at v2.6.12-rc2 2374 lines 67 kB view raw
1/******************************************************************************* 2 3 4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 2 of the License, or (at your option) 9 any later version. 10 11 This program is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 59 18 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 20 The full GNU General Public License is included in this distribution in the 21 file called LICENSE. 22 23 Contact Information: 24 Linux NICS <linux.nics@intel.com> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29/* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Recieve 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * Under typical operation, the receive unit (RU) is start once, 110 * and the controller happily fills RFDs as frames arrive. If 111 * replacement RFDs cannot be allocated, or the RU goes non-active, 112 * the RU must be restarted. Frame arrival generates an interrupt, 113 * and Rx indication and re-allocation happen in the same context, 114 * therefore no locking is required. A software-generated interrupt 115 * is generated from the watchdog to recover from a failed allocation 116 * senario where all Rx resources have been indicated and none re- 117 * placed. 118 * 119 * V. Miscellaneous 120 * 121 * VLAN offloading of tagging, stripping and filtering is not 122 * supported, but driver will accommodate the extra 4-byte VLAN tag 123 * for processing by upper layers. Tx/Rx Checksum offloading is not 124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 125 * not supported (hardware limitation). 126 * 127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 128 * 129 * Thanks to JC (jchapman@katalix.com) for helping with 130 * testing/troubleshooting the development driver. 131 * 132 * TODO: 133 * o several entry points race with dev->close 134 * o check for tx-no-resources/stop Q races with tx clean/wake Q 135 */ 136 137#include <linux/config.h> 138#include <linux/module.h> 139#include <linux/moduleparam.h> 140#include <linux/kernel.h> 141#include <linux/types.h> 142#include <linux/slab.h> 143#include <linux/delay.h> 144#include <linux/init.h> 145#include <linux/pci.h> 146#include <linux/netdevice.h> 147#include <linux/etherdevice.h> 148#include <linux/mii.h> 149#include <linux/if_vlan.h> 150#include <linux/skbuff.h> 151#include <linux/ethtool.h> 152#include <linux/string.h> 153#include <asm/unaligned.h> 154 155 156#define DRV_NAME "e100" 157#define DRV_EXT "-NAPI" 158#define DRV_VERSION "3.3.6-k2"DRV_EXT 159#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 160#define DRV_COPYRIGHT "Copyright(c) 1999-2004 Intel Corporation" 161#define PFX DRV_NAME ": " 162 163#define E100_WATCHDOG_PERIOD (2 * HZ) 164#define E100_NAPI_WEIGHT 16 165 166MODULE_DESCRIPTION(DRV_DESCRIPTION); 167MODULE_AUTHOR(DRV_COPYRIGHT); 168MODULE_LICENSE("GPL"); 169MODULE_VERSION(DRV_VERSION); 170 171static int debug = 3; 172module_param(debug, int, 0); 173MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 174#define DPRINTK(nlevel, klevel, fmt, args...) \ 175 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ 176 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ 177 __FUNCTION__ , ## args)) 178 179#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 180 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 181 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 182static struct pci_device_id e100_id_table[] = { 183 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 184 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 185 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 186 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 187 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 188 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 189 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 190 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 191 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 192 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 193 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 194 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 195 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 196 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 197 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 198 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 199 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 200 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 201 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 202 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 203 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 204 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 205 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 206 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 207 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 208 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 209 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 210 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 211 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 212 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 213 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 214 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 215 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 216 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 217 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 218 { 0, } 219}; 220MODULE_DEVICE_TABLE(pci, e100_id_table); 221 222enum mac { 223 mac_82557_D100_A = 0, 224 mac_82557_D100_B = 1, 225 mac_82557_D100_C = 2, 226 mac_82558_D101_A4 = 4, 227 mac_82558_D101_B0 = 5, 228 mac_82559_D101M = 8, 229 mac_82559_D101S = 9, 230 mac_82550_D102 = 12, 231 mac_82550_D102_C = 13, 232 mac_82551_E = 14, 233 mac_82551_F = 15, 234 mac_82551_10 = 16, 235 mac_unknown = 0xFF, 236}; 237 238enum phy { 239 phy_100a = 0x000003E0, 240 phy_100c = 0x035002A8, 241 phy_82555_tx = 0x015002A8, 242 phy_nsc_tx = 0x5C002000, 243 phy_82562_et = 0x033002A8, 244 phy_82562_em = 0x032002A8, 245 phy_82562_ek = 0x031002A8, 246 phy_82562_eh = 0x017002A8, 247 phy_unknown = 0xFFFFFFFF, 248}; 249 250/* CSR (Control/Status Registers) */ 251struct csr { 252 struct { 253 u8 status; 254 u8 stat_ack; 255 u8 cmd_lo; 256 u8 cmd_hi; 257 u32 gen_ptr; 258 } scb; 259 u32 port; 260 u16 flash_ctrl; 261 u8 eeprom_ctrl_lo; 262 u8 eeprom_ctrl_hi; 263 u32 mdi_ctrl; 264 u32 rx_dma_count; 265}; 266 267enum scb_status { 268 rus_ready = 0x10, 269 rus_mask = 0x3C, 270}; 271 272enum scb_stat_ack { 273 stat_ack_not_ours = 0x00, 274 stat_ack_sw_gen = 0x04, 275 stat_ack_rnr = 0x10, 276 stat_ack_cu_idle = 0x20, 277 stat_ack_frame_rx = 0x40, 278 stat_ack_cu_cmd_done = 0x80, 279 stat_ack_not_present = 0xFF, 280 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 281 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 282}; 283 284enum scb_cmd_hi { 285 irq_mask_none = 0x00, 286 irq_mask_all = 0x01, 287 irq_sw_gen = 0x02, 288}; 289 290enum scb_cmd_lo { 291 cuc_nop = 0x00, 292 ruc_start = 0x01, 293 ruc_load_base = 0x06, 294 cuc_start = 0x10, 295 cuc_resume = 0x20, 296 cuc_dump_addr = 0x40, 297 cuc_dump_stats = 0x50, 298 cuc_load_base = 0x60, 299 cuc_dump_reset = 0x70, 300}; 301 302enum cuc_dump { 303 cuc_dump_complete = 0x0000A005, 304 cuc_dump_reset_complete = 0x0000A007, 305}; 306 307enum port { 308 software_reset = 0x0000, 309 selftest = 0x0001, 310 selective_reset = 0x0002, 311}; 312 313enum eeprom_ctrl_lo { 314 eesk = 0x01, 315 eecs = 0x02, 316 eedi = 0x04, 317 eedo = 0x08, 318}; 319 320enum mdi_ctrl { 321 mdi_write = 0x04000000, 322 mdi_read = 0x08000000, 323 mdi_ready = 0x10000000, 324}; 325 326enum eeprom_op { 327 op_write = 0x05, 328 op_read = 0x06, 329 op_ewds = 0x10, 330 op_ewen = 0x13, 331}; 332 333enum eeprom_offsets { 334 eeprom_cnfg_mdix = 0x03, 335 eeprom_id = 0x0A, 336 eeprom_config_asf = 0x0D, 337 eeprom_smbus_addr = 0x90, 338}; 339 340enum eeprom_cnfg_mdix { 341 eeprom_mdix_enabled = 0x0080, 342}; 343 344enum eeprom_id { 345 eeprom_id_wol = 0x0020, 346}; 347 348enum eeprom_config_asf { 349 eeprom_asf = 0x8000, 350 eeprom_gcl = 0x4000, 351}; 352 353enum cb_status { 354 cb_complete = 0x8000, 355 cb_ok = 0x2000, 356}; 357 358enum cb_command { 359 cb_nop = 0x0000, 360 cb_iaaddr = 0x0001, 361 cb_config = 0x0002, 362 cb_multi = 0x0003, 363 cb_tx = 0x0004, 364 cb_ucode = 0x0005, 365 cb_dump = 0x0006, 366 cb_tx_sf = 0x0008, 367 cb_cid = 0x1f00, 368 cb_i = 0x2000, 369 cb_s = 0x4000, 370 cb_el = 0x8000, 371}; 372 373struct rfd { 374 u16 status; 375 u16 command; 376 u32 link; 377 u32 rbd; 378 u16 actual_size; 379 u16 size; 380}; 381 382struct rx { 383 struct rx *next, *prev; 384 struct sk_buff *skb; 385 dma_addr_t dma_addr; 386}; 387 388#if defined(__BIG_ENDIAN_BITFIELD) 389#define X(a,b) b,a 390#else 391#define X(a,b) a,b 392#endif 393struct config { 394/*0*/ u8 X(byte_count:6, pad0:2); 395/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 396/*2*/ u8 adaptive_ifs; 397/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 398 term_write_cache_line:1), pad3:4); 399/*4*/ u8 X(rx_dma_max_count:7, pad4:1); 400/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 401/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 402 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 403 rx_discard_overruns:1), rx_save_bad_frames:1); 404/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 405 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 406 tx_dynamic_tbd:1); 407/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 408/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 409 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 410/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 411 loopback:2); 412/*11*/ u8 X(linear_priority:3, pad11:5); 413/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 414/*13*/ u8 ip_addr_lo; 415/*14*/ u8 ip_addr_hi; 416/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 417 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 418 pad15_2:1), crs_or_cdt:1); 419/*16*/ u8 fc_delay_lo; 420/*17*/ u8 fc_delay_hi; 421/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 422 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 423/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 424 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 425 full_duplex_force:1), full_duplex_pin:1); 426/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 427/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 428/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 429 u8 pad_d102[9]; 430}; 431 432#define E100_MAX_MULTICAST_ADDRS 64 433struct multi { 434 u16 count; 435 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 436}; 437 438/* Important: keep total struct u32-aligned */ 439#define UCODE_SIZE 134 440struct cb { 441 u16 status; 442 u16 command; 443 u32 link; 444 union { 445 u8 iaaddr[ETH_ALEN]; 446 u32 ucode[UCODE_SIZE]; 447 struct config config; 448 struct multi multi; 449 struct { 450 u32 tbd_array; 451 u16 tcb_byte_count; 452 u8 threshold; 453 u8 tbd_count; 454 struct { 455 u32 buf_addr; 456 u16 size; 457 u16 eol; 458 } tbd; 459 } tcb; 460 u32 dump_buffer_addr; 461 } u; 462 struct cb *next, *prev; 463 dma_addr_t dma_addr; 464 struct sk_buff *skb; 465}; 466 467enum loopback { 468 lb_none = 0, lb_mac = 1, lb_phy = 3, 469}; 470 471struct stats { 472 u32 tx_good_frames, tx_max_collisions, tx_late_collisions, 473 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 474 tx_multiple_collisions, tx_total_collisions; 475 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 476 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 477 rx_short_frame_errors; 478 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 479 u16 xmt_tco_frames, rcv_tco_frames; 480 u32 complete; 481}; 482 483struct mem { 484 struct { 485 u32 signature; 486 u32 result; 487 } selftest; 488 struct stats stats; 489 u8 dump_buf[596]; 490}; 491 492struct param_range { 493 u32 min; 494 u32 max; 495 u32 count; 496}; 497 498struct params { 499 struct param_range rfds; 500 struct param_range cbs; 501}; 502 503struct nic { 504 /* Begin: frequently used values: keep adjacent for cache effect */ 505 u32 msg_enable ____cacheline_aligned; 506 struct net_device *netdev; 507 struct pci_dev *pdev; 508 509 struct rx *rxs ____cacheline_aligned; 510 struct rx *rx_to_use; 511 struct rx *rx_to_clean; 512 struct rfd blank_rfd; 513 int ru_running; 514 515 spinlock_t cb_lock ____cacheline_aligned; 516 spinlock_t cmd_lock; 517 struct csr __iomem *csr; 518 enum scb_cmd_lo cuc_cmd; 519 unsigned int cbs_avail; 520 struct cb *cbs; 521 struct cb *cb_to_use; 522 struct cb *cb_to_send; 523 struct cb *cb_to_clean; 524 u16 tx_command; 525 /* End: frequently used values: keep adjacent for cache effect */ 526 527 enum { 528 ich = (1 << 0), 529 promiscuous = (1 << 1), 530 multicast_all = (1 << 2), 531 wol_magic = (1 << 3), 532 ich_10h_workaround = (1 << 4), 533 } flags ____cacheline_aligned; 534 535 enum mac mac; 536 enum phy phy; 537 struct params params; 538 struct net_device_stats net_stats; 539 struct timer_list watchdog; 540 struct timer_list blink_timer; 541 struct mii_if_info mii; 542 enum loopback loopback; 543 544 struct mem *mem; 545 dma_addr_t dma_addr; 546 547 dma_addr_t cbs_dma_addr; 548 u8 adaptive_ifs; 549 u8 tx_threshold; 550 u32 tx_frames; 551 u32 tx_collisions; 552 u32 tx_deferred; 553 u32 tx_single_collisions; 554 u32 tx_multiple_collisions; 555 u32 tx_fc_pause; 556 u32 tx_tco_frames; 557 558 u32 rx_fc_pause; 559 u32 rx_fc_unsupported; 560 u32 rx_tco_frames; 561 u32 rx_over_length_errors; 562 563 u8 rev_id; 564 u16 leds; 565 u16 eeprom_wc; 566 u16 eeprom[256]; 567}; 568 569static inline void e100_write_flush(struct nic *nic) 570{ 571 /* Flush previous PCI writes through intermediate bridges 572 * by doing a benign read */ 573 (void)readb(&nic->csr->scb.status); 574} 575 576static inline void e100_enable_irq(struct nic *nic) 577{ 578 unsigned long flags; 579 580 spin_lock_irqsave(&nic->cmd_lock, flags); 581 writeb(irq_mask_none, &nic->csr->scb.cmd_hi); 582 spin_unlock_irqrestore(&nic->cmd_lock, flags); 583 e100_write_flush(nic); 584} 585 586static inline void e100_disable_irq(struct nic *nic) 587{ 588 unsigned long flags; 589 590 spin_lock_irqsave(&nic->cmd_lock, flags); 591 writeb(irq_mask_all, &nic->csr->scb.cmd_hi); 592 spin_unlock_irqrestore(&nic->cmd_lock, flags); 593 e100_write_flush(nic); 594} 595 596static void e100_hw_reset(struct nic *nic) 597{ 598 /* Put CU and RU into idle with a selective reset to get 599 * device off of PCI bus */ 600 writel(selective_reset, &nic->csr->port); 601 e100_write_flush(nic); udelay(20); 602 603 /* Now fully reset device */ 604 writel(software_reset, &nic->csr->port); 605 e100_write_flush(nic); udelay(20); 606 607 /* Mask off our interrupt line - it's unmasked after reset */ 608 e100_disable_irq(nic); 609} 610 611static int e100_self_test(struct nic *nic) 612{ 613 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 614 615 /* Passing the self-test is a pretty good indication 616 * that the device can DMA to/from host memory */ 617 618 nic->mem->selftest.signature = 0; 619 nic->mem->selftest.result = 0xFFFFFFFF; 620 621 writel(selftest | dma_addr, &nic->csr->port); 622 e100_write_flush(nic); 623 /* Wait 10 msec for self-test to complete */ 624 msleep(10); 625 626 /* Interrupts are enabled after self-test */ 627 e100_disable_irq(nic); 628 629 /* Check results of self-test */ 630 if(nic->mem->selftest.result != 0) { 631 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", 632 nic->mem->selftest.result); 633 return -ETIMEDOUT; 634 } 635 if(nic->mem->selftest.signature == 0) { 636 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); 637 return -ETIMEDOUT; 638 } 639 640 return 0; 641} 642 643static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data) 644{ 645 u32 cmd_addr_data[3]; 646 u8 ctrl; 647 int i, j; 648 649 /* Three cmds: write/erase enable, write data, write/erase disable */ 650 cmd_addr_data[0] = op_ewen << (addr_len - 2); 651 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 652 cpu_to_le16(data); 653 cmd_addr_data[2] = op_ewds << (addr_len - 2); 654 655 /* Bit-bang cmds to write word to eeprom */ 656 for(j = 0; j < 3; j++) { 657 658 /* Chip select */ 659 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 660 e100_write_flush(nic); udelay(4); 661 662 for(i = 31; i >= 0; i--) { 663 ctrl = (cmd_addr_data[j] & (1 << i)) ? 664 eecs | eedi : eecs; 665 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); 666 e100_write_flush(nic); udelay(4); 667 668 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 669 e100_write_flush(nic); udelay(4); 670 } 671 /* Wait 10 msec for cmd to complete */ 672 msleep(10); 673 674 /* Chip deselect */ 675 writeb(0, &nic->csr->eeprom_ctrl_lo); 676 e100_write_flush(nic); udelay(4); 677 } 678}; 679 680/* General technique stolen from the eepro100 driver - very clever */ 681static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 682{ 683 u32 cmd_addr_data; 684 u16 data = 0; 685 u8 ctrl; 686 int i; 687 688 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 689 690 /* Chip select */ 691 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 692 e100_write_flush(nic); udelay(4); 693 694 /* Bit-bang to read word from eeprom */ 695 for(i = 31; i >= 0; i--) { 696 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 697 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); 698 e100_write_flush(nic); udelay(4); 699 700 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 701 e100_write_flush(nic); udelay(4); 702 703 /* Eeprom drives a dummy zero to EEDO after receiving 704 * complete address. Use this to adjust addr_len. */ 705 ctrl = readb(&nic->csr->eeprom_ctrl_lo); 706 if(!(ctrl & eedo) && i > 16) { 707 *addr_len -= (i - 16); 708 i = 17; 709 } 710 711 data = (data << 1) | (ctrl & eedo ? 1 : 0); 712 } 713 714 /* Chip deselect */ 715 writeb(0, &nic->csr->eeprom_ctrl_lo); 716 e100_write_flush(nic); udelay(4); 717 718 return le16_to_cpu(data); 719}; 720 721/* Load entire EEPROM image into driver cache and validate checksum */ 722static int e100_eeprom_load(struct nic *nic) 723{ 724 u16 addr, addr_len = 8, checksum = 0; 725 726 /* Try reading with an 8-bit addr len to discover actual addr len */ 727 e100_eeprom_read(nic, &addr_len, 0); 728 nic->eeprom_wc = 1 << addr_len; 729 730 for(addr = 0; addr < nic->eeprom_wc; addr++) { 731 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 732 if(addr < nic->eeprom_wc - 1) 733 checksum += cpu_to_le16(nic->eeprom[addr]); 734 } 735 736 /* The checksum, stored in the last word, is calculated such that 737 * the sum of words should be 0xBABA */ 738 checksum = le16_to_cpu(0xBABA - checksum); 739 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) { 740 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); 741 return -EAGAIN; 742 } 743 744 return 0; 745} 746 747/* Save (portion of) driver EEPROM cache to device and update checksum */ 748static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 749{ 750 u16 addr, addr_len = 8, checksum = 0; 751 752 /* Try reading with an 8-bit addr len to discover actual addr len */ 753 e100_eeprom_read(nic, &addr_len, 0); 754 nic->eeprom_wc = 1 << addr_len; 755 756 if(start + count >= nic->eeprom_wc) 757 return -EINVAL; 758 759 for(addr = start; addr < start + count; addr++) 760 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 761 762 /* The checksum, stored in the last word, is calculated such that 763 * the sum of words should be 0xBABA */ 764 for(addr = 0; addr < nic->eeprom_wc - 1; addr++) 765 checksum += cpu_to_le16(nic->eeprom[addr]); 766 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum); 767 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 768 nic->eeprom[nic->eeprom_wc - 1]); 769 770 return 0; 771} 772 773#define E100_WAIT_SCB_TIMEOUT 40 774static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 775{ 776 unsigned long flags; 777 unsigned int i; 778 int err = 0; 779 780 spin_lock_irqsave(&nic->cmd_lock, flags); 781 782 /* Previous command is accepted when SCB clears */ 783 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 784 if(likely(!readb(&nic->csr->scb.cmd_lo))) 785 break; 786 cpu_relax(); 787 if(unlikely(i > (E100_WAIT_SCB_TIMEOUT >> 1))) 788 udelay(5); 789 } 790 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 791 err = -EAGAIN; 792 goto err_unlock; 793 } 794 795 if(unlikely(cmd != cuc_resume)) 796 writel(dma_addr, &nic->csr->scb.gen_ptr); 797 writeb(cmd, &nic->csr->scb.cmd_lo); 798 799err_unlock: 800 spin_unlock_irqrestore(&nic->cmd_lock, flags); 801 802 return err; 803} 804 805static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 806 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 807{ 808 struct cb *cb; 809 unsigned long flags; 810 int err = 0; 811 812 spin_lock_irqsave(&nic->cb_lock, flags); 813 814 if(unlikely(!nic->cbs_avail)) { 815 err = -ENOMEM; 816 goto err_unlock; 817 } 818 819 cb = nic->cb_to_use; 820 nic->cb_to_use = cb->next; 821 nic->cbs_avail--; 822 cb->skb = skb; 823 824 if(unlikely(!nic->cbs_avail)) 825 err = -ENOSPC; 826 827 cb_prepare(nic, cb, skb); 828 829 /* Order is important otherwise we'll be in a race with h/w: 830 * set S-bit in current first, then clear S-bit in previous. */ 831 cb->command |= cpu_to_le16(cb_s); 832 wmb(); 833 cb->prev->command &= cpu_to_le16(~cb_s); 834 835 while(nic->cb_to_send != nic->cb_to_use) { 836 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 837 nic->cb_to_send->dma_addr))) { 838 /* Ok, here's where things get sticky. It's 839 * possible that we can't schedule the command 840 * because the controller is too busy, so 841 * let's just queue the command and try again 842 * when another command is scheduled. */ 843 break; 844 } else { 845 nic->cuc_cmd = cuc_resume; 846 nic->cb_to_send = nic->cb_to_send->next; 847 } 848 } 849 850err_unlock: 851 spin_unlock_irqrestore(&nic->cb_lock, flags); 852 853 return err; 854} 855 856static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 857{ 858 u32 data_out = 0; 859 unsigned int i; 860 861 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 862 863 for(i = 0; i < 100; i++) { 864 udelay(20); 865 if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready) 866 break; 867 } 868 869 DPRINTK(HW, DEBUG, 870 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 871 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); 872 return (u16)data_out; 873} 874 875static int mdio_read(struct net_device *netdev, int addr, int reg) 876{ 877 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); 878} 879 880static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 881{ 882 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); 883} 884 885static void e100_get_defaults(struct nic *nic) 886{ 887 struct param_range rfds = { .min = 64, .max = 256, .count = 64 }; 888 struct param_range cbs = { .min = 64, .max = 256, .count = 64 }; 889 890 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); 891 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 892 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id; 893 if(nic->mac == mac_unknown) 894 nic->mac = mac_82557_D100_A; 895 896 nic->params.rfds = rfds; 897 nic->params.cbs = cbs; 898 899 /* Quadwords to DMA into FIFO before starting frame transmit */ 900 nic->tx_threshold = 0xE0; 901 902 nic->tx_command = cpu_to_le16(cb_tx | cb_i | cb_tx_sf | 903 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : 0)); 904 905 /* Template for a freshly allocated RFD */ 906 nic->blank_rfd.command = cpu_to_le16(cb_el); 907 nic->blank_rfd.rbd = 0xFFFFFFFF; 908 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 909 910 /* MII setup */ 911 nic->mii.phy_id_mask = 0x1F; 912 nic->mii.reg_num_mask = 0x1F; 913 nic->mii.dev = nic->netdev; 914 nic->mii.mdio_read = mdio_read; 915 nic->mii.mdio_write = mdio_write; 916} 917 918static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 919{ 920 struct config *config = &cb->u.config; 921 u8 *c = (u8 *)config; 922 923 cb->command = cpu_to_le16(cb_config); 924 925 memset(config, 0, sizeof(struct config)); 926 927 config->byte_count = 0x16; /* bytes in this struct */ 928 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 929 config->direct_rx_dma = 0x1; /* reserved */ 930 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 931 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 932 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 933 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 934 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ 935 config->pad10 = 0x6; 936 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 937 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 938 config->ifs = 0x6; /* x16 = inter frame spacing */ 939 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 940 config->pad15_1 = 0x1; 941 config->pad15_2 = 0x1; 942 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 943 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 944 config->tx_padding = 0x1; /* 1=pad short frames */ 945 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 946 config->pad18 = 0x1; 947 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 948 config->pad20_1 = 0x1F; 949 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 950 config->pad21_1 = 0x5; 951 952 config->adaptive_ifs = nic->adaptive_ifs; 953 config->loopback = nic->loopback; 954 955 if(nic->mii.force_media && nic->mii.full_duplex) 956 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 957 958 if(nic->flags & promiscuous || nic->loopback) { 959 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 960 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 961 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 962 } 963 964 if(nic->flags & multicast_all) 965 config->multicast_all = 0x1; /* 1=accept, 0=no */ 966 967 if(!(nic->flags & wol_magic)) 968 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 969 970 if(nic->mac >= mac_82558_D101_A4) { 971 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 972 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 973 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 974 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 975 if(nic->mac >= mac_82559_D101M) 976 config->tno_intr = 0x1; /* TCO stats enable */ 977 else 978 config->standard_stat_counter = 0x0; 979 } 980 981 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 982 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); 983 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 984 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); 985 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 986 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); 987} 988 989static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) 990{ 991 int i; 992 static const u32 ucode[UCODE_SIZE] = { 993 /* NFS packets are misinterpreted as TCO packets and 994 * incorrectly routed to the BMC over SMBus. This 995 * microcode patch checks the fragmented IP bit in the 996 * NFS/UDP header to distinguish between NFS and TCO. */ 997 0x0EF70E36, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 998 0x1FFF1FFF, 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, 999 0x00906EFD, 0x00900EFD, 0x00E00EF8, 1000 }; 1001 1002 if(nic->mac == mac_82551_F || nic->mac == mac_82551_10) { 1003 for(i = 0; i < UCODE_SIZE; i++) 1004 cb->u.ucode[i] = cpu_to_le32(ucode[i]); 1005 cb->command = cpu_to_le16(cb_ucode); 1006 } else 1007 cb->command = cpu_to_le16(cb_nop); 1008} 1009 1010static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1011 struct sk_buff *skb) 1012{ 1013 cb->command = cpu_to_le16(cb_iaaddr); 1014 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1015} 1016 1017static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1018{ 1019 cb->command = cpu_to_le16(cb_dump); 1020 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1021 offsetof(struct mem, dump_buf)); 1022} 1023 1024#define NCONFIG_AUTO_SWITCH 0x0080 1025#define MII_NSC_CONG MII_RESV1 1026#define NSC_CONG_ENABLE 0x0100 1027#define NSC_CONG_TXREADY 0x0400 1028#define ADVERTISE_FC_SUPPORTED 0x0400 1029static int e100_phy_init(struct nic *nic) 1030{ 1031 struct net_device *netdev = nic->netdev; 1032 u32 addr; 1033 u16 bmcr, stat, id_lo, id_hi, cong; 1034 1035 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1036 for(addr = 0; addr < 32; addr++) { 1037 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1038 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1039 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1040 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1041 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1042 break; 1043 } 1044 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); 1045 if(addr == 32) 1046 return -EAGAIN; 1047 1048 /* Selected the phy and isolate the rest */ 1049 for(addr = 0; addr < 32; addr++) { 1050 if(addr != nic->mii.phy_id) { 1051 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1052 } else { 1053 bmcr = mdio_read(netdev, addr, MII_BMCR); 1054 mdio_write(netdev, addr, MII_BMCR, 1055 bmcr & ~BMCR_ISOLATE); 1056 } 1057 } 1058 1059 /* Get phy ID */ 1060 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1061 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1062 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1063 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); 1064 1065 /* Handle National tx phys */ 1066#define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1067 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1068 /* Disable congestion control */ 1069 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1070 cong |= NSC_CONG_TXREADY; 1071 cong &= ~NSC_CONG_ENABLE; 1072 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1073 } 1074 1075 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1076 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && 1077 (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) 1078 /* enable/disable MDI/MDI-X auto-switching */ 1079 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 1080 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); 1081 1082 return 0; 1083} 1084 1085static int e100_hw_init(struct nic *nic) 1086{ 1087 int err; 1088 1089 e100_hw_reset(nic); 1090 1091 DPRINTK(HW, ERR, "e100_hw_init\n"); 1092 if(!in_interrupt() && (err = e100_self_test(nic))) 1093 return err; 1094 1095 if((err = e100_phy_init(nic))) 1096 return err; 1097 if((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1098 return err; 1099 if((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1100 return err; 1101 if((err = e100_exec_cb(nic, NULL, e100_load_ucode))) 1102 return err; 1103 if((err = e100_exec_cb(nic, NULL, e100_configure))) 1104 return err; 1105 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1106 return err; 1107 if((err = e100_exec_cmd(nic, cuc_dump_addr, 1108 nic->dma_addr + offsetof(struct mem, stats)))) 1109 return err; 1110 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1111 return err; 1112 1113 e100_disable_irq(nic); 1114 1115 return 0; 1116} 1117 1118static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1119{ 1120 struct net_device *netdev = nic->netdev; 1121 struct dev_mc_list *list = netdev->mc_list; 1122 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); 1123 1124 cb->command = cpu_to_le16(cb_multi); 1125 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1126 for(i = 0; list && i < count; i++, list = list->next) 1127 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, 1128 ETH_ALEN); 1129} 1130 1131static void e100_set_multicast_list(struct net_device *netdev) 1132{ 1133 struct nic *nic = netdev_priv(netdev); 1134 1135 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", 1136 netdev->mc_count, netdev->flags); 1137 1138 if(netdev->flags & IFF_PROMISC) 1139 nic->flags |= promiscuous; 1140 else 1141 nic->flags &= ~promiscuous; 1142 1143 if(netdev->flags & IFF_ALLMULTI || 1144 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) 1145 nic->flags |= multicast_all; 1146 else 1147 nic->flags &= ~multicast_all; 1148 1149 e100_exec_cb(nic, NULL, e100_configure); 1150 e100_exec_cb(nic, NULL, e100_multi); 1151} 1152 1153static void e100_update_stats(struct nic *nic) 1154{ 1155 struct net_device_stats *ns = &nic->net_stats; 1156 struct stats *s = &nic->mem->stats; 1157 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1158 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames : 1159 &s->complete; 1160 1161 /* Device's stats reporting may take several microseconds to 1162 * complete, so where always waiting for results of the 1163 * previous command. */ 1164 1165 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) { 1166 *complete = 0; 1167 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1168 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1169 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1170 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1171 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1172 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1173 ns->collisions += nic->tx_collisions; 1174 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1175 le32_to_cpu(s->tx_lost_crs); 1176 ns->rx_dropped += le32_to_cpu(s->rx_resource_errors); 1177 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + 1178 nic->rx_over_length_errors; 1179 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1180 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1181 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1182 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1183 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1184 le32_to_cpu(s->rx_alignment_errors) + 1185 le32_to_cpu(s->rx_short_frame_errors) + 1186 le32_to_cpu(s->rx_cdt_errors); 1187 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1188 nic->tx_single_collisions += 1189 le32_to_cpu(s->tx_single_collisions); 1190 nic->tx_multiple_collisions += 1191 le32_to_cpu(s->tx_multiple_collisions); 1192 if(nic->mac >= mac_82558_D101_A4) { 1193 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1194 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1195 nic->rx_fc_unsupported += 1196 le32_to_cpu(s->fc_rcv_unsupported); 1197 if(nic->mac >= mac_82559_D101M) { 1198 nic->tx_tco_frames += 1199 le16_to_cpu(s->xmt_tco_frames); 1200 nic->rx_tco_frames += 1201 le16_to_cpu(s->rcv_tco_frames); 1202 } 1203 } 1204 } 1205 1206 e100_exec_cmd(nic, cuc_dump_reset, 0); 1207} 1208 1209static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1210{ 1211 /* Adjust inter-frame-spacing (IFS) between two transmits if 1212 * we're getting collisions on a half-duplex connection. */ 1213 1214 if(duplex == DUPLEX_HALF) { 1215 u32 prev = nic->adaptive_ifs; 1216 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1217 1218 if((nic->tx_frames / 32 < nic->tx_collisions) && 1219 (nic->tx_frames > min_frames)) { 1220 if(nic->adaptive_ifs < 60) 1221 nic->adaptive_ifs += 5; 1222 } else if (nic->tx_frames < min_frames) { 1223 if(nic->adaptive_ifs >= 5) 1224 nic->adaptive_ifs -= 5; 1225 } 1226 if(nic->adaptive_ifs != prev) 1227 e100_exec_cb(nic, NULL, e100_configure); 1228 } 1229} 1230 1231static void e100_watchdog(unsigned long data) 1232{ 1233 struct nic *nic = (struct nic *)data; 1234 struct ethtool_cmd cmd; 1235 1236 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); 1237 1238 /* mii library handles link maintenance tasks */ 1239 1240 mii_ethtool_gset(&nic->mii, &cmd); 1241 1242 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1243 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", 1244 cmd.speed == SPEED_100 ? "100" : "10", 1245 cmd.duplex == DUPLEX_FULL ? "full" : "half"); 1246 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1247 DPRINTK(LINK, INFO, "link down\n"); 1248 } 1249 1250 mii_check_link(&nic->mii); 1251 1252 /* Software generated interrupt to recover from (rare) Rx 1253 * allocation failure. 1254 * Unfortunately have to use a spinlock to not re-enable interrupts 1255 * accidentally, due to hardware that shares a register between the 1256 * interrupt mask bit and the SW Interrupt generation bit */ 1257 spin_lock_irq(&nic->cmd_lock); 1258 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1259 spin_unlock_irq(&nic->cmd_lock); 1260 e100_write_flush(nic); 1261 1262 e100_update_stats(nic); 1263 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); 1264 1265 if(nic->mac <= mac_82557_D100_C) 1266 /* Issue a multicast command to workaround a 557 lock up */ 1267 e100_set_multicast_list(nic->netdev); 1268 1269 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) 1270 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1271 nic->flags |= ich_10h_workaround; 1272 else 1273 nic->flags &= ~ich_10h_workaround; 1274 1275 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD); 1276} 1277 1278static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb, 1279 struct sk_buff *skb) 1280{ 1281 cb->command = nic->tx_command; 1282 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1283 cb->u.tcb.tcb_byte_count = 0; 1284 cb->u.tcb.threshold = nic->tx_threshold; 1285 cb->u.tcb.tbd_count = 1; 1286 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, 1287 skb->data, skb->len, PCI_DMA_TODEVICE)); 1288 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1289} 1290 1291static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 1292{ 1293 struct nic *nic = netdev_priv(netdev); 1294 int err; 1295 1296 if(nic->flags & ich_10h_workaround) { 1297 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1298 Issue a NOP command followed by a 1us delay before 1299 issuing the Tx command. */ 1300 e100_exec_cmd(nic, cuc_nop, 0); 1301 udelay(1); 1302 } 1303 1304 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1305 1306 switch(err) { 1307 case -ENOSPC: 1308 /* We queued the skb, but now we're out of space. */ 1309 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); 1310 netif_stop_queue(netdev); 1311 break; 1312 case -ENOMEM: 1313 /* This is a hard error - log it. */ 1314 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); 1315 netif_stop_queue(netdev); 1316 return 1; 1317 } 1318 1319 netdev->trans_start = jiffies; 1320 return 0; 1321} 1322 1323static inline int e100_tx_clean(struct nic *nic) 1324{ 1325 struct cb *cb; 1326 int tx_cleaned = 0; 1327 1328 spin_lock(&nic->cb_lock); 1329 1330 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n", 1331 nic->cb_to_clean->status); 1332 1333 /* Clean CBs marked complete */ 1334 for(cb = nic->cb_to_clean; 1335 cb->status & cpu_to_le16(cb_complete); 1336 cb = nic->cb_to_clean = cb->next) { 1337 if(likely(cb->skb != NULL)) { 1338 nic->net_stats.tx_packets++; 1339 nic->net_stats.tx_bytes += cb->skb->len; 1340 1341 pci_unmap_single(nic->pdev, 1342 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1343 le16_to_cpu(cb->u.tcb.tbd.size), 1344 PCI_DMA_TODEVICE); 1345 dev_kfree_skb_any(cb->skb); 1346 cb->skb = NULL; 1347 tx_cleaned = 1; 1348 } 1349 cb->status = 0; 1350 nic->cbs_avail++; 1351 } 1352 1353 spin_unlock(&nic->cb_lock); 1354 1355 /* Recover from running out of Tx resources in xmit_frame */ 1356 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1357 netif_wake_queue(nic->netdev); 1358 1359 return tx_cleaned; 1360} 1361 1362static void e100_clean_cbs(struct nic *nic) 1363{ 1364 if(nic->cbs) { 1365 while(nic->cbs_avail != nic->params.cbs.count) { 1366 struct cb *cb = nic->cb_to_clean; 1367 if(cb->skb) { 1368 pci_unmap_single(nic->pdev, 1369 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1370 le16_to_cpu(cb->u.tcb.tbd.size), 1371 PCI_DMA_TODEVICE); 1372 dev_kfree_skb(cb->skb); 1373 } 1374 nic->cb_to_clean = nic->cb_to_clean->next; 1375 nic->cbs_avail++; 1376 } 1377 pci_free_consistent(nic->pdev, 1378 sizeof(struct cb) * nic->params.cbs.count, 1379 nic->cbs, nic->cbs_dma_addr); 1380 nic->cbs = NULL; 1381 nic->cbs_avail = 0; 1382 } 1383 nic->cuc_cmd = cuc_start; 1384 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1385 nic->cbs; 1386} 1387 1388static int e100_alloc_cbs(struct nic *nic) 1389{ 1390 struct cb *cb; 1391 unsigned int i, count = nic->params.cbs.count; 1392 1393 nic->cuc_cmd = cuc_start; 1394 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1395 nic->cbs_avail = 0; 1396 1397 nic->cbs = pci_alloc_consistent(nic->pdev, 1398 sizeof(struct cb) * count, &nic->cbs_dma_addr); 1399 if(!nic->cbs) 1400 return -ENOMEM; 1401 1402 for(cb = nic->cbs, i = 0; i < count; cb++, i++) { 1403 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1404 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1405 1406 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1407 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1408 ((i+1) % count) * sizeof(struct cb)); 1409 cb->skb = NULL; 1410 } 1411 1412 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1413 nic->cbs_avail = count; 1414 1415 return 0; 1416} 1417 1418static inline void e100_start_receiver(struct nic *nic) 1419{ 1420 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1421 if(!nic->ru_running && nic->rx_to_clean->skb) { 1422 e100_exec_cmd(nic, ruc_start, nic->rx_to_clean->dma_addr); 1423 nic->ru_running = 1; 1424 } 1425} 1426 1427#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) 1428static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1429{ 1430 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN))) 1431 return -ENOMEM; 1432 1433 /* Align, init, and map the RFD. */ 1434 rx->skb->dev = nic->netdev; 1435 skb_reserve(rx->skb, NET_IP_ALIGN); 1436 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd)); 1437 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1438 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1439 1440 /* Link the RFD to end of RFA by linking previous RFD to 1441 * this one, and clearing EL bit of previous. */ 1442 if(rx->prev->skb) { 1443 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1444 put_unaligned(cpu_to_le32(rx->dma_addr), 1445 (u32 *)&prev_rfd->link); 1446 wmb(); 1447 prev_rfd->command &= ~cpu_to_le16(cb_el); 1448 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1449 sizeof(struct rfd), PCI_DMA_TODEVICE); 1450 } 1451 1452 return 0; 1453} 1454 1455static inline int e100_rx_indicate(struct nic *nic, struct rx *rx, 1456 unsigned int *work_done, unsigned int work_to_do) 1457{ 1458 struct sk_buff *skb = rx->skb; 1459 struct rfd *rfd = (struct rfd *)skb->data; 1460 u16 rfd_status, actual_size; 1461 1462 if(unlikely(work_done && *work_done >= work_to_do)) 1463 return -EAGAIN; 1464 1465 /* Need to sync before taking a peek at cb_complete bit */ 1466 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1467 sizeof(struct rfd), PCI_DMA_FROMDEVICE); 1468 rfd_status = le16_to_cpu(rfd->status); 1469 1470 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); 1471 1472 /* If data isn't ready, nothing to indicate */ 1473 if(unlikely(!(rfd_status & cb_complete))) 1474 return -EAGAIN; 1475 1476 /* Get actual data size */ 1477 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1478 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1479 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1480 1481 /* Get data */ 1482 pci_unmap_single(nic->pdev, rx->dma_addr, 1483 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1484 1485 /* Pull off the RFD and put the actual data (minus eth hdr) */ 1486 skb_reserve(skb, sizeof(struct rfd)); 1487 skb_put(skb, actual_size); 1488 skb->protocol = eth_type_trans(skb, nic->netdev); 1489 1490 if(unlikely(!(rfd_status & cb_ok))) { 1491 /* Don't indicate if hardware indicates errors */ 1492 nic->net_stats.rx_dropped++; 1493 dev_kfree_skb_any(skb); 1494 } else if(actual_size > nic->netdev->mtu + VLAN_ETH_HLEN) { 1495 /* Don't indicate oversized frames */ 1496 nic->rx_over_length_errors++; 1497 nic->net_stats.rx_dropped++; 1498 dev_kfree_skb_any(skb); 1499 } else { 1500 nic->net_stats.rx_packets++; 1501 nic->net_stats.rx_bytes += actual_size; 1502 nic->netdev->last_rx = jiffies; 1503 netif_receive_skb(skb); 1504 if(work_done) 1505 (*work_done)++; 1506 } 1507 1508 rx->skb = NULL; 1509 1510 return 0; 1511} 1512 1513static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done, 1514 unsigned int work_to_do) 1515{ 1516 struct rx *rx; 1517 1518 /* Indicate newly arrived packets */ 1519 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 1520 if(e100_rx_indicate(nic, rx, work_done, work_to_do)) 1521 break; /* No more to clean */ 1522 } 1523 1524 /* Alloc new skbs to refill list */ 1525 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 1526 if(unlikely(e100_rx_alloc_skb(nic, rx))) 1527 break; /* Better luck next time (see watchdog) */ 1528 } 1529 1530 e100_start_receiver(nic); 1531} 1532 1533static void e100_rx_clean_list(struct nic *nic) 1534{ 1535 struct rx *rx; 1536 unsigned int i, count = nic->params.rfds.count; 1537 1538 if(nic->rxs) { 1539 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1540 if(rx->skb) { 1541 pci_unmap_single(nic->pdev, rx->dma_addr, 1542 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1543 dev_kfree_skb(rx->skb); 1544 } 1545 } 1546 kfree(nic->rxs); 1547 nic->rxs = NULL; 1548 } 1549 1550 nic->rx_to_use = nic->rx_to_clean = NULL; 1551 nic->ru_running = 0; 1552} 1553 1554static int e100_rx_alloc_list(struct nic *nic) 1555{ 1556 struct rx *rx; 1557 unsigned int i, count = nic->params.rfds.count; 1558 1559 nic->rx_to_use = nic->rx_to_clean = NULL; 1560 1561 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) 1562 return -ENOMEM; 1563 memset(nic->rxs, 0, sizeof(struct rx) * count); 1564 1565 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1566 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 1567 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 1568 if(e100_rx_alloc_skb(nic, rx)) { 1569 e100_rx_clean_list(nic); 1570 return -ENOMEM; 1571 } 1572 } 1573 1574 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 1575 1576 return 0; 1577} 1578 1579static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs) 1580{ 1581 struct net_device *netdev = dev_id; 1582 struct nic *nic = netdev_priv(netdev); 1583 u8 stat_ack = readb(&nic->csr->scb.stat_ack); 1584 1585 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); 1586 1587 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ 1588 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 1589 return IRQ_NONE; 1590 1591 /* Ack interrupt(s) */ 1592 writeb(stat_ack, &nic->csr->scb.stat_ack); 1593 1594 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 1595 if(stat_ack & stat_ack_rnr) 1596 nic->ru_running = 0; 1597 1598 e100_disable_irq(nic); 1599 netif_rx_schedule(netdev); 1600 1601 return IRQ_HANDLED; 1602} 1603 1604static int e100_poll(struct net_device *netdev, int *budget) 1605{ 1606 struct nic *nic = netdev_priv(netdev); 1607 unsigned int work_to_do = min(netdev->quota, *budget); 1608 unsigned int work_done = 0; 1609 int tx_cleaned; 1610 1611 e100_rx_clean(nic, &work_done, work_to_do); 1612 tx_cleaned = e100_tx_clean(nic); 1613 1614 /* If no Rx and Tx cleanup work was done, exit polling mode. */ 1615 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { 1616 netif_rx_complete(netdev); 1617 e100_enable_irq(nic); 1618 return 0; 1619 } 1620 1621 *budget -= work_done; 1622 netdev->quota -= work_done; 1623 1624 return 1; 1625} 1626 1627#ifdef CONFIG_NET_POLL_CONTROLLER 1628static void e100_netpoll(struct net_device *netdev) 1629{ 1630 struct nic *nic = netdev_priv(netdev); 1631 e100_disable_irq(nic); 1632 e100_intr(nic->pdev->irq, netdev, NULL); 1633 e100_tx_clean(nic); 1634 e100_enable_irq(nic); 1635} 1636#endif 1637 1638static struct net_device_stats *e100_get_stats(struct net_device *netdev) 1639{ 1640 struct nic *nic = netdev_priv(netdev); 1641 return &nic->net_stats; 1642} 1643 1644static int e100_set_mac_address(struct net_device *netdev, void *p) 1645{ 1646 struct nic *nic = netdev_priv(netdev); 1647 struct sockaddr *addr = p; 1648 1649 if (!is_valid_ether_addr(addr->sa_data)) 1650 return -EADDRNOTAVAIL; 1651 1652 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1653 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 1654 1655 return 0; 1656} 1657 1658static int e100_change_mtu(struct net_device *netdev, int new_mtu) 1659{ 1660 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 1661 return -EINVAL; 1662 netdev->mtu = new_mtu; 1663 return 0; 1664} 1665 1666static int e100_asf(struct nic *nic) 1667{ 1668 /* ASF can be enabled from eeprom */ 1669 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 1670 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 1671 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 1672 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); 1673} 1674 1675static int e100_up(struct nic *nic) 1676{ 1677 int err; 1678 1679 if((err = e100_rx_alloc_list(nic))) 1680 return err; 1681 if((err = e100_alloc_cbs(nic))) 1682 goto err_rx_clean_list; 1683 if((err = e100_hw_init(nic))) 1684 goto err_clean_cbs; 1685 e100_set_multicast_list(nic->netdev); 1686 e100_start_receiver(nic); 1687 mod_timer(&nic->watchdog, jiffies); 1688 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ, 1689 nic->netdev->name, nic->netdev))) 1690 goto err_no_irq; 1691 e100_enable_irq(nic); 1692 netif_wake_queue(nic->netdev); 1693 return 0; 1694 1695err_no_irq: 1696 del_timer_sync(&nic->watchdog); 1697err_clean_cbs: 1698 e100_clean_cbs(nic); 1699err_rx_clean_list: 1700 e100_rx_clean_list(nic); 1701 return err; 1702} 1703 1704static void e100_down(struct nic *nic) 1705{ 1706 e100_hw_reset(nic); 1707 free_irq(nic->pdev->irq, nic->netdev); 1708 del_timer_sync(&nic->watchdog); 1709 netif_carrier_off(nic->netdev); 1710 netif_stop_queue(nic->netdev); 1711 e100_clean_cbs(nic); 1712 e100_rx_clean_list(nic); 1713} 1714 1715static void e100_tx_timeout(struct net_device *netdev) 1716{ 1717 struct nic *nic = netdev_priv(netdev); 1718 1719 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", 1720 readb(&nic->csr->scb.status)); 1721 e100_down(netdev_priv(netdev)); 1722 e100_up(netdev_priv(netdev)); 1723} 1724 1725static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 1726{ 1727 int err; 1728 struct sk_buff *skb; 1729 1730 /* Use driver resources to perform internal MAC or PHY 1731 * loopback test. A single packet is prepared and transmitted 1732 * in loopback mode, and the test passes if the received 1733 * packet compares byte-for-byte to the transmitted packet. */ 1734 1735 if((err = e100_rx_alloc_list(nic))) 1736 return err; 1737 if((err = e100_alloc_cbs(nic))) 1738 goto err_clean_rx; 1739 1740 /* ICH PHY loopback is broken so do MAC loopback instead */ 1741 if(nic->flags & ich && loopback_mode == lb_phy) 1742 loopback_mode = lb_mac; 1743 1744 nic->loopback = loopback_mode; 1745 if((err = e100_hw_init(nic))) 1746 goto err_loopback_none; 1747 1748 if(loopback_mode == lb_phy) 1749 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 1750 BMCR_LOOPBACK); 1751 1752 e100_start_receiver(nic); 1753 1754 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { 1755 err = -ENOMEM; 1756 goto err_loopback_none; 1757 } 1758 skb_put(skb, ETH_DATA_LEN); 1759 memset(skb->data, 0xFF, ETH_DATA_LEN); 1760 e100_xmit_frame(skb, nic->netdev); 1761 1762 msleep(10); 1763 1764 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 1765 skb->data, ETH_DATA_LEN)) 1766 err = -EAGAIN; 1767 1768err_loopback_none: 1769 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 1770 nic->loopback = lb_none; 1771 e100_hw_init(nic); 1772 e100_clean_cbs(nic); 1773err_clean_rx: 1774 e100_rx_clean_list(nic); 1775 return err; 1776} 1777 1778#define MII_LED_CONTROL 0x1B 1779static void e100_blink_led(unsigned long data) 1780{ 1781 struct nic *nic = (struct nic *)data; 1782 enum led_state { 1783 led_on = 0x01, 1784 led_off = 0x04, 1785 led_on_559 = 0x05, 1786 led_on_557 = 0x07, 1787 }; 1788 1789 nic->leds = (nic->leds & led_on) ? led_off : 1790 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 1791 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); 1792 mod_timer(&nic->blink_timer, jiffies + HZ / 4); 1793} 1794 1795static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 1796{ 1797 struct nic *nic = netdev_priv(netdev); 1798 return mii_ethtool_gset(&nic->mii, cmd); 1799} 1800 1801static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 1802{ 1803 struct nic *nic = netdev_priv(netdev); 1804 int err; 1805 1806 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 1807 err = mii_ethtool_sset(&nic->mii, cmd); 1808 e100_exec_cb(nic, NULL, e100_configure); 1809 1810 return err; 1811} 1812 1813static void e100_get_drvinfo(struct net_device *netdev, 1814 struct ethtool_drvinfo *info) 1815{ 1816 struct nic *nic = netdev_priv(netdev); 1817 strcpy(info->driver, DRV_NAME); 1818 strcpy(info->version, DRV_VERSION); 1819 strcpy(info->fw_version, "N/A"); 1820 strcpy(info->bus_info, pci_name(nic->pdev)); 1821} 1822 1823static int e100_get_regs_len(struct net_device *netdev) 1824{ 1825 struct nic *nic = netdev_priv(netdev); 1826#define E100_PHY_REGS 0x1C 1827#define E100_REGS_LEN 1 + E100_PHY_REGS + \ 1828 sizeof(nic->mem->dump_buf) / sizeof(u32) 1829 return E100_REGS_LEN * sizeof(u32); 1830} 1831 1832static void e100_get_regs(struct net_device *netdev, 1833 struct ethtool_regs *regs, void *p) 1834{ 1835 struct nic *nic = netdev_priv(netdev); 1836 u32 *buff = p; 1837 int i; 1838 1839 regs->version = (1 << 24) | nic->rev_id; 1840 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 | 1841 readb(&nic->csr->scb.cmd_lo) << 16 | 1842 readw(&nic->csr->scb.status); 1843 for(i = E100_PHY_REGS; i >= 0; i--) 1844 buff[1 + E100_PHY_REGS - i] = 1845 mdio_read(netdev, nic->mii.phy_id, i); 1846 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 1847 e100_exec_cb(nic, NULL, e100_dump); 1848 msleep(10); 1849 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 1850 sizeof(nic->mem->dump_buf)); 1851} 1852 1853static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1854{ 1855 struct nic *nic = netdev_priv(netdev); 1856 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 1857 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 1858} 1859 1860static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1861{ 1862 struct nic *nic = netdev_priv(netdev); 1863 1864 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) 1865 return -EOPNOTSUPP; 1866 1867 if(wol->wolopts) 1868 nic->flags |= wol_magic; 1869 else 1870 nic->flags &= ~wol_magic; 1871 1872 pci_enable_wake(nic->pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); 1873 e100_exec_cb(nic, NULL, e100_configure); 1874 1875 return 0; 1876} 1877 1878static u32 e100_get_msglevel(struct net_device *netdev) 1879{ 1880 struct nic *nic = netdev_priv(netdev); 1881 return nic->msg_enable; 1882} 1883 1884static void e100_set_msglevel(struct net_device *netdev, u32 value) 1885{ 1886 struct nic *nic = netdev_priv(netdev); 1887 nic->msg_enable = value; 1888} 1889 1890static int e100_nway_reset(struct net_device *netdev) 1891{ 1892 struct nic *nic = netdev_priv(netdev); 1893 return mii_nway_restart(&nic->mii); 1894} 1895 1896static u32 e100_get_link(struct net_device *netdev) 1897{ 1898 struct nic *nic = netdev_priv(netdev); 1899 return mii_link_ok(&nic->mii); 1900} 1901 1902static int e100_get_eeprom_len(struct net_device *netdev) 1903{ 1904 struct nic *nic = netdev_priv(netdev); 1905 return nic->eeprom_wc << 1; 1906} 1907 1908#define E100_EEPROM_MAGIC 0x1234 1909static int e100_get_eeprom(struct net_device *netdev, 1910 struct ethtool_eeprom *eeprom, u8 *bytes) 1911{ 1912 struct nic *nic = netdev_priv(netdev); 1913 1914 eeprom->magic = E100_EEPROM_MAGIC; 1915 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 1916 1917 return 0; 1918} 1919 1920static int e100_set_eeprom(struct net_device *netdev, 1921 struct ethtool_eeprom *eeprom, u8 *bytes) 1922{ 1923 struct nic *nic = netdev_priv(netdev); 1924 1925 if(eeprom->magic != E100_EEPROM_MAGIC) 1926 return -EINVAL; 1927 1928 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 1929 1930 return e100_eeprom_save(nic, eeprom->offset >> 1, 1931 (eeprom->len >> 1) + 1); 1932} 1933 1934static void e100_get_ringparam(struct net_device *netdev, 1935 struct ethtool_ringparam *ring) 1936{ 1937 struct nic *nic = netdev_priv(netdev); 1938 struct param_range *rfds = &nic->params.rfds; 1939 struct param_range *cbs = &nic->params.cbs; 1940 1941 ring->rx_max_pending = rfds->max; 1942 ring->tx_max_pending = cbs->max; 1943 ring->rx_mini_max_pending = 0; 1944 ring->rx_jumbo_max_pending = 0; 1945 ring->rx_pending = rfds->count; 1946 ring->tx_pending = cbs->count; 1947 ring->rx_mini_pending = 0; 1948 ring->rx_jumbo_pending = 0; 1949} 1950 1951static int e100_set_ringparam(struct net_device *netdev, 1952 struct ethtool_ringparam *ring) 1953{ 1954 struct nic *nic = netdev_priv(netdev); 1955 struct param_range *rfds = &nic->params.rfds; 1956 struct param_range *cbs = &nic->params.cbs; 1957 1958 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 1959 return -EINVAL; 1960 1961 if(netif_running(netdev)) 1962 e100_down(nic); 1963 rfds->count = max(ring->rx_pending, rfds->min); 1964 rfds->count = min(rfds->count, rfds->max); 1965 cbs->count = max(ring->tx_pending, cbs->min); 1966 cbs->count = min(cbs->count, cbs->max); 1967 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", 1968 rfds->count, cbs->count); 1969 if(netif_running(netdev)) 1970 e100_up(nic); 1971 1972 return 0; 1973} 1974 1975static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 1976 "Link test (on/offline)", 1977 "Eeprom test (on/offline)", 1978 "Self test (offline)", 1979 "Mac loopback (offline)", 1980 "Phy loopback (offline)", 1981}; 1982#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN 1983 1984static int e100_diag_test_count(struct net_device *netdev) 1985{ 1986 return E100_TEST_LEN; 1987} 1988 1989static void e100_diag_test(struct net_device *netdev, 1990 struct ethtool_test *test, u64 *data) 1991{ 1992 struct ethtool_cmd cmd; 1993 struct nic *nic = netdev_priv(netdev); 1994 int i, err; 1995 1996 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 1997 data[0] = !mii_link_ok(&nic->mii); 1998 data[1] = e100_eeprom_load(nic); 1999 if(test->flags & ETH_TEST_FL_OFFLINE) { 2000 2001 /* save speed, duplex & autoneg settings */ 2002 err = mii_ethtool_gset(&nic->mii, &cmd); 2003 2004 if(netif_running(netdev)) 2005 e100_down(nic); 2006 data[2] = e100_self_test(nic); 2007 data[3] = e100_loopback_test(nic, lb_mac); 2008 data[4] = e100_loopback_test(nic, lb_phy); 2009 2010 /* restore speed, duplex & autoneg settings */ 2011 err = mii_ethtool_sset(&nic->mii, &cmd); 2012 2013 if(netif_running(netdev)) 2014 e100_up(nic); 2015 } 2016 for(i = 0; i < E100_TEST_LEN; i++) 2017 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2018} 2019 2020static int e100_phys_id(struct net_device *netdev, u32 data) 2021{ 2022 struct nic *nic = netdev_priv(netdev); 2023 2024 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 2025 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); 2026 mod_timer(&nic->blink_timer, jiffies); 2027 msleep_interruptible(data * 1000); 2028 del_timer_sync(&nic->blink_timer); 2029 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); 2030 2031 return 0; 2032} 2033 2034static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2035 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2036 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2037 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2038 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2039 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2040 "tx_heartbeat_errors", "tx_window_errors", 2041 /* device-specific stats */ 2042 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2043 "tx_flow_control_pause", "rx_flow_control_pause", 2044 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2045}; 2046#define E100_NET_STATS_LEN 21 2047#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN 2048 2049static int e100_get_stats_count(struct net_device *netdev) 2050{ 2051 return E100_STATS_LEN; 2052} 2053 2054static void e100_get_ethtool_stats(struct net_device *netdev, 2055 struct ethtool_stats *stats, u64 *data) 2056{ 2057 struct nic *nic = netdev_priv(netdev); 2058 int i; 2059 2060 for(i = 0; i < E100_NET_STATS_LEN; i++) 2061 data[i] = ((unsigned long *)&nic->net_stats)[i]; 2062 2063 data[i++] = nic->tx_deferred; 2064 data[i++] = nic->tx_single_collisions; 2065 data[i++] = nic->tx_multiple_collisions; 2066 data[i++] = nic->tx_fc_pause; 2067 data[i++] = nic->rx_fc_pause; 2068 data[i++] = nic->rx_fc_unsupported; 2069 data[i++] = nic->tx_tco_frames; 2070 data[i++] = nic->rx_tco_frames; 2071} 2072 2073static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2074{ 2075 switch(stringset) { 2076 case ETH_SS_TEST: 2077 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2078 break; 2079 case ETH_SS_STATS: 2080 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2081 break; 2082 } 2083} 2084 2085static struct ethtool_ops e100_ethtool_ops = { 2086 .get_settings = e100_get_settings, 2087 .set_settings = e100_set_settings, 2088 .get_drvinfo = e100_get_drvinfo, 2089 .get_regs_len = e100_get_regs_len, 2090 .get_regs = e100_get_regs, 2091 .get_wol = e100_get_wol, 2092 .set_wol = e100_set_wol, 2093 .get_msglevel = e100_get_msglevel, 2094 .set_msglevel = e100_set_msglevel, 2095 .nway_reset = e100_nway_reset, 2096 .get_link = e100_get_link, 2097 .get_eeprom_len = e100_get_eeprom_len, 2098 .get_eeprom = e100_get_eeprom, 2099 .set_eeprom = e100_set_eeprom, 2100 .get_ringparam = e100_get_ringparam, 2101 .set_ringparam = e100_set_ringparam, 2102 .self_test_count = e100_diag_test_count, 2103 .self_test = e100_diag_test, 2104 .get_strings = e100_get_strings, 2105 .phys_id = e100_phys_id, 2106 .get_stats_count = e100_get_stats_count, 2107 .get_ethtool_stats = e100_get_ethtool_stats, 2108}; 2109 2110static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2111{ 2112 struct nic *nic = netdev_priv(netdev); 2113 2114 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2115} 2116 2117static int e100_alloc(struct nic *nic) 2118{ 2119 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2120 &nic->dma_addr); 2121 return nic->mem ? 0 : -ENOMEM; 2122} 2123 2124static void e100_free(struct nic *nic) 2125{ 2126 if(nic->mem) { 2127 pci_free_consistent(nic->pdev, sizeof(struct mem), 2128 nic->mem, nic->dma_addr); 2129 nic->mem = NULL; 2130 } 2131} 2132 2133static int e100_open(struct net_device *netdev) 2134{ 2135 struct nic *nic = netdev_priv(netdev); 2136 int err = 0; 2137 2138 netif_carrier_off(netdev); 2139 if((err = e100_up(nic))) 2140 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); 2141 return err; 2142} 2143 2144static int e100_close(struct net_device *netdev) 2145{ 2146 e100_down(netdev_priv(netdev)); 2147 return 0; 2148} 2149 2150static int __devinit e100_probe(struct pci_dev *pdev, 2151 const struct pci_device_id *ent) 2152{ 2153 struct net_device *netdev; 2154 struct nic *nic; 2155 int err; 2156 2157 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { 2158 if(((1 << debug) - 1) & NETIF_MSG_PROBE) 2159 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); 2160 return -ENOMEM; 2161 } 2162 2163 netdev->open = e100_open; 2164 netdev->stop = e100_close; 2165 netdev->hard_start_xmit = e100_xmit_frame; 2166 netdev->get_stats = e100_get_stats; 2167 netdev->set_multicast_list = e100_set_multicast_list; 2168 netdev->set_mac_address = e100_set_mac_address; 2169 netdev->change_mtu = e100_change_mtu; 2170 netdev->do_ioctl = e100_do_ioctl; 2171 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); 2172 netdev->tx_timeout = e100_tx_timeout; 2173 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2174 netdev->poll = e100_poll; 2175 netdev->weight = E100_NAPI_WEIGHT; 2176#ifdef CONFIG_NET_POLL_CONTROLLER 2177 netdev->poll_controller = e100_netpoll; 2178#endif 2179 strcpy(netdev->name, pci_name(pdev)); 2180 2181 nic = netdev_priv(netdev); 2182 nic->netdev = netdev; 2183 nic->pdev = pdev; 2184 nic->msg_enable = (1 << debug) - 1; 2185 pci_set_drvdata(pdev, netdev); 2186 2187 if((err = pci_enable_device(pdev))) { 2188 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); 2189 goto err_out_free_dev; 2190 } 2191 2192 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2193 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " 2194 "base address, aborting.\n"); 2195 err = -ENODEV; 2196 goto err_out_disable_pdev; 2197 } 2198 2199 if((err = pci_request_regions(pdev, DRV_NAME))) { 2200 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); 2201 goto err_out_disable_pdev; 2202 } 2203 2204 if((err = pci_set_dma_mask(pdev, 0xFFFFFFFFULL))) { 2205 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); 2206 goto err_out_free_res; 2207 } 2208 2209 SET_MODULE_OWNER(netdev); 2210 SET_NETDEV_DEV(netdev, &pdev->dev); 2211 2212 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr)); 2213 if(!nic->csr) { 2214 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); 2215 err = -ENOMEM; 2216 goto err_out_free_res; 2217 } 2218 2219 if(ent->driver_data) 2220 nic->flags |= ich; 2221 else 2222 nic->flags &= ~ich; 2223 2224 e100_get_defaults(nic); 2225 2226 spin_lock_init(&nic->cb_lock); 2227 spin_lock_init(&nic->cmd_lock); 2228 2229 /* Reset the device before pci_set_master() in case device is in some 2230 * funky state and has an interrupt pending - hint: we don't have the 2231 * interrupt handler registered yet. */ 2232 e100_hw_reset(nic); 2233 2234 pci_set_master(pdev); 2235 2236 init_timer(&nic->watchdog); 2237 nic->watchdog.function = e100_watchdog; 2238 nic->watchdog.data = (unsigned long)nic; 2239 init_timer(&nic->blink_timer); 2240 nic->blink_timer.function = e100_blink_led; 2241 nic->blink_timer.data = (unsigned long)nic; 2242 2243 if((err = e100_alloc(nic))) { 2244 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); 2245 goto err_out_iounmap; 2246 } 2247 2248 e100_phy_init(nic); 2249 2250 if((err = e100_eeprom_load(nic))) 2251 goto err_out_free; 2252 2253 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2254 if(!is_valid_ether_addr(netdev->dev_addr)) { 2255 DPRINTK(PROBE, ERR, "Invalid MAC address from " 2256 "EEPROM, aborting.\n"); 2257 err = -EAGAIN; 2258 goto err_out_free; 2259 } 2260 2261 /* Wol magic packet can be enabled from eeprom */ 2262 if((nic->mac >= mac_82558_D101_A4) && 2263 (nic->eeprom[eeprom_id] & eeprom_id_wol)) 2264 nic->flags |= wol_magic; 2265 2266 pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); 2267 2268 strcpy(netdev->name, "eth%d"); 2269 if((err = register_netdev(netdev))) { 2270 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); 2271 goto err_out_free; 2272 } 2273 2274 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, " 2275 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", 2276 pci_resource_start(pdev, 0), pdev->irq, 2277 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], 2278 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); 2279 2280 return 0; 2281 2282err_out_free: 2283 e100_free(nic); 2284err_out_iounmap: 2285 iounmap(nic->csr); 2286err_out_free_res: 2287 pci_release_regions(pdev); 2288err_out_disable_pdev: 2289 pci_disable_device(pdev); 2290err_out_free_dev: 2291 pci_set_drvdata(pdev, NULL); 2292 free_netdev(netdev); 2293 return err; 2294} 2295 2296static void __devexit e100_remove(struct pci_dev *pdev) 2297{ 2298 struct net_device *netdev = pci_get_drvdata(pdev); 2299 2300 if(netdev) { 2301 struct nic *nic = netdev_priv(netdev); 2302 unregister_netdev(netdev); 2303 e100_free(nic); 2304 iounmap(nic->csr); 2305 free_netdev(netdev); 2306 pci_release_regions(pdev); 2307 pci_disable_device(pdev); 2308 pci_set_drvdata(pdev, NULL); 2309 } 2310} 2311 2312#ifdef CONFIG_PM 2313static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 2314{ 2315 struct net_device *netdev = pci_get_drvdata(pdev); 2316 struct nic *nic = netdev_priv(netdev); 2317 2318 if(netif_running(netdev)) 2319 e100_down(nic); 2320 e100_hw_reset(nic); 2321 netif_device_detach(netdev); 2322 2323 pci_save_state(pdev); 2324 pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic))); 2325 pci_disable_device(pdev); 2326 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 2327 2328 return 0; 2329} 2330 2331static int e100_resume(struct pci_dev *pdev) 2332{ 2333 struct net_device *netdev = pci_get_drvdata(pdev); 2334 struct nic *nic = netdev_priv(netdev); 2335 2336 pci_set_power_state(pdev, PCI_D0); 2337 pci_restore_state(pdev); 2338 e100_hw_init(nic); 2339 2340 netif_device_attach(netdev); 2341 if(netif_running(netdev)) 2342 e100_up(nic); 2343 2344 return 0; 2345} 2346#endif 2347 2348static struct pci_driver e100_driver = { 2349 .name = DRV_NAME, 2350 .id_table = e100_id_table, 2351 .probe = e100_probe, 2352 .remove = __devexit_p(e100_remove), 2353#ifdef CONFIG_PM 2354 .suspend = e100_suspend, 2355 .resume = e100_resume, 2356#endif 2357}; 2358 2359static int __init e100_init_module(void) 2360{ 2361 if(((1 << debug) - 1) & NETIF_MSG_DRV) { 2362 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 2363 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); 2364 } 2365 return pci_module_init(&e100_driver); 2366} 2367 2368static void __exit e100_cleanup_module(void) 2369{ 2370 pci_unregister_driver(&e100_driver); 2371} 2372 2373module_init(e100_init_module); 2374module_exit(e100_cleanup_module);