at v2.6.12-rc2 850 lines 22 kB view raw
1/* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org) 7 * Copyright (c) 1999, 2000 Silicon Graphics, Inc. 8 */ 9#ifndef _ASM_BITOPS_H 10#define _ASM_BITOPS_H 11 12#include <linux/config.h> 13#include <linux/compiler.h> 14#include <linux/types.h> 15#include <asm/byteorder.h> /* sigh ... */ 16#include <asm/cpu-features.h> 17 18#if (_MIPS_SZLONG == 32) 19#define SZLONG_LOG 5 20#define SZLONG_MASK 31UL 21#define __LL "ll " 22#define __SC "sc " 23#define cpu_to_lelongp(x) cpu_to_le32p((__u32 *) (x)) 24#elif (_MIPS_SZLONG == 64) 25#define SZLONG_LOG 6 26#define SZLONG_MASK 63UL 27#define __LL "lld " 28#define __SC "scd " 29#define cpu_to_lelongp(x) cpu_to_le64p((__u64 *) (x)) 30#endif 31 32#ifdef __KERNEL__ 33 34#include <asm/interrupt.h> 35#include <asm/sgidefs.h> 36#include <asm/war.h> 37 38/* 39 * clear_bit() doesn't provide any barrier for the compiler. 40 */ 41#define smp_mb__before_clear_bit() smp_mb() 42#define smp_mb__after_clear_bit() smp_mb() 43 44/* 45 * Only disable interrupt for kernel mode stuff to keep usermode stuff 46 * that dares to use kernel include files alive. 47 */ 48 49#define __bi_flags unsigned long flags 50#define __bi_local_irq_save(x) local_irq_save(x) 51#define __bi_local_irq_restore(x) local_irq_restore(x) 52#else 53#define __bi_flags 54#define __bi_local_irq_save(x) 55#define __bi_local_irq_restore(x) 56#endif /* __KERNEL__ */ 57 58/* 59 * set_bit - Atomically set a bit in memory 60 * @nr: the bit to set 61 * @addr: the address to start counting from 62 * 63 * This function is atomic and may not be reordered. See __set_bit() 64 * if you do not require the atomic guarantees. 65 * Note that @nr may be almost arbitrarily large; this function is not 66 * restricted to acting on a single-word quantity. 67 */ 68static inline void set_bit(unsigned long nr, volatile unsigned long *addr) 69{ 70 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 71 unsigned long temp; 72 73 if (cpu_has_llsc && R10000_LLSC_WAR) { 74 __asm__ __volatile__( 75 "1: " __LL "%0, %1 # set_bit \n" 76 " or %0, %2 \n" 77 " "__SC "%0, %1 \n" 78 " beqzl %0, 1b \n" 79 : "=&r" (temp), "=m" (*m) 80 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); 81 } else if (cpu_has_llsc) { 82 __asm__ __volatile__( 83 "1: " __LL "%0, %1 # set_bit \n" 84 " or %0, %2 \n" 85 " "__SC "%0, %1 \n" 86 " beqz %0, 1b \n" 87 : "=&r" (temp), "=m" (*m) 88 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); 89 } else { 90 volatile unsigned long *a = addr; 91 unsigned long mask; 92 __bi_flags; 93 94 a += nr >> SZLONG_LOG; 95 mask = 1UL << (nr & SZLONG_MASK); 96 __bi_local_irq_save(flags); 97 *a |= mask; 98 __bi_local_irq_restore(flags); 99 } 100} 101 102/* 103 * __set_bit - Set a bit in memory 104 * @nr: the bit to set 105 * @addr: the address to start counting from 106 * 107 * Unlike set_bit(), this function is non-atomic and may be reordered. 108 * If it's called on the same region of memory simultaneously, the effect 109 * may be that only one operation succeeds. 110 */ 111static inline void __set_bit(unsigned long nr, volatile unsigned long * addr) 112{ 113 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 114 115 *m |= 1UL << (nr & SZLONG_MASK); 116} 117 118/* 119 * clear_bit - Clears a bit in memory 120 * @nr: Bit to clear 121 * @addr: Address to start counting from 122 * 123 * clear_bit() is atomic and may not be reordered. However, it does 124 * not contain a memory barrier, so if it is used for locking purposes, 125 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() 126 * in order to ensure changes are visible on other processors. 127 */ 128static inline void clear_bit(unsigned long nr, volatile unsigned long *addr) 129{ 130 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 131 unsigned long temp; 132 133 if (cpu_has_llsc && R10000_LLSC_WAR) { 134 __asm__ __volatile__( 135 "1: " __LL "%0, %1 # clear_bit \n" 136 " and %0, %2 \n" 137 " " __SC "%0, %1 \n" 138 " beqzl %0, 1b \n" 139 : "=&r" (temp), "=m" (*m) 140 : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m)); 141 } else if (cpu_has_llsc) { 142 __asm__ __volatile__( 143 "1: " __LL "%0, %1 # clear_bit \n" 144 " and %0, %2 \n" 145 " " __SC "%0, %1 \n" 146 " beqz %0, 1b \n" 147 : "=&r" (temp), "=m" (*m) 148 : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m)); 149 } else { 150 volatile unsigned long *a = addr; 151 unsigned long mask; 152 __bi_flags; 153 154 a += nr >> SZLONG_LOG; 155 mask = 1UL << (nr & SZLONG_MASK); 156 __bi_local_irq_save(flags); 157 *a &= ~mask; 158 __bi_local_irq_restore(flags); 159 } 160} 161 162/* 163 * __clear_bit - Clears a bit in memory 164 * @nr: Bit to clear 165 * @addr: Address to start counting from 166 * 167 * Unlike clear_bit(), this function is non-atomic and may be reordered. 168 * If it's called on the same region of memory simultaneously, the effect 169 * may be that only one operation succeeds. 170 */ 171static inline void __clear_bit(unsigned long nr, volatile unsigned long * addr) 172{ 173 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 174 175 *m &= ~(1UL << (nr & SZLONG_MASK)); 176} 177 178/* 179 * change_bit - Toggle a bit in memory 180 * @nr: Bit to change 181 * @addr: Address to start counting from 182 * 183 * change_bit() is atomic and may not be reordered. 184 * Note that @nr may be almost arbitrarily large; this function is not 185 * restricted to acting on a single-word quantity. 186 */ 187static inline void change_bit(unsigned long nr, volatile unsigned long *addr) 188{ 189 if (cpu_has_llsc && R10000_LLSC_WAR) { 190 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 191 unsigned long temp; 192 193 __asm__ __volatile__( 194 "1: " __LL "%0, %1 # change_bit \n" 195 " xor %0, %2 \n" 196 " "__SC "%0, %1 \n" 197 " beqzl %0, 1b \n" 198 : "=&r" (temp), "=m" (*m) 199 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); 200 } else if (cpu_has_llsc) { 201 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 202 unsigned long temp; 203 204 __asm__ __volatile__( 205 "1: " __LL "%0, %1 # change_bit \n" 206 " xor %0, %2 \n" 207 " "__SC "%0, %1 \n" 208 " beqz %0, 1b \n" 209 : "=&r" (temp), "=m" (*m) 210 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); 211 } else { 212 volatile unsigned long *a = addr; 213 unsigned long mask; 214 __bi_flags; 215 216 a += nr >> SZLONG_LOG; 217 mask = 1UL << (nr & SZLONG_MASK); 218 __bi_local_irq_save(flags); 219 *a ^= mask; 220 __bi_local_irq_restore(flags); 221 } 222} 223 224/* 225 * __change_bit - Toggle a bit in memory 226 * @nr: the bit to change 227 * @addr: the address to start counting from 228 * 229 * Unlike change_bit(), this function is non-atomic and may be reordered. 230 * If it's called on the same region of memory simultaneously, the effect 231 * may be that only one operation succeeds. 232 */ 233static inline void __change_bit(unsigned long nr, volatile unsigned long * addr) 234{ 235 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 236 237 *m ^= 1UL << (nr & SZLONG_MASK); 238} 239 240/* 241 * test_and_set_bit - Set a bit and return its old value 242 * @nr: Bit to set 243 * @addr: Address to count from 244 * 245 * This operation is atomic and cannot be reordered. 246 * It also implies a memory barrier. 247 */ 248static inline int test_and_set_bit(unsigned long nr, 249 volatile unsigned long *addr) 250{ 251 if (cpu_has_llsc && R10000_LLSC_WAR) { 252 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 253 unsigned long temp, res; 254 255 __asm__ __volatile__( 256 "1: " __LL "%0, %1 # test_and_set_bit \n" 257 " or %2, %0, %3 \n" 258 " " __SC "%2, %1 \n" 259 " beqzl %2, 1b \n" 260 " and %2, %0, %3 \n" 261#ifdef CONFIG_SMP 262 "sync \n" 263#endif 264 : "=&r" (temp), "=m" (*m), "=&r" (res) 265 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) 266 : "memory"); 267 268 return res != 0; 269 } else if (cpu_has_llsc) { 270 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 271 unsigned long temp, res; 272 273 __asm__ __volatile__( 274 " .set noreorder # test_and_set_bit \n" 275 "1: " __LL "%0, %1 \n" 276 " or %2, %0, %3 \n" 277 " " __SC "%2, %1 \n" 278 " beqz %2, 1b \n" 279 " and %2, %0, %3 \n" 280#ifdef CONFIG_SMP 281 "sync \n" 282#endif 283 ".set\treorder" 284 : "=&r" (temp), "=m" (*m), "=&r" (res) 285 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) 286 : "memory"); 287 288 return res != 0; 289 } else { 290 volatile unsigned long *a = addr; 291 unsigned long mask; 292 int retval; 293 __bi_flags; 294 295 a += nr >> SZLONG_LOG; 296 mask = 1UL << (nr & SZLONG_MASK); 297 __bi_local_irq_save(flags); 298 retval = (mask & *a) != 0; 299 *a |= mask; 300 __bi_local_irq_restore(flags); 301 302 return retval; 303 } 304} 305 306/* 307 * __test_and_set_bit - Set a bit and return its old value 308 * @nr: Bit to set 309 * @addr: Address to count from 310 * 311 * This operation is non-atomic and can be reordered. 312 * If two examples of this operation race, one can appear to succeed 313 * but actually fail. You must protect multiple accesses with a lock. 314 */ 315static inline int __test_and_set_bit(unsigned long nr, 316 volatile unsigned long *addr) 317{ 318 volatile unsigned long *a = addr; 319 unsigned long mask; 320 int retval; 321 322 a += nr >> SZLONG_LOG; 323 mask = 1UL << (nr & SZLONG_MASK); 324 retval = (mask & *a) != 0; 325 *a |= mask; 326 327 return retval; 328} 329 330/* 331 * test_and_clear_bit - Clear a bit and return its old value 332 * @nr: Bit to clear 333 * @addr: Address to count from 334 * 335 * This operation is atomic and cannot be reordered. 336 * It also implies a memory barrier. 337 */ 338static inline int test_and_clear_bit(unsigned long nr, 339 volatile unsigned long *addr) 340{ 341 if (cpu_has_llsc && R10000_LLSC_WAR) { 342 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 343 unsigned long temp, res; 344 345 __asm__ __volatile__( 346 "1: " __LL "%0, %1 # test_and_clear_bit \n" 347 " or %2, %0, %3 \n" 348 " xor %2, %3 \n" 349 __SC "%2, %1 \n" 350 " beqzl %2, 1b \n" 351 " and %2, %0, %3 \n" 352#ifdef CONFIG_SMP 353 " sync \n" 354#endif 355 : "=&r" (temp), "=m" (*m), "=&r" (res) 356 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) 357 : "memory"); 358 359 return res != 0; 360 } else if (cpu_has_llsc) { 361 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 362 unsigned long temp, res; 363 364 __asm__ __volatile__( 365 " .set noreorder # test_and_clear_bit \n" 366 "1: " __LL "%0, %1 \n" 367 " or %2, %0, %3 \n" 368 " xor %2, %3 \n" 369 __SC "%2, %1 \n" 370 " beqz %2, 1b \n" 371 " and %2, %0, %3 \n" 372#ifdef CONFIG_SMP 373 " sync \n" 374#endif 375 " .set reorder \n" 376 : "=&r" (temp), "=m" (*m), "=&r" (res) 377 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) 378 : "memory"); 379 380 return res != 0; 381 } else { 382 volatile unsigned long *a = addr; 383 unsigned long mask; 384 int retval; 385 __bi_flags; 386 387 a += nr >> SZLONG_LOG; 388 mask = 1UL << (nr & SZLONG_MASK); 389 __bi_local_irq_save(flags); 390 retval = (mask & *a) != 0; 391 *a &= ~mask; 392 __bi_local_irq_restore(flags); 393 394 return retval; 395 } 396} 397 398/* 399 * __test_and_clear_bit - Clear a bit and return its old value 400 * @nr: Bit to clear 401 * @addr: Address to count from 402 * 403 * This operation is non-atomic and can be reordered. 404 * If two examples of this operation race, one can appear to succeed 405 * but actually fail. You must protect multiple accesses with a lock. 406 */ 407static inline int __test_and_clear_bit(unsigned long nr, 408 volatile unsigned long * addr) 409{ 410 volatile unsigned long *a = addr; 411 unsigned long mask; 412 int retval; 413 414 a += (nr >> SZLONG_LOG); 415 mask = 1UL << (nr & SZLONG_MASK); 416 retval = ((mask & *a) != 0); 417 *a &= ~mask; 418 419 return retval; 420} 421 422/* 423 * test_and_change_bit - Change a bit and return its old value 424 * @nr: Bit to change 425 * @addr: Address to count from 426 * 427 * This operation is atomic and cannot be reordered. 428 * It also implies a memory barrier. 429 */ 430static inline int test_and_change_bit(unsigned long nr, 431 volatile unsigned long *addr) 432{ 433 if (cpu_has_llsc && R10000_LLSC_WAR) { 434 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 435 unsigned long temp, res; 436 437 __asm__ __volatile__( 438 "1: " __LL " %0, %1 # test_and_change_bit \n" 439 " xor %2, %0, %3 \n" 440 " "__SC "%2, %1 \n" 441 " beqzl %2, 1b \n" 442 " and %2, %0, %3 \n" 443#ifdef CONFIG_SMP 444 " sync \n" 445#endif 446 : "=&r" (temp), "=m" (*m), "=&r" (res) 447 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) 448 : "memory"); 449 450 return res != 0; 451 } else if (cpu_has_llsc) { 452 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 453 unsigned long temp, res; 454 455 __asm__ __volatile__( 456 " .set noreorder # test_and_change_bit \n" 457 "1: " __LL " %0, %1 \n" 458 " xor %2, %0, %3 \n" 459 " "__SC "\t%2, %1 \n" 460 " beqz %2, 1b \n" 461 " and %2, %0, %3 \n" 462#ifdef CONFIG_SMP 463 " sync \n" 464#endif 465 " .set reorder \n" 466 : "=&r" (temp), "=m" (*m), "=&r" (res) 467 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) 468 : "memory"); 469 470 return res != 0; 471 } else { 472 volatile unsigned long *a = addr; 473 unsigned long mask, retval; 474 __bi_flags; 475 476 a += nr >> SZLONG_LOG; 477 mask = 1UL << (nr & SZLONG_MASK); 478 __bi_local_irq_save(flags); 479 retval = (mask & *a) != 0; 480 *a ^= mask; 481 __bi_local_irq_restore(flags); 482 483 return retval; 484 } 485} 486 487/* 488 * __test_and_change_bit - Change a bit and return its old value 489 * @nr: Bit to change 490 * @addr: Address to count from 491 * 492 * This operation is non-atomic and can be reordered. 493 * If two examples of this operation race, one can appear to succeed 494 * but actually fail. You must protect multiple accesses with a lock. 495 */ 496static inline int __test_and_change_bit(unsigned long nr, 497 volatile unsigned long *addr) 498{ 499 volatile unsigned long *a = addr; 500 unsigned long mask; 501 int retval; 502 503 a += (nr >> SZLONG_LOG); 504 mask = 1UL << (nr & SZLONG_MASK); 505 retval = ((mask & *a) != 0); 506 *a ^= mask; 507 508 return retval; 509} 510 511#undef __bi_flags 512#undef __bi_local_irq_save 513#undef __bi_local_irq_restore 514 515/* 516 * test_bit - Determine whether a bit is set 517 * @nr: bit number to test 518 * @addr: Address to start counting from 519 */ 520static inline int test_bit(unsigned long nr, const volatile unsigned long *addr) 521{ 522 return 1UL & (addr[nr >> SZLONG_LOG] >> (nr & SZLONG_MASK)); 523} 524 525/* 526 * ffz - find first zero in word. 527 * @word: The word to search 528 * 529 * Undefined if no zero exists, so code should check against ~0UL first. 530 */ 531static inline unsigned long ffz(unsigned long word) 532{ 533 int b = 0, s; 534 535 word = ~word; 536#ifdef CONFIG_MIPS32 537 s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s; 538 s = 8; if (word << 24 != 0) s = 0; b += s; word >>= s; 539 s = 4; if (word << 28 != 0) s = 0; b += s; word >>= s; 540 s = 2; if (word << 30 != 0) s = 0; b += s; word >>= s; 541 s = 1; if (word << 31 != 0) s = 0; b += s; 542#endif 543#ifdef CONFIG_MIPS64 544 s = 32; if (word << 32 != 0) s = 0; b += s; word >>= s; 545 s = 16; if (word << 48 != 0) s = 0; b += s; word >>= s; 546 s = 8; if (word << 56 != 0) s = 0; b += s; word >>= s; 547 s = 4; if (word << 60 != 0) s = 0; b += s; word >>= s; 548 s = 2; if (word << 62 != 0) s = 0; b += s; word >>= s; 549 s = 1; if (word << 63 != 0) s = 0; b += s; 550#endif 551 552 return b; 553} 554 555/* 556 * __ffs - find first bit in word. 557 * @word: The word to search 558 * 559 * Undefined if no bit exists, so code should check against 0 first. 560 */ 561static inline unsigned long __ffs(unsigned long word) 562{ 563 return ffz(~word); 564} 565 566/* 567 * fls: find last bit set. 568 */ 569 570#define fls(x) generic_fls(x) 571 572/* 573 * find_next_zero_bit - find the first zero bit in a memory region 574 * @addr: The address to base the search on 575 * @offset: The bitnumber to start searching at 576 * @size: The maximum size to search 577 */ 578static inline unsigned long find_next_zero_bit(const unsigned long *addr, 579 unsigned long size, unsigned long offset) 580{ 581 const unsigned long *p = addr + (offset >> SZLONG_LOG); 582 unsigned long result = offset & ~SZLONG_MASK; 583 unsigned long tmp; 584 585 if (offset >= size) 586 return size; 587 size -= result; 588 offset &= SZLONG_MASK; 589 if (offset) { 590 tmp = *(p++); 591 tmp |= ~0UL >> (_MIPS_SZLONG-offset); 592 if (size < _MIPS_SZLONG) 593 goto found_first; 594 if (~tmp) 595 goto found_middle; 596 size -= _MIPS_SZLONG; 597 result += _MIPS_SZLONG; 598 } 599 while (size & ~SZLONG_MASK) { 600 if (~(tmp = *(p++))) 601 goto found_middle; 602 result += _MIPS_SZLONG; 603 size -= _MIPS_SZLONG; 604 } 605 if (!size) 606 return result; 607 tmp = *p; 608 609found_first: 610 tmp |= ~0UL << size; 611 if (tmp == ~0UL) /* Are any bits zero? */ 612 return result + size; /* Nope. */ 613found_middle: 614 return result + ffz(tmp); 615} 616 617#define find_first_zero_bit(addr, size) \ 618 find_next_zero_bit((addr), (size), 0) 619 620/* 621 * find_next_bit - find the next set bit in a memory region 622 * @addr: The address to base the search on 623 * @offset: The bitnumber to start searching at 624 * @size: The maximum size to search 625 */ 626static inline unsigned long find_next_bit(const unsigned long *addr, 627 unsigned long size, unsigned long offset) 628{ 629 const unsigned long *p = addr + (offset >> SZLONG_LOG); 630 unsigned long result = offset & ~SZLONG_MASK; 631 unsigned long tmp; 632 633 if (offset >= size) 634 return size; 635 size -= result; 636 offset &= SZLONG_MASK; 637 if (offset) { 638 tmp = *(p++); 639 tmp &= ~0UL << offset; 640 if (size < _MIPS_SZLONG) 641 goto found_first; 642 if (tmp) 643 goto found_middle; 644 size -= _MIPS_SZLONG; 645 result += _MIPS_SZLONG; 646 } 647 while (size & ~SZLONG_MASK) { 648 if ((tmp = *(p++))) 649 goto found_middle; 650 result += _MIPS_SZLONG; 651 size -= _MIPS_SZLONG; 652 } 653 if (!size) 654 return result; 655 tmp = *p; 656 657found_first: 658 tmp &= ~0UL >> (_MIPS_SZLONG - size); 659 if (tmp == 0UL) /* Are any bits set? */ 660 return result + size; /* Nope. */ 661found_middle: 662 return result + __ffs(tmp); 663} 664 665/* 666 * find_first_bit - find the first set bit in a memory region 667 * @addr: The address to start the search at 668 * @size: The maximum size to search 669 * 670 * Returns the bit-number of the first set bit, not the number of the byte 671 * containing a bit. 672 */ 673#define find_first_bit(addr, size) \ 674 find_next_bit((addr), (size), 0) 675 676#ifdef __KERNEL__ 677 678/* 679 * Every architecture must define this function. It's the fastest 680 * way of searching a 140-bit bitmap where the first 100 bits are 681 * unlikely to be set. It's guaranteed that at least one of the 140 682 * bits is cleared. 683 */ 684static inline int sched_find_first_bit(const unsigned long *b) 685{ 686#ifdef CONFIG_MIPS32 687 if (unlikely(b[0])) 688 return __ffs(b[0]); 689 if (unlikely(b[1])) 690 return __ffs(b[1]) + 32; 691 if (unlikely(b[2])) 692 return __ffs(b[2]) + 64; 693 if (b[3]) 694 return __ffs(b[3]) + 96; 695 return __ffs(b[4]) + 128; 696#endif 697#ifdef CONFIG_MIPS64 698 if (unlikely(b[0])) 699 return __ffs(b[0]); 700 if (unlikely(b[1])) 701 return __ffs(b[1]) + 64; 702 return __ffs(b[2]) + 128; 703#endif 704} 705 706/* 707 * ffs - find first bit set 708 * @x: the word to search 709 * 710 * This is defined the same way as 711 * the libc and compiler builtin ffs routines, therefore 712 * differs in spirit from the above ffz (man ffs). 713 */ 714 715#define ffs(x) generic_ffs(x) 716 717/* 718 * hweightN - returns the hamming weight of a N-bit word 719 * @x: the word to weigh 720 * 721 * The Hamming Weight of a number is the total number of bits set in it. 722 */ 723 724#define hweight64(x) generic_hweight64(x) 725#define hweight32(x) generic_hweight32(x) 726#define hweight16(x) generic_hweight16(x) 727#define hweight8(x) generic_hweight8(x) 728 729static inline int __test_and_set_le_bit(unsigned long nr, unsigned long *addr) 730{ 731 unsigned char *ADDR = (unsigned char *) addr; 732 int mask, retval; 733 734 ADDR += nr >> 3; 735 mask = 1 << (nr & 0x07); 736 retval = (mask & *ADDR) != 0; 737 *ADDR |= mask; 738 739 return retval; 740} 741 742static inline int __test_and_clear_le_bit(unsigned long nr, unsigned long *addr) 743{ 744 unsigned char *ADDR = (unsigned char *) addr; 745 int mask, retval; 746 747 ADDR += nr >> 3; 748 mask = 1 << (nr & 0x07); 749 retval = (mask & *ADDR) != 0; 750 *ADDR &= ~mask; 751 752 return retval; 753} 754 755static inline int test_le_bit(unsigned long nr, const unsigned long * addr) 756{ 757 const unsigned char *ADDR = (const unsigned char *) addr; 758 int mask; 759 760 ADDR += nr >> 3; 761 mask = 1 << (nr & 0x07); 762 763 return ((mask & *ADDR) != 0); 764} 765 766static inline unsigned long find_next_zero_le_bit(unsigned long *addr, 767 unsigned long size, unsigned long offset) 768{ 769 unsigned long *p = ((unsigned long *) addr) + (offset >> SZLONG_LOG); 770 unsigned long result = offset & ~SZLONG_MASK; 771 unsigned long tmp; 772 773 if (offset >= size) 774 return size; 775 size -= result; 776 offset &= SZLONG_MASK; 777 if (offset) { 778 tmp = cpu_to_lelongp(p++); 779 tmp |= ~0UL >> (_MIPS_SZLONG-offset); /* bug or feature ? */ 780 if (size < _MIPS_SZLONG) 781 goto found_first; 782 if (~tmp) 783 goto found_middle; 784 size -= _MIPS_SZLONG; 785 result += _MIPS_SZLONG; 786 } 787 while (size & ~SZLONG_MASK) { 788 if (~(tmp = cpu_to_lelongp(p++))) 789 goto found_middle; 790 result += _MIPS_SZLONG; 791 size -= _MIPS_SZLONG; 792 } 793 if (!size) 794 return result; 795 tmp = cpu_to_lelongp(p); 796 797found_first: 798 tmp |= ~0UL << size; 799 if (tmp == ~0UL) /* Are any bits zero? */ 800 return result + size; /* Nope. */ 801 802found_middle: 803 return result + ffz(tmp); 804} 805 806#define find_first_zero_le_bit(addr, size) \ 807 find_next_zero_le_bit((addr), (size), 0) 808 809#define ext2_set_bit(nr,addr) \ 810 __test_and_set_le_bit((nr),(unsigned long*)addr) 811#define ext2_clear_bit(nr, addr) \ 812 __test_and_clear_le_bit((nr),(unsigned long*)addr) 813 #define ext2_set_bit_atomic(lock, nr, addr) \ 814({ \ 815 int ret; \ 816 spin_lock(lock); \ 817 ret = ext2_set_bit((nr), (addr)); \ 818 spin_unlock(lock); \ 819 ret; \ 820}) 821 822#define ext2_clear_bit_atomic(lock, nr, addr) \ 823({ \ 824 int ret; \ 825 spin_lock(lock); \ 826 ret = ext2_clear_bit((nr), (addr)); \ 827 spin_unlock(lock); \ 828 ret; \ 829}) 830#define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr) 831#define ext2_find_first_zero_bit(addr, size) \ 832 find_first_zero_le_bit((unsigned long*)addr, size) 833#define ext2_find_next_zero_bit(addr, size, off) \ 834 find_next_zero_le_bit((unsigned long*)addr, size, off) 835 836/* 837 * Bitmap functions for the minix filesystem. 838 * 839 * FIXME: These assume that Minix uses the native byte/bitorder. 840 * This limits the Minix filesystem's value for data exchange very much. 841 */ 842#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) 843#define minix_set_bit(nr,addr) set_bit(nr,addr) 844#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) 845#define minix_test_bit(nr,addr) test_bit(nr,addr) 846#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) 847 848#endif /* __KERNEL__ */ 849 850#endif /* _ASM_BITOPS_H */