at v2.6.12-rc2 433 lines 14 kB view raw
1/* 2 * linux/include/asm-arm/pgtable.h 3 * 4 * Copyright (C) 1995-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_PGTABLE_H 11#define _ASMARM_PGTABLE_H 12 13#include <asm-generic/4level-fixup.h> 14 15#include <asm/memory.h> 16#include <asm/proc-fns.h> 17#include <asm/arch/vmalloc.h> 18 19/* 20 * Hardware-wise, we have a two level page table structure, where the first 21 * level has 4096 entries, and the second level has 256 entries. Each entry 22 * is one 32-bit word. Most of the bits in the second level entry are used 23 * by hardware, and there aren't any "accessed" and "dirty" bits. 24 * 25 * Linux on the other hand has a three level page table structure, which can 26 * be wrapped to fit a two level page table structure easily - using the PGD 27 * and PTE only. However, Linux also expects one "PTE" table per page, and 28 * at least a "dirty" bit. 29 * 30 * Therefore, we tweak the implementation slightly - we tell Linux that we 31 * have 2048 entries in the first level, each of which is 8 bytes (iow, two 32 * hardware pointers to the second level.) The second level contains two 33 * hardware PTE tables arranged contiguously, followed by Linux versions 34 * which contain the state information Linux needs. We, therefore, end up 35 * with 512 entries in the "PTE" level. 36 * 37 * This leads to the page tables having the following layout: 38 * 39 * pgd pte 40 * | | 41 * +--------+ +0 42 * | |-----> +------------+ +0 43 * +- - - - + +4 | h/w pt 0 | 44 * | |-----> +------------+ +1024 45 * +--------+ +8 | h/w pt 1 | 46 * | | +------------+ +2048 47 * +- - - - + | Linux pt 0 | 48 * | | +------------+ +3072 49 * +--------+ | Linux pt 1 | 50 * | | +------------+ +4096 51 * 52 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and 53 * PTE_xxx for definitions of bits appearing in the "h/w pt". 54 * 55 * PMD_xxx definitions refer to bits in the first level page table. 56 * 57 * The "dirty" bit is emulated by only granting hardware write permission 58 * iff the page is marked "writable" and "dirty" in the Linux PTE. This 59 * means that a write to a clean page will cause a permission fault, and 60 * the Linux MM layer will mark the page dirty via handle_pte_fault(). 61 * For the hardware to notice the permission change, the TLB entry must 62 * be flushed, and ptep_establish() does that for us. 63 * 64 * The "accessed" or "young" bit is emulated by a similar method; we only 65 * allow accesses to the page if the "young" bit is set. Accesses to the 66 * page will cause a fault, and handle_pte_fault() will set the young bit 67 * for us as long as the page is marked present in the corresponding Linux 68 * PTE entry. Again, ptep_establish() will ensure that the TLB is up to 69 * date. 70 * 71 * However, when the "young" bit is cleared, we deny access to the page 72 * by clearing the hardware PTE. Currently Linux does not flush the TLB 73 * for us in this case, which means the TLB will retain the transation 74 * until either the TLB entry is evicted under pressure, or a context 75 * switch which changes the user space mapping occurs. 76 */ 77#define PTRS_PER_PTE 512 78#define PTRS_PER_PMD 1 79#define PTRS_PER_PGD 2048 80 81/* 82 * PMD_SHIFT determines the size of the area a second-level page table can map 83 * PGDIR_SHIFT determines what a third-level page table entry can map 84 */ 85#define PMD_SHIFT 21 86#define PGDIR_SHIFT 21 87 88#define LIBRARY_TEXT_START 0x0c000000 89 90#ifndef __ASSEMBLY__ 91extern void __pte_error(const char *file, int line, unsigned long val); 92extern void __pmd_error(const char *file, int line, unsigned long val); 93extern void __pgd_error(const char *file, int line, unsigned long val); 94 95#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) 96#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) 97#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) 98#endif /* !__ASSEMBLY__ */ 99 100#define PMD_SIZE (1UL << PMD_SHIFT) 101#define PMD_MASK (~(PMD_SIZE-1)) 102#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 103#define PGDIR_MASK (~(PGDIR_SIZE-1)) 104 105#define FIRST_USER_PGD_NR 1 106#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR) 107 108/* 109 * ARMv6 supersection address mask and size definitions. 110 */ 111#define SUPERSECTION_SHIFT 24 112#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT) 113#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1)) 114 115/* 116 * Hardware page table definitions. 117 * 118 * + Level 1 descriptor (PMD) 119 * - common 120 */ 121#define PMD_TYPE_MASK (3 << 0) 122#define PMD_TYPE_FAULT (0 << 0) 123#define PMD_TYPE_TABLE (1 << 0) 124#define PMD_TYPE_SECT (2 << 0) 125#define PMD_BIT4 (1 << 4) 126#define PMD_DOMAIN(x) ((x) << 5) 127#define PMD_PROTECTION (1 << 9) /* v5 */ 128/* 129 * - section 130 */ 131#define PMD_SECT_BUFFERABLE (1 << 2) 132#define PMD_SECT_CACHEABLE (1 << 3) 133#define PMD_SECT_AP_WRITE (1 << 10) 134#define PMD_SECT_AP_READ (1 << 11) 135#define PMD_SECT_TEX(x) ((x) << 12) /* v5 */ 136#define PMD_SECT_APX (1 << 15) /* v6 */ 137#define PMD_SECT_S (1 << 16) /* v6 */ 138#define PMD_SECT_nG (1 << 17) /* v6 */ 139#define PMD_SECT_SUPER (1 << 18) /* v6 */ 140 141#define PMD_SECT_UNCACHED (0) 142#define PMD_SECT_BUFFERED (PMD_SECT_BUFFERABLE) 143#define PMD_SECT_WT (PMD_SECT_CACHEABLE) 144#define PMD_SECT_WB (PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE) 145#define PMD_SECT_MINICACHE (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE) 146#define PMD_SECT_WBWA (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE) 147 148/* 149 * - coarse table (not used) 150 */ 151 152/* 153 * + Level 2 descriptor (PTE) 154 * - common 155 */ 156#define PTE_TYPE_MASK (3 << 0) 157#define PTE_TYPE_FAULT (0 << 0) 158#define PTE_TYPE_LARGE (1 << 0) 159#define PTE_TYPE_SMALL (2 << 0) 160#define PTE_TYPE_EXT (3 << 0) /* v5 */ 161#define PTE_BUFFERABLE (1 << 2) 162#define PTE_CACHEABLE (1 << 3) 163 164/* 165 * - extended small page/tiny page 166 */ 167#define PTE_EXT_AP_MASK (3 << 4) 168#define PTE_EXT_AP_UNO_SRO (0 << 4) 169#define PTE_EXT_AP_UNO_SRW (1 << 4) 170#define PTE_EXT_AP_URO_SRW (2 << 4) 171#define PTE_EXT_AP_URW_SRW (3 << 4) 172#define PTE_EXT_TEX(x) ((x) << 6) /* v5 */ 173 174/* 175 * - small page 176 */ 177#define PTE_SMALL_AP_MASK (0xff << 4) 178#define PTE_SMALL_AP_UNO_SRO (0x00 << 4) 179#define PTE_SMALL_AP_UNO_SRW (0x55 << 4) 180#define PTE_SMALL_AP_URO_SRW (0xaa << 4) 181#define PTE_SMALL_AP_URW_SRW (0xff << 4) 182 183/* 184 * "Linux" PTE definitions. 185 * 186 * We keep two sets of PTEs - the hardware and the linux version. 187 * This allows greater flexibility in the way we map the Linux bits 188 * onto the hardware tables, and allows us to have YOUNG and DIRTY 189 * bits. 190 * 191 * The PTE table pointer refers to the hardware entries; the "Linux" 192 * entries are stored 1024 bytes below. 193 */ 194#define L_PTE_PRESENT (1 << 0) 195#define L_PTE_FILE (1 << 1) /* only when !PRESENT */ 196#define L_PTE_YOUNG (1 << 1) 197#define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */ 198#define L_PTE_CACHEABLE (1 << 3) /* matches PTE */ 199#define L_PTE_USER (1 << 4) 200#define L_PTE_WRITE (1 << 5) 201#define L_PTE_EXEC (1 << 6) 202#define L_PTE_DIRTY (1 << 7) 203 204#ifndef __ASSEMBLY__ 205 206#include <asm/domain.h> 207 208#define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_USER)) 209#define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_KERNEL)) 210 211/* 212 * The following macros handle the cache and bufferable bits... 213 */ 214#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE 215#define _L_PTE_READ L_PTE_USER | L_PTE_EXEC 216 217extern pgprot_t pgprot_kernel; 218 219#define PAGE_NONE __pgprot(_L_PTE_DEFAULT) 220#define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) 221#define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE) 222#define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) 223#define PAGE_KERNEL pgprot_kernel 224 225#endif /* __ASSEMBLY__ */ 226 227/* 228 * The table below defines the page protection levels that we insert into our 229 * Linux page table version. These get translated into the best that the 230 * architecture can perform. Note that on most ARM hardware: 231 * 1) We cannot do execute protection 232 * 2) If we could do execute protection, then read is implied 233 * 3) write implies read permissions 234 */ 235#define __P000 PAGE_NONE 236#define __P001 PAGE_READONLY 237#define __P010 PAGE_COPY 238#define __P011 PAGE_COPY 239#define __P100 PAGE_READONLY 240#define __P101 PAGE_READONLY 241#define __P110 PAGE_COPY 242#define __P111 PAGE_COPY 243 244#define __S000 PAGE_NONE 245#define __S001 PAGE_READONLY 246#define __S010 PAGE_SHARED 247#define __S011 PAGE_SHARED 248#define __S100 PAGE_READONLY 249#define __S101 PAGE_READONLY 250#define __S110 PAGE_SHARED 251#define __S111 PAGE_SHARED 252 253#ifndef __ASSEMBLY__ 254/* 255 * ZERO_PAGE is a global shared page that is always zero: used 256 * for zero-mapped memory areas etc.. 257 */ 258extern struct page *empty_zero_page; 259#define ZERO_PAGE(vaddr) (empty_zero_page) 260 261#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 262#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))) 263 264#define pte_none(pte) (!pte_val(pte)) 265#define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0)) 266#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 267#define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) 268#define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) 269#define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) 270#define pte_unmap(pte) do { } while (0) 271#define pte_unmap_nested(pte) do { } while (0) 272 273#define set_pte(ptep, pte) cpu_set_pte(ptep,pte) 274#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 275 276/* 277 * The following only work if pte_present() is true. 278 * Undefined behaviour if not.. 279 */ 280#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT) 281#define pte_read(pte) (pte_val(pte) & L_PTE_USER) 282#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE) 283#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC) 284#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY) 285#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG) 286 287/* 288 * The following only works if pte_present() is not true. 289 */ 290#define pte_file(pte) (pte_val(pte) & L_PTE_FILE) 291#define pte_to_pgoff(x) (pte_val(x) >> 2) 292#define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE) 293 294#define PTE_FILE_MAX_BITS 30 295 296#define PTE_BIT_FUNC(fn,op) \ 297static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } 298 299/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/ 300/*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/ 301PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE); 302PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE); 303PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC); 304PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC); 305PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY); 306PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY); 307PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG); 308PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG); 309 310/* 311 * Mark the prot value as uncacheable and unbufferable. 312 */ 313#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE)) 314#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE) 315 316#define pmd_none(pmd) (!pmd_val(pmd)) 317#define pmd_present(pmd) (pmd_val(pmd)) 318#define pmd_bad(pmd) (pmd_val(pmd) & 2) 319 320#define copy_pmd(pmdpd,pmdps) \ 321 do { \ 322 pmdpd[0] = pmdps[0]; \ 323 pmdpd[1] = pmdps[1]; \ 324 flush_pmd_entry(pmdpd); \ 325 } while (0) 326 327#define pmd_clear(pmdp) \ 328 do { \ 329 pmdp[0] = __pmd(0); \ 330 pmdp[1] = __pmd(0); \ 331 clean_pmd_entry(pmdp); \ 332 } while (0) 333 334static inline pte_t *pmd_page_kernel(pmd_t pmd) 335{ 336 unsigned long ptr; 337 338 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1); 339 ptr += PTRS_PER_PTE * sizeof(void *); 340 341 return __va(ptr); 342} 343 344#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd))) 345 346/* 347 * Permanent address of a page. We never have highmem, so this is trivial. 348 */ 349#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) 350 351/* 352 * Conversion functions: convert a page and protection to a page entry, 353 * and a page entry and page directory to the page they refer to. 354 */ 355#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 356 357/* 358 * The "pgd_xxx()" functions here are trivial for a folded two-level 359 * setup: the pgd is never bad, and a pmd always exists (as it's folded 360 * into the pgd entry) 361 */ 362#define pgd_none(pgd) (0) 363#define pgd_bad(pgd) (0) 364#define pgd_present(pgd) (1) 365#define pgd_clear(pgdp) do { } while (0) 366#define set_pgd(pgd,pgdp) do { } while (0) 367 368#define page_pte_prot(page,prot) mk_pte(page, prot) 369#define page_pte(page) mk_pte(page, __pgprot(0)) 370 371/* to find an entry in a page-table-directory */ 372#define pgd_index(addr) ((addr) >> PGDIR_SHIFT) 373 374#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr)) 375 376/* to find an entry in a kernel page-table-directory */ 377#define pgd_offset_k(addr) pgd_offset(&init_mm, addr) 378 379/* Find an entry in the second-level page table.. */ 380#define pmd_offset(dir, addr) ((pmd_t *)(dir)) 381 382/* Find an entry in the third-level page table.. */ 383#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 384 385static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 386{ 387 const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER; 388 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 389 return pte; 390} 391 392extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 393 394/* Encode and decode a swap entry. 395 * 396 * We support up to 32GB of swap on 4k machines 397 */ 398#define __swp_type(x) (((x).val >> 2) & 0x7f) 399#define __swp_offset(x) ((x).val >> 9) 400#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) }) 401#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 402#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 403 404/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 405/* FIXME: this is not correct */ 406#define kern_addr_valid(addr) (1) 407 408#include <asm-generic/pgtable.h> 409 410/* 411 * We provide our own arch_get_unmapped_area to cope with VIPT caches. 412 */ 413#define HAVE_ARCH_UNMAPPED_AREA 414 415/* 416 * remap a physical address `phys' of size `size' with page protection `prot' 417 * into virtual address `from' 418 */ 419#define io_remap_page_range(vma,from,phys,size,prot) \ 420 remap_pfn_range(vma, from, (phys) >> PAGE_SHIFT, size, prot) 421 422#define io_remap_pfn_range(vma,from,pfn,size,prot) \ 423 remap_pfn_range(vma, from, pfn, size, prot) 424 425#define MK_IOSPACE_PFN(space, pfn) (pfn) 426#define GET_IOSPACE(pfn) 0 427#define GET_PFN(pfn) (pfn) 428 429#define pgtable_cache_init() do { } while (0) 430 431#endif /* !__ASSEMBLY__ */ 432 433#endif /* _ASMARM_PGTABLE_H */