at v2.6.12-rc2 387 lines 12 kB view raw
1/* 2 * linux/include/asm-arm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/config.h> 14#include <linux/sched.h> 15#include <linux/mm.h> 16 17#include <asm/mman.h> 18#include <asm/glue.h> 19 20/* 21 * Cache Model 22 * =========== 23 */ 24#undef _CACHE 25#undef MULTI_CACHE 26 27#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710) 28# ifdef _CACHE 29# define MULTI_CACHE 1 30# else 31# define _CACHE v3 32# endif 33#endif 34 35#if defined(CONFIG_CPU_ARM720T) 36# ifdef _CACHE 37# define MULTI_CACHE 1 38# else 39# define _CACHE v4 40# endif 41#endif 42 43#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 44 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 45# define MULTI_CACHE 1 46#endif 47 48#if defined(CONFIG_CPU_ARM926T) 49# ifdef _CACHE 50# define MULTI_CACHE 1 51# else 52# define _CACHE arm926 53# endif 54#endif 55 56#if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100) 57# ifdef _CACHE 58# define MULTI_CACHE 1 59# else 60# define _CACHE v4wb 61# endif 62#endif 63 64#if defined(CONFIG_CPU_XSCALE) 65# ifdef _CACHE 66# define MULTI_CACHE 1 67# else 68# define _CACHE xscale 69# endif 70#endif 71 72#if defined(CONFIG_CPU_V6) 73//# ifdef _CACHE 74# define MULTI_CACHE 1 75//# else 76//# define _CACHE v6 77//# endif 78#endif 79 80#if !defined(_CACHE) && !defined(MULTI_CACHE) 81#error Unknown cache maintainence model 82#endif 83 84/* 85 * This flag is used to indicate that the page pointed to by a pte 86 * is dirty and requires cleaning before returning it to the user. 87 */ 88#define PG_dcache_dirty PG_arch_1 89 90/* 91 * MM Cache Management 92 * =================== 93 * 94 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 95 * implement these methods. 96 * 97 * Start addresses are inclusive and end addresses are exclusive; 98 * start addresses should be rounded down, end addresses up. 99 * 100 * See Documentation/cachetlb.txt for more information. 101 * Please note that the implementation of these, and the required 102 * effects are cache-type (VIVT/VIPT/PIPT) specific. 103 * 104 * flush_cache_kern_all() 105 * 106 * Unconditionally clean and invalidate the entire cache. 107 * 108 * flush_cache_user_mm(mm) 109 * 110 * Clean and invalidate all user space cache entries 111 * before a change of page tables. 112 * 113 * flush_cache_user_range(start, end, flags) 114 * 115 * Clean and invalidate a range of cache entries in the 116 * specified address space before a change of page tables. 117 * - start - user start address (inclusive, page aligned) 118 * - end - user end address (exclusive, page aligned) 119 * - flags - vma->vm_flags field 120 * 121 * coherent_kern_range(start, end) 122 * 123 * Ensure coherency between the Icache and the Dcache in the 124 * region described by start, end. If you have non-snooping 125 * Harvard caches, you need to implement this function. 126 * - start - virtual start address 127 * - end - virtual end address 128 * 129 * DMA Cache Coherency 130 * =================== 131 * 132 * dma_inv_range(start, end) 133 * 134 * Invalidate (discard) the specified virtual address range. 135 * May not write back any entries. If 'start' or 'end' 136 * are not cache line aligned, those lines must be written 137 * back. 138 * - start - virtual start address 139 * - end - virtual end address 140 * 141 * dma_clean_range(start, end) 142 * 143 * Clean (write back) the specified virtual address range. 144 * - start - virtual start address 145 * - end - virtual end address 146 * 147 * dma_flush_range(start, end) 148 * 149 * Clean and invalidate the specified virtual address range. 150 * - start - virtual start address 151 * - end - virtual end address 152 */ 153 154struct cpu_cache_fns { 155 void (*flush_kern_all)(void); 156 void (*flush_user_all)(void); 157 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 158 159 void (*coherent_kern_range)(unsigned long, unsigned long); 160 void (*coherent_user_range)(unsigned long, unsigned long); 161 void (*flush_kern_dcache_page)(void *); 162 163 void (*dma_inv_range)(unsigned long, unsigned long); 164 void (*dma_clean_range)(unsigned long, unsigned long); 165 void (*dma_flush_range)(unsigned long, unsigned long); 166}; 167 168/* 169 * Select the calling method 170 */ 171#ifdef MULTI_CACHE 172 173extern struct cpu_cache_fns cpu_cache; 174 175#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 176#define __cpuc_flush_user_all cpu_cache.flush_user_all 177#define __cpuc_flush_user_range cpu_cache.flush_user_range 178#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 179#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 180#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page 181 182/* 183 * These are private to the dma-mapping API. Do not use directly. 184 * Their sole purpose is to ensure that data held in the cache 185 * is visible to DMA, or data written by DMA to system memory is 186 * visible to the CPU. 187 */ 188#define dmac_inv_range cpu_cache.dma_inv_range 189#define dmac_clean_range cpu_cache.dma_clean_range 190#define dmac_flush_range cpu_cache.dma_flush_range 191 192#else 193 194#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 195#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 196#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 197#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 198#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 199#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) 200 201extern void __cpuc_flush_kern_all(void); 202extern void __cpuc_flush_user_all(void); 203extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 204extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 205extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 206extern void __cpuc_flush_dcache_page(void *); 207 208/* 209 * These are private to the dma-mapping API. Do not use directly. 210 * Their sole purpose is to ensure that data held in the cache 211 * is visible to DMA, or data written by DMA to system memory is 212 * visible to the CPU. 213 */ 214#define dmac_inv_range __glue(_CACHE,_dma_inv_range) 215#define dmac_clean_range __glue(_CACHE,_dma_clean_range) 216#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 217 218extern void dmac_inv_range(unsigned long, unsigned long); 219extern void dmac_clean_range(unsigned long, unsigned long); 220extern void dmac_flush_range(unsigned long, unsigned long); 221 222#endif 223 224/* 225 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 226 * vmalloc, ioremap etc) in kernel space for pages. Since the 227 * direct-mappings of these pages may contain cached data, we need 228 * to do a full cache flush to ensure that writebacks don't corrupt 229 * data placed into these pages via the new mappings. 230 */ 231#define flush_cache_vmap(start, end) flush_cache_all() 232#define flush_cache_vunmap(start, end) flush_cache_all() 233 234/* 235 * Copy user data from/to a page which is mapped into a different 236 * processes address space. Really, we want to allow our "user 237 * space" model to handle this. 238 */ 239#define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 240 do { \ 241 flush_cache_page(vma, vaddr, page_to_pfn(page));\ 242 memcpy(dst, src, len); \ 243 flush_dcache_page(page); \ 244 } while (0) 245 246#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 247 do { \ 248 flush_cache_page(vma, vaddr, page_to_pfn(page));\ 249 memcpy(dst, src, len); \ 250 } while (0) 251 252/* 253 * Convert calls to our calling convention. 254 */ 255#define flush_cache_all() __cpuc_flush_kern_all() 256 257static inline void flush_cache_mm(struct mm_struct *mm) 258{ 259 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) 260 __cpuc_flush_user_all(); 261} 262 263static inline void 264flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 265{ 266 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) 267 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 268 vma->vm_flags); 269} 270 271static inline void 272flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 273{ 274 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 275 unsigned long addr = user_addr & PAGE_MASK; 276 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 277 } 278} 279 280/* 281 * flush_cache_user_range is used when we want to ensure that the 282 * Harvard caches are synchronised for the user space address range. 283 * This is used for the ARM private sys_cacheflush system call. 284 */ 285#define flush_cache_user_range(vma,start,end) \ 286 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 287 288/* 289 * Perform necessary cache operations to ensure that data previously 290 * stored within this range of addresses can be executed by the CPU. 291 */ 292#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 293 294/* 295 * Perform necessary cache operations to ensure that the TLB will 296 * see data written in the specified area. 297 */ 298#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 299 300/* 301 * flush_dcache_page is used when the kernel has written to the page 302 * cache page at virtual address page->virtual. 303 * 304 * If this page isn't mapped (ie, page_mapping == NULL), or it might 305 * have userspace mappings, then we _must_ always clean + invalidate 306 * the dcache entries associated with the kernel mapping. 307 * 308 * Otherwise we can defer the operation, and clean the cache when we are 309 * about to change to user space. This is the same method as used on SPARC64. 310 * See update_mmu_cache for the user space part. 311 */ 312extern void flush_dcache_page(struct page *); 313 314#define flush_dcache_mmap_lock(mapping) \ 315 write_lock_irq(&(mapping)->tree_lock) 316#define flush_dcache_mmap_unlock(mapping) \ 317 write_unlock_irq(&(mapping)->tree_lock) 318 319#define flush_icache_user_range(vma,page,addr,len) \ 320 flush_dcache_page(page) 321 322/* 323 * We don't appear to need to do anything here. In fact, if we did, we'd 324 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 325 */ 326#define flush_icache_page(vma,page) do { } while (0) 327 328#define __cacheid_present(val) (val != read_cpuid(CPUID_ID)) 329#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25)) 330#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25)) 331#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25)) 332#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23)) 333 334#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT) 335 336#define cache_is_vivt() 1 337#define cache_is_vipt() 0 338#define cache_is_vipt_nonaliasing() 0 339#define cache_is_vipt_aliasing() 0 340 341#elif defined(CONFIG_CPU_CACHE_VIPT) 342 343#define cache_is_vivt() 0 344#define cache_is_vipt() 1 345#define cache_is_vipt_nonaliasing() \ 346 ({ \ 347 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 348 __cacheid_vipt_nonaliasing(__val); \ 349 }) 350 351#define cache_is_vipt_aliasing() \ 352 ({ \ 353 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 354 __cacheid_vipt_aliasing(__val); \ 355 }) 356 357#else 358 359#define cache_is_vivt() \ 360 ({ \ 361 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 362 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \ 363 }) 364 365#define cache_is_vipt() \ 366 ({ \ 367 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 368 __cacheid_present(__val) && __cacheid_vipt(__val); \ 369 }) 370 371#define cache_is_vipt_nonaliasing() \ 372 ({ \ 373 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 374 __cacheid_present(__val) && \ 375 __cacheid_vipt_nonaliasing(__val); \ 376 }) 377 378#define cache_is_vipt_aliasing() \ 379 ({ \ 380 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 381 __cacheid_present(__val) && \ 382 __cacheid_vipt_aliasing(__val); \ 383 }) 384 385#endif 386 387#endif