Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2018, Google LLC.
4 */
5#ifndef SELFTEST_KVM_UTIL_H
6#define SELFTEST_KVM_UTIL_H
7
8#include "test_util.h"
9
10#include <linux/compiler.h>
11#include "linux/hashtable.h"
12#include "linux/list.h"
13#include <linux/kernel.h>
14#include <linux/kvm.h>
15#include "linux/rbtree.h"
16#include <linux/types.h>
17
18#include <asm/atomic.h>
19#include <asm/kvm.h>
20
21#include <sys/eventfd.h>
22#include <sys/ioctl.h>
23
24#include <pthread.h>
25
26#include "kvm_syscalls.h"
27#include "kvm_util_arch.h"
28#include "kvm_util_types.h"
29#include "sparsebit.h"
30
31#define KVM_DEV_PATH "/dev/kvm"
32#define KVM_MAX_VCPUS 512
33
34#define NSEC_PER_SEC 1000000000L
35
36struct userspace_mem_region {
37 struct kvm_userspace_memory_region2 region;
38 struct sparsebit *unused_phy_pages;
39 struct sparsebit *protected_phy_pages;
40 int fd;
41 off_t offset;
42 enum vm_mem_backing_src_type backing_src_type;
43 void *host_mem;
44 void *host_alias;
45 void *mmap_start;
46 void *mmap_alias;
47 size_t mmap_size;
48 struct rb_node gpa_node;
49 struct rb_node hva_node;
50 struct hlist_node slot_node;
51};
52
53struct kvm_binary_stats {
54 int fd;
55 struct kvm_stats_header header;
56 struct kvm_stats_desc *desc;
57};
58
59struct kvm_vcpu {
60 struct list_head list;
61 uint32_t id;
62 int fd;
63 struct kvm_vm *vm;
64 struct kvm_run *run;
65#ifdef __x86_64__
66 struct kvm_cpuid2 *cpuid;
67#endif
68#ifdef __aarch64__
69 struct kvm_vcpu_init init;
70#endif
71 struct kvm_binary_stats stats;
72 struct kvm_dirty_gfn *dirty_gfns;
73 uint32_t fetch_index;
74 uint32_t dirty_gfns_count;
75};
76
77struct userspace_mem_regions {
78 struct rb_root gpa_tree;
79 struct rb_root hva_tree;
80 DECLARE_HASHTABLE(slot_hash, 9);
81};
82
83enum kvm_mem_region_type {
84 MEM_REGION_CODE,
85 MEM_REGION_DATA,
86 MEM_REGION_PT,
87 MEM_REGION_TEST_DATA,
88 NR_MEM_REGIONS,
89};
90
91struct kvm_vm {
92 int mode;
93 unsigned long type;
94 int kvm_fd;
95 int fd;
96 unsigned int pgtable_levels;
97 unsigned int page_size;
98 unsigned int page_shift;
99 unsigned int pa_bits;
100 unsigned int va_bits;
101 uint64_t max_gfn;
102 struct list_head vcpus;
103 struct userspace_mem_regions regions;
104 struct sparsebit *vpages_valid;
105 struct sparsebit *vpages_mapped;
106 bool has_irqchip;
107 bool pgd_created;
108 vm_paddr_t ucall_mmio_addr;
109 vm_paddr_t pgd;
110 vm_vaddr_t handlers;
111 uint32_t dirty_ring_size;
112 uint64_t gpa_tag_mask;
113
114 struct kvm_vm_arch arch;
115
116 struct kvm_binary_stats stats;
117
118 /*
119 * KVM region slots. These are the default memslots used by page
120 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
121 * memslot.
122 */
123 uint32_t memslots[NR_MEM_REGIONS];
124};
125
126struct vcpu_reg_sublist {
127 const char *name;
128 long capability;
129 int feature;
130 int feature_type;
131 bool finalize;
132 __u64 *regs;
133 __u64 regs_n;
134 __u64 *rejects_set;
135 __u64 rejects_set_n;
136 __u64 *skips_set;
137 __u64 skips_set_n;
138};
139
140struct vcpu_reg_list {
141 char *name;
142 struct vcpu_reg_sublist sublists[];
143};
144
145#define for_each_sublist(c, s) \
146 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
147
148#define kvm_for_each_vcpu(vm, i, vcpu) \
149 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
150 if (!((vcpu) = vm->vcpus[i])) \
151 continue; \
152 else
153
154struct userspace_mem_region *
155memslot2region(struct kvm_vm *vm, uint32_t memslot);
156
157static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
158 enum kvm_mem_region_type type)
159{
160 assert(type < NR_MEM_REGIONS);
161 return memslot2region(vm, vm->memslots[type]);
162}
163
164/* Minimum allocated guest virtual and physical addresses */
165#define KVM_UTIL_MIN_VADDR 0x2000
166#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
167
168#define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
169#define DEFAULT_STACK_PGS 5
170
171enum vm_guest_mode {
172 VM_MODE_P52V48_4K,
173 VM_MODE_P52V48_16K,
174 VM_MODE_P52V48_64K,
175 VM_MODE_P48V48_4K,
176 VM_MODE_P48V48_16K,
177 VM_MODE_P48V48_64K,
178 VM_MODE_P40V48_4K,
179 VM_MODE_P40V48_16K,
180 VM_MODE_P40V48_64K,
181 VM_MODE_PXXVYY_4K, /* For 48-bit or 57-bit VA, depending on host support */
182 VM_MODE_P47V64_4K,
183 VM_MODE_P44V64_4K,
184 VM_MODE_P36V48_4K,
185 VM_MODE_P36V48_16K,
186 VM_MODE_P36V48_64K,
187 VM_MODE_P47V47_16K,
188 VM_MODE_P36V47_16K,
189 NUM_VM_MODES,
190};
191
192struct vm_shape {
193 uint32_t type;
194 uint8_t mode;
195 uint8_t pad0;
196 uint16_t pad1;
197};
198
199kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
200
201#define VM_TYPE_DEFAULT 0
202
203#define VM_SHAPE(__mode) \
204({ \
205 struct vm_shape shape = { \
206 .mode = (__mode), \
207 .type = VM_TYPE_DEFAULT \
208 }; \
209 \
210 shape; \
211})
212
213#if defined(__aarch64__)
214
215extern enum vm_guest_mode vm_mode_default;
216
217#define VM_MODE_DEFAULT vm_mode_default
218#define MIN_PAGE_SHIFT 12U
219#define ptes_per_page(page_size) ((page_size) / 8)
220
221#elif defined(__x86_64__)
222
223#define VM_MODE_DEFAULT VM_MODE_PXXVYY_4K
224#define MIN_PAGE_SHIFT 12U
225#define ptes_per_page(page_size) ((page_size) / 8)
226
227#elif defined(__s390x__)
228
229#define VM_MODE_DEFAULT VM_MODE_P44V64_4K
230#define MIN_PAGE_SHIFT 12U
231#define ptes_per_page(page_size) ((page_size) / 16)
232
233#elif defined(__riscv)
234
235#if __riscv_xlen == 32
236#error "RISC-V 32-bit kvm selftests not supported"
237#endif
238
239#define VM_MODE_DEFAULT VM_MODE_P40V48_4K
240#define MIN_PAGE_SHIFT 12U
241#define ptes_per_page(page_size) ((page_size) / 8)
242
243#elif defined(__loongarch__)
244#define VM_MODE_DEFAULT VM_MODE_P47V47_16K
245#define MIN_PAGE_SHIFT 12U
246#define ptes_per_page(page_size) ((page_size) / 8)
247
248#endif
249
250#define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT)
251
252#define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
253#define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
254
255struct vm_guest_mode_params {
256 unsigned int pa_bits;
257 unsigned int va_bits;
258 unsigned int page_size;
259 unsigned int page_shift;
260};
261extern const struct vm_guest_mode_params vm_guest_mode_params[];
262
263int __open_path_or_exit(const char *path, int flags, const char *enoent_help);
264int open_path_or_exit(const char *path, int flags);
265int open_kvm_dev_path_or_exit(void);
266
267int kvm_get_module_param_integer(const char *module_name, const char *param);
268bool kvm_get_module_param_bool(const char *module_name, const char *param);
269
270static inline bool get_kvm_param_bool(const char *param)
271{
272 return kvm_get_module_param_bool("kvm", param);
273}
274
275static inline int get_kvm_param_integer(const char *param)
276{
277 return kvm_get_module_param_integer("kvm", param);
278}
279
280unsigned int kvm_check_cap(long cap);
281
282static inline bool kvm_has_cap(long cap)
283{
284 return kvm_check_cap(cap);
285}
286
287/*
288 * Use the "inner", double-underscore macro when reporting errors from within
289 * other macros so that the name of ioctl() and not its literal numeric value
290 * is printed on error. The "outer" macro is strongly preferred when reporting
291 * errors "directly", i.e. without an additional layer of macros, as it reduces
292 * the probability of passing in the wrong string.
293 */
294#define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
295#define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
296
297#define kvm_do_ioctl(fd, cmd, arg) \
298({ \
299 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
300 ioctl(fd, cmd, arg); \
301})
302
303#define __kvm_ioctl(kvm_fd, cmd, arg) \
304 kvm_do_ioctl(kvm_fd, cmd, arg)
305
306#define kvm_ioctl(kvm_fd, cmd, arg) \
307({ \
308 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
309 \
310 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \
311})
312
313static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
314
315#define __vm_ioctl(vm, cmd, arg) \
316({ \
317 static_assert_is_vm(vm); \
318 kvm_do_ioctl((vm)->fd, cmd, arg); \
319})
320
321/*
322 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
323 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM,
324 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
325 * selftests existed and (b) should never outright fail, i.e. is supposed to
326 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
327 * VM and its vCPUs, including KVM_CHECK_EXTENSION.
328 */
329#define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \
330do { \
331 int __errno = errno; \
332 \
333 static_assert_is_vm(vm); \
334 \
335 if (cond) \
336 break; \
337 \
338 if (errno == EIO && \
339 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \
340 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \
341 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \
342 } \
343 errno = __errno; \
344 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \
345} while (0)
346
347#define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \
348 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
349
350#define vm_ioctl(vm, cmd, arg) \
351({ \
352 int ret = __vm_ioctl(vm, cmd, arg); \
353 \
354 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \
355})
356
357static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
358
359#define __vcpu_ioctl(vcpu, cmd, arg) \
360({ \
361 static_assert_is_vcpu(vcpu); \
362 kvm_do_ioctl((vcpu)->fd, cmd, arg); \
363})
364
365#define vcpu_ioctl(vcpu, cmd, arg) \
366({ \
367 int ret = __vcpu_ioctl(vcpu, cmd, arg); \
368 \
369 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \
370})
371
372/*
373 * Looks up and returns the value corresponding to the capability
374 * (KVM_CAP_*) given by cap.
375 */
376static inline int vm_check_cap(struct kvm_vm *vm, long cap)
377{
378 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
379
380 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
381 return ret;
382}
383
384static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
385{
386 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
387
388 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
389}
390static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
391{
392 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
393
394 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
395}
396
397static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
398 uint64_t size, uint64_t attributes)
399{
400 struct kvm_memory_attributes attr = {
401 .attributes = attributes,
402 .address = gpa,
403 .size = size,
404 .flags = 0,
405 };
406
407 /*
408 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows
409 * need significant enhancements to support multiple attributes.
410 */
411 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
412 "Update me to support multiple attributes!");
413
414 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
415}
416
417
418static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
419 uint64_t size)
420{
421 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
422}
423
424static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
425 uint64_t size)
426{
427 vm_set_memory_attributes(vm, gpa, size, 0);
428}
429
430void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
431 bool punch_hole);
432
433static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
434 uint64_t size)
435{
436 vm_guest_mem_fallocate(vm, gpa, size, true);
437}
438
439static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
440 uint64_t size)
441{
442 vm_guest_mem_fallocate(vm, gpa, size, false);
443}
444
445void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
446const char *vm_guest_mode_string(uint32_t i);
447
448void kvm_vm_free(struct kvm_vm *vmp);
449void kvm_vm_restart(struct kvm_vm *vmp);
450void kvm_vm_release(struct kvm_vm *vmp);
451void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
452int kvm_memfd_alloc(size_t size, bool hugepages);
453
454void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
455
456static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
457{
458 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
459
460 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
461}
462
463static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
464 uint64_t first_page, uint32_t num_pages)
465{
466 struct kvm_clear_dirty_log args = {
467 .dirty_bitmap = log,
468 .slot = slot,
469 .first_page = first_page,
470 .num_pages = num_pages
471 };
472
473 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
474}
475
476static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
477{
478 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
479}
480
481static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
482 uint64_t address,
483 uint64_t size, bool pio)
484{
485 struct kvm_coalesced_mmio_zone zone = {
486 .addr = address,
487 .size = size,
488 .pio = pio,
489 };
490
491 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
492}
493
494static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
495 uint64_t address,
496 uint64_t size, bool pio)
497{
498 struct kvm_coalesced_mmio_zone zone = {
499 .addr = address,
500 .size = size,
501 .pio = pio,
502 };
503
504 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
505}
506
507static inline int vm_get_stats_fd(struct kvm_vm *vm)
508{
509 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
510
511 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
512 return fd;
513}
514
515static inline int __kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
516 uint32_t flags)
517{
518 struct kvm_irqfd irqfd = {
519 .fd = eventfd,
520 .gsi = gsi,
521 .flags = flags,
522 .resamplefd = -1,
523 };
524
525 return __vm_ioctl(vm, KVM_IRQFD, &irqfd);
526}
527
528static inline void kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
529 uint32_t flags)
530{
531 int ret = __kvm_irqfd(vm, gsi, eventfd, flags);
532
533 TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_IRQFD, ret, vm);
534}
535
536static inline void kvm_assign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
537{
538 kvm_irqfd(vm, gsi, eventfd, 0);
539}
540
541static inline void kvm_deassign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
542{
543 kvm_irqfd(vm, gsi, eventfd, KVM_IRQFD_FLAG_DEASSIGN);
544}
545
546static inline int kvm_new_eventfd(void)
547{
548 int fd = eventfd(0, 0);
549
550 TEST_ASSERT(fd >= 0, __KVM_SYSCALL_ERROR("eventfd()", fd));
551 return fd;
552}
553
554static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
555{
556 ssize_t ret;
557
558 ret = pread(stats_fd, header, sizeof(*header), 0);
559 TEST_ASSERT(ret == sizeof(*header),
560 "Failed to read '%lu' header bytes, ret = '%ld'",
561 sizeof(*header), ret);
562}
563
564struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
565 struct kvm_stats_header *header);
566
567static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
568{
569 /*
570 * The base size of the descriptor is defined by KVM's ABI, but the
571 * size of the name field is variable, as far as KVM's ABI is
572 * concerned. For a given instance of KVM, the name field is the same
573 * size for all stats and is provided in the overall stats header.
574 */
575 return sizeof(struct kvm_stats_desc) + header->name_size;
576}
577
578static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
579 int index,
580 struct kvm_stats_header *header)
581{
582 /*
583 * Note, size_desc includes the size of the name field, which is
584 * variable. i.e. this is NOT equivalent to &stats_desc[i].
585 */
586 return (void *)stats + index * get_stats_descriptor_size(header);
587}
588
589void read_stat_data(int stats_fd, struct kvm_stats_header *header,
590 struct kvm_stats_desc *desc, uint64_t *data,
591 size_t max_elements);
592
593void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
594 uint64_t *data, size_t max_elements);
595
596#define __get_stat(stats, stat) \
597({ \
598 uint64_t data; \
599 \
600 kvm_get_stat(stats, #stat, &data, 1); \
601 data; \
602})
603
604#define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat)
605#define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat)
606
607static inline bool read_smt_control(char *buf, size_t buf_size)
608{
609 FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r");
610 bool ret;
611
612 if (!f)
613 return false;
614
615 ret = fread(buf, sizeof(*buf), buf_size, f) > 0;
616 fclose(f);
617
618 return ret;
619}
620
621static inline bool is_smt_possible(void)
622{
623 char buf[16];
624
625 if (read_smt_control(buf, sizeof(buf)) &&
626 (!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12)))
627 return false;
628
629 return true;
630}
631
632static inline bool is_smt_on(void)
633{
634 char buf[16];
635
636 if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2))
637 return true;
638
639 return false;
640}
641
642void vm_create_irqchip(struct kvm_vm *vm);
643
644static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
645 uint64_t flags)
646{
647 struct kvm_create_guest_memfd guest_memfd = {
648 .size = size,
649 .flags = flags,
650 };
651
652 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
653}
654
655static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
656 uint64_t flags)
657{
658 int fd = __vm_create_guest_memfd(vm, size, flags);
659
660 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
661 return fd;
662}
663
664void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
665 uint64_t gpa, uint64_t size, void *hva);
666int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
667 uint64_t gpa, uint64_t size, void *hva);
668void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
669 uint64_t gpa, uint64_t size, void *hva,
670 uint32_t guest_memfd, uint64_t guest_memfd_offset);
671int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
672 uint64_t gpa, uint64_t size, void *hva,
673 uint32_t guest_memfd, uint64_t guest_memfd_offset);
674
675void vm_userspace_mem_region_add(struct kvm_vm *vm,
676 enum vm_mem_backing_src_type src_type,
677 uint64_t gpa, uint32_t slot, uint64_t npages,
678 uint32_t flags);
679void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
680 uint64_t gpa, uint32_t slot, uint64_t npages, uint32_t flags,
681 int guest_memfd_fd, uint64_t guest_memfd_offset);
682
683#ifndef vm_arch_has_protected_memory
684static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
685{
686 return false;
687}
688#endif
689
690void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
691void vm_mem_region_reload(struct kvm_vm *vm, uint32_t slot);
692void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
693void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
694struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
695void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
696vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
697vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
698vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
699 enum kvm_mem_region_type type);
700vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
701 vm_vaddr_t vaddr_min,
702 enum kvm_mem_region_type type);
703vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
704vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
705 enum kvm_mem_region_type type);
706vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
707
708void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
709 unsigned int npages);
710void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
711void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
712vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
713void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
714
715#ifndef vcpu_arch_put_guest
716#define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
717#endif
718
719static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
720{
721 return gpa & ~vm->gpa_tag_mask;
722}
723
724void vcpu_run(struct kvm_vcpu *vcpu);
725int _vcpu_run(struct kvm_vcpu *vcpu);
726
727static inline int __vcpu_run(struct kvm_vcpu *vcpu)
728{
729 return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
730}
731
732void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
733struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
734
735static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
736 uint64_t arg0)
737{
738 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
739
740 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
741}
742
743static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
744 struct kvm_guest_debug *debug)
745{
746 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
747}
748
749static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
750 struct kvm_mp_state *mp_state)
751{
752 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
753}
754static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
755 struct kvm_mp_state *mp_state)
756{
757 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
758}
759
760static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
761{
762 vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
763}
764
765static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
766{
767 vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
768}
769static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
770{
771 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
772
773}
774static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
775{
776 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
777}
778static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
779{
780 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
781}
782static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
783{
784 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
785}
786static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
787{
788 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
789}
790
791static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
792{
793 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
794
795 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
796}
797static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
798{
799 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
800
801 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
802}
803static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
804{
805 uint64_t val;
806 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
807
808 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
809
810 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
811 return val;
812}
813static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
814{
815 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
816
817 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
818
819 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
820}
821
822#ifdef __KVM_HAVE_VCPU_EVENTS
823static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
824 struct kvm_vcpu_events *events)
825{
826 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
827}
828static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
829 struct kvm_vcpu_events *events)
830{
831 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
832}
833#endif
834#ifdef __x86_64__
835static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
836 struct kvm_nested_state *state)
837{
838 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
839}
840static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
841 struct kvm_nested_state *state)
842{
843 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
844}
845
846static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
847 struct kvm_nested_state *state)
848{
849 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
850}
851#endif
852static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
853{
854 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
855
856 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
857 return fd;
858}
859
860int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
861
862static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
863{
864 int ret = __kvm_has_device_attr(dev_fd, group, attr);
865
866 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
867}
868
869int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
870
871static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
872 uint64_t attr, void *val)
873{
874 int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
875
876 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
877}
878
879int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
880
881static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
882 uint64_t attr, void *val)
883{
884 int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
885
886 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
887}
888
889static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
890 uint64_t attr)
891{
892 return __kvm_has_device_attr(vcpu->fd, group, attr);
893}
894
895static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
896 uint64_t attr)
897{
898 kvm_has_device_attr(vcpu->fd, group, attr);
899}
900
901static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
902 uint64_t attr, void *val)
903{
904 return __kvm_device_attr_get(vcpu->fd, group, attr, val);
905}
906
907static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
908 uint64_t attr, void *val)
909{
910 kvm_device_attr_get(vcpu->fd, group, attr, val);
911}
912
913static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
914 uint64_t attr, void *val)
915{
916 return __kvm_device_attr_set(vcpu->fd, group, attr, val);
917}
918
919static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
920 uint64_t attr, void *val)
921{
922 kvm_device_attr_set(vcpu->fd, group, attr, val);
923}
924
925int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
926int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
927
928static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
929{
930 int fd = __kvm_create_device(vm, type);
931
932 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
933 return fd;
934}
935
936void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
937
938/*
939 * VM VCPU Args Set
940 *
941 * Input Args:
942 * vm - Virtual Machine
943 * num - number of arguments
944 * ... - arguments, each of type uint64_t
945 *
946 * Output Args: None
947 *
948 * Return: None
949 *
950 * Sets the first @num input parameters for the function at @vcpu's entry point,
951 * per the C calling convention of the architecture, to the values given as
952 * variable args. Each of the variable args is expected to be of type uint64_t.
953 * The maximum @num can be is specific to the architecture.
954 */
955void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
956
957void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
958int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
959
960#define KVM_MAX_IRQ_ROUTES 4096
961
962struct kvm_irq_routing *kvm_gsi_routing_create(void);
963void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
964 uint32_t gsi, uint32_t pin);
965int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
966void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
967
968const char *exit_reason_str(unsigned int exit_reason);
969
970vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
971 uint32_t memslot);
972vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
973 vm_paddr_t paddr_min, uint32_t memslot,
974 bool protected);
975vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
976
977static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
978 vm_paddr_t paddr_min, uint32_t memslot)
979{
980 /*
981 * By default, allocate memory as protected for VMs that support
982 * protected memory, as the majority of memory for such VMs is
983 * protected, i.e. using shared memory is effectively opt-in.
984 */
985 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
986 vm_arch_has_protected_memory(vm));
987}
988
989/*
990 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
991 * loads the test binary into guest memory and creates an IRQ chip (x86 only).
992 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
993 * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
994 */
995struct kvm_vm *____vm_create(struct vm_shape shape);
996struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
997 uint64_t nr_extra_pages);
998
999static inline struct kvm_vm *vm_create_barebones(void)
1000{
1001 return ____vm_create(VM_SHAPE_DEFAULT);
1002}
1003
1004static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
1005{
1006 const struct vm_shape shape = {
1007 .mode = VM_MODE_DEFAULT,
1008 .type = type,
1009 };
1010
1011 return ____vm_create(shape);
1012}
1013
1014static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
1015{
1016 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
1017}
1018
1019struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
1020 uint64_t extra_mem_pages,
1021 void *guest_code, struct kvm_vcpu *vcpus[]);
1022
1023static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
1024 void *guest_code,
1025 struct kvm_vcpu *vcpus[])
1026{
1027 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
1028 guest_code, vcpus);
1029}
1030
1031
1032struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
1033 struct kvm_vcpu **vcpu,
1034 uint64_t extra_mem_pages,
1035 void *guest_code);
1036
1037/*
1038 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
1039 * additional pages of guest memory. Returns the VM and vCPU (via out param).
1040 */
1041static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1042 uint64_t extra_mem_pages,
1043 void *guest_code)
1044{
1045 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
1046 extra_mem_pages, guest_code);
1047}
1048
1049static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1050 void *guest_code)
1051{
1052 return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
1053}
1054
1055static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
1056 struct kvm_vcpu **vcpu,
1057 void *guest_code)
1058{
1059 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
1060}
1061
1062struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
1063
1064void kvm_set_files_rlimit(uint32_t nr_vcpus);
1065
1066int __pin_task_to_cpu(pthread_t task, int cpu);
1067
1068static inline void pin_task_to_cpu(pthread_t task, int cpu)
1069{
1070 int r;
1071
1072 r = __pin_task_to_cpu(task, cpu);
1073 TEST_ASSERT(!r, "Failed to set thread affinity to pCPU '%u'", cpu);
1074}
1075
1076static inline int pin_task_to_any_cpu(pthread_t task)
1077{
1078 int cpu = sched_getcpu();
1079
1080 pin_task_to_cpu(task, cpu);
1081 return cpu;
1082}
1083
1084static inline void pin_self_to_cpu(int cpu)
1085{
1086 pin_task_to_cpu(pthread_self(), cpu);
1087}
1088
1089static inline int pin_self_to_any_cpu(void)
1090{
1091 return pin_task_to_any_cpu(pthread_self());
1092}
1093
1094void kvm_print_vcpu_pinning_help(void);
1095void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
1096 int nr_vcpus);
1097
1098unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
1099unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
1100unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
1101unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
1102static inline unsigned int
1103vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1104{
1105 unsigned int n;
1106 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
1107#ifdef __s390x__
1108 /* s390 requires 1M aligned guest sizes */
1109 n = (n + 255) & ~255;
1110#endif
1111 return n;
1112}
1113
1114#define sync_global_to_guest(vm, g) ({ \
1115 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1116 memcpy(_p, &(g), sizeof(g)); \
1117})
1118
1119#define sync_global_from_guest(vm, g) ({ \
1120 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1121 memcpy(&(g), _p, sizeof(g)); \
1122})
1123
1124/*
1125 * Write a global value, but only in the VM's (guest's) domain. Primarily used
1126 * for "globals" that hold per-VM values (VMs always duplicate code and global
1127 * data into their own region of physical memory), but can be used anytime it's
1128 * undesirable to change the host's copy of the global.
1129 */
1130#define write_guest_global(vm, g, val) ({ \
1131 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1132 typeof(g) _val = val; \
1133 \
1134 memcpy(_p, &(_val), sizeof(g)); \
1135})
1136
1137void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1138
1139void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1140 uint8_t indent);
1141
1142static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1143 uint8_t indent)
1144{
1145 vcpu_arch_dump(stream, vcpu, indent);
1146}
1147
1148/*
1149 * Adds a vCPU with reasonable defaults (e.g. a stack)
1150 *
1151 * Input Args:
1152 * vm - Virtual Machine
1153 * vcpu_id - The id of the VCPU to add to the VM.
1154 */
1155struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1156void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1157
1158static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1159 void *guest_code)
1160{
1161 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1162
1163 vcpu_arch_set_entry_point(vcpu, guest_code);
1164
1165 return vcpu;
1166}
1167
1168/* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1169struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1170
1171static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1172 uint32_t vcpu_id)
1173{
1174 return vm_arch_vcpu_recreate(vm, vcpu_id);
1175}
1176
1177void vcpu_arch_free(struct kvm_vcpu *vcpu);
1178
1179void virt_arch_pgd_alloc(struct kvm_vm *vm);
1180
1181static inline void virt_pgd_alloc(struct kvm_vm *vm)
1182{
1183 virt_arch_pgd_alloc(vm);
1184}
1185
1186/*
1187 * VM Virtual Page Map
1188 *
1189 * Input Args:
1190 * vm - Virtual Machine
1191 * vaddr - VM Virtual Address
1192 * paddr - VM Physical Address
1193 * memslot - Memory region slot for new virtual translation tables
1194 *
1195 * Output Args: None
1196 *
1197 * Return: None
1198 *
1199 * Within @vm, creates a virtual translation for the page starting
1200 * at @vaddr to the page starting at @paddr.
1201 */
1202void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1203
1204static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1205{
1206 virt_arch_pg_map(vm, vaddr, paddr);
1207 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1208}
1209
1210
1211/*
1212 * Address Guest Virtual to Guest Physical
1213 *
1214 * Input Args:
1215 * vm - Virtual Machine
1216 * gva - VM virtual address
1217 *
1218 * Output Args: None
1219 *
1220 * Return:
1221 * Equivalent VM physical address
1222 *
1223 * Returns the VM physical address of the translated VM virtual
1224 * address given by @gva.
1225 */
1226vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1227
1228static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1229{
1230 return addr_arch_gva2gpa(vm, gva);
1231}
1232
1233/*
1234 * Virtual Translation Tables Dump
1235 *
1236 * Input Args:
1237 * stream - Output FILE stream
1238 * vm - Virtual Machine
1239 * indent - Left margin indent amount
1240 *
1241 * Output Args: None
1242 *
1243 * Return: None
1244 *
1245 * Dumps to the FILE stream given by @stream, the contents of all the
1246 * virtual translation tables for the VM given by @vm.
1247 */
1248void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1249
1250static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1251{
1252 virt_arch_dump(stream, vm, indent);
1253}
1254
1255
1256static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1257{
1258 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1259}
1260
1261/*
1262 * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1263 * to allow for arch-specific setup that is common to all tests, e.g. computing
1264 * the default guest "mode".
1265 */
1266void kvm_selftest_arch_init(void);
1267
1268void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus);
1269void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm);
1270void kvm_arch_vm_release(struct kvm_vm *vm);
1271
1272bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1273
1274uint32_t guest_get_vcpuid(void);
1275
1276bool kvm_arch_has_default_irqchip(void);
1277
1278#endif /* SELFTEST_KVM_UTIL_H */