Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#!/usr/bin/gawk -f
2# SPDX-License-Identifier: GPL-2.0
3# generate_builtin_ranges.awk: Generate address range data for builtin modules
4# Written by Kris Van Hees <kris.van.hees@oracle.com>
5#
6# Usage: generate_builtin_ranges.awk modules.builtin vmlinux.map \
7# vmlinux.o.map > modules.builtin.ranges
8#
9
10# Return the module name(s) (if any) associated with the given object.
11#
12# If we have seen this object before, return information from the cache.
13# Otherwise, retrieve it from the corresponding .cmd file.
14#
15function get_module_info(fn, mod, obj, s) {
16 if (fn in omod)
17 return omod[fn];
18
19 if (match(fn, /\/[^/]+$/) == 0)
20 return "";
21
22 obj = fn;
23 mod = "";
24 fn = substr(fn, 1, RSTART) "." substr(fn, RSTART + 1) ".cmd";
25 if (getline s <fn == 1) {
26 if (match(s, /DKBUILD_MODFILE=['"]+[^'"]+/) > 0) {
27 mod = substr(s, RSTART + 16, RLENGTH - 16);
28 gsub(/['"]/, "", mod);
29 } else if (match(s, /RUST_MODFILE=[^ ]+/) > 0)
30 mod = substr(s, RSTART + 13, RLENGTH - 13);
31 }
32 close(fn);
33
34 # A single module (common case) also reflects objects that are not part
35 # of a module. Some of those objects have names that are also a module
36 # name (e.g. core). We check the associated module file name, and if
37 # they do not match, the object is not part of a module.
38 if (mod !~ / /) {
39 if (!(mod in mods))
40 mod = "";
41 }
42
43 gsub(/([^/ ]*\/)+/, "", mod);
44 gsub(/-/, "_", mod);
45
46 # At this point, mod is a single (valid) module name, or a list of
47 # module names (that do not need validation).
48 omod[obj] = mod;
49
50 return mod;
51}
52
53# Update the ranges entry for the given module 'mod' in section 'osect'.
54#
55# We use a modified absolute start address (soff + base) as index because we
56# may need to insert an anchor record later that must be at the start of the
57# section data, and the first module may very well start at the same address.
58# So, we use (addr << 1) + 1 to allow a possible anchor record to be placed at
59# (addr << 1). This is safe because the index is only used to sort the entries
60# before writing them out.
61#
62function update_entry(osect, mod, soff, eoff, sect, idx) {
63 sect = sect_in[osect];
64 idx = sprintf("%016x", (soff + sect_base[osect]) * 2 + 1);
65 entries[idx] = sprintf("%s %08x-%08x %s", sect, soff, eoff, mod);
66 count[sect]++;
67}
68
69# (1) Build a lookup map of built-in module names.
70#
71# The first file argument is used as input (modules.builtin).
72#
73# Lines will be like:
74# kernel/crypto/lzo-rle.ko
75# and we record the object name "crypto/lzo-rle".
76#
77ARGIND == 1 {
78 sub(/kernel\//, ""); # strip off "kernel/" prefix
79 sub(/\.ko$/, ""); # strip off .ko suffix
80
81 mods[$1] = 1;
82 next;
83}
84
85# (2) Collect address information for each section.
86#
87# The second file argument is used as input (vmlinux.map).
88#
89# We collect the base address of the section in order to convert all addresses
90# in the section into offset values.
91#
92# We collect the address of the anchor (or first symbol in the section if there
93# is no explicit anchor) to allow users of the range data to calculate address
94# ranges based on the actual load address of the section in the running kernel.
95#
96# We collect the start address of any sub-section (section included in the top
97# level section being processed). This is needed when the final linking was
98# done using vmlinux.a because then the list of objects contained in each
99# section is to be obtained from vmlinux.o.map. The offset of the sub-section
100# is recorded here, to be used as an addend when processing vmlinux.o.map
101# later.
102#
103
104# Both GNU ld and LLVM lld linker map format are supported by converting LLVM
105# lld linker map records into equivalent GNU ld linker map records.
106#
107# The first record of the vmlinux.map file provides enough information to know
108# which format we are dealing with.
109#
110ARGIND == 2 && FNR == 1 && NF == 7 && $1 == "VMA" && $7 == "Symbol" {
111 map_is_lld = 1;
112 if (dbg)
113 printf "NOTE: %s uses LLVM lld linker map format\n", FILENAME >"/dev/stderr";
114 next;
115}
116
117# (LLD) Convert a section record fronm lld format to ld format.
118#
119# lld: ffffffff82c00000 2c00000 2493c0 8192 .data
120# ->
121# ld: .data 0xffffffff82c00000 0x2493c0 load address 0x0000000002c00000
122#
123ARGIND == 2 && map_is_lld && NF == 5 && /[0-9] [^ ]+$/ {
124 $0 = $5 " 0x"$1 " 0x"$3 " load address 0x"$2;
125}
126
127# (LLD) Convert an anchor record from lld format to ld format.
128#
129# lld: ffffffff81000000 1000000 0 1 _text = .
130# ->
131# ld: 0xffffffff81000000 _text = .
132#
133ARGIND == 2 && map_is_lld && !anchor && NF == 7 && raw_addr == "0x"$1 && $6 == "=" && $7 == "." {
134 $0 = " 0x"$1 " " $5 " = .";
135}
136
137# (LLD) Convert an object record from lld format to ld format.
138#
139# lld: 11480 11480 1f07 16 vmlinux.a(arch/x86/events/amd/uncore.o):(.text)
140# ->
141# ld: .text 0x0000000000011480 0x1f07 arch/x86/events/amd/uncore.o
142#
143ARGIND == 2 && map_is_lld && NF == 5 && $5 ~ /:\(/ {
144 gsub(/\)/, "");
145 sub(/ vmlinux\.a\(/, " ");
146 sub(/:\(/, " ");
147 $0 = " "$6 " 0x"$1 " 0x"$3 " " $5;
148}
149
150# (LLD) Convert a symbol record from lld format to ld format.
151#
152# We only care about these while processing a section for which no anchor has
153# been determined yet.
154#
155# lld: ffffffff82a859a4 2a859a4 0 1 btf_ksym_iter_id
156# ->
157# ld: 0xffffffff82a859a4 btf_ksym_iter_id
158#
159ARGIND == 2 && map_is_lld && sect && !anchor && NF == 5 && $5 ~ /^[_A-Za-z][_A-Za-z0-9]*$/ {
160 $0 = " 0x"$1 " " $5;
161}
162
163# (LLD) We do not need any other ldd linker map records.
164#
165ARGIND == 2 && map_is_lld && /^[0-9a-f]{16} / {
166 next;
167}
168
169# (LD) Section records with just the section name at the start of the line
170# need to have the next line pulled in to determine whether it is a
171# loadable section. If it is, the next line will contains a hex value
172# as first and second items.
173#
174ARGIND == 2 && !map_is_lld && NF == 1 && /^[^ ]/ {
175 s = $0;
176 getline;
177 if ($1 !~ /^0x/ || $2 !~ /^0x/)
178 next;
179
180 $0 = s " " $0;
181}
182
183# (LD) Object records with just the section name denote records with a long
184# section name for which the remainder of the record can be found on the
185# next line.
186#
187# (This is also needed for vmlinux.o.map, when used.)
188#
189ARGIND >= 2 && !map_is_lld && NF == 1 && /^ [^ \*]/ {
190 s = $0;
191 getline;
192 $0 = s " " $0;
193}
194
195# Beginning a new section - done with the previous one (if any).
196#
197ARGIND == 2 && /^[^ ]/ {
198 sect = 0;
199}
200
201# Process a loadable section (we only care about .-sections).
202#
203# Record the section name and its base address.
204# We also record the raw (non-stripped) address of the section because it can
205# be used to identify an anchor record.
206#
207# Note:
208# Since some AWK implementations cannot handle large integers, we strip off the
209# first 4 hex digits from the address. This is safe because the kernel space
210# is not large enough for addresses to extend into those digits. The portion
211# to strip off is stored in addr_prefix as a regexp, so further clauses can
212# perform a simple substitution to do the address stripping.
213#
214ARGIND == 2 && /^\./ {
215 # Explicitly ignore a few sections that are not relevant here.
216 if ($1 ~ /^\.orc_/ || $1 ~ /_sites$/ || $1 ~ /\.percpu/)
217 next;
218
219 # Sections with a 0-address can be ignored as well.
220 if ($2 ~ /^0x0+$/)
221 next;
222
223 raw_addr = $2;
224 addr_prefix = "^" substr($2, 1, 6);
225 base = $2;
226 sub(addr_prefix, "0x", base);
227 base = strtonum(base);
228 sect = $1;
229 anchor = 0;
230 sect_base[sect] = base;
231 sect_size[sect] = strtonum($3);
232
233 if (dbg)
234 printf "[%s] BASE %016x\n", sect, base >"/dev/stderr";
235
236 next;
237}
238
239# If we are not in a section we care about, we ignore the record.
240#
241ARGIND == 2 && !sect {
242 next;
243}
244
245# Record the first anchor symbol for the current section.
246#
247# An anchor record for the section bears the same raw address as the section
248# record.
249#
250ARGIND == 2 && !anchor && NF == 4 && raw_addr == $1 && $3 == "=" && $4 == "." {
251 anchor = sprintf("%s %08x-%08x = %s", sect, 0, 0, $2);
252 sect_anchor[sect] = anchor;
253
254 if (dbg)
255 printf "[%s] ANCHOR %016x = %s (.)\n", sect, 0, $2 >"/dev/stderr";
256
257 next;
258}
259
260# If no anchor record was found for the current section, use the first symbol
261# in the section as anchor.
262#
263ARGIND == 2 && !anchor && NF == 2 && $1 ~ /^0x/ && $2 !~ /^0x/ {
264 addr = $1;
265 sub(addr_prefix, "0x", addr);
266 addr = strtonum(addr) - base;
267 anchor = sprintf("%s %08x-%08x = %s", sect, addr, addr, $2);
268 sect_anchor[sect] = anchor;
269
270 if (dbg)
271 printf "[%s] ANCHOR %016x = %s\n", sect, addr, $2 >"/dev/stderr";
272
273 next;
274}
275
276# The first occurrence of a section name in an object record establishes the
277# addend (often 0) for that section. This information is needed to handle
278# sections that get combined in the final linking of vmlinux (e.g. .head.text
279# getting included at the start of .text).
280#
281# If the section does not have a base yet, use the base of the encapsulating
282# section.
283#
284ARGIND == 2 && sect && NF == 4 && /^ [^ \*]/ && !($1 in sect_addend) {
285 # There are a few sections with constant data (without symbols) that
286 # can get resized during linking, so it is best to ignore them.
287 if ($1 ~ /^\.rodata\.(cst|str)[0-9]/)
288 next;
289
290 if (!($1 in sect_base)) {
291 sect_base[$1] = base;
292
293 if (dbg)
294 printf "[%s] BASE %016x\n", $1, base >"/dev/stderr";
295 }
296
297 addr = $2;
298 sub(addr_prefix, "0x", addr);
299 addr = strtonum(addr);
300 sect_addend[$1] = addr - sect_base[$1];
301 sect_in[$1] = sect;
302
303 if (dbg)
304 printf "[%s] ADDEND %016x - %016x = %016x\n", $1, addr, base, sect_addend[$1] >"/dev/stderr";
305
306 # If the object is vmlinux.o then we will need vmlinux.o.map to get the
307 # actual offsets of objects.
308 if ($4 == "vmlinux.o")
309 need_o_map = 1;
310}
311
312# (3) Collect offset ranges (relative to the section base address) for built-in
313# modules.
314#
315# If the final link was done using the actual objects, vmlinux.map contains all
316# the information we need (see section (3a)).
317# If linking was done using vmlinux.a as intermediary, we will need to process
318# vmlinux.o.map (see section (3b)).
319
320# (3a) Determine offset range info using vmlinux.map.
321#
322# Since we are already processing vmlinux.map, the top level section that is
323# being processed is already known. If we do not have a base address for it,
324# we do not need to process records for it.
325#
326# Given the object name, we determine the module(s) (if any) that the current
327# object is associated with.
328#
329# If we were already processing objects for a (list of) module(s):
330# - If the current object belongs to the same module(s), update the range data
331# to include the current object.
332# - Otherwise, ensure that the end offset of the range is valid.
333#
334# If the current object does not belong to a built-in module, ignore it.
335#
336# If it does, we add a new built-in module offset range record.
337#
338ARGIND == 2 && !need_o_map && /^ [^ ]/ && NF == 4 && $3 != "0x0" {
339 if (!(sect in sect_base))
340 next;
341
342 # Turn the address into an offset from the section base.
343 soff = $2;
344 sub(addr_prefix, "0x", soff);
345 soff = strtonum(soff) - sect_base[sect];
346 eoff = soff + strtonum($3);
347
348 # Determine which (if any) built-in modules the object belongs to.
349 mod = get_module_info($4);
350
351 # If we are processing a built-in module:
352 # - If the current object is within the same module, we update its
353 # entry by extending the range and move on
354 # - Otherwise:
355 # + If we are still processing within the same main section, we
356 # validate the end offset against the start offset of the
357 # current object (e.g. .rodata.str1.[18] objects are often
358 # listed with an incorrect size in the linker map)
359 # + Otherwise, we validate the end offset against the section
360 # size
361 if (mod_name) {
362 if (mod == mod_name) {
363 mod_eoff = eoff;
364 update_entry(mod_sect, mod_name, mod_soff, eoff);
365
366 next;
367 } else if (sect == sect_in[mod_sect]) {
368 if (mod_eoff > soff)
369 update_entry(mod_sect, mod_name, mod_soff, soff);
370 } else {
371 v = sect_size[sect_in[mod_sect]];
372 if (mod_eoff > v)
373 update_entry(mod_sect, mod_name, mod_soff, v);
374 }
375 }
376
377 mod_name = mod;
378
379 # If we encountered an object that is not part of a built-in module, we
380 # do not need to record any data.
381 if (!mod)
382 next;
383
384 # At this point, we encountered the start of a new built-in module.
385 mod_name = mod;
386 mod_soff = soff;
387 mod_eoff = eoff;
388 mod_sect = $1;
389 update_entry($1, mod, soff, mod_eoff);
390
391 next;
392}
393
394# If we do not need to parse the vmlinux.o.map file, we are done.
395#
396ARGIND == 3 && !need_o_map {
397 if (dbg)
398 printf "Note: %s is not needed.\n", FILENAME >"/dev/stderr";
399 exit;
400}
401
402# (3) Collect offset ranges (relative to the section base address) for built-in
403# modules.
404#
405
406# (LLD) Convert an object record from lld format to ld format.
407#
408ARGIND == 3 && map_is_lld && NF == 5 && $5 ~ /:\(/ {
409 gsub(/\)/, "");
410 sub(/:\(/, " ");
411
412 sect = $6;
413 if (!(sect in sect_addend))
414 next;
415
416 sub(/ vmlinux\.a\(/, " ");
417 $0 = " "sect " 0x"$1 " 0x"$3 " " $5;
418}
419
420# (3b) Determine offset range info using vmlinux.o.map.
421#
422# If we do not know an addend for the object's section, we are interested in
423# anything within that section.
424#
425# Determine the top-level section that the object's section was included in
426# during the final link. This is the section name offset range data will be
427# associated with for this object.
428#
429# The remainder of the processing of the current object record follows the
430# procedure outlined in (3a).
431#
432ARGIND == 3 && /^ [^ ]/ && NF == 4 && $3 != "0x0" {
433 osect = $1;
434 if (!(osect in sect_addend))
435 next;
436
437 # We need to work with the main section.
438 sect = sect_in[osect];
439
440 # Turn the address into an offset from the section base.
441 soff = $2;
442 sub(addr_prefix, "0x", soff);
443 soff = strtonum(soff) + sect_addend[osect];
444 eoff = soff + strtonum($3);
445
446 # Determine which (if any) built-in modules the object belongs to.
447 mod = get_module_info($4);
448
449 # If we are processing a built-in module:
450 # - If the current object is within the same module, we update its
451 # entry by extending the range and move on
452 # - Otherwise:
453 # + If we are still processing within the same main section, we
454 # validate the end offset against the start offset of the
455 # current object (e.g. .rodata.str1.[18] objects are often
456 # listed with an incorrect size in the linker map)
457 # + Otherwise, we validate the end offset against the section
458 # size
459 if (mod_name) {
460 if (mod == mod_name) {
461 mod_eoff = eoff;
462 update_entry(mod_sect, mod_name, mod_soff, eoff);
463
464 next;
465 } else if (sect == sect_in[mod_sect]) {
466 if (mod_eoff > soff)
467 update_entry(mod_sect, mod_name, mod_soff, soff);
468 } else {
469 v = sect_size[sect_in[mod_sect]];
470 if (mod_eoff > v)
471 update_entry(mod_sect, mod_name, mod_soff, v);
472 }
473 }
474
475 mod_name = mod;
476
477 # If we encountered an object that is not part of a built-in module, we
478 # do not need to record any data.
479 if (!mod)
480 next;
481
482 # At this point, we encountered the start of a new built-in module.
483 mod_name = mod;
484 mod_soff = soff;
485 mod_eoff = eoff;
486 mod_sect = osect;
487 update_entry(osect, mod, soff, mod_eoff);
488
489 next;
490}
491
492# (4) Generate the output.
493#
494# Anchor records are added for each section that contains offset range data
495# records. They are added at an adjusted section base address (base << 1) to
496# ensure they come first in the second records (see update_entry() above for
497# more information).
498#
499# All entries are sorted by (adjusted) address to ensure that the output can be
500# parsed in strict ascending address order.
501#
502END {
503 for (sect in count) {
504 if (sect in sect_anchor) {
505 idx = sprintf("%016x", sect_base[sect] * 2);
506 entries[idx] = sect_anchor[sect];
507 }
508 }
509
510 n = asorti(entries, indices);
511 for (i = 1; i <= n; i++)
512 print entries[indices[i]];
513}