at v2.6.12-rc2 1033 lines 24 kB view raw
1/* 2 * PPP async serial channel driver for Linux. 3 * 4 * Copyright 1999 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * This driver provides the encapsulation and framing for sending 12 * and receiving PPP frames over async serial lines. It relies on 13 * the generic PPP layer to give it frames to send and to process 14 * received frames. It implements the PPP line discipline. 15 * 16 * Part of the code in this driver was inspired by the old async-only 17 * PPP driver, written by Michael Callahan and Al Longyear, and 18 * subsequently hacked by Paul Mackerras. 19 */ 20 21#include <linux/module.h> 22#include <linux/kernel.h> 23#include <linux/skbuff.h> 24#include <linux/tty.h> 25#include <linux/netdevice.h> 26#include <linux/poll.h> 27#include <linux/crc-ccitt.h> 28#include <linux/ppp_defs.h> 29#include <linux/if_ppp.h> 30#include <linux/ppp_channel.h> 31#include <linux/spinlock.h> 32#include <linux/init.h> 33#include <asm/uaccess.h> 34 35#define PPP_VERSION "2.4.2" 36 37#define OBUFSIZE 256 38 39/* Structure for storing local state. */ 40struct asyncppp { 41 struct tty_struct *tty; 42 unsigned int flags; 43 unsigned int state; 44 unsigned int rbits; 45 int mru; 46 spinlock_t xmit_lock; 47 spinlock_t recv_lock; 48 unsigned long xmit_flags; 49 u32 xaccm[8]; 50 u32 raccm; 51 unsigned int bytes_sent; 52 unsigned int bytes_rcvd; 53 54 struct sk_buff *tpkt; 55 int tpkt_pos; 56 u16 tfcs; 57 unsigned char *optr; 58 unsigned char *olim; 59 unsigned long last_xmit; 60 61 struct sk_buff *rpkt; 62 int lcp_fcs; 63 struct sk_buff_head rqueue; 64 65 struct tasklet_struct tsk; 66 67 atomic_t refcnt; 68 struct semaphore dead_sem; 69 struct ppp_channel chan; /* interface to generic ppp layer */ 70 unsigned char obuf[OBUFSIZE]; 71}; 72 73/* Bit numbers in xmit_flags */ 74#define XMIT_WAKEUP 0 75#define XMIT_FULL 1 76#define XMIT_BUSY 2 77 78/* State bits */ 79#define SC_TOSS 1 80#define SC_ESCAPE 2 81#define SC_PREV_ERROR 4 82 83/* Bits in rbits */ 84#define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) 85 86static int flag_time = HZ; 87module_param(flag_time, int, 0); 88MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); 89MODULE_LICENSE("GPL"); 90MODULE_ALIAS_LDISC(N_PPP); 91 92/* 93 * Prototypes. 94 */ 95static int ppp_async_encode(struct asyncppp *ap); 96static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); 97static int ppp_async_push(struct asyncppp *ap); 98static void ppp_async_flush_output(struct asyncppp *ap); 99static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 100 char *flags, int count); 101static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, 102 unsigned long arg); 103static void ppp_async_process(unsigned long arg); 104 105static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 106 int len, int inbound); 107 108static struct ppp_channel_ops async_ops = { 109 ppp_async_send, 110 ppp_async_ioctl 111}; 112 113/* 114 * Routines implementing the PPP line discipline. 115 */ 116 117/* 118 * We have a potential race on dereferencing tty->disc_data, 119 * because the tty layer provides no locking at all - thus one 120 * cpu could be running ppp_asynctty_receive while another 121 * calls ppp_asynctty_close, which zeroes tty->disc_data and 122 * frees the memory that ppp_asynctty_receive is using. The best 123 * way to fix this is to use a rwlock in the tty struct, but for now 124 * we use a single global rwlock for all ttys in ppp line discipline. 125 * 126 * FIXME: this is no longer true. The _close path for the ldisc is 127 * now guaranteed to be sane. 128 */ 129static DEFINE_RWLOCK(disc_data_lock); 130 131static struct asyncppp *ap_get(struct tty_struct *tty) 132{ 133 struct asyncppp *ap; 134 135 read_lock(&disc_data_lock); 136 ap = tty->disc_data; 137 if (ap != NULL) 138 atomic_inc(&ap->refcnt); 139 read_unlock(&disc_data_lock); 140 return ap; 141} 142 143static void ap_put(struct asyncppp *ap) 144{ 145 if (atomic_dec_and_test(&ap->refcnt)) 146 up(&ap->dead_sem); 147} 148 149/* 150 * Called when a tty is put into PPP line discipline. Called in process 151 * context. 152 */ 153static int 154ppp_asynctty_open(struct tty_struct *tty) 155{ 156 struct asyncppp *ap; 157 int err; 158 159 err = -ENOMEM; 160 ap = kmalloc(sizeof(*ap), GFP_KERNEL); 161 if (ap == 0) 162 goto out; 163 164 /* initialize the asyncppp structure */ 165 memset(ap, 0, sizeof(*ap)); 166 ap->tty = tty; 167 ap->mru = PPP_MRU; 168 spin_lock_init(&ap->xmit_lock); 169 spin_lock_init(&ap->recv_lock); 170 ap->xaccm[0] = ~0U; 171 ap->xaccm[3] = 0x60000000U; 172 ap->raccm = ~0U; 173 ap->optr = ap->obuf; 174 ap->olim = ap->obuf; 175 ap->lcp_fcs = -1; 176 177 skb_queue_head_init(&ap->rqueue); 178 tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap); 179 180 atomic_set(&ap->refcnt, 1); 181 init_MUTEX_LOCKED(&ap->dead_sem); 182 183 ap->chan.private = ap; 184 ap->chan.ops = &async_ops; 185 ap->chan.mtu = PPP_MRU; 186 err = ppp_register_channel(&ap->chan); 187 if (err) 188 goto out_free; 189 190 tty->disc_data = ap; 191 192 return 0; 193 194 out_free: 195 kfree(ap); 196 out: 197 return err; 198} 199 200/* 201 * Called when the tty is put into another line discipline 202 * or it hangs up. We have to wait for any cpu currently 203 * executing in any of the other ppp_asynctty_* routines to 204 * finish before we can call ppp_unregister_channel and free 205 * the asyncppp struct. This routine must be called from 206 * process context, not interrupt or softirq context. 207 */ 208static void 209ppp_asynctty_close(struct tty_struct *tty) 210{ 211 struct asyncppp *ap; 212 213 write_lock_irq(&disc_data_lock); 214 ap = tty->disc_data; 215 tty->disc_data = NULL; 216 write_unlock_irq(&disc_data_lock); 217 if (ap == 0) 218 return; 219 220 /* 221 * We have now ensured that nobody can start using ap from now 222 * on, but we have to wait for all existing users to finish. 223 * Note that ppp_unregister_channel ensures that no calls to 224 * our channel ops (i.e. ppp_async_send/ioctl) are in progress 225 * by the time it returns. 226 */ 227 if (!atomic_dec_and_test(&ap->refcnt)) 228 down(&ap->dead_sem); 229 tasklet_kill(&ap->tsk); 230 231 ppp_unregister_channel(&ap->chan); 232 if (ap->rpkt != 0) 233 kfree_skb(ap->rpkt); 234 skb_queue_purge(&ap->rqueue); 235 if (ap->tpkt != 0) 236 kfree_skb(ap->tpkt); 237 kfree(ap); 238} 239 240/* 241 * Called on tty hangup in process context. 242 * 243 * Wait for I/O to driver to complete and unregister PPP channel. 244 * This is already done by the close routine, so just call that. 245 */ 246static int ppp_asynctty_hangup(struct tty_struct *tty) 247{ 248 ppp_asynctty_close(tty); 249 return 0; 250} 251 252/* 253 * Read does nothing - no data is ever available this way. 254 * Pppd reads and writes packets via /dev/ppp instead. 255 */ 256static ssize_t 257ppp_asynctty_read(struct tty_struct *tty, struct file *file, 258 unsigned char __user *buf, size_t count) 259{ 260 return -EAGAIN; 261} 262 263/* 264 * Write on the tty does nothing, the packets all come in 265 * from the ppp generic stuff. 266 */ 267static ssize_t 268ppp_asynctty_write(struct tty_struct *tty, struct file *file, 269 const unsigned char *buf, size_t count) 270{ 271 return -EAGAIN; 272} 273 274/* 275 * Called in process context only. May be re-entered by multiple 276 * ioctl calling threads. 277 */ 278 279static int 280ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file, 281 unsigned int cmd, unsigned long arg) 282{ 283 struct asyncppp *ap = ap_get(tty); 284 int err, val; 285 int __user *p = (int __user *)arg; 286 287 if (ap == 0) 288 return -ENXIO; 289 err = -EFAULT; 290 switch (cmd) { 291 case PPPIOCGCHAN: 292 err = -ENXIO; 293 if (ap == 0) 294 break; 295 err = -EFAULT; 296 if (put_user(ppp_channel_index(&ap->chan), p)) 297 break; 298 err = 0; 299 break; 300 301 case PPPIOCGUNIT: 302 err = -ENXIO; 303 if (ap == 0) 304 break; 305 err = -EFAULT; 306 if (put_user(ppp_unit_number(&ap->chan), p)) 307 break; 308 err = 0; 309 break; 310 311 case TCGETS: 312 case TCGETA: 313 err = n_tty_ioctl(tty, file, cmd, arg); 314 break; 315 316 case TCFLSH: 317 /* flush our buffers and the serial port's buffer */ 318 if (arg == TCIOFLUSH || arg == TCOFLUSH) 319 ppp_async_flush_output(ap); 320 err = n_tty_ioctl(tty, file, cmd, arg); 321 break; 322 323 case FIONREAD: 324 val = 0; 325 if (put_user(val, p)) 326 break; 327 err = 0; 328 break; 329 330 default: 331 err = -ENOIOCTLCMD; 332 } 333 334 ap_put(ap); 335 return err; 336} 337 338/* No kernel lock - fine */ 339static unsigned int 340ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait) 341{ 342 return 0; 343} 344 345static int 346ppp_asynctty_room(struct tty_struct *tty) 347{ 348 return 65535; 349} 350 351/* 352 * This can now be called from hard interrupt level as well 353 * as soft interrupt level or mainline. 354 */ 355static void 356ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, 357 char *cflags, int count) 358{ 359 struct asyncppp *ap = ap_get(tty); 360 unsigned long flags; 361 362 if (ap == 0) 363 return; 364 spin_lock_irqsave(&ap->recv_lock, flags); 365 ppp_async_input(ap, buf, cflags, count); 366 spin_unlock_irqrestore(&ap->recv_lock, flags); 367 if (skb_queue_len(&ap->rqueue)) 368 tasklet_schedule(&ap->tsk); 369 ap_put(ap); 370 if (test_and_clear_bit(TTY_THROTTLED, &tty->flags) 371 && tty->driver->unthrottle) 372 tty->driver->unthrottle(tty); 373} 374 375static void 376ppp_asynctty_wakeup(struct tty_struct *tty) 377{ 378 struct asyncppp *ap = ap_get(tty); 379 380 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 381 if (ap == 0) 382 return; 383 set_bit(XMIT_WAKEUP, &ap->xmit_flags); 384 tasklet_schedule(&ap->tsk); 385 ap_put(ap); 386} 387 388 389static struct tty_ldisc ppp_ldisc = { 390 .owner = THIS_MODULE, 391 .magic = TTY_LDISC_MAGIC, 392 .name = "ppp", 393 .open = ppp_asynctty_open, 394 .close = ppp_asynctty_close, 395 .hangup = ppp_asynctty_hangup, 396 .read = ppp_asynctty_read, 397 .write = ppp_asynctty_write, 398 .ioctl = ppp_asynctty_ioctl, 399 .poll = ppp_asynctty_poll, 400 .receive_room = ppp_asynctty_room, 401 .receive_buf = ppp_asynctty_receive, 402 .write_wakeup = ppp_asynctty_wakeup, 403}; 404 405static int __init 406ppp_async_init(void) 407{ 408 int err; 409 410 err = tty_register_ldisc(N_PPP, &ppp_ldisc); 411 if (err != 0) 412 printk(KERN_ERR "PPP_async: error %d registering line disc.\n", 413 err); 414 return err; 415} 416 417/* 418 * The following routines provide the PPP channel interface. 419 */ 420static int 421ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) 422{ 423 struct asyncppp *ap = chan->private; 424 void __user *argp = (void __user *)arg; 425 int __user *p = argp; 426 int err, val; 427 u32 accm[8]; 428 429 err = -EFAULT; 430 switch (cmd) { 431 case PPPIOCGFLAGS: 432 val = ap->flags | ap->rbits; 433 if (put_user(val, p)) 434 break; 435 err = 0; 436 break; 437 case PPPIOCSFLAGS: 438 if (get_user(val, p)) 439 break; 440 ap->flags = val & ~SC_RCV_BITS; 441 spin_lock_irq(&ap->recv_lock); 442 ap->rbits = val & SC_RCV_BITS; 443 spin_unlock_irq(&ap->recv_lock); 444 err = 0; 445 break; 446 447 case PPPIOCGASYNCMAP: 448 if (put_user(ap->xaccm[0], (u32 __user *)argp)) 449 break; 450 err = 0; 451 break; 452 case PPPIOCSASYNCMAP: 453 if (get_user(ap->xaccm[0], (u32 __user *)argp)) 454 break; 455 err = 0; 456 break; 457 458 case PPPIOCGRASYNCMAP: 459 if (put_user(ap->raccm, (u32 __user *)argp)) 460 break; 461 err = 0; 462 break; 463 case PPPIOCSRASYNCMAP: 464 if (get_user(ap->raccm, (u32 __user *)argp)) 465 break; 466 err = 0; 467 break; 468 469 case PPPIOCGXASYNCMAP: 470 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) 471 break; 472 err = 0; 473 break; 474 case PPPIOCSXASYNCMAP: 475 if (copy_from_user(accm, argp, sizeof(accm))) 476 break; 477 accm[2] &= ~0x40000000U; /* can't escape 0x5e */ 478 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ 479 memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); 480 err = 0; 481 break; 482 483 case PPPIOCGMRU: 484 if (put_user(ap->mru, p)) 485 break; 486 err = 0; 487 break; 488 case PPPIOCSMRU: 489 if (get_user(val, p)) 490 break; 491 if (val < PPP_MRU) 492 val = PPP_MRU; 493 ap->mru = val; 494 err = 0; 495 break; 496 497 default: 498 err = -ENOTTY; 499 } 500 501 return err; 502} 503 504/* 505 * This is called at softirq level to deliver received packets 506 * to the ppp_generic code, and to tell the ppp_generic code 507 * if we can accept more output now. 508 */ 509static void ppp_async_process(unsigned long arg) 510{ 511 struct asyncppp *ap = (struct asyncppp *) arg; 512 struct sk_buff *skb; 513 514 /* process received packets */ 515 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { 516 if (skb->cb[0]) 517 ppp_input_error(&ap->chan, 0); 518 ppp_input(&ap->chan, skb); 519 } 520 521 /* try to push more stuff out */ 522 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) 523 ppp_output_wakeup(&ap->chan); 524} 525 526/* 527 * Procedures for encapsulation and framing. 528 */ 529 530/* 531 * Procedure to encode the data for async serial transmission. 532 * Does octet stuffing (escaping), puts the address/control bytes 533 * on if A/C compression is disabled, and does protocol compression. 534 * Assumes ap->tpkt != 0 on entry. 535 * Returns 1 if we finished the current frame, 0 otherwise. 536 */ 537 538#define PUT_BYTE(ap, buf, c, islcp) do { \ 539 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ 540 *buf++ = PPP_ESCAPE; \ 541 *buf++ = c ^ 0x20; \ 542 } else \ 543 *buf++ = c; \ 544} while (0) 545 546static int 547ppp_async_encode(struct asyncppp *ap) 548{ 549 int fcs, i, count, c, proto; 550 unsigned char *buf, *buflim; 551 unsigned char *data; 552 int islcp; 553 554 buf = ap->obuf; 555 ap->olim = buf; 556 ap->optr = buf; 557 i = ap->tpkt_pos; 558 data = ap->tpkt->data; 559 count = ap->tpkt->len; 560 fcs = ap->tfcs; 561 proto = (data[0] << 8) + data[1]; 562 563 /* 564 * LCP packets with code values between 1 (configure-reqest) 565 * and 7 (code-reject) must be sent as though no options 566 * had been negotiated. 567 */ 568 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; 569 570 if (i == 0) { 571 if (islcp) 572 async_lcp_peek(ap, data, count, 0); 573 574 /* 575 * Start of a new packet - insert the leading FLAG 576 * character if necessary. 577 */ 578 if (islcp || flag_time == 0 579 || jiffies - ap->last_xmit >= flag_time) 580 *buf++ = PPP_FLAG; 581 ap->last_xmit = jiffies; 582 fcs = PPP_INITFCS; 583 584 /* 585 * Put in the address/control bytes if necessary 586 */ 587 if ((ap->flags & SC_COMP_AC) == 0 || islcp) { 588 PUT_BYTE(ap, buf, 0xff, islcp); 589 fcs = PPP_FCS(fcs, 0xff); 590 PUT_BYTE(ap, buf, 0x03, islcp); 591 fcs = PPP_FCS(fcs, 0x03); 592 } 593 } 594 595 /* 596 * Once we put in the last byte, we need to put in the FCS 597 * and closing flag, so make sure there is at least 7 bytes 598 * of free space in the output buffer. 599 */ 600 buflim = ap->obuf + OBUFSIZE - 6; 601 while (i < count && buf < buflim) { 602 c = data[i++]; 603 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) 604 continue; /* compress protocol field */ 605 fcs = PPP_FCS(fcs, c); 606 PUT_BYTE(ap, buf, c, islcp); 607 } 608 609 if (i < count) { 610 /* 611 * Remember where we are up to in this packet. 612 */ 613 ap->olim = buf; 614 ap->tpkt_pos = i; 615 ap->tfcs = fcs; 616 return 0; 617 } 618 619 /* 620 * We have finished the packet. Add the FCS and flag. 621 */ 622 fcs = ~fcs; 623 c = fcs & 0xff; 624 PUT_BYTE(ap, buf, c, islcp); 625 c = (fcs >> 8) & 0xff; 626 PUT_BYTE(ap, buf, c, islcp); 627 *buf++ = PPP_FLAG; 628 ap->olim = buf; 629 630 kfree_skb(ap->tpkt); 631 ap->tpkt = NULL; 632 return 1; 633} 634 635/* 636 * Transmit-side routines. 637 */ 638 639/* 640 * Send a packet to the peer over an async tty line. 641 * Returns 1 iff the packet was accepted. 642 * If the packet was not accepted, we will call ppp_output_wakeup 643 * at some later time. 644 */ 645static int 646ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) 647{ 648 struct asyncppp *ap = chan->private; 649 650 ppp_async_push(ap); 651 652 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) 653 return 0; /* already full */ 654 ap->tpkt = skb; 655 ap->tpkt_pos = 0; 656 657 ppp_async_push(ap); 658 return 1; 659} 660 661/* 662 * Push as much data as possible out to the tty. 663 */ 664static int 665ppp_async_push(struct asyncppp *ap) 666{ 667 int avail, sent, done = 0; 668 struct tty_struct *tty = ap->tty; 669 int tty_stuffed = 0; 670 671 /* 672 * We can get called recursively here if the tty write 673 * function calls our wakeup function. This can happen 674 * for example on a pty with both the master and slave 675 * set to PPP line discipline. 676 * We use the XMIT_BUSY bit to detect this and get out, 677 * leaving the XMIT_WAKEUP bit set to tell the other 678 * instance that it may now be able to write more now. 679 */ 680 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 681 return 0; 682 spin_lock_bh(&ap->xmit_lock); 683 for (;;) { 684 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) 685 tty_stuffed = 0; 686 if (!tty_stuffed && ap->optr < ap->olim) { 687 avail = ap->olim - ap->optr; 688 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 689 sent = tty->driver->write(tty, ap->optr, avail); 690 if (sent < 0) 691 goto flush; /* error, e.g. loss of CD */ 692 ap->optr += sent; 693 if (sent < avail) 694 tty_stuffed = 1; 695 continue; 696 } 697 if (ap->optr >= ap->olim && ap->tpkt != 0) { 698 if (ppp_async_encode(ap)) { 699 /* finished processing ap->tpkt */ 700 clear_bit(XMIT_FULL, &ap->xmit_flags); 701 done = 1; 702 } 703 continue; 704 } 705 /* 706 * We haven't made any progress this time around. 707 * Clear XMIT_BUSY to let other callers in, but 708 * after doing so we have to check if anyone set 709 * XMIT_WAKEUP since we last checked it. If they 710 * did, we should try again to set XMIT_BUSY and go 711 * around again in case XMIT_BUSY was still set when 712 * the other caller tried. 713 */ 714 clear_bit(XMIT_BUSY, &ap->xmit_flags); 715 /* any more work to do? if not, exit the loop */ 716 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) 717 || (!tty_stuffed && ap->tpkt != 0))) 718 break; 719 /* more work to do, see if we can do it now */ 720 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 721 break; 722 } 723 spin_unlock_bh(&ap->xmit_lock); 724 return done; 725 726flush: 727 clear_bit(XMIT_BUSY, &ap->xmit_flags); 728 if (ap->tpkt != 0) { 729 kfree_skb(ap->tpkt); 730 ap->tpkt = NULL; 731 clear_bit(XMIT_FULL, &ap->xmit_flags); 732 done = 1; 733 } 734 ap->optr = ap->olim; 735 spin_unlock_bh(&ap->xmit_lock); 736 return done; 737} 738 739/* 740 * Flush output from our internal buffers. 741 * Called for the TCFLSH ioctl. Can be entered in parallel 742 * but this is covered by the xmit_lock. 743 */ 744static void 745ppp_async_flush_output(struct asyncppp *ap) 746{ 747 int done = 0; 748 749 spin_lock_bh(&ap->xmit_lock); 750 ap->optr = ap->olim; 751 if (ap->tpkt != NULL) { 752 kfree_skb(ap->tpkt); 753 ap->tpkt = NULL; 754 clear_bit(XMIT_FULL, &ap->xmit_flags); 755 done = 1; 756 } 757 spin_unlock_bh(&ap->xmit_lock); 758 if (done) 759 ppp_output_wakeup(&ap->chan); 760} 761 762/* 763 * Receive-side routines. 764 */ 765 766/* see how many ordinary chars there are at the start of buf */ 767static inline int 768scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) 769{ 770 int i, c; 771 772 for (i = 0; i < count; ++i) { 773 c = buf[i]; 774 if (c == PPP_ESCAPE || c == PPP_FLAG 775 || (c < 0x20 && (ap->raccm & (1 << c)) != 0)) 776 break; 777 } 778 return i; 779} 780 781/* called when a flag is seen - do end-of-packet processing */ 782static void 783process_input_packet(struct asyncppp *ap) 784{ 785 struct sk_buff *skb; 786 unsigned char *p; 787 unsigned int len, fcs, proto; 788 789 skb = ap->rpkt; 790 if (ap->state & (SC_TOSS | SC_ESCAPE)) 791 goto err; 792 793 if (skb == NULL) 794 return; /* 0-length packet */ 795 796 /* check the FCS */ 797 p = skb->data; 798 len = skb->len; 799 if (len < 3) 800 goto err; /* too short */ 801 fcs = PPP_INITFCS; 802 for (; len > 0; --len) 803 fcs = PPP_FCS(fcs, *p++); 804 if (fcs != PPP_GOODFCS) 805 goto err; /* bad FCS */ 806 skb_trim(skb, skb->len - 2); 807 808 /* check for address/control and protocol compression */ 809 p = skb->data; 810 if (p[0] == PPP_ALLSTATIONS && p[1] == PPP_UI) { 811 /* chop off address/control */ 812 if (skb->len < 3) 813 goto err; 814 p = skb_pull(skb, 2); 815 } 816 proto = p[0]; 817 if (proto & 1) { 818 /* protocol is compressed */ 819 skb_push(skb, 1)[0] = 0; 820 } else { 821 if (skb->len < 2) 822 goto err; 823 proto = (proto << 8) + p[1]; 824 if (proto == PPP_LCP) 825 async_lcp_peek(ap, p, skb->len, 1); 826 } 827 828 /* queue the frame to be processed */ 829 skb->cb[0] = ap->state; 830 skb_queue_tail(&ap->rqueue, skb); 831 ap->rpkt = NULL; 832 ap->state = 0; 833 return; 834 835 err: 836 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ 837 ap->state = SC_PREV_ERROR; 838 if (skb) 839 skb_trim(skb, 0); 840} 841 842/* Called when the tty driver has data for us. Runs parallel with the 843 other ldisc functions but will not be re-entered */ 844 845static void 846ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 847 char *flags, int count) 848{ 849 struct sk_buff *skb; 850 int c, i, j, n, s, f; 851 unsigned char *sp; 852 853 /* update bits used for 8-bit cleanness detection */ 854 if (~ap->rbits & SC_RCV_BITS) { 855 s = 0; 856 for (i = 0; i < count; ++i) { 857 c = buf[i]; 858 if (flags != 0 && flags[i] != 0) 859 continue; 860 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; 861 c = ((c >> 4) ^ c) & 0xf; 862 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; 863 } 864 ap->rbits |= s; 865 } 866 867 while (count > 0) { 868 /* scan through and see how many chars we can do in bulk */ 869 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) 870 n = 1; 871 else 872 n = scan_ordinary(ap, buf, count); 873 874 f = 0; 875 if (flags != 0 && (ap->state & SC_TOSS) == 0) { 876 /* check the flags to see if any char had an error */ 877 for (j = 0; j < n; ++j) 878 if ((f = flags[j]) != 0) 879 break; 880 } 881 if (f != 0) { 882 /* start tossing */ 883 ap->state |= SC_TOSS; 884 885 } else if (n > 0 && (ap->state & SC_TOSS) == 0) { 886 /* stuff the chars in the skb */ 887 skb = ap->rpkt; 888 if (skb == 0) { 889 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); 890 if (skb == 0) 891 goto nomem; 892 /* Try to get the payload 4-byte aligned */ 893 if (buf[0] != PPP_ALLSTATIONS) 894 skb_reserve(skb, 2 + (buf[0] & 1)); 895 ap->rpkt = skb; 896 } 897 if (n > skb_tailroom(skb)) { 898 /* packet overflowed MRU */ 899 ap->state |= SC_TOSS; 900 } else { 901 sp = skb_put(skb, n); 902 memcpy(sp, buf, n); 903 if (ap->state & SC_ESCAPE) { 904 sp[0] ^= 0x20; 905 ap->state &= ~SC_ESCAPE; 906 } 907 } 908 } 909 910 if (n >= count) 911 break; 912 913 c = buf[n]; 914 if (flags != NULL && flags[n] != 0) { 915 ap->state |= SC_TOSS; 916 } else if (c == PPP_FLAG) { 917 process_input_packet(ap); 918 } else if (c == PPP_ESCAPE) { 919 ap->state |= SC_ESCAPE; 920 } else if (I_IXON(ap->tty)) { 921 if (c == START_CHAR(ap->tty)) 922 start_tty(ap->tty); 923 else if (c == STOP_CHAR(ap->tty)) 924 stop_tty(ap->tty); 925 } 926 /* otherwise it's a char in the recv ACCM */ 927 ++n; 928 929 buf += n; 930 if (flags != 0) 931 flags += n; 932 count -= n; 933 } 934 return; 935 936 nomem: 937 printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); 938 ap->state |= SC_TOSS; 939} 940 941/* 942 * We look at LCP frames going past so that we can notice 943 * and react to the LCP configure-ack from the peer. 944 * In the situation where the peer has been sent a configure-ack 945 * already, LCP is up once it has sent its configure-ack 946 * so the immediately following packet can be sent with the 947 * configured LCP options. This allows us to process the following 948 * packet correctly without pppd needing to respond quickly. 949 * 950 * We only respond to the received configure-ack if we have just 951 * sent a configure-request, and the configure-ack contains the 952 * same data (this is checked using a 16-bit crc of the data). 953 */ 954#define CONFREQ 1 /* LCP code field values */ 955#define CONFACK 2 956#define LCP_MRU 1 /* LCP option numbers */ 957#define LCP_ASYNCMAP 2 958 959static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 960 int len, int inbound) 961{ 962 int dlen, fcs, i, code; 963 u32 val; 964 965 data += 2; /* skip protocol bytes */ 966 len -= 2; 967 if (len < 4) /* 4 = code, ID, length */ 968 return; 969 code = data[0]; 970 if (code != CONFACK && code != CONFREQ) 971 return; 972 dlen = (data[2] << 8) + data[3]; 973 if (len < dlen) 974 return; /* packet got truncated or length is bogus */ 975 976 if (code == (inbound? CONFACK: CONFREQ)) { 977 /* 978 * sent confreq or received confack: 979 * calculate the crc of the data from the ID field on. 980 */ 981 fcs = PPP_INITFCS; 982 for (i = 1; i < dlen; ++i) 983 fcs = PPP_FCS(fcs, data[i]); 984 985 if (!inbound) { 986 /* outbound confreq - remember the crc for later */ 987 ap->lcp_fcs = fcs; 988 return; 989 } 990 991 /* received confack, check the crc */ 992 fcs ^= ap->lcp_fcs; 993 ap->lcp_fcs = -1; 994 if (fcs != 0) 995 return; 996 } else if (inbound) 997 return; /* not interested in received confreq */ 998 999 /* process the options in the confack */ 1000 data += 4; 1001 dlen -= 4; 1002 /* data[0] is code, data[1] is length */ 1003 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { 1004 switch (data[0]) { 1005 case LCP_MRU: 1006 val = (data[2] << 8) + data[3]; 1007 if (inbound) 1008 ap->mru = val; 1009 else 1010 ap->chan.mtu = val; 1011 break; 1012 case LCP_ASYNCMAP: 1013 val = (data[2] << 24) + (data[3] << 16) 1014 + (data[4] << 8) + data[5]; 1015 if (inbound) 1016 ap->raccm = val; 1017 else 1018 ap->xaccm[0] = val; 1019 break; 1020 } 1021 dlen -= data[1]; 1022 data += data[1]; 1023 } 1024} 1025 1026static void __exit ppp_async_cleanup(void) 1027{ 1028 if (tty_register_ldisc(N_PPP, NULL) != 0) 1029 printk(KERN_ERR "failed to unregister PPP line discipline\n"); 1030} 1031 1032module_init(ppp_async_init); 1033module_exit(ppp_async_cleanup);