at v2.6.12-rc2 1308 lines 41 kB view raw
1/* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */ 2/* 3 Written/copyright 1993-1998 by Donald Becker. 4 5 Copyright 1993 United States Government as represented by the 6 Director, National Security Agency. 7 This software may be used and distributed according to the terms 8 of the GNU General Public License, incorporated herein by reference. 9 10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work 11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards. 12 13 The author may be reached as becker@scyld.com, or C/O 14 Scyld Computing Corporation 15 410 Severn Ave., Suite 210 16 Annapolis MD 21403 17 18 Andrey V. Savochkin: 19 - alignment problem with 1.3.* kernel and some minor changes. 20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de): 21 - added support for Linux/Alpha, but removed most of it, because 22 it worked only for the PCI chip. 23 - added hook for the 32bit lance driver 24 - added PCnetPCI II (79C970A) to chip table 25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au): 26 - hopefully fix above so Linux/Alpha can use ISA cards too. 27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb 28 v1.12 10/27/97 Module support -djb 29 v1.14 2/3/98 Module support modified, made PCI support optional -djb 30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed 31 before unregister_netdev() which caused NULL pointer 32 reference later in the chain (in rtnetlink_fill_ifinfo()) 33 -- Mika Kuoppala <miku@iki.fi> 34 35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from 36 the 2.1 version of the old driver - Alan Cox 37 38 Get rid of check_region, check kmalloc return in lance_probe1 39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001 40 41 Reworked detection, added support for Racal InterLan EtherBlaster cards 42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004 43*/ 44 45static const char version[] = "lance.c:v1.15ac 1999/11/13 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n"; 46 47#include <linux/module.h> 48#include <linux/kernel.h> 49#include <linux/string.h> 50#include <linux/delay.h> 51#include <linux/errno.h> 52#include <linux/ioport.h> 53#include <linux/slab.h> 54#include <linux/interrupt.h> 55#include <linux/pci.h> 56#include <linux/init.h> 57#include <linux/netdevice.h> 58#include <linux/etherdevice.h> 59#include <linux/skbuff.h> 60#include <linux/bitops.h> 61 62#include <asm/io.h> 63#include <asm/dma.h> 64 65static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0}; 66static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options); 67static int __init do_lance_probe(struct net_device *dev); 68 69 70static struct card { 71 char id_offset14; 72 char id_offset15; 73} cards[] = { 74 { //"normal" 75 .id_offset14 = 0x57, 76 .id_offset15 = 0x57, 77 }, 78 { //NI6510EB 79 .id_offset14 = 0x52, 80 .id_offset15 = 0x44, 81 }, 82 { //Racal InterLan EtherBlaster 83 .id_offset14 = 0x52, 84 .id_offset15 = 0x49, 85 }, 86}; 87#define NUM_CARDS 3 88 89#ifdef LANCE_DEBUG 90static int lance_debug = LANCE_DEBUG; 91#else 92static int lance_debug = 1; 93#endif 94 95/* 96 Theory of Operation 97 98I. Board Compatibility 99 100This device driver is designed for the AMD 79C960, the "PCnet-ISA 101single-chip ethernet controller for ISA". This chip is used in a wide 102variety of boards from vendors such as Allied Telesis, HP, Kingston, 103and Boca. This driver is also intended to work with older AMD 7990 104designs, such as the NE1500 and NE2100, and newer 79C961. For convenience, 105I use the name LANCE to refer to all of the AMD chips, even though it properly 106refers only to the original 7990. 107 108II. Board-specific settings 109 110The driver is designed to work the boards that use the faster 111bus-master mode, rather than in shared memory mode. (Only older designs 112have on-board buffer memory needed to support the slower shared memory mode.) 113 114Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA 115channel. This driver probes the likely base addresses: 116{0x300, 0x320, 0x340, 0x360}. 117After the board is found it generates a DMA-timeout interrupt and uses 118autoIRQ to find the IRQ line. The DMA channel can be set with the low bits 119of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is 120probed for by enabling each free DMA channel in turn and checking if 121initialization succeeds. 122 123The HP-J2405A board is an exception: with this board it is easy to read the 124EEPROM-set values for the base, IRQ, and DMA. (Of course you must already 125_know_ the base address -- that field is for writing the EEPROM.) 126 127III. Driver operation 128 129IIIa. Ring buffers 130The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes 131the base and length of the data buffer, along with status bits. The length 132of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of 133the buffer length (rather than being directly the buffer length) for 134implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to 135ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries 136needlessly uses extra space and reduces the chance that an upper layer will 137be able to reorder queued Tx packets based on priority. Decreasing the number 138of entries makes it more difficult to achieve back-to-back packet transmission 139and increases the chance that Rx ring will overflow. (Consider the worst case 140of receiving back-to-back minimum-sized packets.) 141 142The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver 143statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to 144avoid the administrative overhead. For the Rx side this avoids dynamically 145allocating full-sized buffers "just in case", at the expense of a 146memory-to-memory data copy for each packet received. For most systems this 147is a good tradeoff: the Rx buffer will always be in low memory, the copy 148is inexpensive, and it primes the cache for later packet processing. For Tx 149the buffers are only used when needed as low-memory bounce buffers. 150 151IIIB. 16M memory limitations. 152For the ISA bus master mode all structures used directly by the LANCE, 153the initialization block, Rx and Tx rings, and data buffers, must be 154accessible from the ISA bus, i.e. in the lower 16M of real memory. 155This is a problem for current Linux kernels on >16M machines. The network 156devices are initialized after memory initialization, and the kernel doles out 157memory from the top of memory downward. The current solution is to have a 158special network initialization routine that's called before memory 159initialization; this will eventually be generalized for all network devices. 160As mentioned before, low-memory "bounce-buffers" are used when needed. 161 162IIIC. Synchronization 163The driver runs as two independent, single-threaded flows of control. One 164is the send-packet routine, which enforces single-threaded use by the 165dev->tbusy flag. The other thread is the interrupt handler, which is single 166threaded by the hardware and other software. 167 168The send packet thread has partial control over the Tx ring and 'dev->tbusy' 169flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 170queue slot is empty, it clears the tbusy flag when finished otherwise it sets 171the 'lp->tx_full' flag. 172 173The interrupt handler has exclusive control over the Rx ring and records stats 174from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so 175we can't avoid the interrupt overhead by having the Tx routine reap the Tx 176stats.) After reaping the stats, it marks the queue entry as empty by setting 177the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the 178tx_full and tbusy flags. 179 180*/ 181 182/* Set the number of Tx and Rx buffers, using Log_2(# buffers). 183 Reasonable default values are 16 Tx buffers, and 16 Rx buffers. 184 That translates to 4 and 4 (16 == 2^^4). 185 This is a compile-time option for efficiency. 186 */ 187#ifndef LANCE_LOG_TX_BUFFERS 188#define LANCE_LOG_TX_BUFFERS 4 189#define LANCE_LOG_RX_BUFFERS 4 190#endif 191 192#define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS)) 193#define TX_RING_MOD_MASK (TX_RING_SIZE - 1) 194#define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29) 195 196#define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS)) 197#define RX_RING_MOD_MASK (RX_RING_SIZE - 1) 198#define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29) 199 200#define PKT_BUF_SZ 1544 201 202/* Offsets from base I/O address. */ 203#define LANCE_DATA 0x10 204#define LANCE_ADDR 0x12 205#define LANCE_RESET 0x14 206#define LANCE_BUS_IF 0x16 207#define LANCE_TOTAL_SIZE 0x18 208 209#define TX_TIMEOUT 20 210 211/* The LANCE Rx and Tx ring descriptors. */ 212struct lance_rx_head { 213 s32 base; 214 s16 buf_length; /* This length is 2s complement (negative)! */ 215 s16 msg_length; /* This length is "normal". */ 216}; 217 218struct lance_tx_head { 219 s32 base; 220 s16 length; /* Length is 2s complement (negative)! */ 221 s16 misc; 222}; 223 224/* The LANCE initialization block, described in databook. */ 225struct lance_init_block { 226 u16 mode; /* Pre-set mode (reg. 15) */ 227 u8 phys_addr[6]; /* Physical ethernet address */ 228 u32 filter[2]; /* Multicast filter (unused). */ 229 /* Receive and transmit ring base, along with extra bits. */ 230 u32 rx_ring; /* Tx and Rx ring base pointers */ 231 u32 tx_ring; 232}; 233 234struct lance_private { 235 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */ 236 struct lance_rx_head rx_ring[RX_RING_SIZE]; 237 struct lance_tx_head tx_ring[TX_RING_SIZE]; 238 struct lance_init_block init_block; 239 const char *name; 240 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 241 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 242 /* The addresses of receive-in-place skbuffs. */ 243 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 244 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */ 245 /* Tx low-memory "bounce buffer" address. */ 246 char (*tx_bounce_buffs)[PKT_BUF_SZ]; 247 int cur_rx, cur_tx; /* The next free ring entry */ 248 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ 249 int dma; 250 struct net_device_stats stats; 251 unsigned char chip_version; /* See lance_chip_type. */ 252 spinlock_t devlock; 253}; 254 255#define LANCE_MUST_PAD 0x00000001 256#define LANCE_ENABLE_AUTOSELECT 0x00000002 257#define LANCE_MUST_REINIT_RING 0x00000004 258#define LANCE_MUST_UNRESET 0x00000008 259#define LANCE_HAS_MISSED_FRAME 0x00000010 260 261/* A mapping from the chip ID number to the part number and features. 262 These are from the datasheets -- in real life the '970 version 263 reportedly has the same ID as the '965. */ 264static struct lance_chip_type { 265 int id_number; 266 const char *name; 267 int flags; 268} chip_table[] = { 269 {0x0000, "LANCE 7990", /* Ancient lance chip. */ 270 LANCE_MUST_PAD + LANCE_MUST_UNRESET}, 271 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */ 272 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 273 LANCE_HAS_MISSED_FRAME}, 274 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */ 275 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 276 LANCE_HAS_MISSED_FRAME}, 277 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */ 278 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 279 LANCE_HAS_MISSED_FRAME}, 280 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call 281 it the PCnet32. */ 282 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */ 283 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 284 LANCE_HAS_MISSED_FRAME}, 285 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */ 286 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 287 LANCE_HAS_MISSED_FRAME}, 288 {0x0, "PCnet (unknown)", 289 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 290 LANCE_HAS_MISSED_FRAME}, 291}; 292 293enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6}; 294 295 296/* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers. 297 Assume yes until we know the memory size. */ 298static unsigned char lance_need_isa_bounce_buffers = 1; 299 300static int lance_open(struct net_device *dev); 301static void lance_init_ring(struct net_device *dev, int mode); 302static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev); 303static int lance_rx(struct net_device *dev); 304static irqreturn_t lance_interrupt(int irq, void *dev_id, struct pt_regs *regs); 305static int lance_close(struct net_device *dev); 306static struct net_device_stats *lance_get_stats(struct net_device *dev); 307static void set_multicast_list(struct net_device *dev); 308static void lance_tx_timeout (struct net_device *dev); 309 310 311 312static void cleanup_card(struct net_device *dev) 313{ 314 struct lance_private *lp = dev->priv; 315 if (dev->dma != 4) 316 free_dma(dev->dma); 317 release_region(dev->base_addr, LANCE_TOTAL_SIZE); 318 kfree(lp->tx_bounce_buffs); 319 kfree((void*)lp->rx_buffs); 320 kfree(lp); 321} 322 323#ifdef MODULE 324#define MAX_CARDS 8 /* Max number of interfaces (cards) per module */ 325 326static struct net_device *dev_lance[MAX_CARDS]; 327static int io[MAX_CARDS]; 328static int dma[MAX_CARDS]; 329static int irq[MAX_CARDS]; 330 331module_param_array(io, int, NULL, 0); 332module_param_array(dma, int, NULL, 0); 333module_param_array(irq, int, NULL, 0); 334module_param(lance_debug, int, 0); 335MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required"); 336MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)"); 337MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)"); 338MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)"); 339 340int init_module(void) 341{ 342 struct net_device *dev; 343 int this_dev, found = 0; 344 345 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) { 346 if (io[this_dev] == 0) { 347 if (this_dev != 0) /* only complain once */ 348 break; 349 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n"); 350 return -EPERM; 351 } 352 dev = alloc_etherdev(0); 353 if (!dev) 354 break; 355 dev->irq = irq[this_dev]; 356 dev->base_addr = io[this_dev]; 357 dev->dma = dma[this_dev]; 358 if (do_lance_probe(dev) == 0) { 359 if (register_netdev(dev) == 0) { 360 dev_lance[found++] = dev; 361 continue; 362 } 363 cleanup_card(dev); 364 } 365 free_netdev(dev); 366 break; 367 } 368 if (found != 0) 369 return 0; 370 return -ENXIO; 371} 372 373void cleanup_module(void) 374{ 375 int this_dev; 376 377 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) { 378 struct net_device *dev = dev_lance[this_dev]; 379 if (dev) { 380 unregister_netdev(dev); 381 cleanup_card(dev); 382 free_netdev(dev); 383 } 384 } 385} 386#endif /* MODULE */ 387MODULE_LICENSE("GPL"); 388 389 390/* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other 391 board probes now that kmalloc() can allocate ISA DMA-able regions. 392 This also allows the LANCE driver to be used as a module. 393 */ 394static int __init do_lance_probe(struct net_device *dev) 395{ 396 int *port, result; 397 398 if (high_memory <= phys_to_virt(16*1024*1024)) 399 lance_need_isa_bounce_buffers = 0; 400 401 for (port = lance_portlist; *port; port++) { 402 int ioaddr = *port; 403 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE, 404 "lance-probe"); 405 406 if (r) { 407 /* Detect the card with minimal I/O reads */ 408 char offset14 = inb(ioaddr + 14); 409 int card; 410 for (card = 0; card < NUM_CARDS; ++card) 411 if (cards[card].id_offset14 == offset14) 412 break; 413 if (card < NUM_CARDS) {/*yes, the first byte matches*/ 414 char offset15 = inb(ioaddr + 15); 415 for (card = 0; card < NUM_CARDS; ++card) 416 if ((cards[card].id_offset14 == offset14) && 417 (cards[card].id_offset15 == offset15)) 418 break; 419 } 420 if (card < NUM_CARDS) { /*Signature OK*/ 421 result = lance_probe1(dev, ioaddr, 0, 0); 422 if (!result) { 423 struct lance_private *lp = dev->priv; 424 int ver = lp->chip_version; 425 426 r->name = chip_table[ver].name; 427 return 0; 428 } 429 } 430 release_region(ioaddr, LANCE_TOTAL_SIZE); 431 } 432 } 433 return -ENODEV; 434} 435 436#ifndef MODULE 437struct net_device * __init lance_probe(int unit) 438{ 439 struct net_device *dev = alloc_etherdev(0); 440 int err; 441 442 if (!dev) 443 return ERR_PTR(-ENODEV); 444 445 sprintf(dev->name, "eth%d", unit); 446 netdev_boot_setup_check(dev); 447 448 err = do_lance_probe(dev); 449 if (err) 450 goto out; 451 err = register_netdev(dev); 452 if (err) 453 goto out1; 454 return dev; 455out1: 456 cleanup_card(dev); 457out: 458 free_netdev(dev); 459 return ERR_PTR(err); 460} 461#endif 462 463static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options) 464{ 465 struct lance_private *lp; 466 long dma_channels; /* Mark spuriously-busy DMA channels */ 467 int i, reset_val, lance_version; 468 const char *chipname; 469 /* Flags for specific chips or boards. */ 470 unsigned char hpJ2405A = 0; /* HP ISA adaptor */ 471 int hp_builtin = 0; /* HP on-board ethernet. */ 472 static int did_version; /* Already printed version info. */ 473 unsigned long flags; 474 int err = -ENOMEM; 475 476 /* First we look for special cases. 477 Check for HP's on-board ethernet by looking for 'HP' in the BIOS. 478 There are two HP versions, check the BIOS for the configuration port. 479 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com. 480 */ 481 if (isa_readw(0x000f0102) == 0x5048) { 482 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360}; 483 int hp_port = (isa_readl(0x000f00f1) & 1) ? 0x499 : 0x99; 484 /* We can have boards other than the built-in! Verify this is on-board. */ 485 if ((inb(hp_port) & 0xc0) == 0x80 486 && ioaddr_table[inb(hp_port) & 3] == ioaddr) 487 hp_builtin = hp_port; 488 } 489 /* We also recognize the HP Vectra on-board here, but check below. */ 490 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 491 && inb(ioaddr+2) == 0x09); 492 493 /* Reset the LANCE. */ 494 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */ 495 496 /* The Un-Reset needed is only needed for the real NE2100, and will 497 confuse the HP board. */ 498 if (!hpJ2405A) 499 outw(reset_val, ioaddr+LANCE_RESET); 500 501 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */ 502 if (inw(ioaddr+LANCE_DATA) != 0x0004) 503 return -ENODEV; 504 505 /* Get the version of the chip. */ 506 outw(88, ioaddr+LANCE_ADDR); 507 if (inw(ioaddr+LANCE_ADDR) != 88) { 508 lance_version = 0; 509 } else { /* Good, it's a newer chip. */ 510 int chip_version = inw(ioaddr+LANCE_DATA); 511 outw(89, ioaddr+LANCE_ADDR); 512 chip_version |= inw(ioaddr+LANCE_DATA) << 16; 513 if (lance_debug > 2) 514 printk(" LANCE chip version is %#x.\n", chip_version); 515 if ((chip_version & 0xfff) != 0x003) 516 return -ENODEV; 517 chip_version = (chip_version >> 12) & 0xffff; 518 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) { 519 if (chip_table[lance_version].id_number == chip_version) 520 break; 521 } 522 } 523 524 /* We can't allocate dev->priv from alloc_etherdev() because it must 525 a ISA DMA-able region. */ 526 SET_MODULE_OWNER(dev); 527 chipname = chip_table[lance_version].name; 528 printk("%s: %s at %#3x,", dev->name, chipname, ioaddr); 529 530 /* There is a 16 byte station address PROM at the base address. 531 The first six bytes are the station address. */ 532 for (i = 0; i < 6; i++) 533 printk(" %2.2x", dev->dev_addr[i] = inb(ioaddr + i)); 534 535 dev->base_addr = ioaddr; 536 /* Make certain the data structures used by the LANCE are aligned and DMAble. */ 537 538 lp = kmalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL); 539 if(lp==NULL) 540 return -ENODEV; 541 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp); 542 memset(lp, 0, sizeof(*lp)); 543 dev->priv = lp; 544 lp->name = chipname; 545 lp->rx_buffs = (unsigned long)kmalloc(PKT_BUF_SZ*RX_RING_SIZE, 546 GFP_DMA | GFP_KERNEL); 547 if (!lp->rx_buffs) 548 goto out_lp; 549 if (lance_need_isa_bounce_buffers) { 550 lp->tx_bounce_buffs = kmalloc(PKT_BUF_SZ*TX_RING_SIZE, 551 GFP_DMA | GFP_KERNEL); 552 if (!lp->tx_bounce_buffs) 553 goto out_rx; 554 } else 555 lp->tx_bounce_buffs = NULL; 556 557 lp->chip_version = lance_version; 558 spin_lock_init(&lp->devlock); 559 560 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */ 561 for (i = 0; i < 6; i++) 562 lp->init_block.phys_addr[i] = dev->dev_addr[i]; 563 lp->init_block.filter[0] = 0x00000000; 564 lp->init_block.filter[1] = 0x00000000; 565 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS; 566 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS; 567 568 outw(0x0001, ioaddr+LANCE_ADDR); 569 inw(ioaddr+LANCE_ADDR); 570 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA); 571 outw(0x0002, ioaddr+LANCE_ADDR); 572 inw(ioaddr+LANCE_ADDR); 573 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA); 574 outw(0x0000, ioaddr+LANCE_ADDR); 575 inw(ioaddr+LANCE_ADDR); 576 577 if (irq) { /* Set iff PCI card. */ 578 dev->dma = 4; /* Native bus-master, no DMA channel needed. */ 579 dev->irq = irq; 580 } else if (hp_builtin) { 581 static const char dma_tbl[4] = {3, 5, 6, 0}; 582 static const char irq_tbl[4] = {3, 4, 5, 9}; 583 unsigned char port_val = inb(hp_builtin); 584 dev->dma = dma_tbl[(port_val >> 4) & 3]; 585 dev->irq = irq_tbl[(port_val >> 2) & 3]; 586 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma); 587 } else if (hpJ2405A) { 588 static const char dma_tbl[4] = {3, 5, 6, 7}; 589 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15}; 590 short reset_val = inw(ioaddr+LANCE_RESET); 591 dev->dma = dma_tbl[(reset_val >> 2) & 3]; 592 dev->irq = irq_tbl[(reset_val >> 4) & 7]; 593 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma); 594 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */ 595 short bus_info; 596 outw(8, ioaddr+LANCE_ADDR); 597 bus_info = inw(ioaddr+LANCE_BUS_IF); 598 dev->dma = bus_info & 0x07; 599 dev->irq = (bus_info >> 4) & 0x0F; 600 } else { 601 /* The DMA channel may be passed in PARAM1. */ 602 if (dev->mem_start & 0x07) 603 dev->dma = dev->mem_start & 0x07; 604 } 605 606 if (dev->dma == 0) { 607 /* Read the DMA channel status register, so that we can avoid 608 stuck DMA channels in the DMA detection below. */ 609 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | 610 (inb(DMA2_STAT_REG) & 0xf0); 611 } 612 err = -ENODEV; 613 if (dev->irq >= 2) 614 printk(" assigned IRQ %d", dev->irq); 615 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */ 616 unsigned long irq_mask; 617 618 /* To auto-IRQ we enable the initialization-done and DMA error 619 interrupts. For ISA boards we get a DMA error, but VLB and PCI 620 boards will work. */ 621 irq_mask = probe_irq_on(); 622 623 /* Trigger an initialization just for the interrupt. */ 624 outw(0x0041, ioaddr+LANCE_DATA); 625 626 mdelay(20); 627 dev->irq = probe_irq_off(irq_mask); 628 if (dev->irq) 629 printk(", probed IRQ %d", dev->irq); 630 else { 631 printk(", failed to detect IRQ line.\n"); 632 goto out_tx; 633 } 634 635 /* Check for the initialization done bit, 0x0100, which means 636 that we don't need a DMA channel. */ 637 if (inw(ioaddr+LANCE_DATA) & 0x0100) 638 dev->dma = 4; 639 } 640 641 if (dev->dma == 4) { 642 printk(", no DMA needed.\n"); 643 } else if (dev->dma) { 644 if (request_dma(dev->dma, chipname)) { 645 printk("DMA %d allocation failed.\n", dev->dma); 646 goto out_tx; 647 } else 648 printk(", assigned DMA %d.\n", dev->dma); 649 } else { /* OK, we have to auto-DMA. */ 650 for (i = 0; i < 4; i++) { 651 static const char dmas[] = { 5, 6, 7, 3 }; 652 int dma = dmas[i]; 653 int boguscnt; 654 655 /* Don't enable a permanently busy DMA channel, or the machine 656 will hang. */ 657 if (test_bit(dma, &dma_channels)) 658 continue; 659 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */ 660 if (request_dma(dma, chipname)) 661 continue; 662 663 flags=claim_dma_lock(); 664 set_dma_mode(dma, DMA_MODE_CASCADE); 665 enable_dma(dma); 666 release_dma_lock(flags); 667 668 /* Trigger an initialization. */ 669 outw(0x0001, ioaddr+LANCE_DATA); 670 for (boguscnt = 100; boguscnt > 0; --boguscnt) 671 if (inw(ioaddr+LANCE_DATA) & 0x0900) 672 break; 673 if (inw(ioaddr+LANCE_DATA) & 0x0100) { 674 dev->dma = dma; 675 printk(", DMA %d.\n", dev->dma); 676 break; 677 } else { 678 flags=claim_dma_lock(); 679 disable_dma(dma); 680 release_dma_lock(flags); 681 free_dma(dma); 682 } 683 } 684 if (i == 4) { /* Failure: bail. */ 685 printk("DMA detection failed.\n"); 686 goto out_tx; 687 } 688 } 689 690 if (lance_version == 0 && dev->irq == 0) { 691 /* We may auto-IRQ now that we have a DMA channel. */ 692 /* Trigger an initialization just for the interrupt. */ 693 unsigned long irq_mask; 694 695 irq_mask = probe_irq_on(); 696 outw(0x0041, ioaddr+LANCE_DATA); 697 698 mdelay(40); 699 dev->irq = probe_irq_off(irq_mask); 700 if (dev->irq == 0) { 701 printk(" Failed to detect the 7990 IRQ line.\n"); 702 goto out_dma; 703 } 704 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq); 705 } 706 707 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) { 708 /* Turn on auto-select of media (10baseT or BNC) so that the user 709 can watch the LEDs even if the board isn't opened. */ 710 outw(0x0002, ioaddr+LANCE_ADDR); 711 /* Don't touch 10base2 power bit. */ 712 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF); 713 } 714 715 if (lance_debug > 0 && did_version++ == 0) 716 printk(version); 717 718 /* The LANCE-specific entries in the device structure. */ 719 dev->open = lance_open; 720 dev->hard_start_xmit = lance_start_xmit; 721 dev->stop = lance_close; 722 dev->get_stats = lance_get_stats; 723 dev->set_multicast_list = set_multicast_list; 724 dev->tx_timeout = lance_tx_timeout; 725 dev->watchdog_timeo = TX_TIMEOUT; 726 727 return 0; 728out_dma: 729 if (dev->dma != 4) 730 free_dma(dev->dma); 731out_tx: 732 kfree(lp->tx_bounce_buffs); 733out_rx: 734 kfree((void*)lp->rx_buffs); 735out_lp: 736 kfree(lp); 737 return err; 738} 739 740 741static int 742lance_open(struct net_device *dev) 743{ 744 struct lance_private *lp = dev->priv; 745 int ioaddr = dev->base_addr; 746 int i; 747 748 if (dev->irq == 0 || 749 request_irq(dev->irq, &lance_interrupt, 0, lp->name, dev)) { 750 return -EAGAIN; 751 } 752 753 /* We used to allocate DMA here, but that was silly. 754 DMA lines can't be shared! We now permanently allocate them. */ 755 756 /* Reset the LANCE */ 757 inw(ioaddr+LANCE_RESET); 758 759 /* The DMA controller is used as a no-operation slave, "cascade mode". */ 760 if (dev->dma != 4) { 761 unsigned long flags=claim_dma_lock(); 762 enable_dma(dev->dma); 763 set_dma_mode(dev->dma, DMA_MODE_CASCADE); 764 release_dma_lock(flags); 765 } 766 767 /* Un-Reset the LANCE, needed only for the NE2100. */ 768 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET) 769 outw(0, ioaddr+LANCE_RESET); 770 771 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) { 772 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */ 773 outw(0x0002, ioaddr+LANCE_ADDR); 774 /* Only touch autoselect bit. */ 775 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF); 776 } 777 778 if (lance_debug > 1) 779 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n", 780 dev->name, dev->irq, dev->dma, 781 (u32) isa_virt_to_bus(lp->tx_ring), 782 (u32) isa_virt_to_bus(lp->rx_ring), 783 (u32) isa_virt_to_bus(&lp->init_block)); 784 785 lance_init_ring(dev, GFP_KERNEL); 786 /* Re-initialize the LANCE, and start it when done. */ 787 outw(0x0001, ioaddr+LANCE_ADDR); 788 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA); 789 outw(0x0002, ioaddr+LANCE_ADDR); 790 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA); 791 792 outw(0x0004, ioaddr+LANCE_ADDR); 793 outw(0x0915, ioaddr+LANCE_DATA); 794 795 outw(0x0000, ioaddr+LANCE_ADDR); 796 outw(0x0001, ioaddr+LANCE_DATA); 797 798 netif_start_queue (dev); 799 800 i = 0; 801 while (i++ < 100) 802 if (inw(ioaddr+LANCE_DATA) & 0x0100) 803 break; 804 /* 805 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton 806 * reports that doing so triggers a bug in the '974. 807 */ 808 outw(0x0042, ioaddr+LANCE_DATA); 809 810 if (lance_debug > 2) 811 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n", 812 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA)); 813 814 return 0; /* Always succeed */ 815} 816 817/* The LANCE has been halted for one reason or another (busmaster memory 818 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure, 819 etc.). Modern LANCE variants always reload their ring-buffer 820 configuration when restarted, so we must reinitialize our ring 821 context before restarting. As part of this reinitialization, 822 find all packets still on the Tx ring and pretend that they had been 823 sent (in effect, drop the packets on the floor) - the higher-level 824 protocols will time out and retransmit. It'd be better to shuffle 825 these skbs to a temp list and then actually re-Tx them after 826 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com 827*/ 828 829static void 830lance_purge_ring(struct net_device *dev) 831{ 832 struct lance_private *lp = dev->priv; 833 int i; 834 835 /* Free all the skbuffs in the Rx and Tx queues. */ 836 for (i = 0; i < RX_RING_SIZE; i++) { 837 struct sk_buff *skb = lp->rx_skbuff[i]; 838 lp->rx_skbuff[i] = NULL; 839 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */ 840 if (skb) 841 dev_kfree_skb_any(skb); 842 } 843 for (i = 0; i < TX_RING_SIZE; i++) { 844 if (lp->tx_skbuff[i]) { 845 dev_kfree_skb_any(lp->tx_skbuff[i]); 846 lp->tx_skbuff[i] = NULL; 847 } 848 } 849} 850 851 852/* Initialize the LANCE Rx and Tx rings. */ 853static void 854lance_init_ring(struct net_device *dev, int gfp) 855{ 856 struct lance_private *lp = dev->priv; 857 int i; 858 859 lp->cur_rx = lp->cur_tx = 0; 860 lp->dirty_rx = lp->dirty_tx = 0; 861 862 for (i = 0; i < RX_RING_SIZE; i++) { 863 struct sk_buff *skb; 864 void *rx_buff; 865 866 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp); 867 lp->rx_skbuff[i] = skb; 868 if (skb) { 869 skb->dev = dev; 870 rx_buff = skb->tail; 871 } else 872 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp); 873 if (rx_buff == NULL) 874 lp->rx_ring[i].base = 0; 875 else 876 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000; 877 lp->rx_ring[i].buf_length = -PKT_BUF_SZ; 878 } 879 /* The Tx buffer address is filled in as needed, but we do need to clear 880 the upper ownership bit. */ 881 for (i = 0; i < TX_RING_SIZE; i++) { 882 lp->tx_skbuff[i] = NULL; 883 lp->tx_ring[i].base = 0; 884 } 885 886 lp->init_block.mode = 0x0000; 887 for (i = 0; i < 6; i++) 888 lp->init_block.phys_addr[i] = dev->dev_addr[i]; 889 lp->init_block.filter[0] = 0x00000000; 890 lp->init_block.filter[1] = 0x00000000; 891 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS; 892 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS; 893} 894 895static void 896lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit) 897{ 898 struct lance_private *lp = dev->priv; 899 900 if (must_reinit || 901 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) { 902 lance_purge_ring(dev); 903 lance_init_ring(dev, GFP_ATOMIC); 904 } 905 outw(0x0000, dev->base_addr + LANCE_ADDR); 906 outw(csr0_bits, dev->base_addr + LANCE_DATA); 907} 908 909 910static void lance_tx_timeout (struct net_device *dev) 911{ 912 struct lance_private *lp = (struct lance_private *) dev->priv; 913 int ioaddr = dev->base_addr; 914 915 outw (0, ioaddr + LANCE_ADDR); 916 printk ("%s: transmit timed out, status %4.4x, resetting.\n", 917 dev->name, inw (ioaddr + LANCE_DATA)); 918 outw (0x0004, ioaddr + LANCE_DATA); 919 lp->stats.tx_errors++; 920#ifndef final_version 921 if (lance_debug > 3) { 922 int i; 923 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.", 924 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "", 925 lp->cur_rx); 926 for (i = 0; i < RX_RING_SIZE; i++) 927 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ", 928 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length, 929 lp->rx_ring[i].msg_length); 930 for (i = 0; i < TX_RING_SIZE; i++) 931 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ", 932 lp->tx_ring[i].base, -lp->tx_ring[i].length, 933 lp->tx_ring[i].misc); 934 printk ("\n"); 935 } 936#endif 937 lance_restart (dev, 0x0043, 1); 938 939 dev->trans_start = jiffies; 940 netif_wake_queue (dev); 941} 942 943 944static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev) 945{ 946 struct lance_private *lp = dev->priv; 947 int ioaddr = dev->base_addr; 948 int entry; 949 unsigned long flags; 950 951 spin_lock_irqsave(&lp->devlock, flags); 952 953 if (lance_debug > 3) { 954 outw(0x0000, ioaddr+LANCE_ADDR); 955 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name, 956 inw(ioaddr+LANCE_DATA)); 957 outw(0x0000, ioaddr+LANCE_DATA); 958 } 959 960 /* Fill in a Tx ring entry */ 961 962 /* Mask to ring buffer boundary. */ 963 entry = lp->cur_tx & TX_RING_MOD_MASK; 964 965 /* Caution: the write order is important here, set the base address 966 with the "ownership" bits last. */ 967 968 /* The old LANCE chips doesn't automatically pad buffers to min. size. */ 969 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) { 970 if (skb->len < ETH_ZLEN) { 971 skb = skb_padto(skb, ETH_ZLEN); 972 if (skb == NULL) 973 goto out; 974 lp->tx_ring[entry].length = -ETH_ZLEN; 975 } 976 else 977 lp->tx_ring[entry].length = -skb->len; 978 } else 979 lp->tx_ring[entry].length = -skb->len; 980 981 lp->tx_ring[entry].misc = 0x0000; 982 983 lp->stats.tx_bytes += skb->len; 984 985 /* If any part of this buffer is >16M we must copy it to a low-memory 986 buffer. */ 987 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) { 988 if (lance_debug > 5) 989 printk("%s: bouncing a high-memory packet (%#x).\n", 990 dev->name, (u32)isa_virt_to_bus(skb->data)); 991 memcpy(&lp->tx_bounce_buffs[entry], skb->data, skb->len); 992 lp->tx_ring[entry].base = 993 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000; 994 dev_kfree_skb(skb); 995 } else { 996 lp->tx_skbuff[entry] = skb; 997 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000; 998 } 999 lp->cur_tx++; 1000 1001 /* Trigger an immediate send poll. */ 1002 outw(0x0000, ioaddr+LANCE_ADDR); 1003 outw(0x0048, ioaddr+LANCE_DATA); 1004 1005 dev->trans_start = jiffies; 1006 1007 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE) 1008 netif_stop_queue(dev); 1009 1010out: 1011 spin_unlock_irqrestore(&lp->devlock, flags); 1012 return 0; 1013} 1014 1015/* The LANCE interrupt handler. */ 1016static irqreturn_t 1017lance_interrupt(int irq, void *dev_id, struct pt_regs * regs) 1018{ 1019 struct net_device *dev = dev_id; 1020 struct lance_private *lp; 1021 int csr0, ioaddr, boguscnt=10; 1022 int must_restart; 1023 1024 if (dev == NULL) { 1025 printk ("lance_interrupt(): irq %d for unknown device.\n", irq); 1026 return IRQ_NONE; 1027 } 1028 1029 ioaddr = dev->base_addr; 1030 lp = dev->priv; 1031 1032 spin_lock (&lp->devlock); 1033 1034 outw(0x00, dev->base_addr + LANCE_ADDR); 1035 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 1036 && --boguscnt >= 0) { 1037 /* Acknowledge all of the current interrupt sources ASAP. */ 1038 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA); 1039 1040 must_restart = 0; 1041 1042 if (lance_debug > 5) 1043 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n", 1044 dev->name, csr0, inw(dev->base_addr + LANCE_DATA)); 1045 1046 if (csr0 & 0x0400) /* Rx interrupt */ 1047 lance_rx(dev); 1048 1049 if (csr0 & 0x0200) { /* Tx-done interrupt */ 1050 int dirty_tx = lp->dirty_tx; 1051 1052 while (dirty_tx < lp->cur_tx) { 1053 int entry = dirty_tx & TX_RING_MOD_MASK; 1054 int status = lp->tx_ring[entry].base; 1055 1056 if (status < 0) 1057 break; /* It still hasn't been Txed */ 1058 1059 lp->tx_ring[entry].base = 0; 1060 1061 if (status & 0x40000000) { 1062 /* There was an major error, log it. */ 1063 int err_status = lp->tx_ring[entry].misc; 1064 lp->stats.tx_errors++; 1065 if (err_status & 0x0400) lp->stats.tx_aborted_errors++; 1066 if (err_status & 0x0800) lp->stats.tx_carrier_errors++; 1067 if (err_status & 0x1000) lp->stats.tx_window_errors++; 1068 if (err_status & 0x4000) { 1069 /* Ackk! On FIFO errors the Tx unit is turned off! */ 1070 lp->stats.tx_fifo_errors++; 1071 /* Remove this verbosity later! */ 1072 printk("%s: Tx FIFO error! Status %4.4x.\n", 1073 dev->name, csr0); 1074 /* Restart the chip. */ 1075 must_restart = 1; 1076 } 1077 } else { 1078 if (status & 0x18000000) 1079 lp->stats.collisions++; 1080 lp->stats.tx_packets++; 1081 } 1082 1083 /* We must free the original skb if it's not a data-only copy 1084 in the bounce buffer. */ 1085 if (lp->tx_skbuff[entry]) { 1086 dev_kfree_skb_irq(lp->tx_skbuff[entry]); 1087 lp->tx_skbuff[entry] = NULL; 1088 } 1089 dirty_tx++; 1090 } 1091 1092#ifndef final_version 1093 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) { 1094 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n", 1095 dirty_tx, lp->cur_tx, 1096 netif_queue_stopped(dev) ? "yes" : "no"); 1097 dirty_tx += TX_RING_SIZE; 1098 } 1099#endif 1100 1101 /* if the ring is no longer full, accept more packets */ 1102 if (netif_queue_stopped(dev) && 1103 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2) 1104 netif_wake_queue (dev); 1105 1106 lp->dirty_tx = dirty_tx; 1107 } 1108 1109 /* Log misc errors. */ 1110 if (csr0 & 0x4000) lp->stats.tx_errors++; /* Tx babble. */ 1111 if (csr0 & 0x1000) lp->stats.rx_errors++; /* Missed a Rx frame. */ 1112 if (csr0 & 0x0800) { 1113 printk("%s: Bus master arbitration failure, status %4.4x.\n", 1114 dev->name, csr0); 1115 /* Restart the chip. */ 1116 must_restart = 1; 1117 } 1118 1119 if (must_restart) { 1120 /* stop the chip to clear the error condition, then restart */ 1121 outw(0x0000, dev->base_addr + LANCE_ADDR); 1122 outw(0x0004, dev->base_addr + LANCE_DATA); 1123 lance_restart(dev, 0x0002, 0); 1124 } 1125 } 1126 1127 /* Clear any other interrupt, and set interrupt enable. */ 1128 outw(0x0000, dev->base_addr + LANCE_ADDR); 1129 outw(0x7940, dev->base_addr + LANCE_DATA); 1130 1131 if (lance_debug > 4) 1132 printk("%s: exiting interrupt, csr%d=%#4.4x.\n", 1133 dev->name, inw(ioaddr + LANCE_ADDR), 1134 inw(dev->base_addr + LANCE_DATA)); 1135 1136 spin_unlock (&lp->devlock); 1137 return IRQ_HANDLED; 1138} 1139 1140static int 1141lance_rx(struct net_device *dev) 1142{ 1143 struct lance_private *lp = dev->priv; 1144 int entry = lp->cur_rx & RX_RING_MOD_MASK; 1145 int i; 1146 1147 /* If we own the next entry, it's a new packet. Send it up. */ 1148 while (lp->rx_ring[entry].base >= 0) { 1149 int status = lp->rx_ring[entry].base >> 24; 1150 1151 if (status != 0x03) { /* There was an error. */ 1152 /* There is a tricky error noted by John Murphy, 1153 <murf@perftech.com> to Russ Nelson: Even with full-sized 1154 buffers it's possible for a jabber packet to use two 1155 buffers, with only the last correctly noting the error. */ 1156 if (status & 0x01) /* Only count a general error at the */ 1157 lp->stats.rx_errors++; /* end of a packet.*/ 1158 if (status & 0x20) lp->stats.rx_frame_errors++; 1159 if (status & 0x10) lp->stats.rx_over_errors++; 1160 if (status & 0x08) lp->stats.rx_crc_errors++; 1161 if (status & 0x04) lp->stats.rx_fifo_errors++; 1162 lp->rx_ring[entry].base &= 0x03ffffff; 1163 } 1164 else 1165 { 1166 /* Malloc up new buffer, compatible with net3. */ 1167 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4; 1168 struct sk_buff *skb; 1169 1170 if(pkt_len<60) 1171 { 1172 printk("%s: Runt packet!\n",dev->name); 1173 lp->stats.rx_errors++; 1174 } 1175 else 1176 { 1177 skb = dev_alloc_skb(pkt_len+2); 1178 if (skb == NULL) 1179 { 1180 printk("%s: Memory squeeze, deferring packet.\n", dev->name); 1181 for (i=0; i < RX_RING_SIZE; i++) 1182 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0) 1183 break; 1184 1185 if (i > RX_RING_SIZE -2) 1186 { 1187 lp->stats.rx_dropped++; 1188 lp->rx_ring[entry].base |= 0x80000000; 1189 lp->cur_rx++; 1190 } 1191 break; 1192 } 1193 skb->dev = dev; 1194 skb_reserve(skb,2); /* 16 byte align */ 1195 skb_put(skb,pkt_len); /* Make room */ 1196 eth_copy_and_sum(skb, 1197 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)), 1198 pkt_len,0); 1199 skb->protocol=eth_type_trans(skb,dev); 1200 netif_rx(skb); 1201 dev->last_rx = jiffies; 1202 lp->stats.rx_packets++; 1203 lp->stats.rx_bytes+=pkt_len; 1204 } 1205 } 1206 /* The docs say that the buffer length isn't touched, but Andrew Boyd 1207 of QNX reports that some revs of the 79C965 clear it. */ 1208 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ; 1209 lp->rx_ring[entry].base |= 0x80000000; 1210 entry = (++lp->cur_rx) & RX_RING_MOD_MASK; 1211 } 1212 1213 /* We should check that at least two ring entries are free. If not, 1214 we should free one and mark stats->rx_dropped++. */ 1215 1216 return 0; 1217} 1218 1219static int 1220lance_close(struct net_device *dev) 1221{ 1222 int ioaddr = dev->base_addr; 1223 struct lance_private *lp = dev->priv; 1224 1225 netif_stop_queue (dev); 1226 1227 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) { 1228 outw(112, ioaddr+LANCE_ADDR); 1229 lp->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA); 1230 } 1231 outw(0, ioaddr+LANCE_ADDR); 1232 1233 if (lance_debug > 1) 1234 printk("%s: Shutting down ethercard, status was %2.2x.\n", 1235 dev->name, inw(ioaddr+LANCE_DATA)); 1236 1237 /* We stop the LANCE here -- it occasionally polls 1238 memory if we don't. */ 1239 outw(0x0004, ioaddr+LANCE_DATA); 1240 1241 if (dev->dma != 4) 1242 { 1243 unsigned long flags=claim_dma_lock(); 1244 disable_dma(dev->dma); 1245 release_dma_lock(flags); 1246 } 1247 free_irq(dev->irq, dev); 1248 1249 lance_purge_ring(dev); 1250 1251 return 0; 1252} 1253 1254static struct net_device_stats *lance_get_stats(struct net_device *dev) 1255{ 1256 struct lance_private *lp = dev->priv; 1257 1258 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) { 1259 short ioaddr = dev->base_addr; 1260 short saved_addr; 1261 unsigned long flags; 1262 1263 spin_lock_irqsave(&lp->devlock, flags); 1264 saved_addr = inw(ioaddr+LANCE_ADDR); 1265 outw(112, ioaddr+LANCE_ADDR); 1266 lp->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA); 1267 outw(saved_addr, ioaddr+LANCE_ADDR); 1268 spin_unlock_irqrestore(&lp->devlock, flags); 1269 } 1270 1271 return &lp->stats; 1272} 1273 1274/* Set or clear the multicast filter for this adaptor. 1275 */ 1276 1277static void set_multicast_list(struct net_device *dev) 1278{ 1279 short ioaddr = dev->base_addr; 1280 1281 outw(0, ioaddr+LANCE_ADDR); 1282 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */ 1283 1284 if (dev->flags&IFF_PROMISC) { 1285 /* Log any net taps. */ 1286 printk("%s: Promiscuous mode enabled.\n", dev->name); 1287 outw(15, ioaddr+LANCE_ADDR); 1288 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */ 1289 } else { 1290 short multicast_table[4]; 1291 int i; 1292 int num_addrs=dev->mc_count; 1293 if(dev->flags&IFF_ALLMULTI) 1294 num_addrs=1; 1295 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */ 1296 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table)); 1297 for (i = 0; i < 4; i++) { 1298 outw(8 + i, ioaddr+LANCE_ADDR); 1299 outw(multicast_table[i], ioaddr+LANCE_DATA); 1300 } 1301 outw(15, ioaddr+LANCE_ADDR); 1302 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */ 1303 } 1304 1305 lance_restart(dev, 0x0142, 0); /* Resume normal operation */ 1306 1307} 1308