at v2.6.12-rc2 772 lines 21 kB view raw
1/* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 akpm@zip.com.au 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15#include <linux/kernel.h> 16#include <linux/module.h> 17#include <linux/mm.h> 18#include <linux/kdev_t.h> 19#include <linux/bio.h> 20#include <linux/fs.h> 21#include <linux/buffer_head.h> 22#include <linux/blkdev.h> 23#include <linux/highmem.h> 24#include <linux/prefetch.h> 25#include <linux/mpage.h> 26#include <linux/writeback.h> 27#include <linux/backing-dev.h> 28#include <linux/pagevec.h> 29 30/* 31 * I/O completion handler for multipage BIOs. 32 * 33 * The mpage code never puts partial pages into a BIO (except for end-of-file). 34 * If a page does not map to a contiguous run of blocks then it simply falls 35 * back to block_read_full_page(). 36 * 37 * Why is this? If a page's completion depends on a number of different BIOs 38 * which can complete in any order (or at the same time) then determining the 39 * status of that page is hard. See end_buffer_async_read() for the details. 40 * There is no point in duplicating all that complexity. 41 */ 42static int mpage_end_io_read(struct bio *bio, unsigned int bytes_done, int err) 43{ 44 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 45 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 46 47 if (bio->bi_size) 48 return 1; 49 50 do { 51 struct page *page = bvec->bv_page; 52 53 if (--bvec >= bio->bi_io_vec) 54 prefetchw(&bvec->bv_page->flags); 55 56 if (uptodate) { 57 SetPageUptodate(page); 58 } else { 59 ClearPageUptodate(page); 60 SetPageError(page); 61 } 62 unlock_page(page); 63 } while (bvec >= bio->bi_io_vec); 64 bio_put(bio); 65 return 0; 66} 67 68static int mpage_end_io_write(struct bio *bio, unsigned int bytes_done, int err) 69{ 70 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 71 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 72 73 if (bio->bi_size) 74 return 1; 75 76 do { 77 struct page *page = bvec->bv_page; 78 79 if (--bvec >= bio->bi_io_vec) 80 prefetchw(&bvec->bv_page->flags); 81 82 if (!uptodate) 83 SetPageError(page); 84 end_page_writeback(page); 85 } while (bvec >= bio->bi_io_vec); 86 bio_put(bio); 87 return 0; 88} 89 90struct bio *mpage_bio_submit(int rw, struct bio *bio) 91{ 92 bio->bi_end_io = mpage_end_io_read; 93 if (rw == WRITE) 94 bio->bi_end_io = mpage_end_io_write; 95 submit_bio(rw, bio); 96 return NULL; 97} 98 99static struct bio * 100mpage_alloc(struct block_device *bdev, 101 sector_t first_sector, int nr_vecs, 102 unsigned int __nocast gfp_flags) 103{ 104 struct bio *bio; 105 106 bio = bio_alloc(gfp_flags, nr_vecs); 107 108 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 109 while (!bio && (nr_vecs /= 2)) 110 bio = bio_alloc(gfp_flags, nr_vecs); 111 } 112 113 if (bio) { 114 bio->bi_bdev = bdev; 115 bio->bi_sector = first_sector; 116 } 117 return bio; 118} 119 120/* 121 * support function for mpage_readpages. The fs supplied get_block might 122 * return an up to date buffer. This is used to map that buffer into 123 * the page, which allows readpage to avoid triggering a duplicate call 124 * to get_block. 125 * 126 * The idea is to avoid adding buffers to pages that don't already have 127 * them. So when the buffer is up to date and the page size == block size, 128 * this marks the page up to date instead of adding new buffers. 129 */ 130static void 131map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 132{ 133 struct inode *inode = page->mapping->host; 134 struct buffer_head *page_bh, *head; 135 int block = 0; 136 137 if (!page_has_buffers(page)) { 138 /* 139 * don't make any buffers if there is only one buffer on 140 * the page and the page just needs to be set up to date 141 */ 142 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 143 buffer_uptodate(bh)) { 144 SetPageUptodate(page); 145 return; 146 } 147 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 148 } 149 head = page_buffers(page); 150 page_bh = head; 151 do { 152 if (block == page_block) { 153 page_bh->b_state = bh->b_state; 154 page_bh->b_bdev = bh->b_bdev; 155 page_bh->b_blocknr = bh->b_blocknr; 156 break; 157 } 158 page_bh = page_bh->b_this_page; 159 block++; 160 } while (page_bh != head); 161} 162 163/** 164 * mpage_readpages - populate an address space with some pages, and 165 * start reads against them. 166 * 167 * @mapping: the address_space 168 * @pages: The address of a list_head which contains the target pages. These 169 * pages have their ->index populated and are otherwise uninitialised. 170 * 171 * The page at @pages->prev has the lowest file offset, and reads should be 172 * issued in @pages->prev to @pages->next order. 173 * 174 * @nr_pages: The number of pages at *@pages 175 * @get_block: The filesystem's block mapper function. 176 * 177 * This function walks the pages and the blocks within each page, building and 178 * emitting large BIOs. 179 * 180 * If anything unusual happens, such as: 181 * 182 * - encountering a page which has buffers 183 * - encountering a page which has a non-hole after a hole 184 * - encountering a page with non-contiguous blocks 185 * 186 * then this code just gives up and calls the buffer_head-based read function. 187 * It does handle a page which has holes at the end - that is a common case: 188 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. 189 * 190 * BH_Boundary explanation: 191 * 192 * There is a problem. The mpage read code assembles several pages, gets all 193 * their disk mappings, and then submits them all. That's fine, but obtaining 194 * the disk mappings may require I/O. Reads of indirect blocks, for example. 195 * 196 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 197 * submitted in the following order: 198 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 199 * because the indirect block has to be read to get the mappings of blocks 200 * 13,14,15,16. Obviously, this impacts performance. 201 * 202 * So what we do it to allow the filesystem's get_block() function to set 203 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 204 * after this one will require I/O against a block which is probably close to 205 * this one. So you should push what I/O you have currently accumulated. 206 * 207 * This all causes the disk requests to be issued in the correct order. 208 */ 209static struct bio * 210do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 211 sector_t *last_block_in_bio, get_block_t get_block) 212{ 213 struct inode *inode = page->mapping->host; 214 const unsigned blkbits = inode->i_blkbits; 215 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 216 const unsigned blocksize = 1 << blkbits; 217 sector_t block_in_file; 218 sector_t last_block; 219 sector_t blocks[MAX_BUF_PER_PAGE]; 220 unsigned page_block; 221 unsigned first_hole = blocks_per_page; 222 struct block_device *bdev = NULL; 223 struct buffer_head bh; 224 int length; 225 int fully_mapped = 1; 226 227 if (page_has_buffers(page)) 228 goto confused; 229 230 block_in_file = page->index << (PAGE_CACHE_SHIFT - blkbits); 231 last_block = (i_size_read(inode) + blocksize - 1) >> blkbits; 232 233 bh.b_page = page; 234 for (page_block = 0; page_block < blocks_per_page; 235 page_block++, block_in_file++) { 236 bh.b_state = 0; 237 if (block_in_file < last_block) { 238 if (get_block(inode, block_in_file, &bh, 0)) 239 goto confused; 240 } 241 242 if (!buffer_mapped(&bh)) { 243 fully_mapped = 0; 244 if (first_hole == blocks_per_page) 245 first_hole = page_block; 246 continue; 247 } 248 249 /* some filesystems will copy data into the page during 250 * the get_block call, in which case we don't want to 251 * read it again. map_buffer_to_page copies the data 252 * we just collected from get_block into the page's buffers 253 * so readpage doesn't have to repeat the get_block call 254 */ 255 if (buffer_uptodate(&bh)) { 256 map_buffer_to_page(page, &bh, page_block); 257 goto confused; 258 } 259 260 if (first_hole != blocks_per_page) 261 goto confused; /* hole -> non-hole */ 262 263 /* Contiguous blocks? */ 264 if (page_block && blocks[page_block-1] != bh.b_blocknr-1) 265 goto confused; 266 blocks[page_block] = bh.b_blocknr; 267 bdev = bh.b_bdev; 268 } 269 270 if (first_hole != blocks_per_page) { 271 char *kaddr = kmap_atomic(page, KM_USER0); 272 memset(kaddr + (first_hole << blkbits), 0, 273 PAGE_CACHE_SIZE - (first_hole << blkbits)); 274 flush_dcache_page(page); 275 kunmap_atomic(kaddr, KM_USER0); 276 if (first_hole == 0) { 277 SetPageUptodate(page); 278 unlock_page(page); 279 goto out; 280 } 281 } else if (fully_mapped) { 282 SetPageMappedToDisk(page); 283 } 284 285 /* 286 * This page will go to BIO. Do we need to send this BIO off first? 287 */ 288 if (bio && (*last_block_in_bio != blocks[0] - 1)) 289 bio = mpage_bio_submit(READ, bio); 290 291alloc_new: 292 if (bio == NULL) { 293 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 294 min_t(int, nr_pages, bio_get_nr_vecs(bdev)), 295 GFP_KERNEL); 296 if (bio == NULL) 297 goto confused; 298 } 299 300 length = first_hole << blkbits; 301 if (bio_add_page(bio, page, length, 0) < length) { 302 bio = mpage_bio_submit(READ, bio); 303 goto alloc_new; 304 } 305 306 if (buffer_boundary(&bh) || (first_hole != blocks_per_page)) 307 bio = mpage_bio_submit(READ, bio); 308 else 309 *last_block_in_bio = blocks[blocks_per_page - 1]; 310out: 311 return bio; 312 313confused: 314 if (bio) 315 bio = mpage_bio_submit(READ, bio); 316 if (!PageUptodate(page)) 317 block_read_full_page(page, get_block); 318 else 319 unlock_page(page); 320 goto out; 321} 322 323int 324mpage_readpages(struct address_space *mapping, struct list_head *pages, 325 unsigned nr_pages, get_block_t get_block) 326{ 327 struct bio *bio = NULL; 328 unsigned page_idx; 329 sector_t last_block_in_bio = 0; 330 struct pagevec lru_pvec; 331 332 pagevec_init(&lru_pvec, 0); 333 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 334 struct page *page = list_entry(pages->prev, struct page, lru); 335 336 prefetchw(&page->flags); 337 list_del(&page->lru); 338 if (!add_to_page_cache(page, mapping, 339 page->index, GFP_KERNEL)) { 340 bio = do_mpage_readpage(bio, page, 341 nr_pages - page_idx, 342 &last_block_in_bio, get_block); 343 if (!pagevec_add(&lru_pvec, page)) 344 __pagevec_lru_add(&lru_pvec); 345 } else { 346 page_cache_release(page); 347 } 348 } 349 pagevec_lru_add(&lru_pvec); 350 BUG_ON(!list_empty(pages)); 351 if (bio) 352 mpage_bio_submit(READ, bio); 353 return 0; 354} 355EXPORT_SYMBOL(mpage_readpages); 356 357/* 358 * This isn't called much at all 359 */ 360int mpage_readpage(struct page *page, get_block_t get_block) 361{ 362 struct bio *bio = NULL; 363 sector_t last_block_in_bio = 0; 364 365 bio = do_mpage_readpage(bio, page, 1, 366 &last_block_in_bio, get_block); 367 if (bio) 368 mpage_bio_submit(READ, bio); 369 return 0; 370} 371EXPORT_SYMBOL(mpage_readpage); 372 373/* 374 * Writing is not so simple. 375 * 376 * If the page has buffers then they will be used for obtaining the disk 377 * mapping. We only support pages which are fully mapped-and-dirty, with a 378 * special case for pages which are unmapped at the end: end-of-file. 379 * 380 * If the page has no buffers (preferred) then the page is mapped here. 381 * 382 * If all blocks are found to be contiguous then the page can go into the 383 * BIO. Otherwise fall back to the mapping's writepage(). 384 * 385 * FIXME: This code wants an estimate of how many pages are still to be 386 * written, so it can intelligently allocate a suitably-sized BIO. For now, 387 * just allocate full-size (16-page) BIOs. 388 */ 389static struct bio * 390__mpage_writepage(struct bio *bio, struct page *page, get_block_t get_block, 391 sector_t *last_block_in_bio, int *ret, struct writeback_control *wbc, 392 writepage_t writepage_fn) 393{ 394 struct address_space *mapping = page->mapping; 395 struct inode *inode = page->mapping->host; 396 const unsigned blkbits = inode->i_blkbits; 397 unsigned long end_index; 398 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 399 sector_t last_block; 400 sector_t block_in_file; 401 sector_t blocks[MAX_BUF_PER_PAGE]; 402 unsigned page_block; 403 unsigned first_unmapped = blocks_per_page; 404 struct block_device *bdev = NULL; 405 int boundary = 0; 406 sector_t boundary_block = 0; 407 struct block_device *boundary_bdev = NULL; 408 int length; 409 struct buffer_head map_bh; 410 loff_t i_size = i_size_read(inode); 411 412 if (page_has_buffers(page)) { 413 struct buffer_head *head = page_buffers(page); 414 struct buffer_head *bh = head; 415 416 /* If they're all mapped and dirty, do it */ 417 page_block = 0; 418 do { 419 BUG_ON(buffer_locked(bh)); 420 if (!buffer_mapped(bh)) { 421 /* 422 * unmapped dirty buffers are created by 423 * __set_page_dirty_buffers -> mmapped data 424 */ 425 if (buffer_dirty(bh)) 426 goto confused; 427 if (first_unmapped == blocks_per_page) 428 first_unmapped = page_block; 429 continue; 430 } 431 432 if (first_unmapped != blocks_per_page) 433 goto confused; /* hole -> non-hole */ 434 435 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 436 goto confused; 437 if (page_block) { 438 if (bh->b_blocknr != blocks[page_block-1] + 1) 439 goto confused; 440 } 441 blocks[page_block++] = bh->b_blocknr; 442 boundary = buffer_boundary(bh); 443 if (boundary) { 444 boundary_block = bh->b_blocknr; 445 boundary_bdev = bh->b_bdev; 446 } 447 bdev = bh->b_bdev; 448 } while ((bh = bh->b_this_page) != head); 449 450 if (first_unmapped) 451 goto page_is_mapped; 452 453 /* 454 * Page has buffers, but they are all unmapped. The page was 455 * created by pagein or read over a hole which was handled by 456 * block_read_full_page(). If this address_space is also 457 * using mpage_readpages then this can rarely happen. 458 */ 459 goto confused; 460 } 461 462 /* 463 * The page has no buffers: map it to disk 464 */ 465 BUG_ON(!PageUptodate(page)); 466 block_in_file = page->index << (PAGE_CACHE_SHIFT - blkbits); 467 last_block = (i_size - 1) >> blkbits; 468 map_bh.b_page = page; 469 for (page_block = 0; page_block < blocks_per_page; ) { 470 471 map_bh.b_state = 0; 472 if (get_block(inode, block_in_file, &map_bh, 1)) 473 goto confused; 474 if (buffer_new(&map_bh)) 475 unmap_underlying_metadata(map_bh.b_bdev, 476 map_bh.b_blocknr); 477 if (buffer_boundary(&map_bh)) { 478 boundary_block = map_bh.b_blocknr; 479 boundary_bdev = map_bh.b_bdev; 480 } 481 if (page_block) { 482 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 483 goto confused; 484 } 485 blocks[page_block++] = map_bh.b_blocknr; 486 boundary = buffer_boundary(&map_bh); 487 bdev = map_bh.b_bdev; 488 if (block_in_file == last_block) 489 break; 490 block_in_file++; 491 } 492 BUG_ON(page_block == 0); 493 494 first_unmapped = page_block; 495 496page_is_mapped: 497 end_index = i_size >> PAGE_CACHE_SHIFT; 498 if (page->index >= end_index) { 499 /* 500 * The page straddles i_size. It must be zeroed out on each 501 * and every writepage invokation because it may be mmapped. 502 * "A file is mapped in multiples of the page size. For a file 503 * that is not a multiple of the page size, the remaining memory 504 * is zeroed when mapped, and writes to that region are not 505 * written out to the file." 506 */ 507 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); 508 char *kaddr; 509 510 if (page->index > end_index || !offset) 511 goto confused; 512 kaddr = kmap_atomic(page, KM_USER0); 513 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 514 flush_dcache_page(page); 515 kunmap_atomic(kaddr, KM_USER0); 516 } 517 518 /* 519 * This page will go to BIO. Do we need to send this BIO off first? 520 */ 521 if (bio && *last_block_in_bio != blocks[0] - 1) 522 bio = mpage_bio_submit(WRITE, bio); 523 524alloc_new: 525 if (bio == NULL) { 526 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 527 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); 528 if (bio == NULL) 529 goto confused; 530 } 531 532 /* 533 * Must try to add the page before marking the buffer clean or 534 * the confused fail path above (OOM) will be very confused when 535 * it finds all bh marked clean (i.e. it will not write anything) 536 */ 537 length = first_unmapped << blkbits; 538 if (bio_add_page(bio, page, length, 0) < length) { 539 bio = mpage_bio_submit(WRITE, bio); 540 goto alloc_new; 541 } 542 543 /* 544 * OK, we have our BIO, so we can now mark the buffers clean. Make 545 * sure to only clean buffers which we know we'll be writing. 546 */ 547 if (page_has_buffers(page)) { 548 struct buffer_head *head = page_buffers(page); 549 struct buffer_head *bh = head; 550 unsigned buffer_counter = 0; 551 552 do { 553 if (buffer_counter++ == first_unmapped) 554 break; 555 clear_buffer_dirty(bh); 556 bh = bh->b_this_page; 557 } while (bh != head); 558 559 /* 560 * we cannot drop the bh if the page is not uptodate 561 * or a concurrent readpage would fail to serialize with the bh 562 * and it would read from disk before we reach the platter. 563 */ 564 if (buffer_heads_over_limit && PageUptodate(page)) 565 try_to_free_buffers(page); 566 } 567 568 BUG_ON(PageWriteback(page)); 569 set_page_writeback(page); 570 unlock_page(page); 571 if (boundary || (first_unmapped != blocks_per_page)) { 572 bio = mpage_bio_submit(WRITE, bio); 573 if (boundary_block) { 574 write_boundary_block(boundary_bdev, 575 boundary_block, 1 << blkbits); 576 } 577 } else { 578 *last_block_in_bio = blocks[blocks_per_page - 1]; 579 } 580 goto out; 581 582confused: 583 if (bio) 584 bio = mpage_bio_submit(WRITE, bio); 585 586 if (writepage_fn) { 587 *ret = (*writepage_fn)(page, wbc); 588 } else { 589 *ret = -EAGAIN; 590 goto out; 591 } 592 /* 593 * The caller has a ref on the inode, so *mapping is stable 594 */ 595 if (*ret) { 596 if (*ret == -ENOSPC) 597 set_bit(AS_ENOSPC, &mapping->flags); 598 else 599 set_bit(AS_EIO, &mapping->flags); 600 } 601out: 602 return bio; 603} 604 605/** 606 * mpage_writepages - walk the list of dirty pages of the given 607 * address space and writepage() all of them. 608 * 609 * @mapping: address space structure to write 610 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 611 * @get_block: the filesystem's block mapper function. 612 * If this is NULL then use a_ops->writepage. Otherwise, go 613 * direct-to-BIO. 614 * 615 * This is a library function, which implements the writepages() 616 * address_space_operation. 617 * 618 * If a page is already under I/O, generic_writepages() skips it, even 619 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 620 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 621 * and msync() need to guarantee that all the data which was dirty at the time 622 * the call was made get new I/O started against them. If wbc->sync_mode is 623 * WB_SYNC_ALL then we were called for data integrity and we must wait for 624 * existing IO to complete. 625 */ 626int 627mpage_writepages(struct address_space *mapping, 628 struct writeback_control *wbc, get_block_t get_block) 629{ 630 return __mpage_writepages(mapping, wbc, get_block, 631 mapping->a_ops->writepage); 632} 633 634int 635__mpage_writepages(struct address_space *mapping, 636 struct writeback_control *wbc, get_block_t get_block, 637 writepage_t writepage_fn) 638{ 639 struct backing_dev_info *bdi = mapping->backing_dev_info; 640 struct bio *bio = NULL; 641 sector_t last_block_in_bio = 0; 642 int ret = 0; 643 int done = 0; 644 int (*writepage)(struct page *page, struct writeback_control *wbc); 645 struct pagevec pvec; 646 int nr_pages; 647 pgoff_t index; 648 pgoff_t end = -1; /* Inclusive */ 649 int scanned = 0; 650 int is_range = 0; 651 652 if (wbc->nonblocking && bdi_write_congested(bdi)) { 653 wbc->encountered_congestion = 1; 654 return 0; 655 } 656 657 writepage = NULL; 658 if (get_block == NULL) 659 writepage = mapping->a_ops->writepage; 660 661 pagevec_init(&pvec, 0); 662 if (wbc->sync_mode == WB_SYNC_NONE) { 663 index = mapping->writeback_index; /* Start from prev offset */ 664 } else { 665 index = 0; /* whole-file sweep */ 666 scanned = 1; 667 } 668 if (wbc->start || wbc->end) { 669 index = wbc->start >> PAGE_CACHE_SHIFT; 670 end = wbc->end >> PAGE_CACHE_SHIFT; 671 is_range = 1; 672 scanned = 1; 673 } 674retry: 675 while (!done && (index <= end) && 676 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 677 PAGECACHE_TAG_DIRTY, 678 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 679 unsigned i; 680 681 scanned = 1; 682 for (i = 0; i < nr_pages; i++) { 683 struct page *page = pvec.pages[i]; 684 685 /* 686 * At this point we hold neither mapping->tree_lock nor 687 * lock on the page itself: the page may be truncated or 688 * invalidated (changing page->mapping to NULL), or even 689 * swizzled back from swapper_space to tmpfs file 690 * mapping 691 */ 692 693 lock_page(page); 694 695 if (unlikely(page->mapping != mapping)) { 696 unlock_page(page); 697 continue; 698 } 699 700 if (unlikely(is_range) && page->index > end) { 701 done = 1; 702 unlock_page(page); 703 continue; 704 } 705 706 if (wbc->sync_mode != WB_SYNC_NONE) 707 wait_on_page_writeback(page); 708 709 if (PageWriteback(page) || 710 !clear_page_dirty_for_io(page)) { 711 unlock_page(page); 712 continue; 713 } 714 715 if (writepage) { 716 ret = (*writepage)(page, wbc); 717 if (ret) { 718 if (ret == -ENOSPC) 719 set_bit(AS_ENOSPC, 720 &mapping->flags); 721 else 722 set_bit(AS_EIO, 723 &mapping->flags); 724 } 725 } else { 726 bio = __mpage_writepage(bio, page, get_block, 727 &last_block_in_bio, &ret, wbc, 728 writepage_fn); 729 } 730 if (ret || (--(wbc->nr_to_write) <= 0)) 731 done = 1; 732 if (wbc->nonblocking && bdi_write_congested(bdi)) { 733 wbc->encountered_congestion = 1; 734 done = 1; 735 } 736 } 737 pagevec_release(&pvec); 738 cond_resched(); 739 } 740 if (!scanned && !done) { 741 /* 742 * We hit the last page and there is more work to be done: wrap 743 * back to the start of the file 744 */ 745 scanned = 1; 746 index = 0; 747 goto retry; 748 } 749 if (!is_range) 750 mapping->writeback_index = index; 751 if (bio) 752 mpage_bio_submit(WRITE, bio); 753 return ret; 754} 755EXPORT_SYMBOL(mpage_writepages); 756EXPORT_SYMBOL(__mpage_writepages); 757 758int mpage_writepage(struct page *page, get_block_t get_block, 759 struct writeback_control *wbc) 760{ 761 int ret = 0; 762 struct bio *bio; 763 sector_t last_block_in_bio = 0; 764 765 bio = __mpage_writepage(NULL, page, get_block, 766 &last_block_in_bio, &ret, wbc, NULL); 767 if (bio) 768 mpage_bio_submit(WRITE, bio); 769 770 return ret; 771} 772EXPORT_SYMBOL(mpage_writepage);