute_const__; 707 708/* Values for nocacheflag and cmode */ 709/* These are not used by the APUS kernel_map, but prevents 710 compilation errors. */ 711#define KERNELMAP_FULL_CACHING 0 712#define KERNELMAP_NOCACHE_SER 1 713#define KERNELMAP_NOCACHE_NONSER 2 714#define KERNELMAP_NO_COPYBACK 3 715 716/* 717 * Map some physical address range into the kernel address space. 718 */ 719extern unsigned long kernel_map(unsigned long paddr, unsigned long size, 720 int nocacheflag, unsigned long *memavailp ); 721 722/* 723 * Set cache mode of (kernel space) address range. 724 */ 725extern void kernel_set_cachemode (unsigned long address, unsigned long size, 726 unsigned int cmode); 727 728/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 729#define kern_addr_valid(addr) (1) 730 731#ifdef CONFIG_PHYS_64BIT 732extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 733 unsigned long paddr, unsigned long size, pgprot_t prot); 734static inline int io_remap_page_range(struct vm_area_struct *vma, 735 unsigned long vaddr, 736 unsigned long paddr, 737 unsigned long size, 738 pgprot_t prot) 739{ 740 phys_addr_t paddr64 = fixup_bigphys_addr(paddr, size); 741 return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); 742} 743 744static inline int io_remap_pfn_range(struct vm_area_struct *vma, 745 unsigned long vaddr, 746 unsigned long pfn, 747 unsigned long size, 748 pgprot_t prot) 749{ 750 phys_addr_t paddr64 = fixup_bigphys_addr(pfn << PAGE_SHIFT, size); 751 return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); 752} 753#else 754#define io_remap_page_range(vma, vaddr, paddr, size, prot) \ 755 remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot) 756#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 757 remap_pfn_range(vma, vaddr, pfn, size, prot) 758#endif 759 760#define MK_IOSPACE_PFN(space, pfn) (pfn) 761#define GET_IOSPACE(pfn) 0 762#define GET_PFN(pfn) (pfn) 763 764/* 765 * No page table caches to initialise 766 */ 767#define pgtable_cache_init() do { } while (0) 768 769extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep); 770 771#include <asm-generic/pgtable.h> 772 773#endif /* !__ASSEMBLY__ */ 774 775#endif /* _PPC_PGTABLE_H */ 776#endif /* __KERNEL__ */