at v2.6.12-rc2 705 lines 16 kB view raw
1/* 2 * linux/drivers/block/elevator.c 3 * 4 * Block device elevator/IO-scheduler. 5 * 6 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 7 * 8 * 30042000 Jens Axboe <axboe@suse.de> : 9 * 10 * Split the elevator a bit so that it is possible to choose a different 11 * one or even write a new "plug in". There are three pieces: 12 * - elevator_fn, inserts a new request in the queue list 13 * - elevator_merge_fn, decides whether a new buffer can be merged with 14 * an existing request 15 * - elevator_dequeue_fn, called when a request is taken off the active list 16 * 17 * 20082000 Dave Jones <davej@suse.de> : 18 * Removed tests for max-bomb-segments, which was breaking elvtune 19 * when run without -bN 20 * 21 * Jens: 22 * - Rework again to work with bio instead of buffer_heads 23 * - loose bi_dev comparisons, partition handling is right now 24 * - completely modularize elevator setup and teardown 25 * 26 */ 27#include <linux/kernel.h> 28#include <linux/fs.h> 29#include <linux/blkdev.h> 30#include <linux/elevator.h> 31#include <linux/bio.h> 32#include <linux/config.h> 33#include <linux/module.h> 34#include <linux/slab.h> 35#include <linux/init.h> 36#include <linux/compiler.h> 37 38#include <asm/uaccess.h> 39 40static DEFINE_SPINLOCK(elv_list_lock); 41static LIST_HEAD(elv_list); 42 43/* 44 * can we safely merge with this request? 45 */ 46inline int elv_rq_merge_ok(struct request *rq, struct bio *bio) 47{ 48 if (!rq_mergeable(rq)) 49 return 0; 50 51 /* 52 * different data direction or already started, don't merge 53 */ 54 if (bio_data_dir(bio) != rq_data_dir(rq)) 55 return 0; 56 57 /* 58 * same device and no special stuff set, merge is ok 59 */ 60 if (rq->rq_disk == bio->bi_bdev->bd_disk && 61 !rq->waiting && !rq->special) 62 return 1; 63 64 return 0; 65} 66EXPORT_SYMBOL(elv_rq_merge_ok); 67 68inline int elv_try_merge(struct request *__rq, struct bio *bio) 69{ 70 int ret = ELEVATOR_NO_MERGE; 71 72 /* 73 * we can merge and sequence is ok, check if it's possible 74 */ 75 if (elv_rq_merge_ok(__rq, bio)) { 76 if (__rq->sector + __rq->nr_sectors == bio->bi_sector) 77 ret = ELEVATOR_BACK_MERGE; 78 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) 79 ret = ELEVATOR_FRONT_MERGE; 80 } 81 82 return ret; 83} 84EXPORT_SYMBOL(elv_try_merge); 85 86inline int elv_try_last_merge(request_queue_t *q, struct bio *bio) 87{ 88 if (q->last_merge) 89 return elv_try_merge(q->last_merge, bio); 90 91 return ELEVATOR_NO_MERGE; 92} 93EXPORT_SYMBOL(elv_try_last_merge); 94 95static struct elevator_type *elevator_find(const char *name) 96{ 97 struct elevator_type *e = NULL; 98 struct list_head *entry; 99 100 spin_lock_irq(&elv_list_lock); 101 list_for_each(entry, &elv_list) { 102 struct elevator_type *__e; 103 104 __e = list_entry(entry, struct elevator_type, list); 105 106 if (!strcmp(__e->elevator_name, name)) { 107 e = __e; 108 break; 109 } 110 } 111 spin_unlock_irq(&elv_list_lock); 112 113 return e; 114} 115 116static void elevator_put(struct elevator_type *e) 117{ 118 module_put(e->elevator_owner); 119} 120 121static struct elevator_type *elevator_get(const char *name) 122{ 123 struct elevator_type *e = elevator_find(name); 124 125 if (!e) 126 return NULL; 127 if (!try_module_get(e->elevator_owner)) 128 return NULL; 129 130 return e; 131} 132 133static int elevator_attach(request_queue_t *q, struct elevator_type *e, 134 struct elevator_queue *eq) 135{ 136 int ret = 0; 137 138 memset(eq, 0, sizeof(*eq)); 139 eq->ops = &e->ops; 140 eq->elevator_type = e; 141 142 INIT_LIST_HEAD(&q->queue_head); 143 q->last_merge = NULL; 144 q->elevator = eq; 145 146 if (eq->ops->elevator_init_fn) 147 ret = eq->ops->elevator_init_fn(q, eq); 148 149 return ret; 150} 151 152static char chosen_elevator[16]; 153 154static void elevator_setup_default(void) 155{ 156 /* 157 * check if default is set and exists 158 */ 159 if (chosen_elevator[0] && elevator_find(chosen_elevator)) 160 return; 161 162#if defined(CONFIG_IOSCHED_AS) 163 strcpy(chosen_elevator, "anticipatory"); 164#elif defined(CONFIG_IOSCHED_DEADLINE) 165 strcpy(chosen_elevator, "deadline"); 166#elif defined(CONFIG_IOSCHED_CFQ) 167 strcpy(chosen_elevator, "cfq"); 168#elif defined(CONFIG_IOSCHED_NOOP) 169 strcpy(chosen_elevator, "noop"); 170#else 171#error "You must build at least 1 IO scheduler into the kernel" 172#endif 173} 174 175static int __init elevator_setup(char *str) 176{ 177 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 178 return 0; 179} 180 181__setup("elevator=", elevator_setup); 182 183int elevator_init(request_queue_t *q, char *name) 184{ 185 struct elevator_type *e = NULL; 186 struct elevator_queue *eq; 187 int ret = 0; 188 189 elevator_setup_default(); 190 191 if (!name) 192 name = chosen_elevator; 193 194 e = elevator_get(name); 195 if (!e) 196 return -EINVAL; 197 198 eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL); 199 if (!eq) { 200 elevator_put(e->elevator_type); 201 return -ENOMEM; 202 } 203 204 ret = elevator_attach(q, e, eq); 205 if (ret) { 206 kfree(eq); 207 elevator_put(e->elevator_type); 208 } 209 210 return ret; 211} 212 213void elevator_exit(elevator_t *e) 214{ 215 if (e->ops->elevator_exit_fn) 216 e->ops->elevator_exit_fn(e); 217 218 elevator_put(e->elevator_type); 219 e->elevator_type = NULL; 220 kfree(e); 221} 222 223static int elevator_global_init(void) 224{ 225 return 0; 226} 227 228int elv_merge(request_queue_t *q, struct request **req, struct bio *bio) 229{ 230 elevator_t *e = q->elevator; 231 232 if (e->ops->elevator_merge_fn) 233 return e->ops->elevator_merge_fn(q, req, bio); 234 235 return ELEVATOR_NO_MERGE; 236} 237 238void elv_merged_request(request_queue_t *q, struct request *rq) 239{ 240 elevator_t *e = q->elevator; 241 242 if (e->ops->elevator_merged_fn) 243 e->ops->elevator_merged_fn(q, rq); 244} 245 246void elv_merge_requests(request_queue_t *q, struct request *rq, 247 struct request *next) 248{ 249 elevator_t *e = q->elevator; 250 251 if (q->last_merge == next) 252 q->last_merge = NULL; 253 254 if (e->ops->elevator_merge_req_fn) 255 e->ops->elevator_merge_req_fn(q, rq, next); 256} 257 258/* 259 * For careful internal use by the block layer. Essentially the same as 260 * a requeue in that it tells the io scheduler that this request is not 261 * active in the driver or hardware anymore, but we don't want the request 262 * added back to the scheduler. Function is not exported. 263 */ 264void elv_deactivate_request(request_queue_t *q, struct request *rq) 265{ 266 elevator_t *e = q->elevator; 267 268 /* 269 * it already went through dequeue, we need to decrement the 270 * in_flight count again 271 */ 272 if (blk_account_rq(rq)) 273 q->in_flight--; 274 275 rq->flags &= ~REQ_STARTED; 276 277 if (e->ops->elevator_deactivate_req_fn) 278 e->ops->elevator_deactivate_req_fn(q, rq); 279} 280 281void elv_requeue_request(request_queue_t *q, struct request *rq) 282{ 283 elv_deactivate_request(q, rq); 284 285 /* 286 * if this is the flush, requeue the original instead and drop the flush 287 */ 288 if (rq->flags & REQ_BAR_FLUSH) { 289 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); 290 rq = rq->end_io_data; 291 } 292 293 /* 294 * if iosched has an explicit requeue hook, then use that. otherwise 295 * just put the request at the front of the queue 296 */ 297 if (q->elevator->ops->elevator_requeue_req_fn) 298 q->elevator->ops->elevator_requeue_req_fn(q, rq); 299 else 300 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0); 301} 302 303void __elv_add_request(request_queue_t *q, struct request *rq, int where, 304 int plug) 305{ 306 /* 307 * barriers implicitly indicate back insertion 308 */ 309 if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER) && 310 where == ELEVATOR_INSERT_SORT) 311 where = ELEVATOR_INSERT_BACK; 312 313 if (plug) 314 blk_plug_device(q); 315 316 rq->q = q; 317 318 if (!test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) { 319 q->elevator->ops->elevator_add_req_fn(q, rq, where); 320 321 if (blk_queue_plugged(q)) { 322 int nrq = q->rq.count[READ] + q->rq.count[WRITE] 323 - q->in_flight; 324 325 if (nrq == q->unplug_thresh) 326 __generic_unplug_device(q); 327 } 328 } else 329 /* 330 * if drain is set, store the request "locally". when the drain 331 * is finished, the requests will be handed ordered to the io 332 * scheduler 333 */ 334 list_add_tail(&rq->queuelist, &q->drain_list); 335} 336 337void elv_add_request(request_queue_t *q, struct request *rq, int where, 338 int plug) 339{ 340 unsigned long flags; 341 342 spin_lock_irqsave(q->queue_lock, flags); 343 __elv_add_request(q, rq, where, plug); 344 spin_unlock_irqrestore(q->queue_lock, flags); 345} 346 347static inline struct request *__elv_next_request(request_queue_t *q) 348{ 349 struct request *rq = q->elevator->ops->elevator_next_req_fn(q); 350 351 /* 352 * if this is a barrier write and the device has to issue a 353 * flush sequence to support it, check how far we are 354 */ 355 if (rq && blk_fs_request(rq) && blk_barrier_rq(rq)) { 356 BUG_ON(q->ordered == QUEUE_ORDERED_NONE); 357 358 if (q->ordered == QUEUE_ORDERED_FLUSH && 359 !blk_barrier_preflush(rq)) 360 rq = blk_start_pre_flush(q, rq); 361 } 362 363 return rq; 364} 365 366struct request *elv_next_request(request_queue_t *q) 367{ 368 struct request *rq; 369 int ret; 370 371 while ((rq = __elv_next_request(q)) != NULL) { 372 /* 373 * just mark as started even if we don't start it, a request 374 * that has been delayed should not be passed by new incoming 375 * requests 376 */ 377 rq->flags |= REQ_STARTED; 378 379 if (rq == q->last_merge) 380 q->last_merge = NULL; 381 382 if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn) 383 break; 384 385 ret = q->prep_rq_fn(q, rq); 386 if (ret == BLKPREP_OK) { 387 break; 388 } else if (ret == BLKPREP_DEFER) { 389 rq = NULL; 390 break; 391 } else if (ret == BLKPREP_KILL) { 392 int nr_bytes = rq->hard_nr_sectors << 9; 393 394 if (!nr_bytes) 395 nr_bytes = rq->data_len; 396 397 blkdev_dequeue_request(rq); 398 rq->flags |= REQ_QUIET; 399 end_that_request_chunk(rq, 0, nr_bytes); 400 end_that_request_last(rq); 401 } else { 402 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__, 403 ret); 404 break; 405 } 406 } 407 408 return rq; 409} 410 411void elv_remove_request(request_queue_t *q, struct request *rq) 412{ 413 elevator_t *e = q->elevator; 414 415 /* 416 * the time frame between a request being removed from the lists 417 * and to it is freed is accounted as io that is in progress at 418 * the driver side. note that we only account requests that the 419 * driver has seen (REQ_STARTED set), to avoid false accounting 420 * for request-request merges 421 */ 422 if (blk_account_rq(rq)) 423 q->in_flight++; 424 425 /* 426 * the main clearing point for q->last_merge is on retrieval of 427 * request by driver (it calls elv_next_request()), but it _can_ 428 * also happen here if a request is added to the queue but later 429 * deleted without ever being given to driver (merged with another 430 * request). 431 */ 432 if (rq == q->last_merge) 433 q->last_merge = NULL; 434 435 if (e->ops->elevator_remove_req_fn) 436 e->ops->elevator_remove_req_fn(q, rq); 437} 438 439int elv_queue_empty(request_queue_t *q) 440{ 441 elevator_t *e = q->elevator; 442 443 if (e->ops->elevator_queue_empty_fn) 444 return e->ops->elevator_queue_empty_fn(q); 445 446 return list_empty(&q->queue_head); 447} 448 449struct request *elv_latter_request(request_queue_t *q, struct request *rq) 450{ 451 struct list_head *next; 452 453 elevator_t *e = q->elevator; 454 455 if (e->ops->elevator_latter_req_fn) 456 return e->ops->elevator_latter_req_fn(q, rq); 457 458 next = rq->queuelist.next; 459 if (next != &q->queue_head && next != &rq->queuelist) 460 return list_entry_rq(next); 461 462 return NULL; 463} 464 465struct request *elv_former_request(request_queue_t *q, struct request *rq) 466{ 467 struct list_head *prev; 468 469 elevator_t *e = q->elevator; 470 471 if (e->ops->elevator_former_req_fn) 472 return e->ops->elevator_former_req_fn(q, rq); 473 474 prev = rq->queuelist.prev; 475 if (prev != &q->queue_head && prev != &rq->queuelist) 476 return list_entry_rq(prev); 477 478 return NULL; 479} 480 481int elv_set_request(request_queue_t *q, struct request *rq, int gfp_mask) 482{ 483 elevator_t *e = q->elevator; 484 485 if (e->ops->elevator_set_req_fn) 486 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 487 488 rq->elevator_private = NULL; 489 return 0; 490} 491 492void elv_put_request(request_queue_t *q, struct request *rq) 493{ 494 elevator_t *e = q->elevator; 495 496 if (e->ops->elevator_put_req_fn) 497 e->ops->elevator_put_req_fn(q, rq); 498} 499 500int elv_may_queue(request_queue_t *q, int rw) 501{ 502 elevator_t *e = q->elevator; 503 504 if (e->ops->elevator_may_queue_fn) 505 return e->ops->elevator_may_queue_fn(q, rw); 506 507 return ELV_MQUEUE_MAY; 508} 509 510void elv_completed_request(request_queue_t *q, struct request *rq) 511{ 512 elevator_t *e = q->elevator; 513 514 /* 515 * request is released from the driver, io must be done 516 */ 517 if (blk_account_rq(rq)) 518 q->in_flight--; 519 520 if (e->ops->elevator_completed_req_fn) 521 e->ops->elevator_completed_req_fn(q, rq); 522} 523 524int elv_register_queue(struct request_queue *q) 525{ 526 elevator_t *e = q->elevator; 527 528 e->kobj.parent = kobject_get(&q->kobj); 529 if (!e->kobj.parent) 530 return -EBUSY; 531 532 snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched"); 533 e->kobj.ktype = e->elevator_type->elevator_ktype; 534 535 return kobject_register(&e->kobj); 536} 537 538void elv_unregister_queue(struct request_queue *q) 539{ 540 if (q) { 541 elevator_t *e = q->elevator; 542 kobject_unregister(&e->kobj); 543 kobject_put(&q->kobj); 544 } 545} 546 547int elv_register(struct elevator_type *e) 548{ 549 if (elevator_find(e->elevator_name)) 550 BUG(); 551 552 spin_lock_irq(&elv_list_lock); 553 list_add_tail(&e->list, &elv_list); 554 spin_unlock_irq(&elv_list_lock); 555 556 printk(KERN_INFO "io scheduler %s registered", e->elevator_name); 557 if (!strcmp(e->elevator_name, chosen_elevator)) 558 printk(" (default)"); 559 printk("\n"); 560 return 0; 561} 562EXPORT_SYMBOL_GPL(elv_register); 563 564void elv_unregister(struct elevator_type *e) 565{ 566 spin_lock_irq(&elv_list_lock); 567 list_del_init(&e->list); 568 spin_unlock_irq(&elv_list_lock); 569} 570EXPORT_SYMBOL_GPL(elv_unregister); 571 572/* 573 * switch to new_e io scheduler. be careful not to introduce deadlocks - 574 * we don't free the old io scheduler, before we have allocated what we 575 * need for the new one. this way we have a chance of going back to the old 576 * one, if the new one fails init for some reason. we also do an intermediate 577 * switch to noop to ensure safety with stack-allocated requests, since they 578 * don't originate from the block layer allocator. noop is safe here, because 579 * it never needs to touch the elevator itself for completion events. DRAIN 580 * flags will make sure we don't touch it for additions either. 581 */ 582static void elevator_switch(request_queue_t *q, struct elevator_type *new_e) 583{ 584 elevator_t *e = kmalloc(sizeof(elevator_t), GFP_KERNEL); 585 struct elevator_type *noop_elevator = NULL; 586 elevator_t *old_elevator; 587 588 if (!e) 589 goto error; 590 591 /* 592 * first step, drain requests from the block freelist 593 */ 594 blk_wait_queue_drained(q, 0); 595 596 /* 597 * unregister old elevator data 598 */ 599 elv_unregister_queue(q); 600 old_elevator = q->elevator; 601 602 /* 603 * next step, switch to noop since it uses no private rq structures 604 * and doesn't allocate any memory for anything. then wait for any 605 * non-fs requests in-flight 606 */ 607 noop_elevator = elevator_get("noop"); 608 spin_lock_irq(q->queue_lock); 609 elevator_attach(q, noop_elevator, e); 610 spin_unlock_irq(q->queue_lock); 611 612 blk_wait_queue_drained(q, 1); 613 614 /* 615 * attach and start new elevator 616 */ 617 if (elevator_attach(q, new_e, e)) 618 goto fail; 619 620 if (elv_register_queue(q)) 621 goto fail_register; 622 623 /* 624 * finally exit old elevator and start queue again 625 */ 626 elevator_exit(old_elevator); 627 blk_finish_queue_drain(q); 628 elevator_put(noop_elevator); 629 return; 630 631fail_register: 632 /* 633 * switch failed, exit the new io scheduler and reattach the old 634 * one again (along with re-adding the sysfs dir) 635 */ 636 elevator_exit(e); 637fail: 638 q->elevator = old_elevator; 639 elv_register_queue(q); 640 blk_finish_queue_drain(q); 641error: 642 if (noop_elevator) 643 elevator_put(noop_elevator); 644 elevator_put(new_e); 645 printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name); 646} 647 648ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count) 649{ 650 char elevator_name[ELV_NAME_MAX]; 651 struct elevator_type *e; 652 653 memset(elevator_name, 0, sizeof(elevator_name)); 654 strncpy(elevator_name, name, sizeof(elevator_name)); 655 656 if (elevator_name[strlen(elevator_name) - 1] == '\n') 657 elevator_name[strlen(elevator_name) - 1] = '\0'; 658 659 e = elevator_get(elevator_name); 660 if (!e) { 661 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 662 return -EINVAL; 663 } 664 665 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) 666 return count; 667 668 elevator_switch(q, e); 669 return count; 670} 671 672ssize_t elv_iosched_show(request_queue_t *q, char *name) 673{ 674 elevator_t *e = q->elevator; 675 struct elevator_type *elv = e->elevator_type; 676 struct list_head *entry; 677 int len = 0; 678 679 spin_lock_irq(q->queue_lock); 680 list_for_each(entry, &elv_list) { 681 struct elevator_type *__e; 682 683 __e = list_entry(entry, struct elevator_type, list); 684 if (!strcmp(elv->elevator_name, __e->elevator_name)) 685 len += sprintf(name+len, "[%s] ", elv->elevator_name); 686 else 687 len += sprintf(name+len, "%s ", __e->elevator_name); 688 } 689 spin_unlock_irq(q->queue_lock); 690 691 len += sprintf(len+name, "\n"); 692 return len; 693} 694 695module_init(elevator_global_init); 696 697EXPORT_SYMBOL(elv_add_request); 698EXPORT_SYMBOL(__elv_add_request); 699EXPORT_SYMBOL(elv_requeue_request); 700EXPORT_SYMBOL(elv_next_request); 701EXPORT_SYMBOL(elv_remove_request); 702EXPORT_SYMBOL(elv_queue_empty); 703EXPORT_SYMBOL(elv_completed_request); 704EXPORT_SYMBOL(elevator_exit); 705EXPORT_SYMBOL(elevator_init);