at v2.6.12-rc2 2746 lines 67 kB view raw
1/* 2 * Generic PPP layer for Linux. 3 * 4 * Copyright 1999-2002 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * The generic PPP layer handles the PPP network interfaces, the 12 * /dev/ppp device, packet and VJ compression, and multilink. 13 * It talks to PPP `channels' via the interface defined in 14 * include/linux/ppp_channel.h. Channels provide the basic means for 15 * sending and receiving PPP frames on some kind of communications 16 * channel. 17 * 18 * Part of the code in this driver was inspired by the old async-only 19 * PPP driver, written by Michael Callahan and Al Longyear, and 20 * subsequently hacked by Paul Mackerras. 21 * 22 * ==FILEVERSION 20041108== 23 */ 24 25#include <linux/config.h> 26#include <linux/module.h> 27#include <linux/kernel.h> 28#include <linux/kmod.h> 29#include <linux/init.h> 30#include <linux/list.h> 31#include <linux/devfs_fs_kernel.h> 32#include <linux/netdevice.h> 33#include <linux/poll.h> 34#include <linux/ppp_defs.h> 35#include <linux/filter.h> 36#include <linux/if_ppp.h> 37#include <linux/ppp_channel.h> 38#include <linux/ppp-comp.h> 39#include <linux/skbuff.h> 40#include <linux/rtnetlink.h> 41#include <linux/if_arp.h> 42#include <linux/ip.h> 43#include <linux/tcp.h> 44#include <linux/spinlock.h> 45#include <linux/smp_lock.h> 46#include <linux/rwsem.h> 47#include <linux/stddef.h> 48#include <linux/device.h> 49#include <net/slhc_vj.h> 50#include <asm/atomic.h> 51 52#define PPP_VERSION "2.4.2" 53 54/* 55 * Network protocols we support. 56 */ 57#define NP_IP 0 /* Internet Protocol V4 */ 58#define NP_IPV6 1 /* Internet Protocol V6 */ 59#define NP_IPX 2 /* IPX protocol */ 60#define NP_AT 3 /* Appletalk protocol */ 61#define NP_MPLS_UC 4 /* MPLS unicast */ 62#define NP_MPLS_MC 5 /* MPLS multicast */ 63#define NUM_NP 6 /* Number of NPs. */ 64 65#define MPHDRLEN 6 /* multilink protocol header length */ 66#define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ 67#define MIN_FRAG_SIZE 64 68 69/* 70 * An instance of /dev/ppp can be associated with either a ppp 71 * interface unit or a ppp channel. In both cases, file->private_data 72 * points to one of these. 73 */ 74struct ppp_file { 75 enum { 76 INTERFACE=1, CHANNEL 77 } kind; 78 struct sk_buff_head xq; /* pppd transmit queue */ 79 struct sk_buff_head rq; /* receive queue for pppd */ 80 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ 81 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */ 82 int hdrlen; /* space to leave for headers */ 83 int index; /* interface unit / channel number */ 84 int dead; /* unit/channel has been shut down */ 85}; 86 87#define PF_TO_X(pf, X) ((X *)((char *)(pf) - offsetof(X, file))) 88 89#define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) 90#define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) 91 92#define ROUNDUP(n, x) (((n) + (x) - 1) / (x)) 93 94/* 95 * Data structure describing one ppp unit. 96 * A ppp unit corresponds to a ppp network interface device 97 * and represents a multilink bundle. 98 * It can have 0 or more ppp channels connected to it. 99 */ 100struct ppp { 101 struct ppp_file file; /* stuff for read/write/poll 0 */ 102 struct file *owner; /* file that owns this unit 48 */ 103 struct list_head channels; /* list of attached channels 4c */ 104 int n_channels; /* how many channels are attached 54 */ 105 spinlock_t rlock; /* lock for receive side 58 */ 106 spinlock_t wlock; /* lock for transmit side 5c */ 107 int mru; /* max receive unit 60 */ 108 unsigned int flags; /* control bits 64 */ 109 unsigned int xstate; /* transmit state bits 68 */ 110 unsigned int rstate; /* receive state bits 6c */ 111 int debug; /* debug flags 70 */ 112 struct slcompress *vj; /* state for VJ header compression */ 113 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ 114 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ 115 struct compressor *xcomp; /* transmit packet compressor 8c */ 116 void *xc_state; /* its internal state 90 */ 117 struct compressor *rcomp; /* receive decompressor 94 */ 118 void *rc_state; /* its internal state 98 */ 119 unsigned long last_xmit; /* jiffies when last pkt sent 9c */ 120 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ 121 struct net_device *dev; /* network interface device a4 */ 122#ifdef CONFIG_PPP_MULTILINK 123 int nxchan; /* next channel to send something on */ 124 u32 nxseq; /* next sequence number to send */ 125 int mrru; /* MP: max reconst. receive unit */ 126 u32 nextseq; /* MP: seq no of next packet */ 127 u32 minseq; /* MP: min of most recent seqnos */ 128 struct sk_buff_head mrq; /* MP: receive reconstruction queue */ 129#endif /* CONFIG_PPP_MULTILINK */ 130 struct net_device_stats stats; /* statistics */ 131#ifdef CONFIG_PPP_FILTER 132 struct sock_filter *pass_filter; /* filter for packets to pass */ 133 struct sock_filter *active_filter;/* filter for pkts to reset idle */ 134 unsigned pass_len, active_len; 135#endif /* CONFIG_PPP_FILTER */ 136}; 137 138/* 139 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, 140 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP. 141 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. 142 * Bits in xstate: SC_COMP_RUN 143 */ 144#define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ 145 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ 146 |SC_COMP_TCP|SC_REJ_COMP_TCP) 147 148/* 149 * Private data structure for each channel. 150 * This includes the data structure used for multilink. 151 */ 152struct channel { 153 struct ppp_file file; /* stuff for read/write/poll */ 154 struct list_head list; /* link in all/new_channels list */ 155 struct ppp_channel *chan; /* public channel data structure */ 156 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ 157 spinlock_t downl; /* protects `chan', file.xq dequeue */ 158 struct ppp *ppp; /* ppp unit we're connected to */ 159 struct list_head clist; /* link in list of channels per unit */ 160 rwlock_t upl; /* protects `ppp' */ 161#ifdef CONFIG_PPP_MULTILINK 162 u8 avail; /* flag used in multilink stuff */ 163 u8 had_frag; /* >= 1 fragments have been sent */ 164 u32 lastseq; /* MP: last sequence # received */ 165#endif /* CONFIG_PPP_MULTILINK */ 166}; 167 168/* 169 * SMP locking issues: 170 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels 171 * list and the ppp.n_channels field, you need to take both locks 172 * before you modify them. 173 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> 174 * channel.downl. 175 */ 176 177/* 178 * A cardmap represents a mapping from unsigned integers to pointers, 179 * and provides a fast "find lowest unused number" operation. 180 * It uses a broad (32-way) tree with a bitmap at each level. 181 * It is designed to be space-efficient for small numbers of entries 182 * and time-efficient for large numbers of entries. 183 */ 184#define CARDMAP_ORDER 5 185#define CARDMAP_WIDTH (1U << CARDMAP_ORDER) 186#define CARDMAP_MASK (CARDMAP_WIDTH - 1) 187 188struct cardmap { 189 int shift; 190 unsigned long inuse; 191 struct cardmap *parent; 192 void *ptr[CARDMAP_WIDTH]; 193}; 194static void *cardmap_get(struct cardmap *map, unsigned int nr); 195static void cardmap_set(struct cardmap **map, unsigned int nr, void *ptr); 196static unsigned int cardmap_find_first_free(struct cardmap *map); 197static void cardmap_destroy(struct cardmap **map); 198 199/* 200 * all_ppp_sem protects the all_ppp_units mapping. 201 * It also ensures that finding a ppp unit in the all_ppp_units map 202 * and updating its file.refcnt field is atomic. 203 */ 204static DECLARE_MUTEX(all_ppp_sem); 205static struct cardmap *all_ppp_units; 206static atomic_t ppp_unit_count = ATOMIC_INIT(0); 207 208/* 209 * all_channels_lock protects all_channels and last_channel_index, 210 * and the atomicity of find a channel and updating its file.refcnt 211 * field. 212 */ 213static DEFINE_SPINLOCK(all_channels_lock); 214static LIST_HEAD(all_channels); 215static LIST_HEAD(new_channels); 216static int last_channel_index; 217static atomic_t channel_count = ATOMIC_INIT(0); 218 219/* Get the PPP protocol number from a skb */ 220#define PPP_PROTO(skb) (((skb)->data[0] << 8) + (skb)->data[1]) 221 222/* We limit the length of ppp->file.rq to this (arbitrary) value */ 223#define PPP_MAX_RQLEN 32 224 225/* 226 * Maximum number of multilink fragments queued up. 227 * This has to be large enough to cope with the maximum latency of 228 * the slowest channel relative to the others. Strictly it should 229 * depend on the number of channels and their characteristics. 230 */ 231#define PPP_MP_MAX_QLEN 128 232 233/* Multilink header bits. */ 234#define B 0x80 /* this fragment begins a packet */ 235#define E 0x40 /* this fragment ends a packet */ 236 237/* Compare multilink sequence numbers (assumed to be 32 bits wide) */ 238#define seq_before(a, b) ((s32)((a) - (b)) < 0) 239#define seq_after(a, b) ((s32)((a) - (b)) > 0) 240 241/* Prototypes. */ 242static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 243 unsigned int cmd, unsigned long arg); 244static void ppp_xmit_process(struct ppp *ppp); 245static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); 246static void ppp_push(struct ppp *ppp); 247static void ppp_channel_push(struct channel *pch); 248static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, 249 struct channel *pch); 250static void ppp_receive_error(struct ppp *ppp); 251static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); 252static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, 253 struct sk_buff *skb); 254#ifdef CONFIG_PPP_MULTILINK 255static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, 256 struct channel *pch); 257static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); 258static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); 259static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); 260#endif /* CONFIG_PPP_MULTILINK */ 261static int ppp_set_compress(struct ppp *ppp, unsigned long arg); 262static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); 263static void ppp_ccp_closed(struct ppp *ppp); 264static struct compressor *find_compressor(int type); 265static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); 266static struct ppp *ppp_create_interface(int unit, int *retp); 267static void init_ppp_file(struct ppp_file *pf, int kind); 268static void ppp_shutdown_interface(struct ppp *ppp); 269static void ppp_destroy_interface(struct ppp *ppp); 270static struct ppp *ppp_find_unit(int unit); 271static struct channel *ppp_find_channel(int unit); 272static int ppp_connect_channel(struct channel *pch, int unit); 273static int ppp_disconnect_channel(struct channel *pch); 274static void ppp_destroy_channel(struct channel *pch); 275 276static struct class_simple *ppp_class; 277 278/* Translates a PPP protocol number to a NP index (NP == network protocol) */ 279static inline int proto_to_npindex(int proto) 280{ 281 switch (proto) { 282 case PPP_IP: 283 return NP_IP; 284 case PPP_IPV6: 285 return NP_IPV6; 286 case PPP_IPX: 287 return NP_IPX; 288 case PPP_AT: 289 return NP_AT; 290 case PPP_MPLS_UC: 291 return NP_MPLS_UC; 292 case PPP_MPLS_MC: 293 return NP_MPLS_MC; 294 } 295 return -EINVAL; 296} 297 298/* Translates an NP index into a PPP protocol number */ 299static const int npindex_to_proto[NUM_NP] = { 300 PPP_IP, 301 PPP_IPV6, 302 PPP_IPX, 303 PPP_AT, 304 PPP_MPLS_UC, 305 PPP_MPLS_MC, 306}; 307 308/* Translates an ethertype into an NP index */ 309static inline int ethertype_to_npindex(int ethertype) 310{ 311 switch (ethertype) { 312 case ETH_P_IP: 313 return NP_IP; 314 case ETH_P_IPV6: 315 return NP_IPV6; 316 case ETH_P_IPX: 317 return NP_IPX; 318 case ETH_P_PPPTALK: 319 case ETH_P_ATALK: 320 return NP_AT; 321 case ETH_P_MPLS_UC: 322 return NP_MPLS_UC; 323 case ETH_P_MPLS_MC: 324 return NP_MPLS_MC; 325 } 326 return -1; 327} 328 329/* Translates an NP index into an ethertype */ 330static const int npindex_to_ethertype[NUM_NP] = { 331 ETH_P_IP, 332 ETH_P_IPV6, 333 ETH_P_IPX, 334 ETH_P_PPPTALK, 335 ETH_P_MPLS_UC, 336 ETH_P_MPLS_MC, 337}; 338 339/* 340 * Locking shorthand. 341 */ 342#define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) 343#define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) 344#define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) 345#define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) 346#define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ 347 ppp_recv_lock(ppp); } while (0) 348#define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ 349 ppp_xmit_unlock(ppp); } while (0) 350 351/* 352 * /dev/ppp device routines. 353 * The /dev/ppp device is used by pppd to control the ppp unit. 354 * It supports the read, write, ioctl and poll functions. 355 * Open instances of /dev/ppp can be in one of three states: 356 * unattached, attached to a ppp unit, or attached to a ppp channel. 357 */ 358static int ppp_open(struct inode *inode, struct file *file) 359{ 360 /* 361 * This could (should?) be enforced by the permissions on /dev/ppp. 362 */ 363 if (!capable(CAP_NET_ADMIN)) 364 return -EPERM; 365 return 0; 366} 367 368static int ppp_release(struct inode *inode, struct file *file) 369{ 370 struct ppp_file *pf = file->private_data; 371 struct ppp *ppp; 372 373 if (pf != 0) { 374 file->private_data = NULL; 375 if (pf->kind == INTERFACE) { 376 ppp = PF_TO_PPP(pf); 377 if (file == ppp->owner) 378 ppp_shutdown_interface(ppp); 379 } 380 if (atomic_dec_and_test(&pf->refcnt)) { 381 switch (pf->kind) { 382 case INTERFACE: 383 ppp_destroy_interface(PF_TO_PPP(pf)); 384 break; 385 case CHANNEL: 386 ppp_destroy_channel(PF_TO_CHANNEL(pf)); 387 break; 388 } 389 } 390 } 391 return 0; 392} 393 394static ssize_t ppp_read(struct file *file, char __user *buf, 395 size_t count, loff_t *ppos) 396{ 397 struct ppp_file *pf = file->private_data; 398 DECLARE_WAITQUEUE(wait, current); 399 ssize_t ret; 400 struct sk_buff *skb = NULL; 401 402 ret = count; 403 404 if (pf == 0) 405 return -ENXIO; 406 add_wait_queue(&pf->rwait, &wait); 407 for (;;) { 408 set_current_state(TASK_INTERRUPTIBLE); 409 skb = skb_dequeue(&pf->rq); 410 if (skb) 411 break; 412 ret = 0; 413 if (pf->dead) 414 break; 415 if (pf->kind == INTERFACE) { 416 /* 417 * Return 0 (EOF) on an interface that has no 418 * channels connected, unless it is looping 419 * network traffic (demand mode). 420 */ 421 struct ppp *ppp = PF_TO_PPP(pf); 422 if (ppp->n_channels == 0 423 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 424 break; 425 } 426 ret = -EAGAIN; 427 if (file->f_flags & O_NONBLOCK) 428 break; 429 ret = -ERESTARTSYS; 430 if (signal_pending(current)) 431 break; 432 schedule(); 433 } 434 set_current_state(TASK_RUNNING); 435 remove_wait_queue(&pf->rwait, &wait); 436 437 if (skb == 0) 438 goto out; 439 440 ret = -EOVERFLOW; 441 if (skb->len > count) 442 goto outf; 443 ret = -EFAULT; 444 if (copy_to_user(buf, skb->data, skb->len)) 445 goto outf; 446 ret = skb->len; 447 448 outf: 449 kfree_skb(skb); 450 out: 451 return ret; 452} 453 454static ssize_t ppp_write(struct file *file, const char __user *buf, 455 size_t count, loff_t *ppos) 456{ 457 struct ppp_file *pf = file->private_data; 458 struct sk_buff *skb; 459 ssize_t ret; 460 461 if (pf == 0) 462 return -ENXIO; 463 ret = -ENOMEM; 464 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); 465 if (skb == 0) 466 goto out; 467 skb_reserve(skb, pf->hdrlen); 468 ret = -EFAULT; 469 if (copy_from_user(skb_put(skb, count), buf, count)) { 470 kfree_skb(skb); 471 goto out; 472 } 473 474 skb_queue_tail(&pf->xq, skb); 475 476 switch (pf->kind) { 477 case INTERFACE: 478 ppp_xmit_process(PF_TO_PPP(pf)); 479 break; 480 case CHANNEL: 481 ppp_channel_push(PF_TO_CHANNEL(pf)); 482 break; 483 } 484 485 ret = count; 486 487 out: 488 return ret; 489} 490 491/* No kernel lock - fine */ 492static unsigned int ppp_poll(struct file *file, poll_table *wait) 493{ 494 struct ppp_file *pf = file->private_data; 495 unsigned int mask; 496 497 if (pf == 0) 498 return 0; 499 poll_wait(file, &pf->rwait, wait); 500 mask = POLLOUT | POLLWRNORM; 501 if (skb_peek(&pf->rq) != 0) 502 mask |= POLLIN | POLLRDNORM; 503 if (pf->dead) 504 mask |= POLLHUP; 505 else if (pf->kind == INTERFACE) { 506 /* see comment in ppp_read */ 507 struct ppp *ppp = PF_TO_PPP(pf); 508 if (ppp->n_channels == 0 509 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 510 mask |= POLLIN | POLLRDNORM; 511 } 512 513 return mask; 514} 515 516#ifdef CONFIG_PPP_FILTER 517static int get_filter(void __user *arg, struct sock_filter **p) 518{ 519 struct sock_fprog uprog; 520 struct sock_filter *code = NULL; 521 int len, err; 522 523 if (copy_from_user(&uprog, arg, sizeof(uprog))) 524 return -EFAULT; 525 526 if (uprog.len > BPF_MAXINSNS) 527 return -EINVAL; 528 529 if (!uprog.len) { 530 *p = NULL; 531 return 0; 532 } 533 534 len = uprog.len * sizeof(struct sock_filter); 535 code = kmalloc(len, GFP_KERNEL); 536 if (code == NULL) 537 return -ENOMEM; 538 539 if (copy_from_user(code, uprog.filter, len)) { 540 kfree(code); 541 return -EFAULT; 542 } 543 544 err = sk_chk_filter(code, uprog.len); 545 if (err) { 546 kfree(code); 547 return err; 548 } 549 550 *p = code; 551 return uprog.len; 552} 553#endif /* CONFIG_PPP_FILTER */ 554 555static int ppp_ioctl(struct inode *inode, struct file *file, 556 unsigned int cmd, unsigned long arg) 557{ 558 struct ppp_file *pf = file->private_data; 559 struct ppp *ppp; 560 int err = -EFAULT, val, val2, i; 561 struct ppp_idle idle; 562 struct npioctl npi; 563 int unit, cflags; 564 struct slcompress *vj; 565 void __user *argp = (void __user *)arg; 566 int __user *p = argp; 567 568 if (pf == 0) 569 return ppp_unattached_ioctl(pf, file, cmd, arg); 570 571 if (cmd == PPPIOCDETACH) { 572 /* 573 * We have to be careful here... if the file descriptor 574 * has been dup'd, we could have another process in the 575 * middle of a poll using the same file *, so we had 576 * better not free the interface data structures - 577 * instead we fail the ioctl. Even in this case, we 578 * shut down the interface if we are the owner of it. 579 * Actually, we should get rid of PPPIOCDETACH, userland 580 * (i.e. pppd) could achieve the same effect by closing 581 * this fd and reopening /dev/ppp. 582 */ 583 err = -EINVAL; 584 if (pf->kind == INTERFACE) { 585 ppp = PF_TO_PPP(pf); 586 if (file == ppp->owner) 587 ppp_shutdown_interface(ppp); 588 } 589 if (atomic_read(&file->f_count) <= 2) { 590 ppp_release(inode, file); 591 err = 0; 592 } else 593 printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n", 594 atomic_read(&file->f_count)); 595 return err; 596 } 597 598 if (pf->kind == CHANNEL) { 599 struct channel *pch = PF_TO_CHANNEL(pf); 600 struct ppp_channel *chan; 601 602 switch (cmd) { 603 case PPPIOCCONNECT: 604 if (get_user(unit, p)) 605 break; 606 err = ppp_connect_channel(pch, unit); 607 break; 608 609 case PPPIOCDISCONN: 610 err = ppp_disconnect_channel(pch); 611 break; 612 613 default: 614 down_read(&pch->chan_sem); 615 chan = pch->chan; 616 err = -ENOTTY; 617 if (chan && chan->ops->ioctl) 618 err = chan->ops->ioctl(chan, cmd, arg); 619 up_read(&pch->chan_sem); 620 } 621 return err; 622 } 623 624 if (pf->kind != INTERFACE) { 625 /* can't happen */ 626 printk(KERN_ERR "PPP: not interface or channel??\n"); 627 return -EINVAL; 628 } 629 630 ppp = PF_TO_PPP(pf); 631 switch (cmd) { 632 case PPPIOCSMRU: 633 if (get_user(val, p)) 634 break; 635 ppp->mru = val; 636 err = 0; 637 break; 638 639 case PPPIOCSFLAGS: 640 if (get_user(val, p)) 641 break; 642 ppp_lock(ppp); 643 cflags = ppp->flags & ~val; 644 ppp->flags = val & SC_FLAG_BITS; 645 ppp_unlock(ppp); 646 if (cflags & SC_CCP_OPEN) 647 ppp_ccp_closed(ppp); 648 err = 0; 649 break; 650 651 case PPPIOCGFLAGS: 652 val = ppp->flags | ppp->xstate | ppp->rstate; 653 if (put_user(val, p)) 654 break; 655 err = 0; 656 break; 657 658 case PPPIOCSCOMPRESS: 659 err = ppp_set_compress(ppp, arg); 660 break; 661 662 case PPPIOCGUNIT: 663 if (put_user(ppp->file.index, p)) 664 break; 665 err = 0; 666 break; 667 668 case PPPIOCSDEBUG: 669 if (get_user(val, p)) 670 break; 671 ppp->debug = val; 672 err = 0; 673 break; 674 675 case PPPIOCGDEBUG: 676 if (put_user(ppp->debug, p)) 677 break; 678 err = 0; 679 break; 680 681 case PPPIOCGIDLE: 682 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; 683 idle.recv_idle = (jiffies - ppp->last_recv) / HZ; 684 if (copy_to_user(argp, &idle, sizeof(idle))) 685 break; 686 err = 0; 687 break; 688 689 case PPPIOCSMAXCID: 690 if (get_user(val, p)) 691 break; 692 val2 = 15; 693 if ((val >> 16) != 0) { 694 val2 = val >> 16; 695 val &= 0xffff; 696 } 697 vj = slhc_init(val2+1, val+1); 698 if (vj == 0) { 699 printk(KERN_ERR "PPP: no memory (VJ compressor)\n"); 700 err = -ENOMEM; 701 break; 702 } 703 ppp_lock(ppp); 704 if (ppp->vj != 0) 705 slhc_free(ppp->vj); 706 ppp->vj = vj; 707 ppp_unlock(ppp); 708 err = 0; 709 break; 710 711 case PPPIOCGNPMODE: 712 case PPPIOCSNPMODE: 713 if (copy_from_user(&npi, argp, sizeof(npi))) 714 break; 715 err = proto_to_npindex(npi.protocol); 716 if (err < 0) 717 break; 718 i = err; 719 if (cmd == PPPIOCGNPMODE) { 720 err = -EFAULT; 721 npi.mode = ppp->npmode[i]; 722 if (copy_to_user(argp, &npi, sizeof(npi))) 723 break; 724 } else { 725 ppp->npmode[i] = npi.mode; 726 /* we may be able to transmit more packets now (??) */ 727 netif_wake_queue(ppp->dev); 728 } 729 err = 0; 730 break; 731 732#ifdef CONFIG_PPP_FILTER 733 case PPPIOCSPASS: 734 { 735 struct sock_filter *code; 736 err = get_filter(argp, &code); 737 if (err >= 0) { 738 ppp_lock(ppp); 739 kfree(ppp->pass_filter); 740 ppp->pass_filter = code; 741 ppp->pass_len = err; 742 ppp_unlock(ppp); 743 err = 0; 744 } 745 break; 746 } 747 case PPPIOCSACTIVE: 748 { 749 struct sock_filter *code; 750 err = get_filter(argp, &code); 751 if (err >= 0) { 752 ppp_lock(ppp); 753 kfree(ppp->active_filter); 754 ppp->active_filter = code; 755 ppp->active_len = err; 756 ppp_unlock(ppp); 757 err = 0; 758 } 759 break; 760 } 761#endif /* CONFIG_PPP_FILTER */ 762 763#ifdef CONFIG_PPP_MULTILINK 764 case PPPIOCSMRRU: 765 if (get_user(val, p)) 766 break; 767 ppp_recv_lock(ppp); 768 ppp->mrru = val; 769 ppp_recv_unlock(ppp); 770 err = 0; 771 break; 772#endif /* CONFIG_PPP_MULTILINK */ 773 774 default: 775 err = -ENOTTY; 776 } 777 778 return err; 779} 780 781static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 782 unsigned int cmd, unsigned long arg) 783{ 784 int unit, err = -EFAULT; 785 struct ppp *ppp; 786 struct channel *chan; 787 int __user *p = (int __user *)arg; 788 789 switch (cmd) { 790 case PPPIOCNEWUNIT: 791 /* Create a new ppp unit */ 792 if (get_user(unit, p)) 793 break; 794 ppp = ppp_create_interface(unit, &err); 795 if (ppp == 0) 796 break; 797 file->private_data = &ppp->file; 798 ppp->owner = file; 799 err = -EFAULT; 800 if (put_user(ppp->file.index, p)) 801 break; 802 err = 0; 803 break; 804 805 case PPPIOCATTACH: 806 /* Attach to an existing ppp unit */ 807 if (get_user(unit, p)) 808 break; 809 down(&all_ppp_sem); 810 err = -ENXIO; 811 ppp = ppp_find_unit(unit); 812 if (ppp != 0) { 813 atomic_inc(&ppp->file.refcnt); 814 file->private_data = &ppp->file; 815 err = 0; 816 } 817 up(&all_ppp_sem); 818 break; 819 820 case PPPIOCATTCHAN: 821 if (get_user(unit, p)) 822 break; 823 spin_lock_bh(&all_channels_lock); 824 err = -ENXIO; 825 chan = ppp_find_channel(unit); 826 if (chan != 0) { 827 atomic_inc(&chan->file.refcnt); 828 file->private_data = &chan->file; 829 err = 0; 830 } 831 spin_unlock_bh(&all_channels_lock); 832 break; 833 834 default: 835 err = -ENOTTY; 836 } 837 return err; 838} 839 840static struct file_operations ppp_device_fops = { 841 .owner = THIS_MODULE, 842 .read = ppp_read, 843 .write = ppp_write, 844 .poll = ppp_poll, 845 .ioctl = ppp_ioctl, 846 .open = ppp_open, 847 .release = ppp_release 848}; 849 850#define PPP_MAJOR 108 851 852/* Called at boot time if ppp is compiled into the kernel, 853 or at module load time (from init_module) if compiled as a module. */ 854static int __init ppp_init(void) 855{ 856 int err; 857 858 printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n"); 859 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); 860 if (!err) { 861 ppp_class = class_simple_create(THIS_MODULE, "ppp"); 862 if (IS_ERR(ppp_class)) { 863 err = PTR_ERR(ppp_class); 864 goto out_chrdev; 865 } 866 class_simple_device_add(ppp_class, MKDEV(PPP_MAJOR, 0), NULL, "ppp"); 867 err = devfs_mk_cdev(MKDEV(PPP_MAJOR, 0), 868 S_IFCHR|S_IRUSR|S_IWUSR, "ppp"); 869 if (err) 870 goto out_class; 871 } 872 873out: 874 if (err) 875 printk(KERN_ERR "failed to register PPP device (%d)\n", err); 876 return err; 877 878out_class: 879 class_simple_device_remove(MKDEV(PPP_MAJOR,0)); 880 class_simple_destroy(ppp_class); 881out_chrdev: 882 unregister_chrdev(PPP_MAJOR, "ppp"); 883 goto out; 884} 885 886/* 887 * Network interface unit routines. 888 */ 889static int 890ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) 891{ 892 struct ppp *ppp = (struct ppp *) dev->priv; 893 int npi, proto; 894 unsigned char *pp; 895 896 npi = ethertype_to_npindex(ntohs(skb->protocol)); 897 if (npi < 0) 898 goto outf; 899 900 /* Drop, accept or reject the packet */ 901 switch (ppp->npmode[npi]) { 902 case NPMODE_PASS: 903 break; 904 case NPMODE_QUEUE: 905 /* it would be nice to have a way to tell the network 906 system to queue this one up for later. */ 907 goto outf; 908 case NPMODE_DROP: 909 case NPMODE_ERROR: 910 goto outf; 911 } 912 913 /* Put the 2-byte PPP protocol number on the front, 914 making sure there is room for the address and control fields. */ 915 if (skb_headroom(skb) < PPP_HDRLEN) { 916 struct sk_buff *ns; 917 918 ns = alloc_skb(skb->len + dev->hard_header_len, GFP_ATOMIC); 919 if (ns == 0) 920 goto outf; 921 skb_reserve(ns, dev->hard_header_len); 922 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 923 kfree_skb(skb); 924 skb = ns; 925 } 926 pp = skb_push(skb, 2); 927 proto = npindex_to_proto[npi]; 928 pp[0] = proto >> 8; 929 pp[1] = proto; 930 931 netif_stop_queue(dev); 932 skb_queue_tail(&ppp->file.xq, skb); 933 ppp_xmit_process(ppp); 934 return 0; 935 936 outf: 937 kfree_skb(skb); 938 ++ppp->stats.tx_dropped; 939 return 0; 940} 941 942static struct net_device_stats * 943ppp_net_stats(struct net_device *dev) 944{ 945 struct ppp *ppp = (struct ppp *) dev->priv; 946 947 return &ppp->stats; 948} 949 950static int 951ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 952{ 953 struct ppp *ppp = dev->priv; 954 int err = -EFAULT; 955 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; 956 struct ppp_stats stats; 957 struct ppp_comp_stats cstats; 958 char *vers; 959 960 switch (cmd) { 961 case SIOCGPPPSTATS: 962 ppp_get_stats(ppp, &stats); 963 if (copy_to_user(addr, &stats, sizeof(stats))) 964 break; 965 err = 0; 966 break; 967 968 case SIOCGPPPCSTATS: 969 memset(&cstats, 0, sizeof(cstats)); 970 if (ppp->xc_state != 0) 971 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); 972 if (ppp->rc_state != 0) 973 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); 974 if (copy_to_user(addr, &cstats, sizeof(cstats))) 975 break; 976 err = 0; 977 break; 978 979 case SIOCGPPPVER: 980 vers = PPP_VERSION; 981 if (copy_to_user(addr, vers, strlen(vers) + 1)) 982 break; 983 err = 0; 984 break; 985 986 default: 987 err = -EINVAL; 988 } 989 990 return err; 991} 992 993static void ppp_setup(struct net_device *dev) 994{ 995 dev->hard_header_len = PPP_HDRLEN; 996 dev->mtu = PPP_MTU; 997 dev->addr_len = 0; 998 dev->tx_queue_len = 3; 999 dev->type = ARPHRD_PPP; 1000 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 1001} 1002 1003/* 1004 * Transmit-side routines. 1005 */ 1006 1007/* 1008 * Called to do any work queued up on the transmit side 1009 * that can now be done. 1010 */ 1011static void 1012ppp_xmit_process(struct ppp *ppp) 1013{ 1014 struct sk_buff *skb; 1015 1016 ppp_xmit_lock(ppp); 1017 if (ppp->dev != 0) { 1018 ppp_push(ppp); 1019 while (ppp->xmit_pending == 0 1020 && (skb = skb_dequeue(&ppp->file.xq)) != 0) 1021 ppp_send_frame(ppp, skb); 1022 /* If there's no work left to do, tell the core net 1023 code that we can accept some more. */ 1024 if (ppp->xmit_pending == 0 && skb_peek(&ppp->file.xq) == 0) 1025 netif_wake_queue(ppp->dev); 1026 } 1027 ppp_xmit_unlock(ppp); 1028} 1029 1030/* 1031 * Compress and send a frame. 1032 * The caller should have locked the xmit path, 1033 * and xmit_pending should be 0. 1034 */ 1035static void 1036ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) 1037{ 1038 int proto = PPP_PROTO(skb); 1039 struct sk_buff *new_skb; 1040 int len; 1041 unsigned char *cp; 1042 1043 if (proto < 0x8000) { 1044#ifdef CONFIG_PPP_FILTER 1045 /* check if we should pass this packet */ 1046 /* the filter instructions are constructed assuming 1047 a four-byte PPP header on each packet */ 1048 *skb_push(skb, 2) = 1; 1049 if (ppp->pass_filter 1050 && sk_run_filter(skb, ppp->pass_filter, 1051 ppp->pass_len) == 0) { 1052 if (ppp->debug & 1) 1053 printk(KERN_DEBUG "PPP: outbound frame not passed\n"); 1054 kfree_skb(skb); 1055 return; 1056 } 1057 /* if this packet passes the active filter, record the time */ 1058 if (!(ppp->active_filter 1059 && sk_run_filter(skb, ppp->active_filter, 1060 ppp->active_len) == 0)) 1061 ppp->last_xmit = jiffies; 1062 skb_pull(skb, 2); 1063#else 1064 /* for data packets, record the time */ 1065 ppp->last_xmit = jiffies; 1066#endif /* CONFIG_PPP_FILTER */ 1067 } 1068 1069 ++ppp->stats.tx_packets; 1070 ppp->stats.tx_bytes += skb->len - 2; 1071 1072 switch (proto) { 1073 case PPP_IP: 1074 if (ppp->vj == 0 || (ppp->flags & SC_COMP_TCP) == 0) 1075 break; 1076 /* try to do VJ TCP header compression */ 1077 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, 1078 GFP_ATOMIC); 1079 if (new_skb == 0) { 1080 printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n"); 1081 goto drop; 1082 } 1083 skb_reserve(new_skb, ppp->dev->hard_header_len - 2); 1084 cp = skb->data + 2; 1085 len = slhc_compress(ppp->vj, cp, skb->len - 2, 1086 new_skb->data + 2, &cp, 1087 !(ppp->flags & SC_NO_TCP_CCID)); 1088 if (cp == skb->data + 2) { 1089 /* didn't compress */ 1090 kfree_skb(new_skb); 1091 } else { 1092 if (cp[0] & SL_TYPE_COMPRESSED_TCP) { 1093 proto = PPP_VJC_COMP; 1094 cp[0] &= ~SL_TYPE_COMPRESSED_TCP; 1095 } else { 1096 proto = PPP_VJC_UNCOMP; 1097 cp[0] = skb->data[2]; 1098 } 1099 kfree_skb(skb); 1100 skb = new_skb; 1101 cp = skb_put(skb, len + 2); 1102 cp[0] = 0; 1103 cp[1] = proto; 1104 } 1105 break; 1106 1107 case PPP_CCP: 1108 /* peek at outbound CCP frames */ 1109 ppp_ccp_peek(ppp, skb, 0); 1110 break; 1111 } 1112 1113 /* try to do packet compression */ 1114 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state != 0 1115 && proto != PPP_LCP && proto != PPP_CCP) { 1116 new_skb = alloc_skb(ppp->dev->mtu + ppp->dev->hard_header_len, 1117 GFP_ATOMIC); 1118 if (new_skb == 0) { 1119 printk(KERN_ERR "PPP: no memory (comp pkt)\n"); 1120 goto drop; 1121 } 1122 if (ppp->dev->hard_header_len > PPP_HDRLEN) 1123 skb_reserve(new_skb, 1124 ppp->dev->hard_header_len - PPP_HDRLEN); 1125 1126 /* compressor still expects A/C bytes in hdr */ 1127 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, 1128 new_skb->data, skb->len + 2, 1129 ppp->dev->mtu + PPP_HDRLEN); 1130 if (len > 0 && (ppp->flags & SC_CCP_UP)) { 1131 kfree_skb(skb); 1132 skb = new_skb; 1133 skb_put(skb, len); 1134 skb_pull(skb, 2); /* pull off A/C bytes */ 1135 } else { 1136 /* didn't compress, or CCP not up yet */ 1137 kfree_skb(new_skb); 1138 } 1139 } 1140 1141 /* 1142 * If we are waiting for traffic (demand dialling), 1143 * queue it up for pppd to receive. 1144 */ 1145 if (ppp->flags & SC_LOOP_TRAFFIC) { 1146 if (ppp->file.rq.qlen > PPP_MAX_RQLEN) 1147 goto drop; 1148 skb_queue_tail(&ppp->file.rq, skb); 1149 wake_up_interruptible(&ppp->file.rwait); 1150 return; 1151 } 1152 1153 ppp->xmit_pending = skb; 1154 ppp_push(ppp); 1155 return; 1156 1157 drop: 1158 kfree_skb(skb); 1159 ++ppp->stats.tx_errors; 1160} 1161 1162/* 1163 * Try to send the frame in xmit_pending. 1164 * The caller should have the xmit path locked. 1165 */ 1166static void 1167ppp_push(struct ppp *ppp) 1168{ 1169 struct list_head *list; 1170 struct channel *pch; 1171 struct sk_buff *skb = ppp->xmit_pending; 1172 1173 if (skb == 0) 1174 return; 1175 1176 list = &ppp->channels; 1177 if (list_empty(list)) { 1178 /* nowhere to send the packet, just drop it */ 1179 ppp->xmit_pending = NULL; 1180 kfree_skb(skb); 1181 return; 1182 } 1183 1184 if ((ppp->flags & SC_MULTILINK) == 0) { 1185 /* not doing multilink: send it down the first channel */ 1186 list = list->next; 1187 pch = list_entry(list, struct channel, clist); 1188 1189 spin_lock_bh(&pch->downl); 1190 if (pch->chan) { 1191 if (pch->chan->ops->start_xmit(pch->chan, skb)) 1192 ppp->xmit_pending = NULL; 1193 } else { 1194 /* channel got unregistered */ 1195 kfree_skb(skb); 1196 ppp->xmit_pending = NULL; 1197 } 1198 spin_unlock_bh(&pch->downl); 1199 return; 1200 } 1201 1202#ifdef CONFIG_PPP_MULTILINK 1203 /* Multilink: fragment the packet over as many links 1204 as can take the packet at the moment. */ 1205 if (!ppp_mp_explode(ppp, skb)) 1206 return; 1207#endif /* CONFIG_PPP_MULTILINK */ 1208 1209 ppp->xmit_pending = NULL; 1210 kfree_skb(skb); 1211} 1212 1213#ifdef CONFIG_PPP_MULTILINK 1214/* 1215 * Divide a packet to be transmitted into fragments and 1216 * send them out the individual links. 1217 */ 1218static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) 1219{ 1220 int nch, len, fragsize; 1221 int i, bits, hdrlen, mtu; 1222 int flen, fnb; 1223 unsigned char *p, *q; 1224 struct list_head *list; 1225 struct channel *pch; 1226 struct sk_buff *frag; 1227 struct ppp_channel *chan; 1228 1229 nch = 0; 1230 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1231 list = &ppp->channels; 1232 while ((list = list->next) != &ppp->channels) { 1233 pch = list_entry(list, struct channel, clist); 1234 nch += pch->avail = (skb_queue_len(&pch->file.xq) == 0); 1235 /* 1236 * If a channel hasn't had a fragment yet, it has to get 1237 * one before we send any fragments on later channels. 1238 * If it can't take a fragment now, don't give any 1239 * to subsequent channels. 1240 */ 1241 if (!pch->had_frag && !pch->avail) { 1242 while ((list = list->next) != &ppp->channels) { 1243 pch = list_entry(list, struct channel, clist); 1244 pch->avail = 0; 1245 } 1246 break; 1247 } 1248 } 1249 if (nch == 0) 1250 return 0; /* can't take now, leave it in xmit_pending */ 1251 1252 /* Do protocol field compression (XXX this should be optional) */ 1253 p = skb->data; 1254 len = skb->len; 1255 if (*p == 0) { 1256 ++p; 1257 --len; 1258 } 1259 1260 /* decide on fragment size */ 1261 fragsize = len; 1262 if (nch > 1) { 1263 int maxch = ROUNDUP(len, MIN_FRAG_SIZE); 1264 if (nch > maxch) 1265 nch = maxch; 1266 fragsize = ROUNDUP(fragsize, nch); 1267 } 1268 1269 /* skip to the channel after the one we last used 1270 and start at that one */ 1271 for (i = 0; i < ppp->nxchan; ++i) { 1272 list = list->next; 1273 if (list == &ppp->channels) { 1274 i = 0; 1275 break; 1276 } 1277 } 1278 1279 /* create a fragment for each channel */ 1280 bits = B; 1281 do { 1282 list = list->next; 1283 if (list == &ppp->channels) { 1284 i = 0; 1285 continue; 1286 } 1287 pch = list_entry(list, struct channel, clist); 1288 ++i; 1289 if (!pch->avail) 1290 continue; 1291 1292 /* check the channel's mtu and whether it is still attached. */ 1293 spin_lock_bh(&pch->downl); 1294 if (pch->chan == 0 || (mtu = pch->chan->mtu) < hdrlen) { 1295 /* can't use this channel */ 1296 spin_unlock_bh(&pch->downl); 1297 pch->avail = 0; 1298 if (--nch == 0) 1299 break; 1300 continue; 1301 } 1302 1303 /* 1304 * We have to create multiple fragments for this channel 1305 * if fragsize is greater than the channel's mtu. 1306 */ 1307 if (fragsize > len) 1308 fragsize = len; 1309 for (flen = fragsize; flen > 0; flen -= fnb) { 1310 fnb = flen; 1311 if (fnb > mtu + 2 - hdrlen) 1312 fnb = mtu + 2 - hdrlen; 1313 if (fnb >= len) 1314 bits |= E; 1315 frag = alloc_skb(fnb + hdrlen, GFP_ATOMIC); 1316 if (frag == 0) 1317 goto noskb; 1318 q = skb_put(frag, fnb + hdrlen); 1319 /* make the MP header */ 1320 q[0] = PPP_MP >> 8; 1321 q[1] = PPP_MP; 1322 if (ppp->flags & SC_MP_XSHORTSEQ) { 1323 q[2] = bits + ((ppp->nxseq >> 8) & 0xf); 1324 q[3] = ppp->nxseq; 1325 } else { 1326 q[2] = bits; 1327 q[3] = ppp->nxseq >> 16; 1328 q[4] = ppp->nxseq >> 8; 1329 q[5] = ppp->nxseq; 1330 } 1331 1332 /* copy the data in */ 1333 memcpy(q + hdrlen, p, fnb); 1334 1335 /* try to send it down the channel */ 1336 chan = pch->chan; 1337 if (!chan->ops->start_xmit(chan, frag)) 1338 skb_queue_tail(&pch->file.xq, frag); 1339 pch->had_frag = 1; 1340 p += fnb; 1341 len -= fnb; 1342 ++ppp->nxseq; 1343 bits = 0; 1344 } 1345 spin_unlock_bh(&pch->downl); 1346 } while (len > 0); 1347 ppp->nxchan = i; 1348 1349 return 1; 1350 1351 noskb: 1352 spin_unlock_bh(&pch->downl); 1353 if (ppp->debug & 1) 1354 printk(KERN_ERR "PPP: no memory (fragment)\n"); 1355 ++ppp->stats.tx_errors; 1356 ++ppp->nxseq; 1357 return 1; /* abandon the frame */ 1358} 1359#endif /* CONFIG_PPP_MULTILINK */ 1360 1361/* 1362 * Try to send data out on a channel. 1363 */ 1364static void 1365ppp_channel_push(struct channel *pch) 1366{ 1367 struct sk_buff *skb; 1368 struct ppp *ppp; 1369 1370 spin_lock_bh(&pch->downl); 1371 if (pch->chan != 0) { 1372 while (skb_queue_len(&pch->file.xq) > 0) { 1373 skb = skb_dequeue(&pch->file.xq); 1374 if (!pch->chan->ops->start_xmit(pch->chan, skb)) { 1375 /* put the packet back and try again later */ 1376 skb_queue_head(&pch->file.xq, skb); 1377 break; 1378 } 1379 } 1380 } else { 1381 /* channel got deregistered */ 1382 skb_queue_purge(&pch->file.xq); 1383 } 1384 spin_unlock_bh(&pch->downl); 1385 /* see if there is anything from the attached unit to be sent */ 1386 if (skb_queue_len(&pch->file.xq) == 0) { 1387 read_lock_bh(&pch->upl); 1388 ppp = pch->ppp; 1389 if (ppp != 0) 1390 ppp_xmit_process(ppp); 1391 read_unlock_bh(&pch->upl); 1392 } 1393} 1394 1395/* 1396 * Receive-side routines. 1397 */ 1398 1399/* misuse a few fields of the skb for MP reconstruction */ 1400#define sequence priority 1401#define BEbits cb[0] 1402 1403static inline void 1404ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1405{ 1406 ppp_recv_lock(ppp); 1407 /* ppp->dev == 0 means interface is closing down */ 1408 if (ppp->dev != 0) 1409 ppp_receive_frame(ppp, skb, pch); 1410 else 1411 kfree_skb(skb); 1412 ppp_recv_unlock(ppp); 1413} 1414 1415void 1416ppp_input(struct ppp_channel *chan, struct sk_buff *skb) 1417{ 1418 struct channel *pch = chan->ppp; 1419 int proto; 1420 1421 if (pch == 0 || skb->len == 0) { 1422 kfree_skb(skb); 1423 return; 1424 } 1425 1426 proto = PPP_PROTO(skb); 1427 read_lock_bh(&pch->upl); 1428 if (pch->ppp == 0 || proto >= 0xc000 || proto == PPP_CCPFRAG) { 1429 /* put it on the channel queue */ 1430 skb_queue_tail(&pch->file.rq, skb); 1431 /* drop old frames if queue too long */ 1432 while (pch->file.rq.qlen > PPP_MAX_RQLEN 1433 && (skb = skb_dequeue(&pch->file.rq)) != 0) 1434 kfree_skb(skb); 1435 wake_up_interruptible(&pch->file.rwait); 1436 } else { 1437 ppp_do_recv(pch->ppp, skb, pch); 1438 } 1439 read_unlock_bh(&pch->upl); 1440} 1441 1442/* Put a 0-length skb in the receive queue as an error indication */ 1443void 1444ppp_input_error(struct ppp_channel *chan, int code) 1445{ 1446 struct channel *pch = chan->ppp; 1447 struct sk_buff *skb; 1448 1449 if (pch == 0) 1450 return; 1451 1452 read_lock_bh(&pch->upl); 1453 if (pch->ppp != 0) { 1454 skb = alloc_skb(0, GFP_ATOMIC); 1455 if (skb != 0) { 1456 skb->len = 0; /* probably unnecessary */ 1457 skb->cb[0] = code; 1458 ppp_do_recv(pch->ppp, skb, pch); 1459 } 1460 } 1461 read_unlock_bh(&pch->upl); 1462} 1463 1464/* 1465 * We come in here to process a received frame. 1466 * The receive side of the ppp unit is locked. 1467 */ 1468static void 1469ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1470{ 1471 if (skb->len >= 2) { 1472#ifdef CONFIG_PPP_MULTILINK 1473 /* XXX do channel-level decompression here */ 1474 if (PPP_PROTO(skb) == PPP_MP) 1475 ppp_receive_mp_frame(ppp, skb, pch); 1476 else 1477#endif /* CONFIG_PPP_MULTILINK */ 1478 ppp_receive_nonmp_frame(ppp, skb); 1479 return; 1480 } 1481 1482 if (skb->len > 0) 1483 /* note: a 0-length skb is used as an error indication */ 1484 ++ppp->stats.rx_length_errors; 1485 1486 kfree_skb(skb); 1487 ppp_receive_error(ppp); 1488} 1489 1490static void 1491ppp_receive_error(struct ppp *ppp) 1492{ 1493 ++ppp->stats.rx_errors; 1494 if (ppp->vj != 0) 1495 slhc_toss(ppp->vj); 1496} 1497 1498static void 1499ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) 1500{ 1501 struct sk_buff *ns; 1502 int proto, len, npi; 1503 1504 /* 1505 * Decompress the frame, if compressed. 1506 * Note that some decompressors need to see uncompressed frames 1507 * that come in as well as compressed frames. 1508 */ 1509 if (ppp->rc_state != 0 && (ppp->rstate & SC_DECOMP_RUN) 1510 && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) 1511 skb = ppp_decompress_frame(ppp, skb); 1512 1513 proto = PPP_PROTO(skb); 1514 switch (proto) { 1515 case PPP_VJC_COMP: 1516 /* decompress VJ compressed packets */ 1517 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1518 goto err; 1519 1520 if (skb_tailroom(skb) < 124) { 1521 /* copy to a new sk_buff with more tailroom */ 1522 ns = dev_alloc_skb(skb->len + 128); 1523 if (ns == 0) { 1524 printk(KERN_ERR"PPP: no memory (VJ decomp)\n"); 1525 goto err; 1526 } 1527 skb_reserve(ns, 2); 1528 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 1529 kfree_skb(skb); 1530 skb = ns; 1531 } 1532 else if (!pskb_may_pull(skb, skb->len)) 1533 goto err; 1534 1535 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); 1536 if (len <= 0) { 1537 printk(KERN_DEBUG "PPP: VJ decompression error\n"); 1538 goto err; 1539 } 1540 len += 2; 1541 if (len > skb->len) 1542 skb_put(skb, len - skb->len); 1543 else if (len < skb->len) 1544 skb_trim(skb, len); 1545 proto = PPP_IP; 1546 break; 1547 1548 case PPP_VJC_UNCOMP: 1549 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1550 goto err; 1551 1552 /* Until we fix the decompressor need to make sure 1553 * data portion is linear. 1554 */ 1555 if (!pskb_may_pull(skb, skb->len)) 1556 goto err; 1557 1558 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { 1559 printk(KERN_ERR "PPP: VJ uncompressed error\n"); 1560 goto err; 1561 } 1562 proto = PPP_IP; 1563 break; 1564 1565 case PPP_CCP: 1566 ppp_ccp_peek(ppp, skb, 1); 1567 break; 1568 } 1569 1570 ++ppp->stats.rx_packets; 1571 ppp->stats.rx_bytes += skb->len - 2; 1572 1573 npi = proto_to_npindex(proto); 1574 if (npi < 0) { 1575 /* control or unknown frame - pass it to pppd */ 1576 skb_queue_tail(&ppp->file.rq, skb); 1577 /* limit queue length by dropping old frames */ 1578 while (ppp->file.rq.qlen > PPP_MAX_RQLEN 1579 && (skb = skb_dequeue(&ppp->file.rq)) != 0) 1580 kfree_skb(skb); 1581 /* wake up any process polling or blocking on read */ 1582 wake_up_interruptible(&ppp->file.rwait); 1583 1584 } else { 1585 /* network protocol frame - give it to the kernel */ 1586 1587#ifdef CONFIG_PPP_FILTER 1588 /* check if the packet passes the pass and active filters */ 1589 /* the filter instructions are constructed assuming 1590 a four-byte PPP header on each packet */ 1591 *skb_push(skb, 2) = 0; 1592 if (ppp->pass_filter 1593 && sk_run_filter(skb, ppp->pass_filter, 1594 ppp->pass_len) == 0) { 1595 if (ppp->debug & 1) 1596 printk(KERN_DEBUG "PPP: inbound frame not passed\n"); 1597 kfree_skb(skb); 1598 return; 1599 } 1600 if (!(ppp->active_filter 1601 && sk_run_filter(skb, ppp->active_filter, 1602 ppp->active_len) == 0)) 1603 ppp->last_recv = jiffies; 1604 skb_pull(skb, 2); 1605#else 1606 ppp->last_recv = jiffies; 1607#endif /* CONFIG_PPP_FILTER */ 1608 1609 if ((ppp->dev->flags & IFF_UP) == 0 1610 || ppp->npmode[npi] != NPMODE_PASS) { 1611 kfree_skb(skb); 1612 } else { 1613 skb_pull(skb, 2); /* chop off protocol */ 1614 skb->dev = ppp->dev; 1615 skb->protocol = htons(npindex_to_ethertype[npi]); 1616 skb->mac.raw = skb->data; 1617 skb->input_dev = ppp->dev; 1618 netif_rx(skb); 1619 ppp->dev->last_rx = jiffies; 1620 } 1621 } 1622 return; 1623 1624 err: 1625 kfree_skb(skb); 1626 ppp_receive_error(ppp); 1627} 1628 1629static struct sk_buff * 1630ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) 1631{ 1632 int proto = PPP_PROTO(skb); 1633 struct sk_buff *ns; 1634 int len; 1635 1636 /* Until we fix all the decompressor's need to make sure 1637 * data portion is linear. 1638 */ 1639 if (!pskb_may_pull(skb, skb->len)) 1640 goto err; 1641 1642 if (proto == PPP_COMP) { 1643 ns = dev_alloc_skb(ppp->mru + PPP_HDRLEN); 1644 if (ns == 0) { 1645 printk(KERN_ERR "ppp_decompress_frame: no memory\n"); 1646 goto err; 1647 } 1648 /* the decompressor still expects the A/C bytes in the hdr */ 1649 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, 1650 skb->len + 2, ns->data, ppp->mru + PPP_HDRLEN); 1651 if (len < 0) { 1652 /* Pass the compressed frame to pppd as an 1653 error indication. */ 1654 if (len == DECOMP_FATALERROR) 1655 ppp->rstate |= SC_DC_FERROR; 1656 kfree_skb(ns); 1657 goto err; 1658 } 1659 1660 kfree_skb(skb); 1661 skb = ns; 1662 skb_put(skb, len); 1663 skb_pull(skb, 2); /* pull off the A/C bytes */ 1664 1665 } else { 1666 /* Uncompressed frame - pass to decompressor so it 1667 can update its dictionary if necessary. */ 1668 if (ppp->rcomp->incomp) 1669 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, 1670 skb->len + 2); 1671 } 1672 1673 return skb; 1674 1675 err: 1676 ppp->rstate |= SC_DC_ERROR; 1677 ppp_receive_error(ppp); 1678 return skb; 1679} 1680 1681#ifdef CONFIG_PPP_MULTILINK 1682/* 1683 * Receive a multilink frame. 1684 * We put it on the reconstruction queue and then pull off 1685 * as many completed frames as we can. 1686 */ 1687static void 1688ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1689{ 1690 u32 mask, seq; 1691 struct list_head *l; 1692 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1693 1694 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0) 1695 goto err; /* no good, throw it away */ 1696 1697 /* Decode sequence number and begin/end bits */ 1698 if (ppp->flags & SC_MP_SHORTSEQ) { 1699 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; 1700 mask = 0xfff; 1701 } else { 1702 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; 1703 mask = 0xffffff; 1704 } 1705 skb->BEbits = skb->data[2]; 1706 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ 1707 1708 /* 1709 * Do protocol ID decompression on the first fragment of each packet. 1710 */ 1711 if ((skb->BEbits & B) && (skb->data[0] & 1)) 1712 *skb_push(skb, 1) = 0; 1713 1714 /* 1715 * Expand sequence number to 32 bits, making it as close 1716 * as possible to ppp->minseq. 1717 */ 1718 seq |= ppp->minseq & ~mask; 1719 if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) 1720 seq += mask + 1; 1721 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) 1722 seq -= mask + 1; /* should never happen */ 1723 skb->sequence = seq; 1724 pch->lastseq = seq; 1725 1726 /* 1727 * If this packet comes before the next one we were expecting, 1728 * drop it. 1729 */ 1730 if (seq_before(seq, ppp->nextseq)) { 1731 kfree_skb(skb); 1732 ++ppp->stats.rx_dropped; 1733 ppp_receive_error(ppp); 1734 return; 1735 } 1736 1737 /* 1738 * Reevaluate minseq, the minimum over all channels of the 1739 * last sequence number received on each channel. Because of 1740 * the increasing sequence number rule, we know that any fragment 1741 * before `minseq' which hasn't arrived is never going to arrive. 1742 * The list of channels can't change because we have the receive 1743 * side of the ppp unit locked. 1744 */ 1745 for (l = ppp->channels.next; l != &ppp->channels; l = l->next) { 1746 struct channel *ch = list_entry(l, struct channel, clist); 1747 if (seq_before(ch->lastseq, seq)) 1748 seq = ch->lastseq; 1749 } 1750 if (seq_before(ppp->minseq, seq)) 1751 ppp->minseq = seq; 1752 1753 /* Put the fragment on the reconstruction queue */ 1754 ppp_mp_insert(ppp, skb); 1755 1756 /* If the queue is getting long, don't wait any longer for packets 1757 before the start of the queue. */ 1758 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN 1759 && seq_before(ppp->minseq, ppp->mrq.next->sequence)) 1760 ppp->minseq = ppp->mrq.next->sequence; 1761 1762 /* Pull completed packets off the queue and receive them. */ 1763 while ((skb = ppp_mp_reconstruct(ppp)) != 0) 1764 ppp_receive_nonmp_frame(ppp, skb); 1765 1766 return; 1767 1768 err: 1769 kfree_skb(skb); 1770 ppp_receive_error(ppp); 1771} 1772 1773/* 1774 * Insert a fragment on the MP reconstruction queue. 1775 * The queue is ordered by increasing sequence number. 1776 */ 1777static void 1778ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) 1779{ 1780 struct sk_buff *p; 1781 struct sk_buff_head *list = &ppp->mrq; 1782 u32 seq = skb->sequence; 1783 1784 /* N.B. we don't need to lock the list lock because we have the 1785 ppp unit receive-side lock. */ 1786 for (p = list->next; p != (struct sk_buff *)list; p = p->next) 1787 if (seq_before(seq, p->sequence)) 1788 break; 1789 __skb_insert(skb, p->prev, p, list); 1790} 1791 1792/* 1793 * Reconstruct a packet from the MP fragment queue. 1794 * We go through increasing sequence numbers until we find a 1795 * complete packet, or we get to the sequence number for a fragment 1796 * which hasn't arrived but might still do so. 1797 */ 1798struct sk_buff * 1799ppp_mp_reconstruct(struct ppp *ppp) 1800{ 1801 u32 seq = ppp->nextseq; 1802 u32 minseq = ppp->minseq; 1803 struct sk_buff_head *list = &ppp->mrq; 1804 struct sk_buff *p, *next; 1805 struct sk_buff *head, *tail; 1806 struct sk_buff *skb = NULL; 1807 int lost = 0, len = 0; 1808 1809 if (ppp->mrru == 0) /* do nothing until mrru is set */ 1810 return NULL; 1811 head = list->next; 1812 tail = NULL; 1813 for (p = head; p != (struct sk_buff *) list; p = next) { 1814 next = p->next; 1815 if (seq_before(p->sequence, seq)) { 1816 /* this can't happen, anyway ignore the skb */ 1817 printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n", 1818 p->sequence, seq); 1819 head = next; 1820 continue; 1821 } 1822 if (p->sequence != seq) { 1823 /* Fragment `seq' is missing. If it is after 1824 minseq, it might arrive later, so stop here. */ 1825 if (seq_after(seq, minseq)) 1826 break; 1827 /* Fragment `seq' is lost, keep going. */ 1828 lost = 1; 1829 seq = seq_before(minseq, p->sequence)? 1830 minseq + 1: p->sequence; 1831 next = p; 1832 continue; 1833 } 1834 1835 /* 1836 * At this point we know that all the fragments from 1837 * ppp->nextseq to seq are either present or lost. 1838 * Also, there are no complete packets in the queue 1839 * that have no missing fragments and end before this 1840 * fragment. 1841 */ 1842 1843 /* B bit set indicates this fragment starts a packet */ 1844 if (p->BEbits & B) { 1845 head = p; 1846 lost = 0; 1847 len = 0; 1848 } 1849 1850 len += p->len; 1851 1852 /* Got a complete packet yet? */ 1853 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) { 1854 if (len > ppp->mrru + 2) { 1855 ++ppp->stats.rx_length_errors; 1856 printk(KERN_DEBUG "PPP: reconstructed packet" 1857 " is too long (%d)\n", len); 1858 } else if (p == head) { 1859 /* fragment is complete packet - reuse skb */ 1860 tail = p; 1861 skb = skb_get(p); 1862 break; 1863 } else if ((skb = dev_alloc_skb(len)) == NULL) { 1864 ++ppp->stats.rx_missed_errors; 1865 printk(KERN_DEBUG "PPP: no memory for " 1866 "reconstructed packet"); 1867 } else { 1868 tail = p; 1869 break; 1870 } 1871 ppp->nextseq = seq + 1; 1872 } 1873 1874 /* 1875 * If this is the ending fragment of a packet, 1876 * and we haven't found a complete valid packet yet, 1877 * we can discard up to and including this fragment. 1878 */ 1879 if (p->BEbits & E) 1880 head = next; 1881 1882 ++seq; 1883 } 1884 1885 /* If we have a complete packet, copy it all into one skb. */ 1886 if (tail != NULL) { 1887 /* If we have discarded any fragments, 1888 signal a receive error. */ 1889 if (head->sequence != ppp->nextseq) { 1890 if (ppp->debug & 1) 1891 printk(KERN_DEBUG " missed pkts %u..%u\n", 1892 ppp->nextseq, head->sequence-1); 1893 ++ppp->stats.rx_dropped; 1894 ppp_receive_error(ppp); 1895 } 1896 1897 if (head != tail) 1898 /* copy to a single skb */ 1899 for (p = head; p != tail->next; p = p->next) 1900 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len); 1901 ppp->nextseq = tail->sequence + 1; 1902 head = tail->next; 1903 } 1904 1905 /* Discard all the skbuffs that we have copied the data out of 1906 or that we can't use. */ 1907 while ((p = list->next) != head) { 1908 __skb_unlink(p, list); 1909 kfree_skb(p); 1910 } 1911 1912 return skb; 1913} 1914#endif /* CONFIG_PPP_MULTILINK */ 1915 1916/* 1917 * Channel interface. 1918 */ 1919 1920/* 1921 * Create a new, unattached ppp channel. 1922 */ 1923int 1924ppp_register_channel(struct ppp_channel *chan) 1925{ 1926 struct channel *pch; 1927 1928 pch = kmalloc(sizeof(struct channel), GFP_KERNEL); 1929 if (pch == 0) 1930 return -ENOMEM; 1931 memset(pch, 0, sizeof(struct channel)); 1932 pch->ppp = NULL; 1933 pch->chan = chan; 1934 chan->ppp = pch; 1935 init_ppp_file(&pch->file, CHANNEL); 1936 pch->file.hdrlen = chan->hdrlen; 1937#ifdef CONFIG_PPP_MULTILINK 1938 pch->lastseq = -1; 1939#endif /* CONFIG_PPP_MULTILINK */ 1940 init_rwsem(&pch->chan_sem); 1941 spin_lock_init(&pch->downl); 1942 rwlock_init(&pch->upl); 1943 spin_lock_bh(&all_channels_lock); 1944 pch->file.index = ++last_channel_index; 1945 list_add(&pch->list, &new_channels); 1946 atomic_inc(&channel_count); 1947 spin_unlock_bh(&all_channels_lock); 1948 return 0; 1949} 1950 1951/* 1952 * Return the index of a channel. 1953 */ 1954int ppp_channel_index(struct ppp_channel *chan) 1955{ 1956 struct channel *pch = chan->ppp; 1957 1958 if (pch != 0) 1959 return pch->file.index; 1960 return -1; 1961} 1962 1963/* 1964 * Return the PPP unit number to which a channel is connected. 1965 */ 1966int ppp_unit_number(struct ppp_channel *chan) 1967{ 1968 struct channel *pch = chan->ppp; 1969 int unit = -1; 1970 1971 if (pch != 0) { 1972 read_lock_bh(&pch->upl); 1973 if (pch->ppp != 0) 1974 unit = pch->ppp->file.index; 1975 read_unlock_bh(&pch->upl); 1976 } 1977 return unit; 1978} 1979 1980/* 1981 * Disconnect a channel from the generic layer. 1982 * This must be called in process context. 1983 */ 1984void 1985ppp_unregister_channel(struct ppp_channel *chan) 1986{ 1987 struct channel *pch = chan->ppp; 1988 1989 if (pch == 0) 1990 return; /* should never happen */ 1991 chan->ppp = NULL; 1992 1993 /* 1994 * This ensures that we have returned from any calls into the 1995 * the channel's start_xmit or ioctl routine before we proceed. 1996 */ 1997 down_write(&pch->chan_sem); 1998 spin_lock_bh(&pch->downl); 1999 pch->chan = NULL; 2000 spin_unlock_bh(&pch->downl); 2001 up_write(&pch->chan_sem); 2002 ppp_disconnect_channel(pch); 2003 spin_lock_bh(&all_channels_lock); 2004 list_del(&pch->list); 2005 spin_unlock_bh(&all_channels_lock); 2006 pch->file.dead = 1; 2007 wake_up_interruptible(&pch->file.rwait); 2008 if (atomic_dec_and_test(&pch->file.refcnt)) 2009 ppp_destroy_channel(pch); 2010} 2011 2012/* 2013 * Callback from a channel when it can accept more to transmit. 2014 * This should be called at BH/softirq level, not interrupt level. 2015 */ 2016void 2017ppp_output_wakeup(struct ppp_channel *chan) 2018{ 2019 struct channel *pch = chan->ppp; 2020 2021 if (pch == 0) 2022 return; 2023 ppp_channel_push(pch); 2024} 2025 2026/* 2027 * Compression control. 2028 */ 2029 2030/* Process the PPPIOCSCOMPRESS ioctl. */ 2031static int 2032ppp_set_compress(struct ppp *ppp, unsigned long arg) 2033{ 2034 int err; 2035 struct compressor *cp, *ocomp; 2036 struct ppp_option_data data; 2037 void *state, *ostate; 2038 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; 2039 2040 err = -EFAULT; 2041 if (copy_from_user(&data, (void __user *) arg, sizeof(data)) 2042 || (data.length <= CCP_MAX_OPTION_LENGTH 2043 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length))) 2044 goto out; 2045 err = -EINVAL; 2046 if (data.length > CCP_MAX_OPTION_LENGTH 2047 || ccp_option[1] < 2 || ccp_option[1] > data.length) 2048 goto out; 2049 2050 cp = find_compressor(ccp_option[0]); 2051#ifdef CONFIG_KMOD 2052 if (cp == 0) { 2053 request_module("ppp-compress-%d", ccp_option[0]); 2054 cp = find_compressor(ccp_option[0]); 2055 } 2056#endif /* CONFIG_KMOD */ 2057 if (cp == 0) 2058 goto out; 2059 2060 err = -ENOBUFS; 2061 if (data.transmit) { 2062 state = cp->comp_alloc(ccp_option, data.length); 2063 if (state != 0) { 2064 ppp_xmit_lock(ppp); 2065 ppp->xstate &= ~SC_COMP_RUN; 2066 ocomp = ppp->xcomp; 2067 ostate = ppp->xc_state; 2068 ppp->xcomp = cp; 2069 ppp->xc_state = state; 2070 ppp_xmit_unlock(ppp); 2071 if (ostate != 0) { 2072 ocomp->comp_free(ostate); 2073 module_put(ocomp->owner); 2074 } 2075 err = 0; 2076 } else 2077 module_put(cp->owner); 2078 2079 } else { 2080 state = cp->decomp_alloc(ccp_option, data.length); 2081 if (state != 0) { 2082 ppp_recv_lock(ppp); 2083 ppp->rstate &= ~SC_DECOMP_RUN; 2084 ocomp = ppp->rcomp; 2085 ostate = ppp->rc_state; 2086 ppp->rcomp = cp; 2087 ppp->rc_state = state; 2088 ppp_recv_unlock(ppp); 2089 if (ostate != 0) { 2090 ocomp->decomp_free(ostate); 2091 module_put(ocomp->owner); 2092 } 2093 err = 0; 2094 } else 2095 module_put(cp->owner); 2096 } 2097 2098 out: 2099 return err; 2100} 2101 2102/* 2103 * Look at a CCP packet and update our state accordingly. 2104 * We assume the caller has the xmit or recv path locked. 2105 */ 2106static void 2107ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) 2108{ 2109 unsigned char *dp; 2110 int len; 2111 2112 if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) 2113 return; /* no header */ 2114 dp = skb->data + 2; 2115 2116 switch (CCP_CODE(dp)) { 2117 case CCP_CONFREQ: 2118 2119 /* A ConfReq starts negotiation of compression 2120 * in one direction of transmission, 2121 * and hence brings it down...but which way? 2122 * 2123 * Remember: 2124 * A ConfReq indicates what the sender would like to receive 2125 */ 2126 if(inbound) 2127 /* He is proposing what I should send */ 2128 ppp->xstate &= ~SC_COMP_RUN; 2129 else 2130 /* I am proposing to what he should send */ 2131 ppp->rstate &= ~SC_DECOMP_RUN; 2132 2133 break; 2134 2135 case CCP_TERMREQ: 2136 case CCP_TERMACK: 2137 /* 2138 * CCP is going down, both directions of transmission 2139 */ 2140 ppp->rstate &= ~SC_DECOMP_RUN; 2141 ppp->xstate &= ~SC_COMP_RUN; 2142 break; 2143 2144 case CCP_CONFACK: 2145 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) 2146 break; 2147 len = CCP_LENGTH(dp); 2148 if (!pskb_may_pull(skb, len + 2)) 2149 return; /* too short */ 2150 dp += CCP_HDRLEN; 2151 len -= CCP_HDRLEN; 2152 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) 2153 break; 2154 if (inbound) { 2155 /* we will start receiving compressed packets */ 2156 if (ppp->rc_state == 0) 2157 break; 2158 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, 2159 ppp->file.index, 0, ppp->mru, ppp->debug)) { 2160 ppp->rstate |= SC_DECOMP_RUN; 2161 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); 2162 } 2163 } else { 2164 /* we will soon start sending compressed packets */ 2165 if (ppp->xc_state == 0) 2166 break; 2167 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, 2168 ppp->file.index, 0, ppp->debug)) 2169 ppp->xstate |= SC_COMP_RUN; 2170 } 2171 break; 2172 2173 case CCP_RESETACK: 2174 /* reset the [de]compressor */ 2175 if ((ppp->flags & SC_CCP_UP) == 0) 2176 break; 2177 if (inbound) { 2178 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { 2179 ppp->rcomp->decomp_reset(ppp->rc_state); 2180 ppp->rstate &= ~SC_DC_ERROR; 2181 } 2182 } else { 2183 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) 2184 ppp->xcomp->comp_reset(ppp->xc_state); 2185 } 2186 break; 2187 } 2188} 2189 2190/* Free up compression resources. */ 2191static void 2192ppp_ccp_closed(struct ppp *ppp) 2193{ 2194 void *xstate, *rstate; 2195 struct compressor *xcomp, *rcomp; 2196 2197 ppp_lock(ppp); 2198 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); 2199 ppp->xstate = 0; 2200 xcomp = ppp->xcomp; 2201 xstate = ppp->xc_state; 2202 ppp->xc_state = NULL; 2203 ppp->rstate = 0; 2204 rcomp = ppp->rcomp; 2205 rstate = ppp->rc_state; 2206 ppp->rc_state = NULL; 2207 ppp_unlock(ppp); 2208 2209 if (xstate) { 2210 xcomp->comp_free(xstate); 2211 module_put(xcomp->owner); 2212 } 2213 if (rstate) { 2214 rcomp->decomp_free(rstate); 2215 module_put(rcomp->owner); 2216 } 2217} 2218 2219/* List of compressors. */ 2220static LIST_HEAD(compressor_list); 2221static DEFINE_SPINLOCK(compressor_list_lock); 2222 2223struct compressor_entry { 2224 struct list_head list; 2225 struct compressor *comp; 2226}; 2227 2228static struct compressor_entry * 2229find_comp_entry(int proto) 2230{ 2231 struct compressor_entry *ce; 2232 struct list_head *list = &compressor_list; 2233 2234 while ((list = list->next) != &compressor_list) { 2235 ce = list_entry(list, struct compressor_entry, list); 2236 if (ce->comp->compress_proto == proto) 2237 return ce; 2238 } 2239 return NULL; 2240} 2241 2242/* Register a compressor */ 2243int 2244ppp_register_compressor(struct compressor *cp) 2245{ 2246 struct compressor_entry *ce; 2247 int ret; 2248 spin_lock(&compressor_list_lock); 2249 ret = -EEXIST; 2250 if (find_comp_entry(cp->compress_proto) != 0) 2251 goto out; 2252 ret = -ENOMEM; 2253 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); 2254 if (ce == 0) 2255 goto out; 2256 ret = 0; 2257 ce->comp = cp; 2258 list_add(&ce->list, &compressor_list); 2259 out: 2260 spin_unlock(&compressor_list_lock); 2261 return ret; 2262} 2263 2264/* Unregister a compressor */ 2265void 2266ppp_unregister_compressor(struct compressor *cp) 2267{ 2268 struct compressor_entry *ce; 2269 2270 spin_lock(&compressor_list_lock); 2271 ce = find_comp_entry(cp->compress_proto); 2272 if (ce != 0 && ce->comp == cp) { 2273 list_del(&ce->list); 2274 kfree(ce); 2275 } 2276 spin_unlock(&compressor_list_lock); 2277} 2278 2279/* Find a compressor. */ 2280static struct compressor * 2281find_compressor(int type) 2282{ 2283 struct compressor_entry *ce; 2284 struct compressor *cp = NULL; 2285 2286 spin_lock(&compressor_list_lock); 2287 ce = find_comp_entry(type); 2288 if (ce != 0) { 2289 cp = ce->comp; 2290 if (!try_module_get(cp->owner)) 2291 cp = NULL; 2292 } 2293 spin_unlock(&compressor_list_lock); 2294 return cp; 2295} 2296 2297/* 2298 * Miscelleneous stuff. 2299 */ 2300 2301static void 2302ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) 2303{ 2304 struct slcompress *vj = ppp->vj; 2305 2306 memset(st, 0, sizeof(*st)); 2307 st->p.ppp_ipackets = ppp->stats.rx_packets; 2308 st->p.ppp_ierrors = ppp->stats.rx_errors; 2309 st->p.ppp_ibytes = ppp->stats.rx_bytes; 2310 st->p.ppp_opackets = ppp->stats.tx_packets; 2311 st->p.ppp_oerrors = ppp->stats.tx_errors; 2312 st->p.ppp_obytes = ppp->stats.tx_bytes; 2313 if (vj == 0) 2314 return; 2315 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; 2316 st->vj.vjs_compressed = vj->sls_o_compressed; 2317 st->vj.vjs_searches = vj->sls_o_searches; 2318 st->vj.vjs_misses = vj->sls_o_misses; 2319 st->vj.vjs_errorin = vj->sls_i_error; 2320 st->vj.vjs_tossed = vj->sls_i_tossed; 2321 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; 2322 st->vj.vjs_compressedin = vj->sls_i_compressed; 2323} 2324 2325/* 2326 * Stuff for handling the lists of ppp units and channels 2327 * and for initialization. 2328 */ 2329 2330/* 2331 * Create a new ppp interface unit. Fails if it can't allocate memory 2332 * or if there is already a unit with the requested number. 2333 * unit == -1 means allocate a new number. 2334 */ 2335static struct ppp * 2336ppp_create_interface(int unit, int *retp) 2337{ 2338 struct ppp *ppp; 2339 struct net_device *dev = NULL; 2340 int ret = -ENOMEM; 2341 int i; 2342 2343 ppp = kmalloc(sizeof(struct ppp), GFP_KERNEL); 2344 if (!ppp) 2345 goto out; 2346 dev = alloc_netdev(0, "", ppp_setup); 2347 if (!dev) 2348 goto out1; 2349 memset(ppp, 0, sizeof(struct ppp)); 2350 2351 ppp->mru = PPP_MRU; 2352 init_ppp_file(&ppp->file, INTERFACE); 2353 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ 2354 for (i = 0; i < NUM_NP; ++i) 2355 ppp->npmode[i] = NPMODE_PASS; 2356 INIT_LIST_HEAD(&ppp->channels); 2357 spin_lock_init(&ppp->rlock); 2358 spin_lock_init(&ppp->wlock); 2359#ifdef CONFIG_PPP_MULTILINK 2360 ppp->minseq = -1; 2361 skb_queue_head_init(&ppp->mrq); 2362#endif /* CONFIG_PPP_MULTILINK */ 2363 ppp->dev = dev; 2364 dev->priv = ppp; 2365 2366 dev->hard_start_xmit = ppp_start_xmit; 2367 dev->get_stats = ppp_net_stats; 2368 dev->do_ioctl = ppp_net_ioctl; 2369 2370 ret = -EEXIST; 2371 down(&all_ppp_sem); 2372 if (unit < 0) 2373 unit = cardmap_find_first_free(all_ppp_units); 2374 else if (cardmap_get(all_ppp_units, unit) != NULL) 2375 goto out2; /* unit already exists */ 2376 2377 /* Initialize the new ppp unit */ 2378 ppp->file.index = unit; 2379 sprintf(dev->name, "ppp%d", unit); 2380 2381 ret = register_netdev(dev); 2382 if (ret != 0) { 2383 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n", 2384 dev->name, ret); 2385 goto out2; 2386 } 2387 2388 atomic_inc(&ppp_unit_count); 2389 cardmap_set(&all_ppp_units, unit, ppp); 2390 up(&all_ppp_sem); 2391 *retp = 0; 2392 return ppp; 2393 2394out2: 2395 up(&all_ppp_sem); 2396 free_netdev(dev); 2397out1: 2398 kfree(ppp); 2399out: 2400 *retp = ret; 2401 return NULL; 2402} 2403 2404/* 2405 * Initialize a ppp_file structure. 2406 */ 2407static void 2408init_ppp_file(struct ppp_file *pf, int kind) 2409{ 2410 pf->kind = kind; 2411 skb_queue_head_init(&pf->xq); 2412 skb_queue_head_init(&pf->rq); 2413 atomic_set(&pf->refcnt, 1); 2414 init_waitqueue_head(&pf->rwait); 2415} 2416 2417/* 2418 * Take down a ppp interface unit - called when the owning file 2419 * (the one that created the unit) is closed or detached. 2420 */ 2421static void ppp_shutdown_interface(struct ppp *ppp) 2422{ 2423 struct net_device *dev; 2424 2425 down(&all_ppp_sem); 2426 ppp_lock(ppp); 2427 dev = ppp->dev; 2428 ppp->dev = NULL; 2429 ppp_unlock(ppp); 2430 /* This will call dev_close() for us. */ 2431 if (dev) { 2432 unregister_netdev(dev); 2433 free_netdev(dev); 2434 } 2435 cardmap_set(&all_ppp_units, ppp->file.index, NULL); 2436 ppp->file.dead = 1; 2437 ppp->owner = NULL; 2438 wake_up_interruptible(&ppp->file.rwait); 2439 up(&all_ppp_sem); 2440} 2441 2442/* 2443 * Free the memory used by a ppp unit. This is only called once 2444 * there are no channels connected to the unit and no file structs 2445 * that reference the unit. 2446 */ 2447static void ppp_destroy_interface(struct ppp *ppp) 2448{ 2449 atomic_dec(&ppp_unit_count); 2450 2451 if (!ppp->file.dead || ppp->n_channels) { 2452 /* "can't happen" */ 2453 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d " 2454 "n_channels=%d !\n", ppp, ppp->file.dead, 2455 ppp->n_channels); 2456 return; 2457 } 2458 2459 ppp_ccp_closed(ppp); 2460 if (ppp->vj) { 2461 slhc_free(ppp->vj); 2462 ppp->vj = NULL; 2463 } 2464 skb_queue_purge(&ppp->file.xq); 2465 skb_queue_purge(&ppp->file.rq); 2466#ifdef CONFIG_PPP_MULTILINK 2467 skb_queue_purge(&ppp->mrq); 2468#endif /* CONFIG_PPP_MULTILINK */ 2469#ifdef CONFIG_PPP_FILTER 2470 if (ppp->pass_filter) { 2471 kfree(ppp->pass_filter); 2472 ppp->pass_filter = NULL; 2473 } 2474 if (ppp->active_filter) { 2475 kfree(ppp->active_filter); 2476 ppp->active_filter = NULL; 2477 } 2478#endif /* CONFIG_PPP_FILTER */ 2479 2480 kfree(ppp); 2481} 2482 2483/* 2484 * Locate an existing ppp unit. 2485 * The caller should have locked the all_ppp_sem. 2486 */ 2487static struct ppp * 2488ppp_find_unit(int unit) 2489{ 2490 return cardmap_get(all_ppp_units, unit); 2491} 2492 2493/* 2494 * Locate an existing ppp channel. 2495 * The caller should have locked the all_channels_lock. 2496 * First we look in the new_channels list, then in the 2497 * all_channels list. If found in the new_channels list, 2498 * we move it to the all_channels list. This is for speed 2499 * when we have a lot of channels in use. 2500 */ 2501static struct channel * 2502ppp_find_channel(int unit) 2503{ 2504 struct channel *pch; 2505 struct list_head *list; 2506 2507 list = &new_channels; 2508 while ((list = list->next) != &new_channels) { 2509 pch = list_entry(list, struct channel, list); 2510 if (pch->file.index == unit) { 2511 list_del(&pch->list); 2512 list_add(&pch->list, &all_channels); 2513 return pch; 2514 } 2515 } 2516 list = &all_channels; 2517 while ((list = list->next) != &all_channels) { 2518 pch = list_entry(list, struct channel, list); 2519 if (pch->file.index == unit) 2520 return pch; 2521 } 2522 return NULL; 2523} 2524 2525/* 2526 * Connect a PPP channel to a PPP interface unit. 2527 */ 2528static int 2529ppp_connect_channel(struct channel *pch, int unit) 2530{ 2531 struct ppp *ppp; 2532 int ret = -ENXIO; 2533 int hdrlen; 2534 2535 down(&all_ppp_sem); 2536 ppp = ppp_find_unit(unit); 2537 if (ppp == 0) 2538 goto out; 2539 write_lock_bh(&pch->upl); 2540 ret = -EINVAL; 2541 if (pch->ppp != 0) 2542 goto outl; 2543 2544 ppp_lock(ppp); 2545 if (pch->file.hdrlen > ppp->file.hdrlen) 2546 ppp->file.hdrlen = pch->file.hdrlen; 2547 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ 2548 if (ppp->dev && hdrlen > ppp->dev->hard_header_len) 2549 ppp->dev->hard_header_len = hdrlen; 2550 list_add_tail(&pch->clist, &ppp->channels); 2551 ++ppp->n_channels; 2552 pch->ppp = ppp; 2553 atomic_inc(&ppp->file.refcnt); 2554 ppp_unlock(ppp); 2555 ret = 0; 2556 2557 outl: 2558 write_unlock_bh(&pch->upl); 2559 out: 2560 up(&all_ppp_sem); 2561 return ret; 2562} 2563 2564/* 2565 * Disconnect a channel from its ppp unit. 2566 */ 2567static int 2568ppp_disconnect_channel(struct channel *pch) 2569{ 2570 struct ppp *ppp; 2571 int err = -EINVAL; 2572 2573 write_lock_bh(&pch->upl); 2574 ppp = pch->ppp; 2575 pch->ppp = NULL; 2576 write_unlock_bh(&pch->upl); 2577 if (ppp != 0) { 2578 /* remove it from the ppp unit's list */ 2579 ppp_lock(ppp); 2580 list_del(&pch->clist); 2581 if (--ppp->n_channels == 0) 2582 wake_up_interruptible(&ppp->file.rwait); 2583 ppp_unlock(ppp); 2584 if (atomic_dec_and_test(&ppp->file.refcnt)) 2585 ppp_destroy_interface(ppp); 2586 err = 0; 2587 } 2588 return err; 2589} 2590 2591/* 2592 * Free up the resources used by a ppp channel. 2593 */ 2594static void ppp_destroy_channel(struct channel *pch) 2595{ 2596 atomic_dec(&channel_count); 2597 2598 if (!pch->file.dead) { 2599 /* "can't happen" */ 2600 printk(KERN_ERR "ppp: destroying undead channel %p !\n", 2601 pch); 2602 return; 2603 } 2604 skb_queue_purge(&pch->file.xq); 2605 skb_queue_purge(&pch->file.rq); 2606 kfree(pch); 2607} 2608 2609static void __exit ppp_cleanup(void) 2610{ 2611 /* should never happen */ 2612 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) 2613 printk(KERN_ERR "PPP: removing module but units remain!\n"); 2614 cardmap_destroy(&all_ppp_units); 2615 if (unregister_chrdev(PPP_MAJOR, "ppp") != 0) 2616 printk(KERN_ERR "PPP: failed to unregister PPP device\n"); 2617 devfs_remove("ppp"); 2618 class_simple_device_remove(MKDEV(PPP_MAJOR, 0)); 2619 class_simple_destroy(ppp_class); 2620} 2621 2622/* 2623 * Cardmap implementation. 2624 */ 2625static void *cardmap_get(struct cardmap *map, unsigned int nr) 2626{ 2627 struct cardmap *p; 2628 int i; 2629 2630 for (p = map; p != NULL; ) { 2631 if ((i = nr >> p->shift) >= CARDMAP_WIDTH) 2632 return NULL; 2633 if (p->shift == 0) 2634 return p->ptr[i]; 2635 nr &= ~(CARDMAP_MASK << p->shift); 2636 p = p->ptr[i]; 2637 } 2638 return NULL; 2639} 2640 2641static void cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr) 2642{ 2643 struct cardmap *p; 2644 int i; 2645 2646 p = *pmap; 2647 if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) { 2648 do { 2649 /* need a new top level */ 2650 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL); 2651 memset(np, 0, sizeof(*np)); 2652 np->ptr[0] = p; 2653 if (p != NULL) { 2654 np->shift = p->shift + CARDMAP_ORDER; 2655 p->parent = np; 2656 } else 2657 np->shift = 0; 2658 p = np; 2659 } while ((nr >> p->shift) >= CARDMAP_WIDTH); 2660 *pmap = p; 2661 } 2662 while (p->shift > 0) { 2663 i = (nr >> p->shift) & CARDMAP_MASK; 2664 if (p->ptr[i] == NULL) { 2665 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL); 2666 memset(np, 0, sizeof(*np)); 2667 np->shift = p->shift - CARDMAP_ORDER; 2668 np->parent = p; 2669 p->ptr[i] = np; 2670 } 2671 if (ptr == NULL) 2672 clear_bit(i, &p->inuse); 2673 p = p->ptr[i]; 2674 } 2675 i = nr & CARDMAP_MASK; 2676 p->ptr[i] = ptr; 2677 if (ptr != NULL) 2678 set_bit(i, &p->inuse); 2679 else 2680 clear_bit(i, &p->inuse); 2681} 2682 2683static unsigned int cardmap_find_first_free(struct cardmap *map) 2684{ 2685 struct cardmap *p; 2686 unsigned int nr = 0; 2687 int i; 2688 2689 if ((p = map) == NULL) 2690 return 0; 2691 for (;;) { 2692 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH); 2693 if (i >= CARDMAP_WIDTH) { 2694 if (p->parent == NULL) 2695 return CARDMAP_WIDTH << p->shift; 2696 p = p->parent; 2697 i = (nr >> p->shift) & CARDMAP_MASK; 2698 set_bit(i, &p->inuse); 2699 continue; 2700 } 2701 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift); 2702 if (p->shift == 0 || p->ptr[i] == NULL) 2703 return nr; 2704 p = p->ptr[i]; 2705 } 2706} 2707 2708static void cardmap_destroy(struct cardmap **pmap) 2709{ 2710 struct cardmap *p, *np; 2711 int i; 2712 2713 for (p = *pmap; p != NULL; p = np) { 2714 if (p->shift != 0) { 2715 for (i = 0; i < CARDMAP_WIDTH; ++i) 2716 if (p->ptr[i] != NULL) 2717 break; 2718 if (i < CARDMAP_WIDTH) { 2719 np = p->ptr[i]; 2720 p->ptr[i] = NULL; 2721 continue; 2722 } 2723 } 2724 np = p->parent; 2725 kfree(p); 2726 } 2727 *pmap = NULL; 2728} 2729 2730/* Module/initialization stuff */ 2731 2732module_init(ppp_init); 2733module_exit(ppp_cleanup); 2734 2735EXPORT_SYMBOL(ppp_register_channel); 2736EXPORT_SYMBOL(ppp_unregister_channel); 2737EXPORT_SYMBOL(ppp_channel_index); 2738EXPORT_SYMBOL(ppp_unit_number); 2739EXPORT_SYMBOL(ppp_input); 2740EXPORT_SYMBOL(ppp_input_error); 2741EXPORT_SYMBOL(ppp_output_wakeup); 2742EXPORT_SYMBOL(ppp_register_compressor); 2743EXPORT_SYMBOL(ppp_unregister_compressor); 2744MODULE_LICENSE("GPL"); 2745MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR); 2746MODULE_ALIAS("/dev/ppp");