Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2025 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80static void bss_free(struct cfg80211_internal_bss *bss)
81{
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102}
103
104static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106{
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116}
117
118static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120{
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144}
145
146static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148{
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174}
175
176bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178{
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227}
228EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
230static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233{
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266}
267
268VISIBLE_IF_CFG80211_KUNIT size_t
269cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272{
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 const u8 *mbssid_index_ie;
276 u8 id, ext_id, bssid_index = 255;
277 unsigned int match_len;
278
279 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
280 subie, subie_len);
281
282 mbssid_index_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, subie,
283 subie_len);
284 if (mbssid_index_ie && mbssid_index_ie[1] > 0 &&
285 mbssid_index_ie[2] > 0 && mbssid_index_ie[2] <= 46)
286 bssid_index = mbssid_index_ie[2];
287
288 /* We copy the elements one by one from the parent to the generated
289 * elements.
290 * If they are not inherited (included in subie or in the non
291 * inheritance element), then we copy all occurrences the first time
292 * we see this element type.
293 */
294 for_each_element(parent, ie, ielen) {
295 if (parent->id == WLAN_EID_FRAGMENT)
296 continue;
297
298 if (parent->id == WLAN_EID_EXTENSION) {
299 if (parent->datalen < 1)
300 continue;
301
302 id = WLAN_EID_EXTENSION;
303 ext_id = parent->data[0];
304 match_len = 1;
305 } else {
306 id = parent->id;
307 match_len = 0;
308 }
309
310 /* Find first occurrence in subie */
311 sub = cfg80211_find_elem_match(id, subie, subie_len,
312 &ext_id, match_len, 0);
313
314 /* Copy from parent if not in subie and inherited */
315 if (!sub &&
316 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
317 if (!cfg80211_copy_elem_with_frags(parent,
318 ie, ielen,
319 &pos, new_ie,
320 new_ie_len))
321 return 0;
322
323 continue;
324 }
325
326 /* For ML probe response, match the MLE in the frame body with
327 * MLD id being 'bssid_index'
328 */
329 if (parent->id == WLAN_EID_EXTENSION && parent->datalen > 1 &&
330 parent->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK &&
331 bssid_index == ieee80211_mle_get_mld_id(parent->data + 1)) {
332 if (!cfg80211_copy_elem_with_frags(parent,
333 ie, ielen,
334 &pos, new_ie,
335 new_ie_len))
336 return 0;
337
338 /* Continue here to prevent processing the MLE in
339 * sub-element, which AP MLD should not carry
340 */
341 continue;
342 }
343
344 /* Already copied if an earlier element had the same type */
345 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
346 &ext_id, match_len, 0))
347 continue;
348
349 /* Not inheriting, copy all similar elements from subie */
350 while (sub) {
351 if (!cfg80211_copy_elem_with_frags(sub,
352 subie, subie_len,
353 &pos, new_ie,
354 new_ie_len))
355 return 0;
356
357 sub = cfg80211_find_elem_match(id,
358 sub->data + sub->datalen,
359 subie_len + subie -
360 (sub->data +
361 sub->datalen),
362 &ext_id, match_len, 0);
363 }
364 }
365
366 /* The above misses elements that are included in subie but not in the
367 * parent, so do a pass over subie and append those.
368 * Skip the non-tx BSSID caps and non-inheritance element.
369 */
370 for_each_element(sub, subie, subie_len) {
371 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
372 continue;
373
374 if (sub->id == WLAN_EID_FRAGMENT)
375 continue;
376
377 if (sub->id == WLAN_EID_EXTENSION) {
378 if (sub->datalen < 1)
379 continue;
380
381 id = WLAN_EID_EXTENSION;
382 ext_id = sub->data[0];
383 match_len = 1;
384
385 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
386 continue;
387 } else {
388 id = sub->id;
389 match_len = 0;
390 }
391
392 /* Processed if one was included in the parent */
393 if (cfg80211_find_elem_match(id, ie, ielen,
394 &ext_id, match_len, 0))
395 continue;
396
397 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
398 &pos, new_ie, new_ie_len))
399 return 0;
400 }
401
402 return pos - new_ie;
403}
404EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
405
406static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
407 const u8 *ssid, size_t ssid_len)
408{
409 const struct cfg80211_bss_ies *ies;
410 const struct element *ssid_elem;
411
412 if (bssid && !ether_addr_equal(a->bssid, bssid))
413 return false;
414
415 if (!ssid)
416 return true;
417
418 ies = rcu_access_pointer(a->ies);
419 if (!ies)
420 return false;
421 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
422 if (!ssid_elem)
423 return false;
424 if (ssid_elem->datalen != ssid_len)
425 return false;
426 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
427}
428
429static int
430cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
431 struct cfg80211_bss *nontrans_bss)
432{
433 const struct element *ssid_elem;
434 struct cfg80211_bss *bss = NULL;
435
436 rcu_read_lock();
437 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
438 if (!ssid_elem) {
439 rcu_read_unlock();
440 return -EINVAL;
441 }
442
443 /* check if nontrans_bss is in the list */
444 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
445 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
446 ssid_elem->datalen)) {
447 rcu_read_unlock();
448 return 0;
449 }
450 }
451
452 rcu_read_unlock();
453
454 /*
455 * This is a bit weird - it's not on the list, but already on another
456 * one! The only way that could happen is if there's some BSSID/SSID
457 * shared by multiple APs in their multi-BSSID profiles, potentially
458 * with hidden SSID mixed in ... ignore it.
459 */
460 if (!list_empty(&nontrans_bss->nontrans_list))
461 return -EINVAL;
462
463 /* add to the list */
464 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
465 return 0;
466}
467
468static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
469 unsigned long expire_time)
470{
471 struct cfg80211_internal_bss *bss, *tmp;
472 bool expired = false;
473
474 lockdep_assert_held(&rdev->bss_lock);
475
476 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
477 if (atomic_read(&bss->hold))
478 continue;
479 if (!time_after(expire_time, bss->ts))
480 continue;
481
482 if (__cfg80211_unlink_bss(rdev, bss))
483 expired = true;
484 }
485
486 if (expired)
487 rdev->bss_generation++;
488}
489
490static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
491{
492 struct cfg80211_internal_bss *bss, *oldest = NULL;
493 bool ret;
494
495 lockdep_assert_held(&rdev->bss_lock);
496
497 list_for_each_entry(bss, &rdev->bss_list, list) {
498 if (atomic_read(&bss->hold))
499 continue;
500
501 if (!list_empty(&bss->hidden_list) &&
502 !bss->pub.hidden_beacon_bss)
503 continue;
504
505 if (oldest && time_before(oldest->ts, bss->ts))
506 continue;
507 oldest = bss;
508 }
509
510 if (WARN_ON(!oldest))
511 return false;
512
513 /*
514 * The callers make sure to increase rdev->bss_generation if anything
515 * gets removed (and a new entry added), so there's no need to also do
516 * it here.
517 */
518
519 ret = __cfg80211_unlink_bss(rdev, oldest);
520 WARN_ON(!ret);
521 return ret;
522}
523
524static u8 cfg80211_parse_bss_param(u8 data,
525 struct cfg80211_colocated_ap *coloc_ap)
526{
527 coloc_ap->oct_recommended =
528 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
529 coloc_ap->same_ssid =
530 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
531 coloc_ap->multi_bss =
532 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
533 coloc_ap->transmitted_bssid =
534 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
535 coloc_ap->unsolicited_probe =
536 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
537 coloc_ap->colocated_ess =
538 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
539
540 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
541}
542
543static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
544 const struct element **elem, u32 *s_ssid)
545{
546
547 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
548 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
549 return -EINVAL;
550
551 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
552 return 0;
553}
554
555VISIBLE_IF_CFG80211_KUNIT void
556cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
557{
558 struct cfg80211_colocated_ap *ap, *tmp_ap;
559
560 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
561 list_del(&ap->list);
562 kfree(ap);
563 }
564}
565EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
566
567static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
568 const u8 *pos, u8 length,
569 const struct element *ssid_elem,
570 u32 s_ssid_tmp)
571{
572 u8 bss_params;
573
574 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
575
576 /* The length is already verified by the caller to contain bss_params */
577 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
578 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
579
580 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
581 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
582 entry->short_ssid_valid = true;
583
584 bss_params = tbtt_info->bss_params;
585
586 /* Ignore disabled links */
587 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
588 if (le16_get_bits(tbtt_info->mld_params.params,
589 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
590 return -EINVAL;
591 }
592
593 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
594 psd_20))
595 entry->psd_20 = tbtt_info->psd_20;
596 } else {
597 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
598
599 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
600
601 bss_params = tbtt_info->bss_params;
602
603 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
604 psd_20))
605 entry->psd_20 = tbtt_info->psd_20;
606 }
607
608 /* ignore entries with invalid BSSID */
609 if (!is_valid_ether_addr(entry->bssid))
610 return -EINVAL;
611
612 /* skip non colocated APs */
613 if (!cfg80211_parse_bss_param(bss_params, entry))
614 return -EINVAL;
615
616 /* no information about the short ssid. Consider the entry valid
617 * for now. It would later be dropped in case there are explicit
618 * SSIDs that need to be matched
619 */
620 if (!entry->same_ssid && !entry->short_ssid_valid)
621 return 0;
622
623 if (entry->same_ssid) {
624 entry->short_ssid = s_ssid_tmp;
625 entry->short_ssid_valid = true;
626
627 /*
628 * This is safe because we validate datalen in
629 * cfg80211_parse_colocated_ap(), before calling this
630 * function.
631 */
632 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
633 entry->ssid_len = ssid_elem->datalen;
634 }
635
636 return 0;
637}
638
639bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
640 enum cfg80211_rnr_iter_ret
641 (*iter)(void *data, u8 type,
642 const struct ieee80211_neighbor_ap_info *info,
643 const u8 *tbtt_info, u8 tbtt_info_len),
644 void *iter_data)
645{
646 const struct element *rnr;
647 const u8 *pos, *end;
648
649 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
650 elems, elems_len) {
651 const struct ieee80211_neighbor_ap_info *info;
652
653 pos = rnr->data;
654 end = rnr->data + rnr->datalen;
655
656 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
657 while (sizeof(*info) <= end - pos) {
658 u8 length, i, count;
659 u8 type;
660
661 info = (void *)pos;
662 count = u8_get_bits(info->tbtt_info_hdr,
663 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
664 1;
665 length = info->tbtt_info_len;
666
667 pos += sizeof(*info);
668
669 if (count * length > end - pos)
670 return false;
671
672 type = u8_get_bits(info->tbtt_info_hdr,
673 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
674
675 for (i = 0; i < count; i++) {
676 switch (iter(iter_data, type, info,
677 pos, length)) {
678 case RNR_ITER_CONTINUE:
679 break;
680 case RNR_ITER_BREAK:
681 return true;
682 case RNR_ITER_ERROR:
683 return false;
684 }
685
686 pos += length;
687 }
688 }
689
690 if (pos != end)
691 return false;
692 }
693
694 return true;
695}
696EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
697
698struct colocated_ap_data {
699 const struct element *ssid_elem;
700 struct list_head ap_list;
701 u32 s_ssid_tmp;
702 int n_coloc;
703};
704
705static enum cfg80211_rnr_iter_ret
706cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
707 const struct ieee80211_neighbor_ap_info *info,
708 const u8 *tbtt_info, u8 tbtt_info_len)
709{
710 struct colocated_ap_data *data = _data;
711 struct cfg80211_colocated_ap *entry;
712 enum nl80211_band band;
713
714 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
715 return RNR_ITER_CONTINUE;
716
717 if (!ieee80211_operating_class_to_band(info->op_class, &band))
718 return RNR_ITER_CONTINUE;
719
720 /* TBTT info must include bss param + BSSID + (short SSID or
721 * same_ssid bit to be set). Ignore other options, and move to
722 * the next AP info
723 */
724 if (band != NL80211_BAND_6GHZ ||
725 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
726 bss_params) ||
727 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
728 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
729 bss_params)))
730 return RNR_ITER_CONTINUE;
731
732 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
733 if (!entry)
734 return RNR_ITER_ERROR;
735
736 entry->center_freq =
737 ieee80211_channel_to_frequency(info->channel, band);
738
739 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
740 data->ssid_elem, data->s_ssid_tmp)) {
741 struct cfg80211_colocated_ap *tmp;
742
743 /* Don't add duplicate BSSIDs on the same channel. */
744 list_for_each_entry(tmp, &data->ap_list, list) {
745 if (ether_addr_equal(tmp->bssid, entry->bssid) &&
746 tmp->center_freq == entry->center_freq) {
747 kfree(entry);
748 return RNR_ITER_CONTINUE;
749 }
750 }
751
752 data->n_coloc++;
753 list_add_tail(&entry->list, &data->ap_list);
754 } else {
755 kfree(entry);
756 }
757
758 return RNR_ITER_CONTINUE;
759}
760
761VISIBLE_IF_CFG80211_KUNIT int
762cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
763 struct list_head *list)
764{
765 struct colocated_ap_data data = {};
766 int ret;
767
768 INIT_LIST_HEAD(&data.ap_list);
769
770 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
771 if (ret)
772 return 0;
773
774 if (!cfg80211_iter_rnr(ies->data, ies->len,
775 cfg80211_parse_colocated_ap_iter, &data)) {
776 cfg80211_free_coloc_ap_list(&data.ap_list);
777 return 0;
778 }
779
780 list_splice_tail(&data.ap_list, list);
781 return data.n_coloc;
782}
783EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
784
785static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
786 struct ieee80211_channel *chan,
787 bool add_to_6ghz)
788{
789 int i;
790 u32 n_channels = request->n_channels;
791 struct cfg80211_scan_6ghz_params *params =
792 &request->scan_6ghz_params[request->n_6ghz_params];
793
794 for (i = 0; i < n_channels; i++) {
795 if (request->channels[i] == chan) {
796 if (add_to_6ghz)
797 params->channel_idx = i;
798 return;
799 }
800 }
801
802 request->n_channels++;
803 request->channels[n_channels] = chan;
804 if (add_to_6ghz)
805 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
806 n_channels;
807}
808
809static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
810 struct cfg80211_scan_request *request)
811{
812 int i;
813 u32 s_ssid;
814
815 for (i = 0; i < request->n_ssids; i++) {
816 /* wildcard ssid in the scan request */
817 if (!request->ssids[i].ssid_len) {
818 if (ap->multi_bss && !ap->transmitted_bssid)
819 continue;
820
821 return true;
822 }
823
824 if (ap->ssid_len &&
825 ap->ssid_len == request->ssids[i].ssid_len) {
826 if (!memcmp(request->ssids[i].ssid, ap->ssid,
827 ap->ssid_len))
828 return true;
829 } else if (ap->short_ssid_valid) {
830 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
831 request->ssids[i].ssid_len);
832
833 if (ap->short_ssid == s_ssid)
834 return true;
835 }
836 }
837
838 return false;
839}
840
841static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev,
842 bool first_part)
843{
844 u8 i;
845 struct cfg80211_colocated_ap *ap;
846 int n_channels, count = 0, err;
847 struct cfg80211_scan_request_int *request, *rdev_req = rdev->scan_req;
848 LIST_HEAD(coloc_ap_list);
849 bool need_scan_psc = true;
850 const struct ieee80211_sband_iftype_data *iftd;
851 size_t size, offs_ssids, offs_6ghz_params, offs_ies;
852
853 rdev_req->req.scan_6ghz = true;
854 rdev_req->req.first_part = first_part;
855
856 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
857 return -EOPNOTSUPP;
858
859 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
860 rdev_req->req.wdev->iftype);
861 if (!iftd || !iftd->he_cap.has_he)
862 return -EOPNOTSUPP;
863
864 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
865
866 if (rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
867 struct cfg80211_internal_bss *intbss;
868
869 spin_lock_bh(&rdev->bss_lock);
870 list_for_each_entry(intbss, &rdev->bss_list, list) {
871 struct cfg80211_bss *res = &intbss->pub;
872 const struct cfg80211_bss_ies *ies;
873 const struct element *ssid_elem;
874 struct cfg80211_colocated_ap *entry;
875 u32 s_ssid_tmp;
876 int ret;
877
878 ies = rcu_access_pointer(res->ies);
879 count += cfg80211_parse_colocated_ap(ies,
880 &coloc_ap_list);
881
882 /* In case the scan request specified a specific BSSID
883 * and the BSS is found and operating on 6GHz band then
884 * add this AP to the collocated APs list.
885 * This is relevant for ML probe requests when the lower
886 * band APs have not been discovered.
887 */
888 if (is_broadcast_ether_addr(rdev_req->req.bssid) ||
889 !ether_addr_equal(rdev_req->req.bssid, res->bssid) ||
890 res->channel->band != NL80211_BAND_6GHZ)
891 continue;
892
893 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
894 &s_ssid_tmp);
895 if (ret)
896 continue;
897
898 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
899 if (!entry)
900 continue;
901
902 memcpy(entry->bssid, res->bssid, ETH_ALEN);
903 entry->short_ssid = s_ssid_tmp;
904 memcpy(entry->ssid, ssid_elem->data,
905 ssid_elem->datalen);
906 entry->ssid_len = ssid_elem->datalen;
907 entry->short_ssid_valid = true;
908 entry->center_freq = res->channel->center_freq;
909
910 list_add_tail(&entry->list, &coloc_ap_list);
911 count++;
912 }
913 spin_unlock_bh(&rdev->bss_lock);
914 }
915
916 size = struct_size(request, req.channels, n_channels);
917 offs_ssids = size;
918 size += sizeof(*request->req.ssids) * rdev_req->req.n_ssids;
919 offs_6ghz_params = size;
920 size += sizeof(*request->req.scan_6ghz_params) * count;
921 offs_ies = size;
922 size += rdev_req->req.ie_len;
923
924 request = kzalloc(size, GFP_KERNEL);
925 if (!request) {
926 cfg80211_free_coloc_ap_list(&coloc_ap_list);
927 return -ENOMEM;
928 }
929
930 *request = *rdev_req;
931 request->req.n_channels = 0;
932 request->req.n_6ghz_params = 0;
933 if (rdev_req->req.n_ssids) {
934 /*
935 * Add the ssids from the parent scan request to the new
936 * scan request, so the driver would be able to use them
937 * in its probe requests to discover hidden APs on PSC
938 * channels.
939 */
940 request->req.ssids = (void *)request + offs_ssids;
941 memcpy(request->req.ssids, rdev_req->req.ssids,
942 sizeof(*request->req.ssids) * request->req.n_ssids);
943 }
944 request->req.scan_6ghz_params = (void *)request + offs_6ghz_params;
945
946 if (rdev_req->req.ie_len) {
947 void *ie = (void *)request + offs_ies;
948
949 memcpy(ie, rdev_req->req.ie, rdev_req->req.ie_len);
950 request->req.ie = ie;
951 }
952
953 /*
954 * PSC channels should not be scanned in case of direct scan with 1 SSID
955 * and at least one of the reported co-located APs with same SSID
956 * indicating that all APs in the same ESS are co-located
957 */
958 if (count &&
959 request->req.n_ssids == 1 &&
960 request->req.ssids[0].ssid_len) {
961 list_for_each_entry(ap, &coloc_ap_list, list) {
962 if (ap->colocated_ess &&
963 cfg80211_find_ssid_match(ap, &request->req)) {
964 need_scan_psc = false;
965 break;
966 }
967 }
968 }
969
970 /*
971 * add to the scan request the channels that need to be scanned
972 * regardless of the collocated APs (PSC channels or all channels
973 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
974 */
975 for (i = 0; i < rdev_req->req.n_channels; i++) {
976 if (rdev_req->req.channels[i]->band == NL80211_BAND_6GHZ &&
977 ((need_scan_psc &&
978 cfg80211_channel_is_psc(rdev_req->req.channels[i])) ||
979 !(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
980 cfg80211_scan_req_add_chan(&request->req,
981 rdev_req->req.channels[i],
982 false);
983 }
984 }
985
986 if (!(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
987 goto skip;
988
989 list_for_each_entry(ap, &coloc_ap_list, list) {
990 bool found = false;
991 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
992 &request->req.scan_6ghz_params[request->req.n_6ghz_params];
993 struct ieee80211_channel *chan =
994 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
995
996 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
997 !cfg80211_wdev_channel_allowed(rdev_req->req.wdev, chan))
998 continue;
999
1000 for (i = 0; i < rdev_req->req.n_channels; i++) {
1001 if (rdev_req->req.channels[i] == chan)
1002 found = true;
1003 }
1004
1005 if (!found)
1006 continue;
1007
1008 if (request->req.n_ssids > 0 &&
1009 !cfg80211_find_ssid_match(ap, &request->req))
1010 continue;
1011
1012 if (!is_broadcast_ether_addr(request->req.bssid) &&
1013 !ether_addr_equal(request->req.bssid, ap->bssid))
1014 continue;
1015
1016 if (!request->req.n_ssids && ap->multi_bss &&
1017 !ap->transmitted_bssid)
1018 continue;
1019
1020 cfg80211_scan_req_add_chan(&request->req, chan, true);
1021 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
1022 scan_6ghz_params->short_ssid = ap->short_ssid;
1023 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
1024 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
1025 scan_6ghz_params->psd_20 = ap->psd_20;
1026
1027 /*
1028 * If a PSC channel is added to the scan and 'need_scan_psc' is
1029 * set to false, then all the APs that the scan logic is
1030 * interested with on the channel are collocated and thus there
1031 * is no need to perform the initial PSC channel listen.
1032 */
1033 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
1034 scan_6ghz_params->psc_no_listen = true;
1035
1036 request->req.n_6ghz_params++;
1037 }
1038
1039skip:
1040 cfg80211_free_coloc_ap_list(&coloc_ap_list);
1041
1042 if (request->req.n_channels) {
1043 struct cfg80211_scan_request_int *old = rdev->int_scan_req;
1044
1045 rdev->int_scan_req = request;
1046
1047 /*
1048 * If this scan follows a previous scan, save the scan start
1049 * info from the first part of the scan
1050 */
1051 if (!first_part && !WARN_ON(!old))
1052 rdev->int_scan_req->info = old->info;
1053
1054 err = rdev_scan(rdev, request);
1055 if (err) {
1056 rdev->int_scan_req = old;
1057 kfree(request);
1058 } else {
1059 kfree(old);
1060 }
1061
1062 return err;
1063 }
1064
1065 kfree(request);
1066 return -EINVAL;
1067}
1068
1069int cfg80211_scan(struct cfg80211_registered_device *rdev)
1070{
1071 struct cfg80211_scan_request_int *request;
1072 struct cfg80211_scan_request_int *rdev_req = rdev->scan_req;
1073 u32 n_channels = 0, idx, i;
1074
1075 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) {
1076 rdev_req->req.first_part = true;
1077 return rdev_scan(rdev, rdev_req);
1078 }
1079
1080 for (i = 0; i < rdev_req->req.n_channels; i++) {
1081 if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ)
1082 n_channels++;
1083 }
1084
1085 if (!n_channels)
1086 return cfg80211_scan_6ghz(rdev, true);
1087
1088 request = kzalloc(struct_size(request, req.channels, n_channels),
1089 GFP_KERNEL);
1090 if (!request)
1091 return -ENOMEM;
1092
1093 *request = *rdev_req;
1094 request->req.n_channels = n_channels;
1095
1096 for (i = idx = 0; i < rdev_req->req.n_channels; i++) {
1097 if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ)
1098 request->req.channels[idx++] =
1099 rdev_req->req.channels[i];
1100 }
1101
1102 rdev_req->req.scan_6ghz = false;
1103 rdev_req->req.first_part = true;
1104 rdev->int_scan_req = request;
1105 return rdev_scan(rdev, request);
1106}
1107
1108void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1109 bool send_message)
1110{
1111 struct cfg80211_scan_request_int *request, *rdev_req;
1112 struct wireless_dev *wdev;
1113 struct sk_buff *msg;
1114#ifdef CONFIG_CFG80211_WEXT
1115 union iwreq_data wrqu;
1116#endif
1117
1118 lockdep_assert_held(&rdev->wiphy.mtx);
1119
1120 if (rdev->scan_msg) {
1121 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1122 rdev->scan_msg = NULL;
1123 return;
1124 }
1125
1126 rdev_req = rdev->scan_req;
1127 if (!rdev_req)
1128 return;
1129
1130 wdev = rdev_req->req.wdev;
1131 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1132
1133 if (wdev_running(wdev) &&
1134 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1135 !rdev_req->req.scan_6ghz && !request->info.aborted &&
1136 !cfg80211_scan_6ghz(rdev, false))
1137 return;
1138
1139 /*
1140 * This must be before sending the other events!
1141 * Otherwise, wpa_supplicant gets completely confused with
1142 * wext events.
1143 */
1144 if (wdev->netdev)
1145 cfg80211_sme_scan_done(wdev->netdev);
1146
1147 if (!request->info.aborted &&
1148 request->req.flags & NL80211_SCAN_FLAG_FLUSH) {
1149 /* flush entries from previous scans */
1150 spin_lock_bh(&rdev->bss_lock);
1151 __cfg80211_bss_expire(rdev, request->req.scan_start);
1152 spin_unlock_bh(&rdev->bss_lock);
1153 }
1154
1155 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1156
1157#ifdef CONFIG_CFG80211_WEXT
1158 if (wdev->netdev && !request->info.aborted) {
1159 memset(&wrqu, 0, sizeof(wrqu));
1160
1161 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1162 }
1163#endif
1164
1165 dev_put(wdev->netdev);
1166
1167 kfree(rdev->int_scan_req);
1168 rdev->int_scan_req = NULL;
1169
1170 kfree(rdev->scan_req);
1171 rdev->scan_req = NULL;
1172
1173 if (!send_message)
1174 rdev->scan_msg = msg;
1175 else
1176 nl80211_send_scan_msg(rdev, msg);
1177}
1178
1179void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1180{
1181 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1182}
1183
1184void cfg80211_scan_done(struct cfg80211_scan_request *request,
1185 struct cfg80211_scan_info *info)
1186{
1187 struct cfg80211_scan_request_int *intreq =
1188 container_of(request, struct cfg80211_scan_request_int, req);
1189 struct cfg80211_registered_device *rdev = wiphy_to_rdev(request->wiphy);
1190 struct cfg80211_scan_info old_info = intreq->info;
1191
1192 trace_cfg80211_scan_done(intreq, info);
1193 WARN_ON(intreq != rdev->scan_req &&
1194 intreq != rdev->int_scan_req);
1195
1196 intreq->info = *info;
1197
1198 /*
1199 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1200 * be of the first part. In such a case old_info.scan_start_tsf should
1201 * be non zero.
1202 */
1203 if (request->scan_6ghz && old_info.scan_start_tsf) {
1204 intreq->info.scan_start_tsf = old_info.scan_start_tsf;
1205 memcpy(intreq->info.tsf_bssid, old_info.tsf_bssid,
1206 sizeof(intreq->info.tsf_bssid));
1207 }
1208
1209 intreq->notified = true;
1210 wiphy_work_queue(request->wiphy, &rdev->scan_done_wk);
1211}
1212EXPORT_SYMBOL(cfg80211_scan_done);
1213
1214void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1215 struct cfg80211_sched_scan_request *req)
1216{
1217 lockdep_assert_held(&rdev->wiphy.mtx);
1218
1219 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1220}
1221
1222static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1223 struct cfg80211_sched_scan_request *req)
1224{
1225 lockdep_assert_held(&rdev->wiphy.mtx);
1226
1227 list_del_rcu(&req->list);
1228 kfree_rcu(req, rcu_head);
1229}
1230
1231static struct cfg80211_sched_scan_request *
1232cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1233{
1234 struct cfg80211_sched_scan_request *pos;
1235
1236 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1237 lockdep_is_held(&rdev->wiphy.mtx)) {
1238 if (pos->reqid == reqid)
1239 return pos;
1240 }
1241 return NULL;
1242}
1243
1244/*
1245 * Determines if a scheduled scan request can be handled. When a legacy
1246 * scheduled scan is running no other scheduled scan is allowed regardless
1247 * whether the request is for legacy or multi-support scan. When a multi-support
1248 * scheduled scan is running a request for legacy scan is not allowed. In this
1249 * case a request for multi-support scan can be handled if resources are
1250 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1251 */
1252int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1253 bool want_multi)
1254{
1255 struct cfg80211_sched_scan_request *pos;
1256 int i = 0;
1257
1258 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1259 /* request id zero means legacy in progress */
1260 if (!i && !pos->reqid)
1261 return -EINPROGRESS;
1262 i++;
1263 }
1264
1265 if (i) {
1266 /* no legacy allowed when multi request(s) are active */
1267 if (!want_multi)
1268 return -EINPROGRESS;
1269
1270 /* resource limit reached */
1271 if (i == rdev->wiphy.max_sched_scan_reqs)
1272 return -ENOSPC;
1273 }
1274 return 0;
1275}
1276
1277void cfg80211_sched_scan_results_wk(struct work_struct *work)
1278{
1279 struct cfg80211_registered_device *rdev;
1280 struct cfg80211_sched_scan_request *req, *tmp;
1281
1282 rdev = container_of(work, struct cfg80211_registered_device,
1283 sched_scan_res_wk);
1284
1285 guard(wiphy)(&rdev->wiphy);
1286
1287 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1288 if (req->report_results) {
1289 req->report_results = false;
1290 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1291 /* flush entries from previous scans */
1292 spin_lock_bh(&rdev->bss_lock);
1293 __cfg80211_bss_expire(rdev, req->scan_start);
1294 spin_unlock_bh(&rdev->bss_lock);
1295 req->scan_start = jiffies;
1296 }
1297 nl80211_send_sched_scan(req,
1298 NL80211_CMD_SCHED_SCAN_RESULTS);
1299 }
1300 }
1301}
1302
1303void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1304{
1305 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1306 struct cfg80211_sched_scan_request *request;
1307
1308 trace_cfg80211_sched_scan_results(wiphy, reqid);
1309 /* ignore if we're not scanning */
1310
1311 rcu_read_lock();
1312 request = cfg80211_find_sched_scan_req(rdev, reqid);
1313 if (request) {
1314 request->report_results = true;
1315 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1316 }
1317 rcu_read_unlock();
1318}
1319EXPORT_SYMBOL(cfg80211_sched_scan_results);
1320
1321void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1322{
1323 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1324
1325 lockdep_assert_held(&wiphy->mtx);
1326
1327 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1328
1329 __cfg80211_stop_sched_scan(rdev, reqid, true);
1330}
1331EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1332
1333void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1334{
1335 guard(wiphy)(wiphy);
1336
1337 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1338}
1339EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1340
1341int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1342 struct cfg80211_sched_scan_request *req,
1343 bool driver_initiated)
1344{
1345 lockdep_assert_held(&rdev->wiphy.mtx);
1346
1347 if (!driver_initiated) {
1348 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1349 if (err)
1350 return err;
1351 }
1352
1353 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1354
1355 cfg80211_del_sched_scan_req(rdev, req);
1356
1357 return 0;
1358}
1359
1360int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1361 u64 reqid, bool driver_initiated)
1362{
1363 struct cfg80211_sched_scan_request *sched_scan_req;
1364
1365 lockdep_assert_held(&rdev->wiphy.mtx);
1366
1367 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1368 if (!sched_scan_req)
1369 return -ENOENT;
1370
1371 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1372 driver_initiated);
1373}
1374
1375void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1376 unsigned long age_secs)
1377{
1378 struct cfg80211_internal_bss *bss;
1379 unsigned long age_jiffies = secs_to_jiffies(age_secs);
1380
1381 spin_lock_bh(&rdev->bss_lock);
1382 list_for_each_entry(bss, &rdev->bss_list, list)
1383 bss->ts -= age_jiffies;
1384 spin_unlock_bh(&rdev->bss_lock);
1385}
1386
1387void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1388{
1389 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1390}
1391
1392void cfg80211_bss_flush(struct wiphy *wiphy)
1393{
1394 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1395
1396 spin_lock_bh(&rdev->bss_lock);
1397 __cfg80211_bss_expire(rdev, jiffies);
1398 spin_unlock_bh(&rdev->bss_lock);
1399}
1400EXPORT_SYMBOL(cfg80211_bss_flush);
1401
1402const struct element *
1403cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1404 const u8 *match, unsigned int match_len,
1405 unsigned int match_offset)
1406{
1407 const struct element *elem;
1408
1409 for_each_element_id(elem, eid, ies, len) {
1410 if (elem->datalen >= match_offset + match_len &&
1411 !memcmp(elem->data + match_offset, match, match_len))
1412 return elem;
1413 }
1414
1415 return NULL;
1416}
1417EXPORT_SYMBOL(cfg80211_find_elem_match);
1418
1419const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1420 const u8 *ies,
1421 unsigned int len)
1422{
1423 const struct element *elem;
1424 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1425 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1426
1427 if (WARN_ON(oui_type > 0xff))
1428 return NULL;
1429
1430 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1431 match, match_len, 0);
1432
1433 if (!elem || elem->datalen < 4)
1434 return NULL;
1435
1436 return elem;
1437}
1438EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1439
1440/**
1441 * enum bss_compare_mode - BSS compare mode
1442 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1443 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1444 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1445 */
1446enum bss_compare_mode {
1447 BSS_CMP_REGULAR,
1448 BSS_CMP_HIDE_ZLEN,
1449 BSS_CMP_HIDE_NUL,
1450};
1451
1452static int cmp_bss(struct cfg80211_bss *a,
1453 struct cfg80211_bss *b,
1454 enum bss_compare_mode mode)
1455{
1456 const struct cfg80211_bss_ies *a_ies, *b_ies;
1457 const u8 *ie1 = NULL;
1458 const u8 *ie2 = NULL;
1459 int i, r;
1460
1461 if (a->channel != b->channel)
1462 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1463 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1464
1465 a_ies = rcu_access_pointer(a->ies);
1466 if (!a_ies)
1467 return -1;
1468 b_ies = rcu_access_pointer(b->ies);
1469 if (!b_ies)
1470 return 1;
1471
1472 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1473 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1474 a_ies->data, a_ies->len);
1475 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1476 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1477 b_ies->data, b_ies->len);
1478 if (ie1 && ie2) {
1479 int mesh_id_cmp;
1480
1481 if (ie1[1] == ie2[1])
1482 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483 else
1484 mesh_id_cmp = ie2[1] - ie1[1];
1485
1486 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1487 a_ies->data, a_ies->len);
1488 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1489 b_ies->data, b_ies->len);
1490 if (ie1 && ie2) {
1491 if (mesh_id_cmp)
1492 return mesh_id_cmp;
1493 if (ie1[1] != ie2[1])
1494 return ie2[1] - ie1[1];
1495 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1496 }
1497 }
1498
1499 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1500 if (r)
1501 return r;
1502
1503 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1504 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1505
1506 if (!ie1 && !ie2)
1507 return 0;
1508
1509 /*
1510 * Note that with "hide_ssid", the function returns a match if
1511 * the already-present BSS ("b") is a hidden SSID beacon for
1512 * the new BSS ("a").
1513 */
1514
1515 /* sort missing IE before (left of) present IE */
1516 if (!ie1)
1517 return -1;
1518 if (!ie2)
1519 return 1;
1520
1521 switch (mode) {
1522 case BSS_CMP_HIDE_ZLEN:
1523 /*
1524 * In ZLEN mode we assume the BSS entry we're
1525 * looking for has a zero-length SSID. So if
1526 * the one we're looking at right now has that,
1527 * return 0. Otherwise, return the difference
1528 * in length, but since we're looking for the
1529 * 0-length it's really equivalent to returning
1530 * the length of the one we're looking at.
1531 *
1532 * No content comparison is needed as we assume
1533 * the content length is zero.
1534 */
1535 return ie2[1];
1536 case BSS_CMP_REGULAR:
1537 default:
1538 /* sort by length first, then by contents */
1539 if (ie1[1] != ie2[1])
1540 return ie2[1] - ie1[1];
1541 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1542 case BSS_CMP_HIDE_NUL:
1543 if (ie1[1] != ie2[1])
1544 return ie2[1] - ie1[1];
1545 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1546 for (i = 0; i < ie2[1]; i++)
1547 if (ie2[i + 2])
1548 return -1;
1549 return 0;
1550 }
1551}
1552
1553static bool cfg80211_bss_type_match(u16 capability,
1554 enum nl80211_band band,
1555 enum ieee80211_bss_type bss_type)
1556{
1557 bool ret = true;
1558 u16 mask, val;
1559
1560 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1561 return ret;
1562
1563 if (band == NL80211_BAND_60GHZ) {
1564 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1565 switch (bss_type) {
1566 case IEEE80211_BSS_TYPE_ESS:
1567 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1568 break;
1569 case IEEE80211_BSS_TYPE_PBSS:
1570 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1571 break;
1572 case IEEE80211_BSS_TYPE_IBSS:
1573 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1574 break;
1575 default:
1576 return false;
1577 }
1578 } else {
1579 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1580 switch (bss_type) {
1581 case IEEE80211_BSS_TYPE_ESS:
1582 val = WLAN_CAPABILITY_ESS;
1583 break;
1584 case IEEE80211_BSS_TYPE_IBSS:
1585 val = WLAN_CAPABILITY_IBSS;
1586 break;
1587 case IEEE80211_BSS_TYPE_MBSS:
1588 val = 0;
1589 break;
1590 default:
1591 return false;
1592 }
1593 }
1594
1595 ret = ((capability & mask) == val);
1596 return ret;
1597}
1598
1599/* Returned bss is reference counted and must be cleaned up appropriately. */
1600struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1601 struct ieee80211_channel *channel,
1602 const u8 *bssid,
1603 const u8 *ssid, size_t ssid_len,
1604 enum ieee80211_bss_type bss_type,
1605 enum ieee80211_privacy privacy,
1606 u32 use_for)
1607{
1608 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1609 struct cfg80211_internal_bss *bss, *res = NULL;
1610 unsigned long now = jiffies;
1611 int bss_privacy;
1612
1613 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1614 privacy);
1615
1616 spin_lock_bh(&rdev->bss_lock);
1617
1618 list_for_each_entry(bss, &rdev->bss_list, list) {
1619 if (!cfg80211_bss_type_match(bss->pub.capability,
1620 bss->pub.channel->band, bss_type))
1621 continue;
1622
1623 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1624 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1625 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1626 continue;
1627 if (channel && bss->pub.channel != channel)
1628 continue;
1629 if (!is_valid_ether_addr(bss->pub.bssid))
1630 continue;
1631 if ((bss->pub.use_for & use_for) != use_for)
1632 continue;
1633 /* Don't get expired BSS structs */
1634 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1635 !atomic_read(&bss->hold))
1636 continue;
1637 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1638 res = bss;
1639 bss_ref_get(rdev, res);
1640 break;
1641 }
1642 }
1643
1644 spin_unlock_bh(&rdev->bss_lock);
1645 if (!res)
1646 return NULL;
1647 trace_cfg80211_return_bss(&res->pub);
1648 return &res->pub;
1649}
1650EXPORT_SYMBOL(__cfg80211_get_bss);
1651
1652static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1653 struct cfg80211_internal_bss *bss)
1654{
1655 struct rb_node **p = &rdev->bss_tree.rb_node;
1656 struct rb_node *parent = NULL;
1657 struct cfg80211_internal_bss *tbss;
1658 int cmp;
1659
1660 while (*p) {
1661 parent = *p;
1662 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1663
1664 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1665
1666 if (WARN_ON(!cmp)) {
1667 /* will sort of leak this BSS */
1668 return false;
1669 }
1670
1671 if (cmp < 0)
1672 p = &(*p)->rb_left;
1673 else
1674 p = &(*p)->rb_right;
1675 }
1676
1677 rb_link_node(&bss->rbn, parent, p);
1678 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1679 return true;
1680}
1681
1682static struct cfg80211_internal_bss *
1683rb_find_bss(struct cfg80211_registered_device *rdev,
1684 struct cfg80211_internal_bss *res,
1685 enum bss_compare_mode mode)
1686{
1687 struct rb_node *n = rdev->bss_tree.rb_node;
1688 struct cfg80211_internal_bss *bss;
1689 int r;
1690
1691 while (n) {
1692 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1693 r = cmp_bss(&res->pub, &bss->pub, mode);
1694
1695 if (r == 0)
1696 return bss;
1697 else if (r < 0)
1698 n = n->rb_left;
1699 else
1700 n = n->rb_right;
1701 }
1702
1703 return NULL;
1704}
1705
1706static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1707 struct cfg80211_internal_bss *bss)
1708{
1709 lockdep_assert_held(&rdev->bss_lock);
1710
1711 if (!rb_insert_bss(rdev, bss))
1712 return;
1713 list_add_tail(&bss->list, &rdev->bss_list);
1714 rdev->bss_entries++;
1715}
1716
1717static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1718 struct cfg80211_internal_bss *bss)
1719{
1720 lockdep_assert_held(&rdev->bss_lock);
1721
1722 rb_erase(&bss->rbn, &rdev->bss_tree);
1723 if (!rb_insert_bss(rdev, bss)) {
1724 list_del(&bss->list);
1725 if (!list_empty(&bss->hidden_list))
1726 list_del_init(&bss->hidden_list);
1727 if (!list_empty(&bss->pub.nontrans_list))
1728 list_del_init(&bss->pub.nontrans_list);
1729 rdev->bss_entries--;
1730 }
1731 rdev->bss_generation++;
1732}
1733
1734static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1735 struct cfg80211_internal_bss *new)
1736{
1737 const struct cfg80211_bss_ies *ies;
1738 struct cfg80211_internal_bss *bss;
1739 const u8 *ie;
1740 int i, ssidlen;
1741 u8 fold = 0;
1742 u32 n_entries = 0;
1743
1744 ies = rcu_access_pointer(new->pub.beacon_ies);
1745 if (WARN_ON(!ies))
1746 return false;
1747
1748 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1749 if (!ie) {
1750 /* nothing to do */
1751 return true;
1752 }
1753
1754 ssidlen = ie[1];
1755 for (i = 0; i < ssidlen; i++)
1756 fold |= ie[2 + i];
1757
1758 if (fold) {
1759 /* not a hidden SSID */
1760 return true;
1761 }
1762
1763 /* This is the bad part ... */
1764
1765 list_for_each_entry(bss, &rdev->bss_list, list) {
1766 /*
1767 * we're iterating all the entries anyway, so take the
1768 * opportunity to validate the list length accounting
1769 */
1770 n_entries++;
1771
1772 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1773 continue;
1774 if (bss->pub.channel != new->pub.channel)
1775 continue;
1776 if (rcu_access_pointer(bss->pub.beacon_ies))
1777 continue;
1778 ies = rcu_access_pointer(bss->pub.ies);
1779 if (!ies)
1780 continue;
1781 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1782 if (!ie)
1783 continue;
1784 if (ssidlen && ie[1] != ssidlen)
1785 continue;
1786 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1787 continue;
1788 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1789 list_del(&bss->hidden_list);
1790 /* combine them */
1791 list_add(&bss->hidden_list, &new->hidden_list);
1792 bss->pub.hidden_beacon_bss = &new->pub;
1793 new->refcount += bss->refcount;
1794 rcu_assign_pointer(bss->pub.beacon_ies,
1795 new->pub.beacon_ies);
1796 }
1797
1798 WARN_ONCE(n_entries != rdev->bss_entries,
1799 "rdev bss entries[%d]/list[len:%d] corruption\n",
1800 rdev->bss_entries, n_entries);
1801
1802 return true;
1803}
1804
1805static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1806 const struct cfg80211_bss_ies *new_ies,
1807 const struct cfg80211_bss_ies *old_ies)
1808{
1809 struct cfg80211_internal_bss *bss;
1810
1811 /* Assign beacon IEs to all sub entries */
1812 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1813 const struct cfg80211_bss_ies *ies;
1814
1815 ies = rcu_access_pointer(bss->pub.beacon_ies);
1816 WARN_ON(ies != old_ies);
1817
1818 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1819
1820 bss->ts = known->ts;
1821 bss->pub.ts_boottime = known->pub.ts_boottime;
1822 }
1823}
1824
1825static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1826 struct cfg80211_internal_bss *known,
1827 const struct cfg80211_bss_ies *old)
1828{
1829 const struct ieee80211_ext_chansw_ie *ecsa;
1830 const struct element *elem_new, *elem_old;
1831 const struct cfg80211_bss_ies *new, *bcn;
1832
1833 if (known->pub.proberesp_ecsa_stuck)
1834 return;
1835
1836 new = rcu_dereference_protected(known->pub.proberesp_ies,
1837 lockdep_is_held(&rdev->bss_lock));
1838 if (WARN_ON(!new))
1839 return;
1840
1841 if (new->tsf - old->tsf < USEC_PER_SEC)
1842 return;
1843
1844 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1845 old->data, old->len);
1846 if (!elem_old)
1847 return;
1848
1849 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1850 new->data, new->len);
1851 if (!elem_new)
1852 return;
1853
1854 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1855 lockdep_is_held(&rdev->bss_lock));
1856 if (bcn &&
1857 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1858 bcn->data, bcn->len))
1859 return;
1860
1861 if (elem_new->datalen != elem_old->datalen)
1862 return;
1863 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1864 return;
1865 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1866 return;
1867
1868 ecsa = (void *)elem_new->data;
1869
1870 if (!ecsa->mode)
1871 return;
1872
1873 if (ecsa->new_ch_num !=
1874 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1875 return;
1876
1877 known->pub.proberesp_ecsa_stuck = 1;
1878}
1879
1880static bool
1881cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1882 struct cfg80211_internal_bss *known,
1883 struct cfg80211_internal_bss *new,
1884 bool signal_valid)
1885{
1886 lockdep_assert_held(&rdev->bss_lock);
1887
1888 /* Update time stamps */
1889 known->ts = new->ts;
1890 known->pub.ts_boottime = new->pub.ts_boottime;
1891
1892 /* Update IEs */
1893 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1894 const struct cfg80211_bss_ies *old;
1895
1896 old = rcu_access_pointer(known->pub.proberesp_ies);
1897
1898 rcu_assign_pointer(known->pub.proberesp_ies,
1899 new->pub.proberesp_ies);
1900 /* Override possible earlier Beacon frame IEs */
1901 rcu_assign_pointer(known->pub.ies,
1902 new->pub.proberesp_ies);
1903 if (old) {
1904 cfg80211_check_stuck_ecsa(rdev, known, old);
1905 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1906 }
1907 }
1908
1909 if (rcu_access_pointer(new->pub.beacon_ies)) {
1910 const struct cfg80211_bss_ies *old;
1911
1912 if (known->pub.hidden_beacon_bss &&
1913 !list_empty(&known->hidden_list)) {
1914 const struct cfg80211_bss_ies *f;
1915
1916 /* The known BSS struct is one of the probe
1917 * response members of a group, but we're
1918 * receiving a beacon (beacon_ies in the new
1919 * bss is used). This can only mean that the
1920 * AP changed its beacon from not having an
1921 * SSID to showing it, which is confusing so
1922 * drop this information.
1923 */
1924
1925 f = rcu_access_pointer(new->pub.beacon_ies);
1926 if (!new->pub.hidden_beacon_bss)
1927 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1928 return false;
1929 }
1930
1931 old = rcu_access_pointer(known->pub.beacon_ies);
1932
1933 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1934
1935 /* Override IEs if they were from a beacon before */
1936 if (old == rcu_access_pointer(known->pub.ies))
1937 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1938
1939 cfg80211_update_hidden_bsses(known,
1940 rcu_access_pointer(new->pub.beacon_ies),
1941 old);
1942
1943 if (old)
1944 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1945 }
1946
1947 known->pub.beacon_interval = new->pub.beacon_interval;
1948
1949 /* don't update the signal if beacon was heard on
1950 * adjacent channel.
1951 */
1952 if (signal_valid)
1953 known->pub.signal = new->pub.signal;
1954 known->pub.capability = new->pub.capability;
1955 known->parent_tsf = new->parent_tsf;
1956 known->pub.chains = new->pub.chains;
1957 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1958 IEEE80211_MAX_CHAINS);
1959 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1960 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1961 known->pub.bssid_index = new->pub.bssid_index;
1962 known->pub.use_for &= new->pub.use_for;
1963 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1964 known->bss_source = new->bss_source;
1965
1966 return true;
1967}
1968
1969/* Returned bss is reference counted and must be cleaned up appropriately. */
1970static struct cfg80211_internal_bss *
1971__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1972 struct cfg80211_internal_bss *tmp,
1973 bool signal_valid, unsigned long ts)
1974{
1975 struct cfg80211_internal_bss *found = NULL;
1976 struct cfg80211_bss_ies *ies;
1977
1978 if (WARN_ON(!tmp->pub.channel))
1979 goto free_ies;
1980
1981 tmp->ts = ts;
1982
1983 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1984 goto free_ies;
1985
1986 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1987
1988 if (found) {
1989 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1990 return NULL;
1991 } else {
1992 struct cfg80211_internal_bss *new;
1993 struct cfg80211_internal_bss *hidden;
1994
1995 /*
1996 * create a copy -- the "res" variable that is passed in
1997 * is allocated on the stack since it's not needed in the
1998 * more common case of an update
1999 */
2000 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
2001 GFP_ATOMIC);
2002 if (!new)
2003 goto free_ies;
2004 memcpy(new, tmp, sizeof(*new));
2005 new->refcount = 1;
2006 INIT_LIST_HEAD(&new->hidden_list);
2007 INIT_LIST_HEAD(&new->pub.nontrans_list);
2008 /* we'll set this later if it was non-NULL */
2009 new->pub.transmitted_bss = NULL;
2010
2011 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
2012 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
2013 if (!hidden)
2014 hidden = rb_find_bss(rdev, tmp,
2015 BSS_CMP_HIDE_NUL);
2016 if (hidden) {
2017 new->pub.hidden_beacon_bss = &hidden->pub;
2018 list_add(&new->hidden_list,
2019 &hidden->hidden_list);
2020 hidden->refcount++;
2021
2022 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
2023 rcu_assign_pointer(new->pub.beacon_ies,
2024 hidden->pub.beacon_ies);
2025 if (ies)
2026 kfree_rcu(ies, rcu_head);
2027 }
2028 } else {
2029 /*
2030 * Ok so we found a beacon, and don't have an entry. If
2031 * it's a beacon with hidden SSID, we might be in for an
2032 * expensive search for any probe responses that should
2033 * be grouped with this beacon for updates ...
2034 */
2035 if (!cfg80211_combine_bsses(rdev, new)) {
2036 bss_ref_put(rdev, new);
2037 return NULL;
2038 }
2039 }
2040
2041 if (rdev->bss_entries >= bss_entries_limit &&
2042 !cfg80211_bss_expire_oldest(rdev)) {
2043 bss_ref_put(rdev, new);
2044 return NULL;
2045 }
2046
2047 /* This must be before the call to bss_ref_get */
2048 if (tmp->pub.transmitted_bss) {
2049 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
2050 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
2051 }
2052
2053 cfg80211_insert_bss(rdev, new);
2054 found = new;
2055 }
2056
2057 rdev->bss_generation++;
2058 bss_ref_get(rdev, found);
2059
2060 return found;
2061
2062free_ies:
2063 ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2064 if (ies)
2065 kfree_rcu(ies, rcu_head);
2066 ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2067 if (ies)
2068 kfree_rcu(ies, rcu_head);
2069
2070 return NULL;
2071}
2072
2073struct cfg80211_internal_bss *
2074cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2075 struct cfg80211_internal_bss *tmp,
2076 bool signal_valid, unsigned long ts)
2077{
2078 struct cfg80211_internal_bss *res;
2079
2080 spin_lock_bh(&rdev->bss_lock);
2081 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2082 spin_unlock_bh(&rdev->bss_lock);
2083
2084 return res;
2085}
2086
2087int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2088 enum nl80211_band band)
2089{
2090 const struct element *tmp;
2091
2092 if (band == NL80211_BAND_6GHZ) {
2093 struct ieee80211_he_operation *he_oper;
2094
2095 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2096 ielen);
2097 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2098 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2099 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2100
2101 he_oper = (void *)&tmp->data[1];
2102
2103 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2104 if (!he_6ghz_oper)
2105 return -1;
2106
2107 return he_6ghz_oper->primary;
2108 }
2109 } else if (band == NL80211_BAND_S1GHZ) {
2110 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2111 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2112 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2113
2114 return s1gop->oper_ch;
2115 }
2116 } else {
2117 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2118 if (tmp && tmp->datalen == 1)
2119 return tmp->data[0];
2120
2121 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2122 if (tmp &&
2123 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2124 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2125
2126 return htop->primary_chan;
2127 }
2128 }
2129
2130 return -1;
2131}
2132EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2133
2134/*
2135 * Update RX channel information based on the available frame payload
2136 * information. This is mainly for the 2.4 GHz band where frames can be received
2137 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2138 * element to indicate the current (transmitting) channel, but this might also
2139 * be needed on other bands if RX frequency does not match with the actual
2140 * operating channel of a BSS, or if the AP reports a different primary channel.
2141 */
2142static struct ieee80211_channel *
2143cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2144 struct ieee80211_channel *channel)
2145{
2146 u32 freq;
2147 int channel_number;
2148 struct ieee80211_channel *alt_channel;
2149
2150 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2151 channel->band);
2152
2153 if (channel_number < 0) {
2154 /* No channel information in frame payload */
2155 return channel;
2156 }
2157
2158 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2159
2160 /*
2161 * Frame info (beacon/prob res) is the same as received channel,
2162 * no need for further processing.
2163 */
2164 if (freq == ieee80211_channel_to_khz(channel))
2165 return channel;
2166
2167 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2168 if (!alt_channel) {
2169 if (channel->band == NL80211_BAND_2GHZ ||
2170 channel->band == NL80211_BAND_6GHZ) {
2171 /*
2172 * Better not allow unexpected channels when that could
2173 * be going beyond the 1-11 range (e.g., discovering
2174 * BSS on channel 12 when radio is configured for
2175 * channel 11) or beyond the 6 GHz channel range.
2176 */
2177 return NULL;
2178 }
2179
2180 /* No match for the payload channel number - ignore it */
2181 return channel;
2182 }
2183
2184 /*
2185 * Use the channel determined through the payload channel number
2186 * instead of the RX channel reported by the driver.
2187 */
2188 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2189 return NULL;
2190 return alt_channel;
2191}
2192
2193struct cfg80211_inform_single_bss_data {
2194 struct cfg80211_inform_bss *drv_data;
2195 enum cfg80211_bss_frame_type ftype;
2196 struct ieee80211_channel *channel;
2197 u8 bssid[ETH_ALEN];
2198 u64 tsf;
2199 u16 capability;
2200 u16 beacon_interval;
2201 const u8 *ie;
2202 size_t ielen;
2203
2204 enum bss_source_type bss_source;
2205 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2206 struct cfg80211_bss *source_bss;
2207 u8 max_bssid_indicator;
2208 u8 bssid_index;
2209
2210 u8 use_for;
2211 u64 cannot_use_reasons;
2212};
2213
2214enum ieee80211_ap_reg_power
2215cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len,
2216 u32 client_flags)
2217{
2218 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2219 struct ieee80211_he_operation *he_oper;
2220 const struct element *tmp;
2221
2222 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2223 elems, elems_len);
2224 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2225 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2226 return IEEE80211_REG_UNSET_AP;
2227
2228 he_oper = (void *)&tmp->data[1];
2229 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2230
2231 if (!he_6ghz_oper)
2232 return IEEE80211_REG_UNSET_AP;
2233
2234 return cfg80211_6ghz_power_type(he_6ghz_oper->control, client_flags);
2235}
2236
2237static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2238 const u32 flags)
2239{
2240 switch (cfg80211_get_6ghz_power_type(elems, elems_len, flags)) {
2241 case IEEE80211_REG_LPI_AP:
2242 return true;
2243 case IEEE80211_REG_SP_AP:
2244 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2245 case IEEE80211_REG_VLP_AP:
2246 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2247 default:
2248 return false;
2249 }
2250}
2251
2252/* Returned bss is reference counted and must be cleaned up appropriately. */
2253static struct cfg80211_bss *
2254cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2255 struct cfg80211_inform_single_bss_data *data,
2256 gfp_t gfp)
2257{
2258 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2259 struct cfg80211_inform_bss *drv_data = data->drv_data;
2260 struct cfg80211_bss_ies *ies;
2261 struct ieee80211_channel *channel;
2262 struct cfg80211_internal_bss tmp = {}, *res;
2263 int bss_type;
2264 bool signal_valid;
2265 unsigned long ts;
2266
2267 if (WARN_ON(!wiphy))
2268 return NULL;
2269
2270 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2271 (drv_data->signal < 0 || drv_data->signal > 100)))
2272 return NULL;
2273
2274 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2275 return NULL;
2276
2277 channel = data->channel;
2278 if (!channel)
2279 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2280 drv_data->chan);
2281 if (!channel)
2282 return NULL;
2283
2284 if (channel->band == NL80211_BAND_6GHZ &&
2285 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2286 channel->flags)) {
2287 data->use_for = 0;
2288 data->cannot_use_reasons =
2289 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2290 }
2291
2292 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2293 tmp.pub.channel = channel;
2294 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2295 tmp.pub.signal = drv_data->signal;
2296 else
2297 tmp.pub.signal = 0;
2298 tmp.pub.beacon_interval = data->beacon_interval;
2299 tmp.pub.capability = data->capability;
2300 tmp.pub.ts_boottime = drv_data->boottime_ns;
2301 tmp.parent_tsf = drv_data->parent_tsf;
2302 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2303 tmp.pub.chains = drv_data->chains;
2304 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2305 IEEE80211_MAX_CHAINS);
2306 tmp.pub.use_for = data->use_for;
2307 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2308 tmp.bss_source = data->bss_source;
2309
2310 switch (data->bss_source) {
2311 case BSS_SOURCE_MBSSID:
2312 tmp.pub.transmitted_bss = data->source_bss;
2313 fallthrough;
2314 case BSS_SOURCE_STA_PROFILE:
2315 ts = bss_from_pub(data->source_bss)->ts;
2316 tmp.pub.bssid_index = data->bssid_index;
2317 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2318 break;
2319 case BSS_SOURCE_DIRECT:
2320 ts = jiffies;
2321
2322 if (channel->band == NL80211_BAND_60GHZ) {
2323 bss_type = data->capability &
2324 WLAN_CAPABILITY_DMG_TYPE_MASK;
2325 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2326 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2327 regulatory_hint_found_beacon(wiphy, channel,
2328 gfp);
2329 } else {
2330 if (data->capability & WLAN_CAPABILITY_ESS)
2331 regulatory_hint_found_beacon(wiphy, channel,
2332 gfp);
2333 }
2334 break;
2335 }
2336
2337 /*
2338 * If we do not know here whether the IEs are from a Beacon or Probe
2339 * Response frame, we need to pick one of the options and only use it
2340 * with the driver that does not provide the full Beacon/Probe Response
2341 * frame. Use Beacon frame pointer to avoid indicating that this should
2342 * override the IEs pointer should we have received an earlier
2343 * indication of Probe Response data.
2344 */
2345 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2346 if (!ies)
2347 return NULL;
2348 ies->len = data->ielen;
2349 ies->tsf = data->tsf;
2350 ies->from_beacon = false;
2351 memcpy(ies->data, data->ie, data->ielen);
2352
2353 switch (data->ftype) {
2354 case CFG80211_BSS_FTYPE_BEACON:
2355 case CFG80211_BSS_FTYPE_S1G_BEACON:
2356 ies->from_beacon = true;
2357 fallthrough;
2358 case CFG80211_BSS_FTYPE_UNKNOWN:
2359 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2360 break;
2361 case CFG80211_BSS_FTYPE_PRESP:
2362 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2363 break;
2364 }
2365 rcu_assign_pointer(tmp.pub.ies, ies);
2366
2367 signal_valid = drv_data->chan == channel;
2368 spin_lock_bh(&rdev->bss_lock);
2369 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2370 if (!res)
2371 goto drop;
2372
2373 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2374
2375 if (data->bss_source == BSS_SOURCE_MBSSID) {
2376 /* this is a nontransmitting bss, we need to add it to
2377 * transmitting bss' list if it is not there
2378 */
2379 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2380 if (__cfg80211_unlink_bss(rdev, res)) {
2381 rdev->bss_generation++;
2382 res = NULL;
2383 }
2384 }
2385
2386 if (!res)
2387 goto drop;
2388 }
2389 spin_unlock_bh(&rdev->bss_lock);
2390
2391 trace_cfg80211_return_bss(&res->pub);
2392 /* __cfg80211_bss_update gives us a referenced result */
2393 return &res->pub;
2394
2395drop:
2396 spin_unlock_bh(&rdev->bss_lock);
2397 return NULL;
2398}
2399
2400static const struct element
2401*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2402 const struct element *mbssid_elem,
2403 const struct element *sub_elem)
2404{
2405 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2406 const struct element *next_mbssid;
2407 const struct element *next_sub;
2408
2409 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2410 mbssid_end,
2411 ielen - (mbssid_end - ie));
2412
2413 /*
2414 * If it is not the last subelement in current MBSSID IE or there isn't
2415 * a next MBSSID IE - profile is complete.
2416 */
2417 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2418 !next_mbssid)
2419 return NULL;
2420
2421 /* For any length error, just return NULL */
2422
2423 if (next_mbssid->datalen < 4)
2424 return NULL;
2425
2426 next_sub = (void *)&next_mbssid->data[1];
2427
2428 if (next_mbssid->data + next_mbssid->datalen <
2429 next_sub->data + next_sub->datalen)
2430 return NULL;
2431
2432 if (next_sub->id != 0 || next_sub->datalen < 2)
2433 return NULL;
2434
2435 /*
2436 * Check if the first element in the next sub element is a start
2437 * of a new profile
2438 */
2439 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2440 NULL : next_mbssid;
2441}
2442
2443size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2444 const struct element *mbssid_elem,
2445 const struct element *sub_elem,
2446 u8 *merged_ie, size_t max_copy_len)
2447{
2448 size_t copied_len = sub_elem->datalen;
2449 const struct element *next_mbssid;
2450
2451 if (sub_elem->datalen > max_copy_len)
2452 return 0;
2453
2454 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2455
2456 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2457 mbssid_elem,
2458 sub_elem))) {
2459 const struct element *next_sub = (void *)&next_mbssid->data[1];
2460
2461 if (copied_len + next_sub->datalen > max_copy_len)
2462 break;
2463 memcpy(merged_ie + copied_len, next_sub->data,
2464 next_sub->datalen);
2465 copied_len += next_sub->datalen;
2466 }
2467
2468 return copied_len;
2469}
2470EXPORT_SYMBOL(cfg80211_merge_profile);
2471
2472static void
2473cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2474 struct cfg80211_inform_single_bss_data *tx_data,
2475 struct cfg80211_bss *source_bss,
2476 gfp_t gfp)
2477{
2478 struct cfg80211_inform_single_bss_data data = {
2479 .drv_data = tx_data->drv_data,
2480 .ftype = tx_data->ftype,
2481 .tsf = tx_data->tsf,
2482 .beacon_interval = tx_data->beacon_interval,
2483 .source_bss = source_bss,
2484 .bss_source = BSS_SOURCE_MBSSID,
2485 .use_for = tx_data->use_for,
2486 .cannot_use_reasons = tx_data->cannot_use_reasons,
2487 };
2488 const u8 *mbssid_index_ie;
2489 const struct element *elem, *sub;
2490 u8 *new_ie, *profile;
2491 u64 seen_indices = 0;
2492 struct cfg80211_bss *bss;
2493
2494 if (!source_bss)
2495 return;
2496 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2497 tx_data->ie, tx_data->ielen))
2498 return;
2499 if (!wiphy->support_mbssid)
2500 return;
2501 if (wiphy->support_only_he_mbssid &&
2502 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2503 tx_data->ie, tx_data->ielen))
2504 return;
2505
2506 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2507 if (!new_ie)
2508 return;
2509
2510 profile = kmalloc(tx_data->ielen, gfp);
2511 if (!profile)
2512 goto out;
2513
2514 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2515 tx_data->ie, tx_data->ielen) {
2516 if (elem->datalen < 4)
2517 continue;
2518 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2519 continue;
2520 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2521 u8 profile_len;
2522
2523 if (sub->id != 0 || sub->datalen < 4) {
2524 /* not a valid BSS profile */
2525 continue;
2526 }
2527
2528 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2529 sub->data[1] != 2) {
2530 /* The first element within the Nontransmitted
2531 * BSSID Profile is not the Nontransmitted
2532 * BSSID Capability element.
2533 */
2534 continue;
2535 }
2536
2537 memset(profile, 0, tx_data->ielen);
2538 profile_len = cfg80211_merge_profile(tx_data->ie,
2539 tx_data->ielen,
2540 elem,
2541 sub,
2542 profile,
2543 tx_data->ielen);
2544
2545 /* found a Nontransmitted BSSID Profile */
2546 mbssid_index_ie = cfg80211_find_ie
2547 (WLAN_EID_MULTI_BSSID_IDX,
2548 profile, profile_len);
2549 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2550 mbssid_index_ie[2] == 0 ||
2551 mbssid_index_ie[2] > 46 ||
2552 mbssid_index_ie[2] >= (1 << elem->data[0])) {
2553 /* No valid Multiple BSSID-Index element */
2554 continue;
2555 }
2556
2557 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2558 /* We don't support legacy split of a profile */
2559 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2560 mbssid_index_ie[2]);
2561
2562 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2563
2564 data.bssid_index = mbssid_index_ie[2];
2565 data.max_bssid_indicator = elem->data[0];
2566
2567 cfg80211_gen_new_bssid(tx_data->bssid,
2568 data.max_bssid_indicator,
2569 data.bssid_index,
2570 data.bssid);
2571
2572 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2573 data.ie = new_ie;
2574 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2575 tx_data->ielen,
2576 profile,
2577 profile_len,
2578 new_ie,
2579 IEEE80211_MAX_DATA_LEN);
2580 if (!data.ielen)
2581 continue;
2582
2583 data.capability = get_unaligned_le16(profile + 2);
2584 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2585 if (!bss)
2586 break;
2587 cfg80211_put_bss(wiphy, bss);
2588 }
2589 }
2590
2591out:
2592 kfree(new_ie);
2593 kfree(profile);
2594}
2595
2596ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2597 size_t ieslen, u8 *data, size_t data_len,
2598 u8 frag_id)
2599{
2600 const struct element *next;
2601 ssize_t copied;
2602 u8 elem_datalen;
2603
2604 if (!elem)
2605 return -EINVAL;
2606
2607 /* elem might be invalid after the memmove */
2608 next = (void *)(elem->data + elem->datalen);
2609 elem_datalen = elem->datalen;
2610
2611 if (elem->id == WLAN_EID_EXTENSION) {
2612 copied = elem->datalen - 1;
2613
2614 if (data) {
2615 if (copied > data_len)
2616 return -ENOSPC;
2617
2618 memmove(data, elem->data + 1, copied);
2619 }
2620 } else {
2621 copied = elem->datalen;
2622
2623 if (data) {
2624 if (copied > data_len)
2625 return -ENOSPC;
2626
2627 memmove(data, elem->data, copied);
2628 }
2629 }
2630
2631 /* Fragmented elements must have 255 bytes */
2632 if (elem_datalen < 255)
2633 return copied;
2634
2635 for (elem = next;
2636 elem->data < ies + ieslen &&
2637 elem->data + elem->datalen <= ies + ieslen;
2638 elem = next) {
2639 /* elem might be invalid after the memmove */
2640 next = (void *)(elem->data + elem->datalen);
2641
2642 if (elem->id != frag_id)
2643 break;
2644
2645 elem_datalen = elem->datalen;
2646
2647 if (data) {
2648 if (copied + elem_datalen > data_len)
2649 return -ENOSPC;
2650
2651 memmove(data + copied, elem->data, elem_datalen);
2652 }
2653
2654 copied += elem_datalen;
2655
2656 /* Only the last fragment may be short */
2657 if (elem_datalen != 255)
2658 break;
2659 }
2660
2661 return copied;
2662}
2663EXPORT_SYMBOL(cfg80211_defragment_element);
2664
2665struct cfg80211_mle {
2666 struct ieee80211_multi_link_elem *mle;
2667 struct ieee80211_mle_per_sta_profile
2668 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2669 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2670
2671 u8 data[];
2672};
2673
2674static struct cfg80211_mle *
2675cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2676 gfp_t gfp)
2677{
2678 const struct element *elem;
2679 struct cfg80211_mle *res;
2680 size_t buf_len;
2681 ssize_t mle_len;
2682 u8 common_size, idx;
2683
2684 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2685 return NULL;
2686
2687 /* Required length for first defragmentation */
2688 buf_len = mle->datalen - 1;
2689 for_each_element(elem, mle->data + mle->datalen,
2690 ie + ielen - mle->data - mle->datalen) {
2691 if (elem->id != WLAN_EID_FRAGMENT)
2692 break;
2693
2694 buf_len += elem->datalen;
2695 }
2696
2697 res = kzalloc(struct_size(res, data, buf_len), gfp);
2698 if (!res)
2699 return NULL;
2700
2701 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2702 res->data, buf_len,
2703 WLAN_EID_FRAGMENT);
2704 if (mle_len < 0)
2705 goto error;
2706
2707 res->mle = (void *)res->data;
2708
2709 /* Find the sub-element area in the buffer */
2710 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2711 ie = res->data + common_size;
2712 ielen = mle_len - common_size;
2713
2714 idx = 0;
2715 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2716 ie, ielen) {
2717 res->sta_prof[idx] = (void *)elem->data;
2718 res->sta_prof_len[idx] = elem->datalen;
2719
2720 idx++;
2721 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2722 break;
2723 }
2724 if (!for_each_element_completed(elem, ie, ielen))
2725 goto error;
2726
2727 /* Defragment sta_info in-place */
2728 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2729 idx++) {
2730 if (res->sta_prof_len[idx] < 255)
2731 continue;
2732
2733 elem = (void *)res->sta_prof[idx] - 2;
2734
2735 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2736 res->sta_prof[idx + 1])
2737 buf_len = (u8 *)res->sta_prof[idx + 1] -
2738 (u8 *)res->sta_prof[idx];
2739 else
2740 buf_len = ielen + ie - (u8 *)elem;
2741
2742 res->sta_prof_len[idx] =
2743 cfg80211_defragment_element(elem,
2744 (u8 *)elem, buf_len,
2745 (u8 *)res->sta_prof[idx],
2746 buf_len,
2747 IEEE80211_MLE_SUBELEM_FRAGMENT);
2748 if (res->sta_prof_len[idx] < 0)
2749 goto error;
2750 }
2751
2752 return res;
2753
2754error:
2755 kfree(res);
2756 return NULL;
2757}
2758
2759struct tbtt_info_iter_data {
2760 const struct ieee80211_neighbor_ap_info *ap_info;
2761 u8 param_ch_count;
2762 u32 use_for;
2763 u8 mld_id, link_id;
2764 bool non_tx;
2765};
2766
2767static enum cfg80211_rnr_iter_ret
2768cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2769 const struct ieee80211_neighbor_ap_info *info,
2770 const u8 *tbtt_info, u8 tbtt_info_len)
2771{
2772 const struct ieee80211_rnr_mld_params *mld_params;
2773 struct tbtt_info_iter_data *data = _data;
2774 u8 link_id;
2775 bool non_tx = false;
2776
2777 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2778 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2779 mld_params)) {
2780 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2781 (void *)tbtt_info;
2782
2783 non_tx = (tbtt_info_ge_11->bss_params &
2784 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2785 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2786 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2787 mld_params = &tbtt_info_ge_11->mld_params;
2788 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2789 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2790 mld_params = (void *)tbtt_info;
2791 else
2792 return RNR_ITER_CONTINUE;
2793
2794 link_id = le16_get_bits(mld_params->params,
2795 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2796
2797 if (data->mld_id != mld_params->mld_id)
2798 return RNR_ITER_CONTINUE;
2799
2800 if (data->link_id != link_id)
2801 return RNR_ITER_CONTINUE;
2802
2803 data->ap_info = info;
2804 data->param_ch_count =
2805 le16_get_bits(mld_params->params,
2806 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2807 data->non_tx = non_tx;
2808
2809 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2810 data->use_for = NL80211_BSS_USE_FOR_ALL;
2811 else
2812 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2813 return RNR_ITER_BREAK;
2814}
2815
2816static u8
2817cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2818 const struct ieee80211_neighbor_ap_info **ap_info,
2819 u8 *param_ch_count, bool *non_tx)
2820{
2821 struct tbtt_info_iter_data data = {
2822 .mld_id = mld_id,
2823 .link_id = link_id,
2824 };
2825
2826 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2827
2828 *ap_info = data.ap_info;
2829 *param_ch_count = data.param_ch_count;
2830 *non_tx = data.non_tx;
2831
2832 return data.use_for;
2833}
2834
2835static struct element *
2836cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2837 bool same_mld, u8 link_id, u8 bss_change_count,
2838 gfp_t gfp)
2839{
2840 const struct cfg80211_bss_ies *ies;
2841 struct ieee80211_neighbor_ap_info ap_info;
2842 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2843 u32 short_ssid;
2844 const struct element *elem;
2845 struct element *res;
2846
2847 /*
2848 * We only generate the RNR to permit ML lookups. For that we do not
2849 * need an entry for the corresponding transmitting BSS, lets just skip
2850 * it even though it would be easy to add.
2851 */
2852 if (!same_mld)
2853 return NULL;
2854
2855 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2856 rcu_read_lock();
2857 ies = rcu_dereference(source_bss->ies);
2858
2859 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2860 ap_info.tbtt_info_hdr =
2861 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2862 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2863 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2864
2865 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2866
2867 /* operating class */
2868 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2869 ies->data, ies->len);
2870 if (elem && elem->datalen >= 1) {
2871 ap_info.op_class = elem->data[0];
2872 } else {
2873 struct cfg80211_chan_def chandef;
2874
2875 /* The AP is not providing us with anything to work with. So
2876 * make up a somewhat reasonable operating class, but don't
2877 * bother with it too much as no one will ever use the
2878 * information.
2879 */
2880 cfg80211_chandef_create(&chandef, source_bss->channel,
2881 NL80211_CHAN_NO_HT);
2882
2883 if (!ieee80211_chandef_to_operating_class(&chandef,
2884 &ap_info.op_class))
2885 goto out_unlock;
2886 }
2887
2888 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2889 tbtt_info.tbtt_offset = 255;
2890 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2891
2892 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2893 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2894 goto out_unlock;
2895
2896 rcu_read_unlock();
2897
2898 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2899
2900 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2901
2902 if (is_mbssid) {
2903 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2904 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2905 }
2906
2907 tbtt_info.mld_params.mld_id = 0;
2908 tbtt_info.mld_params.params =
2909 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2910 le16_encode_bits(bss_change_count,
2911 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2912
2913 res = kzalloc(struct_size(res, data,
2914 sizeof(ap_info) + ap_info.tbtt_info_len),
2915 gfp);
2916 if (!res)
2917 return NULL;
2918
2919 /* Copy the data */
2920 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2921 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2922 memcpy(res->data, &ap_info, sizeof(ap_info));
2923 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2924
2925 return res;
2926
2927out_unlock:
2928 rcu_read_unlock();
2929 return NULL;
2930}
2931
2932static void
2933cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2934 struct cfg80211_inform_single_bss_data *tx_data,
2935 struct cfg80211_bss *source_bss,
2936 const struct element *elem,
2937 gfp_t gfp)
2938{
2939 struct cfg80211_inform_single_bss_data data = {
2940 .drv_data = tx_data->drv_data,
2941 .ftype = tx_data->ftype,
2942 .source_bss = source_bss,
2943 .bss_source = BSS_SOURCE_STA_PROFILE,
2944 };
2945 struct element *reporter_rnr = NULL;
2946 struct ieee80211_multi_link_elem *ml_elem;
2947 struct cfg80211_mle *mle;
2948 const struct element *ssid_elem;
2949 const u8 *ssid = NULL;
2950 size_t ssid_len = 0;
2951 u16 control;
2952 u8 ml_common_len;
2953 u8 *new_ie = NULL;
2954 struct cfg80211_bss *bss;
2955 u8 mld_id, reporter_link_id, bss_change_count;
2956 u16 seen_links = 0;
2957 u8 i;
2958
2959 if (!ieee80211_mle_type_ok(elem->data + 1,
2960 IEEE80211_ML_CONTROL_TYPE_BASIC,
2961 elem->datalen - 1))
2962 return;
2963
2964 ml_elem = (void *)(elem->data + 1);
2965 control = le16_to_cpu(ml_elem->control);
2966 ml_common_len = ml_elem->variable[0];
2967
2968 /* Must be present when transmitted by an AP (in a probe response) */
2969 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2970 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2971 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2972 return;
2973
2974 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2975 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2976
2977 /*
2978 * The MLD ID of the reporting AP is always zero. It is set if the AP
2979 * is part of an MBSSID set and will be non-zero for ML Elements
2980 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2981 * Draft P802.11be_D3.2, 35.3.4.2)
2982 */
2983 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2984
2985 /* Fully defrag the ML element for sta information/profile iteration */
2986 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2987 if (!mle)
2988 return;
2989
2990 /* No point in doing anything if there is no per-STA profile */
2991 if (!mle->sta_prof[0])
2992 goto out;
2993
2994 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2995 if (!new_ie)
2996 goto out;
2997
2998 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2999 u16_get_bits(control,
3000 IEEE80211_MLC_BASIC_PRES_MLD_ID),
3001 mld_id == 0, reporter_link_id,
3002 bss_change_count,
3003 gfp);
3004
3005 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
3006 tx_data->ielen);
3007 if (ssid_elem) {
3008 ssid = ssid_elem->data;
3009 ssid_len = ssid_elem->datalen;
3010 }
3011
3012 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
3013 const struct ieee80211_neighbor_ap_info *ap_info;
3014 enum nl80211_band band;
3015 u32 freq;
3016 const u8 *profile;
3017 ssize_t profile_len;
3018 u8 param_ch_count;
3019 u8 link_id, use_for;
3020 bool non_tx;
3021
3022 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
3023 mle->sta_prof_len[i]))
3024 continue;
3025
3026 control = le16_to_cpu(mle->sta_prof[i]->control);
3027
3028 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
3029 continue;
3030
3031 link_id = u16_get_bits(control,
3032 IEEE80211_MLE_STA_CONTROL_LINK_ID);
3033 if (seen_links & BIT(link_id))
3034 break;
3035 seen_links |= BIT(link_id);
3036
3037 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
3038 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
3039 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
3040 continue;
3041
3042 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3043 data.beacon_interval =
3044 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3045 data.tsf = tx_data->tsf +
3046 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3047
3048 /* sta_info_len counts itself */
3049 profile = mle->sta_prof[i]->variable +
3050 mle->sta_prof[i]->sta_info_len - 1;
3051 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3052 profile;
3053
3054 if (profile_len < 2)
3055 continue;
3056
3057 data.capability = get_unaligned_le16(profile);
3058 profile += 2;
3059 profile_len -= 2;
3060
3061 /* Find in RNR to look up channel information */
3062 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3063 tx_data->ielen,
3064 mld_id, link_id,
3065 &ap_info,
3066 ¶m_ch_count,
3067 &non_tx);
3068 if (!use_for)
3069 continue;
3070
3071 /*
3072 * As of 802.11be_D5.0, the specification does not give us any
3073 * way of discovering both the MaxBSSID and the Multiple-BSSID
3074 * Index. It does seem like the Multiple-BSSID Index element
3075 * may be provided, but section 9.4.2.45 explicitly forbids
3076 * including a Multiple-BSSID Element (in this case without any
3077 * subelements).
3078 * Without both pieces of information we cannot calculate the
3079 * reference BSSID, so simply ignore the BSS.
3080 */
3081 if (non_tx)
3082 continue;
3083
3084 /* We could sanity check the BSSID is included */
3085
3086 if (!ieee80211_operating_class_to_band(ap_info->op_class,
3087 &band))
3088 continue;
3089
3090 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3091 data.channel = ieee80211_get_channel_khz(wiphy, freq);
3092
3093 /* Skip if RNR element specifies an unsupported channel */
3094 if (!data.channel)
3095 continue;
3096
3097 /* Skip if BSS entry generated from MBSSID or DIRECT source
3098 * frame data available already.
3099 */
3100 bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3101 ssid_len, IEEE80211_BSS_TYPE_ANY,
3102 IEEE80211_PRIVACY_ANY);
3103 if (bss) {
3104 struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3105
3106 if (data.capability == bss->capability &&
3107 ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3108 cfg80211_put_bss(wiphy, bss);
3109 continue;
3110 }
3111 cfg80211_put_bss(wiphy, bss);
3112 }
3113
3114 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3115 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3116 use_for = 0;
3117 data.cannot_use_reasons =
3118 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3119 }
3120 data.use_for = use_for;
3121
3122 /* Generate new elements */
3123 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3124 data.ie = new_ie;
3125 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3126 profile, profile_len,
3127 new_ie,
3128 IEEE80211_MAX_DATA_LEN);
3129 if (!data.ielen)
3130 continue;
3131
3132 /* The generated elements do not contain:
3133 * - Basic ML element
3134 * - A TBTT entry in the RNR for the transmitting AP
3135 *
3136 * This information is needed both internally and in userspace
3137 * as such, we should append it here.
3138 */
3139 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3140 IEEE80211_MAX_DATA_LEN)
3141 continue;
3142
3143 /* Copy the Basic Multi-Link element including the common
3144 * information, and then fix up the link ID and BSS param
3145 * change count.
3146 * Note that the ML element length has been verified and we
3147 * also checked that it contains the link ID.
3148 */
3149 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3150 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3151 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3152 memcpy(new_ie + data.ielen, ml_elem,
3153 sizeof(*ml_elem) + ml_common_len);
3154
3155 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3156 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3157 param_ch_count;
3158
3159 data.ielen += sizeof(*ml_elem) + ml_common_len;
3160
3161 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3162 if (data.ielen + sizeof(struct element) +
3163 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3164 continue;
3165
3166 memcpy(new_ie + data.ielen, reporter_rnr,
3167 sizeof(struct element) + reporter_rnr->datalen);
3168 data.ielen += sizeof(struct element) +
3169 reporter_rnr->datalen;
3170 }
3171
3172 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3173 if (!bss)
3174 break;
3175 cfg80211_put_bss(wiphy, bss);
3176 }
3177
3178out:
3179 kfree(reporter_rnr);
3180 kfree(new_ie);
3181 kfree(mle);
3182}
3183
3184static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3185 struct cfg80211_inform_single_bss_data *tx_data,
3186 struct cfg80211_bss *source_bss,
3187 gfp_t gfp)
3188{
3189 const struct element *elem;
3190
3191 if (!source_bss)
3192 return;
3193
3194 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3195 return;
3196
3197 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3198 tx_data->ie, tx_data->ielen)
3199 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3200 elem, gfp);
3201}
3202
3203struct cfg80211_bss *
3204cfg80211_inform_bss_data(struct wiphy *wiphy,
3205 struct cfg80211_inform_bss *data,
3206 enum cfg80211_bss_frame_type ftype,
3207 const u8 *bssid, u64 tsf, u16 capability,
3208 u16 beacon_interval, const u8 *ie, size_t ielen,
3209 gfp_t gfp)
3210{
3211 struct cfg80211_inform_single_bss_data inform_data = {
3212 .drv_data = data,
3213 .ftype = ftype,
3214 .tsf = tsf,
3215 .capability = capability,
3216 .beacon_interval = beacon_interval,
3217 .ie = ie,
3218 .ielen = ielen,
3219 .use_for = data->restrict_use ?
3220 data->use_for :
3221 NL80211_BSS_USE_FOR_ALL,
3222 .cannot_use_reasons = data->cannot_use_reasons,
3223 };
3224 struct cfg80211_bss *res;
3225
3226 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3227
3228 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3229 if (!res)
3230 return NULL;
3231
3232 /* don't do any further MBSSID/ML handling for S1G */
3233 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3234 return res;
3235
3236 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3237
3238 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3239
3240 return res;
3241}
3242EXPORT_SYMBOL(cfg80211_inform_bss_data);
3243
3244struct cfg80211_bss *
3245cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3246 struct cfg80211_inform_bss *data,
3247 struct ieee80211_mgmt *mgmt, size_t len,
3248 gfp_t gfp)
3249{
3250 size_t min_hdr_len;
3251 struct ieee80211_ext *ext = NULL;
3252 enum cfg80211_bss_frame_type ftype;
3253 u16 beacon_interval;
3254 const u8 *bssid;
3255 u16 capability;
3256 const u8 *ie;
3257 size_t ielen;
3258 u64 tsf;
3259 size_t s1g_optional_len;
3260
3261 if (WARN_ON(!mgmt))
3262 return NULL;
3263
3264 if (WARN_ON(!wiphy))
3265 return NULL;
3266
3267 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3268 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3269
3270 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3271
3272 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3273 ext = (void *) mgmt;
3274 s1g_optional_len =
3275 ieee80211_s1g_optional_len(ext->frame_control);
3276 min_hdr_len =
3277 offsetof(struct ieee80211_ext, u.s1g_beacon.variable) +
3278 s1g_optional_len;
3279 } else {
3280 /* same for beacons */
3281 min_hdr_len = offsetof(struct ieee80211_mgmt,
3282 u.probe_resp.variable);
3283 }
3284
3285 if (WARN_ON(len < min_hdr_len))
3286 return NULL;
3287
3288 ielen = len - min_hdr_len;
3289 ie = mgmt->u.probe_resp.variable;
3290 if (ext) {
3291 const struct ieee80211_s1g_bcn_compat_ie *compat;
3292 const struct element *elem;
3293
3294 ie = ext->u.s1g_beacon.variable + s1g_optional_len;
3295 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3296 if (!elem)
3297 return NULL;
3298 if (elem->datalen < sizeof(*compat))
3299 return NULL;
3300 compat = (void *)elem->data;
3301 bssid = ext->u.s1g_beacon.sa;
3302 capability = le16_to_cpu(compat->compat_info);
3303 beacon_interval = le16_to_cpu(compat->beacon_int);
3304 } else {
3305 bssid = mgmt->bssid;
3306 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3307 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3308 }
3309
3310 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3311
3312 if (ieee80211_is_probe_resp(mgmt->frame_control))
3313 ftype = CFG80211_BSS_FTYPE_PRESP;
3314 else if (ext)
3315 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3316 else
3317 ftype = CFG80211_BSS_FTYPE_BEACON;
3318
3319 return cfg80211_inform_bss_data(wiphy, data, ftype,
3320 bssid, tsf, capability,
3321 beacon_interval, ie, ielen,
3322 gfp);
3323}
3324EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3325
3326void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3327{
3328 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3329
3330 if (!pub)
3331 return;
3332
3333 spin_lock_bh(&rdev->bss_lock);
3334 bss_ref_get(rdev, bss_from_pub(pub));
3335 spin_unlock_bh(&rdev->bss_lock);
3336}
3337EXPORT_SYMBOL(cfg80211_ref_bss);
3338
3339void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3340{
3341 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3342
3343 if (!pub)
3344 return;
3345
3346 spin_lock_bh(&rdev->bss_lock);
3347 bss_ref_put(rdev, bss_from_pub(pub));
3348 spin_unlock_bh(&rdev->bss_lock);
3349}
3350EXPORT_SYMBOL(cfg80211_put_bss);
3351
3352void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3353{
3354 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3355 struct cfg80211_internal_bss *bss, *tmp1;
3356 struct cfg80211_bss *nontrans_bss, *tmp;
3357
3358 if (WARN_ON(!pub))
3359 return;
3360
3361 bss = bss_from_pub(pub);
3362
3363 spin_lock_bh(&rdev->bss_lock);
3364 if (list_empty(&bss->list))
3365 goto out;
3366
3367 list_for_each_entry_safe(nontrans_bss, tmp,
3368 &pub->nontrans_list,
3369 nontrans_list) {
3370 tmp1 = bss_from_pub(nontrans_bss);
3371 if (__cfg80211_unlink_bss(rdev, tmp1))
3372 rdev->bss_generation++;
3373 }
3374
3375 if (__cfg80211_unlink_bss(rdev, bss))
3376 rdev->bss_generation++;
3377out:
3378 spin_unlock_bh(&rdev->bss_lock);
3379}
3380EXPORT_SYMBOL(cfg80211_unlink_bss);
3381
3382void cfg80211_bss_iter(struct wiphy *wiphy,
3383 struct cfg80211_chan_def *chandef,
3384 void (*iter)(struct wiphy *wiphy,
3385 struct cfg80211_bss *bss,
3386 void *data),
3387 void *iter_data)
3388{
3389 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3390 struct cfg80211_internal_bss *bss;
3391
3392 spin_lock_bh(&rdev->bss_lock);
3393
3394 list_for_each_entry(bss, &rdev->bss_list, list) {
3395 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3396 false))
3397 iter(wiphy, &bss->pub, iter_data);
3398 }
3399
3400 spin_unlock_bh(&rdev->bss_lock);
3401}
3402EXPORT_SYMBOL(cfg80211_bss_iter);
3403
3404void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3405 unsigned int link_id,
3406 struct ieee80211_channel *chan)
3407{
3408 struct wiphy *wiphy = wdev->wiphy;
3409 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3410 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3411 struct cfg80211_internal_bss *new = NULL;
3412 struct cfg80211_internal_bss *bss;
3413 struct cfg80211_bss *nontrans_bss;
3414 struct cfg80211_bss *tmp;
3415
3416 spin_lock_bh(&rdev->bss_lock);
3417
3418 /*
3419 * Some APs use CSA also for bandwidth changes, i.e., without actually
3420 * changing the control channel, so no need to update in such a case.
3421 */
3422 if (cbss->pub.channel == chan)
3423 goto done;
3424
3425 /* use transmitting bss */
3426 if (cbss->pub.transmitted_bss)
3427 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3428
3429 cbss->pub.channel = chan;
3430
3431 list_for_each_entry(bss, &rdev->bss_list, list) {
3432 if (!cfg80211_bss_type_match(bss->pub.capability,
3433 bss->pub.channel->band,
3434 wdev->conn_bss_type))
3435 continue;
3436
3437 if (bss == cbss)
3438 continue;
3439
3440 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3441 new = bss;
3442 break;
3443 }
3444 }
3445
3446 if (new) {
3447 /* to save time, update IEs for transmitting bss only */
3448 cfg80211_update_known_bss(rdev, cbss, new, false);
3449 new->pub.proberesp_ies = NULL;
3450 new->pub.beacon_ies = NULL;
3451
3452 list_for_each_entry_safe(nontrans_bss, tmp,
3453 &new->pub.nontrans_list,
3454 nontrans_list) {
3455 bss = bss_from_pub(nontrans_bss);
3456 if (__cfg80211_unlink_bss(rdev, bss))
3457 rdev->bss_generation++;
3458 }
3459
3460 WARN_ON(atomic_read(&new->hold));
3461 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3462 rdev->bss_generation++;
3463 }
3464 cfg80211_rehash_bss(rdev, cbss);
3465
3466 list_for_each_entry_safe(nontrans_bss, tmp,
3467 &cbss->pub.nontrans_list,
3468 nontrans_list) {
3469 bss = bss_from_pub(nontrans_bss);
3470 bss->pub.channel = chan;
3471 cfg80211_rehash_bss(rdev, bss);
3472 }
3473
3474done:
3475 spin_unlock_bh(&rdev->bss_lock);
3476}
3477
3478#ifdef CONFIG_CFG80211_WEXT
3479static struct cfg80211_registered_device *
3480cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3481{
3482 struct cfg80211_registered_device *rdev;
3483 struct net_device *dev;
3484
3485 ASSERT_RTNL();
3486
3487 dev = dev_get_by_index(net, ifindex);
3488 if (!dev)
3489 return ERR_PTR(-ENODEV);
3490 if (dev->ieee80211_ptr)
3491 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3492 else
3493 rdev = ERR_PTR(-ENODEV);
3494 dev_put(dev);
3495 return rdev;
3496}
3497
3498int cfg80211_wext_siwscan(struct net_device *dev,
3499 struct iw_request_info *info,
3500 union iwreq_data *wrqu, char *extra)
3501{
3502 struct cfg80211_registered_device *rdev;
3503 struct wiphy *wiphy;
3504 struct iw_scan_req *wreq = NULL;
3505 struct cfg80211_scan_request_int *creq;
3506 int i, err, n_channels = 0;
3507 enum nl80211_band band;
3508
3509 if (!netif_running(dev))
3510 return -ENETDOWN;
3511
3512 if (wrqu->data.length == sizeof(struct iw_scan_req))
3513 wreq = (struct iw_scan_req *)extra;
3514
3515 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3516
3517 if (IS_ERR(rdev))
3518 return PTR_ERR(rdev);
3519
3520 if (rdev->scan_req || rdev->scan_msg)
3521 return -EBUSY;
3522
3523 wiphy = &rdev->wiphy;
3524
3525 /* Determine number of channels, needed to allocate creq */
3526 if (wreq && wreq->num_channels) {
3527 /* Passed from userspace so should be checked */
3528 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3529 return -EINVAL;
3530 n_channels = wreq->num_channels;
3531 } else {
3532 n_channels = ieee80211_get_num_supported_channels(wiphy);
3533 }
3534
3535 creq = kzalloc(struct_size(creq, req.channels, n_channels) +
3536 sizeof(struct cfg80211_ssid),
3537 GFP_ATOMIC);
3538 if (!creq)
3539 return -ENOMEM;
3540
3541 creq->req.wiphy = wiphy;
3542 creq->req.wdev = dev->ieee80211_ptr;
3543 /* SSIDs come after channels */
3544 creq->req.ssids = (void *)creq +
3545 struct_size(creq, req.channels, n_channels);
3546 creq->req.n_channels = n_channels;
3547 creq->req.n_ssids = 1;
3548 creq->req.scan_start = jiffies;
3549
3550 /* translate "Scan on frequencies" request */
3551 i = 0;
3552 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3553 int j;
3554
3555 if (!wiphy->bands[band])
3556 continue;
3557
3558 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3559 struct ieee80211_channel *chan;
3560
3561 /* ignore disabled channels */
3562 chan = &wiphy->bands[band]->channels[j];
3563 if (chan->flags & IEEE80211_CHAN_DISABLED ||
3564 !cfg80211_wdev_channel_allowed(creq->req.wdev, chan))
3565 continue;
3566
3567 /* If we have a wireless request structure and the
3568 * wireless request specifies frequencies, then search
3569 * for the matching hardware channel.
3570 */
3571 if (wreq && wreq->num_channels) {
3572 int k;
3573 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3574 for (k = 0; k < wreq->num_channels; k++) {
3575 struct iw_freq *freq =
3576 &wreq->channel_list[k];
3577 int wext_freq =
3578 cfg80211_wext_freq(freq);
3579
3580 if (wext_freq == wiphy_freq)
3581 goto wext_freq_found;
3582 }
3583 goto wext_freq_not_found;
3584 }
3585
3586 wext_freq_found:
3587 creq->req.channels[i] =
3588 &wiphy->bands[band]->channels[j];
3589 i++;
3590 wext_freq_not_found: ;
3591 }
3592 }
3593 /* No channels found? */
3594 if (!i) {
3595 err = -EINVAL;
3596 goto out;
3597 }
3598
3599 /* Set real number of channels specified in creq->req.channels[] */
3600 creq->req.n_channels = i;
3601
3602 /* translate "Scan for SSID" request */
3603 if (wreq) {
3604 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3605 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN)
3606 return -EINVAL;
3607 memcpy(creq->req.ssids[0].ssid, wreq->essid,
3608 wreq->essid_len);
3609 creq->req.ssids[0].ssid_len = wreq->essid_len;
3610 }
3611 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3612 creq->req.ssids = NULL;
3613 creq->req.n_ssids = 0;
3614 }
3615 }
3616
3617 for (i = 0; i < NUM_NL80211_BANDS; i++)
3618 if (wiphy->bands[i])
3619 creq->req.rates[i] =
3620 (1 << wiphy->bands[i]->n_bitrates) - 1;
3621
3622 eth_broadcast_addr(creq->req.bssid);
3623
3624 scoped_guard(wiphy, &rdev->wiphy) {
3625 rdev->scan_req = creq;
3626 err = rdev_scan(rdev, creq);
3627 if (err) {
3628 rdev->scan_req = NULL;
3629 /* creq will be freed below */
3630 } else {
3631 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3632 /* creq now owned by driver */
3633 creq = NULL;
3634 dev_hold(dev);
3635 }
3636 }
3637
3638 out:
3639 kfree(creq);
3640 return err;
3641}
3642
3643static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3644 const struct cfg80211_bss_ies *ies,
3645 char *current_ev, char *end_buf)
3646{
3647 const u8 *pos, *end, *next;
3648 struct iw_event iwe;
3649
3650 if (!ies)
3651 return current_ev;
3652
3653 /*
3654 * If needed, fragment the IEs buffer (at IE boundaries) into short
3655 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3656 */
3657 pos = ies->data;
3658 end = pos + ies->len;
3659
3660 while (end - pos > IW_GENERIC_IE_MAX) {
3661 next = pos + 2 + pos[1];
3662 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3663 next = next + 2 + next[1];
3664
3665 memset(&iwe, 0, sizeof(iwe));
3666 iwe.cmd = IWEVGENIE;
3667 iwe.u.data.length = next - pos;
3668 current_ev = iwe_stream_add_point_check(info, current_ev,
3669 end_buf, &iwe,
3670 (void *)pos);
3671 if (IS_ERR(current_ev))
3672 return current_ev;
3673 pos = next;
3674 }
3675
3676 if (end > pos) {
3677 memset(&iwe, 0, sizeof(iwe));
3678 iwe.cmd = IWEVGENIE;
3679 iwe.u.data.length = end - pos;
3680 current_ev = iwe_stream_add_point_check(info, current_ev,
3681 end_buf, &iwe,
3682 (void *)pos);
3683 if (IS_ERR(current_ev))
3684 return current_ev;
3685 }
3686
3687 return current_ev;
3688}
3689
3690static char *
3691ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3692 struct cfg80211_internal_bss *bss, char *current_ev,
3693 char *end_buf)
3694{
3695 const struct cfg80211_bss_ies *ies;
3696 struct iw_event iwe;
3697 const u8 *ie;
3698 u8 buf[50];
3699 u8 *cfg, *p, *tmp;
3700 int rem, i, sig;
3701 bool ismesh = false;
3702
3703 memset(&iwe, 0, sizeof(iwe));
3704 iwe.cmd = SIOCGIWAP;
3705 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3706 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3707 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3708 IW_EV_ADDR_LEN);
3709 if (IS_ERR(current_ev))
3710 return current_ev;
3711
3712 memset(&iwe, 0, sizeof(iwe));
3713 iwe.cmd = SIOCGIWFREQ;
3714 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3715 iwe.u.freq.e = 0;
3716 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3717 IW_EV_FREQ_LEN);
3718 if (IS_ERR(current_ev))
3719 return current_ev;
3720
3721 memset(&iwe, 0, sizeof(iwe));
3722 iwe.cmd = SIOCGIWFREQ;
3723 iwe.u.freq.m = bss->pub.channel->center_freq;
3724 iwe.u.freq.e = 6;
3725 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3726 IW_EV_FREQ_LEN);
3727 if (IS_ERR(current_ev))
3728 return current_ev;
3729
3730 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3731 memset(&iwe, 0, sizeof(iwe));
3732 iwe.cmd = IWEVQUAL;
3733 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3734 IW_QUAL_NOISE_INVALID |
3735 IW_QUAL_QUAL_UPDATED;
3736 switch (wiphy->signal_type) {
3737 case CFG80211_SIGNAL_TYPE_MBM:
3738 sig = bss->pub.signal / 100;
3739 iwe.u.qual.level = sig;
3740 iwe.u.qual.updated |= IW_QUAL_DBM;
3741 if (sig < -110) /* rather bad */
3742 sig = -110;
3743 else if (sig > -40) /* perfect */
3744 sig = -40;
3745 /* will give a range of 0 .. 70 */
3746 iwe.u.qual.qual = sig + 110;
3747 break;
3748 case CFG80211_SIGNAL_TYPE_UNSPEC:
3749 iwe.u.qual.level = bss->pub.signal;
3750 /* will give range 0 .. 100 */
3751 iwe.u.qual.qual = bss->pub.signal;
3752 break;
3753 default:
3754 /* not reached */
3755 break;
3756 }
3757 current_ev = iwe_stream_add_event_check(info, current_ev,
3758 end_buf, &iwe,
3759 IW_EV_QUAL_LEN);
3760 if (IS_ERR(current_ev))
3761 return current_ev;
3762 }
3763
3764 memset(&iwe, 0, sizeof(iwe));
3765 iwe.cmd = SIOCGIWENCODE;
3766 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3767 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3768 else
3769 iwe.u.data.flags = IW_ENCODE_DISABLED;
3770 iwe.u.data.length = 0;
3771 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3772 &iwe, "");
3773 if (IS_ERR(current_ev))
3774 return current_ev;
3775
3776 rcu_read_lock();
3777 ies = rcu_dereference(bss->pub.ies);
3778 rem = ies->len;
3779 ie = ies->data;
3780
3781 while (rem >= 2) {
3782 /* invalid data */
3783 if (ie[1] > rem - 2)
3784 break;
3785
3786 switch (ie[0]) {
3787 case WLAN_EID_SSID:
3788 memset(&iwe, 0, sizeof(iwe));
3789 iwe.cmd = SIOCGIWESSID;
3790 iwe.u.data.length = ie[1];
3791 iwe.u.data.flags = 1;
3792 current_ev = iwe_stream_add_point_check(info,
3793 current_ev,
3794 end_buf, &iwe,
3795 (u8 *)ie + 2);
3796 if (IS_ERR(current_ev))
3797 goto unlock;
3798 break;
3799 case WLAN_EID_MESH_ID:
3800 memset(&iwe, 0, sizeof(iwe));
3801 iwe.cmd = SIOCGIWESSID;
3802 iwe.u.data.length = ie[1];
3803 iwe.u.data.flags = 1;
3804 current_ev = iwe_stream_add_point_check(info,
3805 current_ev,
3806 end_buf, &iwe,
3807 (u8 *)ie + 2);
3808 if (IS_ERR(current_ev))
3809 goto unlock;
3810 break;
3811 case WLAN_EID_MESH_CONFIG:
3812 ismesh = true;
3813 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3814 break;
3815 cfg = (u8 *)ie + 2;
3816 memset(&iwe, 0, sizeof(iwe));
3817 iwe.cmd = IWEVCUSTOM;
3818 iwe.u.data.length = sprintf(buf,
3819 "Mesh Network Path Selection Protocol ID: 0x%02X",
3820 cfg[0]);
3821 current_ev = iwe_stream_add_point_check(info,
3822 current_ev,
3823 end_buf,
3824 &iwe, buf);
3825 if (IS_ERR(current_ev))
3826 goto unlock;
3827 iwe.u.data.length = sprintf(buf,
3828 "Path Selection Metric ID: 0x%02X",
3829 cfg[1]);
3830 current_ev = iwe_stream_add_point_check(info,
3831 current_ev,
3832 end_buf,
3833 &iwe, buf);
3834 if (IS_ERR(current_ev))
3835 goto unlock;
3836 iwe.u.data.length = sprintf(buf,
3837 "Congestion Control Mode ID: 0x%02X",
3838 cfg[2]);
3839 current_ev = iwe_stream_add_point_check(info,
3840 current_ev,
3841 end_buf,
3842 &iwe, buf);
3843 if (IS_ERR(current_ev))
3844 goto unlock;
3845 iwe.u.data.length = sprintf(buf,
3846 "Synchronization ID: 0x%02X",
3847 cfg[3]);
3848 current_ev = iwe_stream_add_point_check(info,
3849 current_ev,
3850 end_buf,
3851 &iwe, buf);
3852 if (IS_ERR(current_ev))
3853 goto unlock;
3854 iwe.u.data.length = sprintf(buf,
3855 "Authentication ID: 0x%02X",
3856 cfg[4]);
3857 current_ev = iwe_stream_add_point_check(info,
3858 current_ev,
3859 end_buf,
3860 &iwe, buf);
3861 if (IS_ERR(current_ev))
3862 goto unlock;
3863 iwe.u.data.length = sprintf(buf,
3864 "Formation Info: 0x%02X",
3865 cfg[5]);
3866 current_ev = iwe_stream_add_point_check(info,
3867 current_ev,
3868 end_buf,
3869 &iwe, buf);
3870 if (IS_ERR(current_ev))
3871 goto unlock;
3872 iwe.u.data.length = sprintf(buf,
3873 "Capabilities: 0x%02X",
3874 cfg[6]);
3875 current_ev = iwe_stream_add_point_check(info,
3876 current_ev,
3877 end_buf,
3878 &iwe, buf);
3879 if (IS_ERR(current_ev))
3880 goto unlock;
3881 break;
3882 case WLAN_EID_SUPP_RATES:
3883 case WLAN_EID_EXT_SUPP_RATES:
3884 /* display all supported rates in readable format */
3885 p = current_ev + iwe_stream_lcp_len(info);
3886
3887 memset(&iwe, 0, sizeof(iwe));
3888 iwe.cmd = SIOCGIWRATE;
3889 /* Those two flags are ignored... */
3890 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3891
3892 for (i = 0; i < ie[1]; i++) {
3893 iwe.u.bitrate.value =
3894 ((ie[i + 2] & 0x7f) * 500000);
3895 tmp = p;
3896 p = iwe_stream_add_value(info, current_ev, p,
3897 end_buf, &iwe,
3898 IW_EV_PARAM_LEN);
3899 if (p == tmp) {
3900 current_ev = ERR_PTR(-E2BIG);
3901 goto unlock;
3902 }
3903 }
3904 current_ev = p;
3905 break;
3906 }
3907 rem -= ie[1] + 2;
3908 ie += ie[1] + 2;
3909 }
3910
3911 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3912 ismesh) {
3913 memset(&iwe, 0, sizeof(iwe));
3914 iwe.cmd = SIOCGIWMODE;
3915 if (ismesh)
3916 iwe.u.mode = IW_MODE_MESH;
3917 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3918 iwe.u.mode = IW_MODE_MASTER;
3919 else
3920 iwe.u.mode = IW_MODE_ADHOC;
3921 current_ev = iwe_stream_add_event_check(info, current_ev,
3922 end_buf, &iwe,
3923 IW_EV_UINT_LEN);
3924 if (IS_ERR(current_ev))
3925 goto unlock;
3926 }
3927
3928 memset(&iwe, 0, sizeof(iwe));
3929 iwe.cmd = IWEVCUSTOM;
3930 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3931 (unsigned long long)(ies->tsf));
3932 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3933 &iwe, buf);
3934 if (IS_ERR(current_ev))
3935 goto unlock;
3936 memset(&iwe, 0, sizeof(iwe));
3937 iwe.cmd = IWEVCUSTOM;
3938 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3939 elapsed_jiffies_msecs(bss->ts));
3940 current_ev = iwe_stream_add_point_check(info, current_ev,
3941 end_buf, &iwe, buf);
3942 if (IS_ERR(current_ev))
3943 goto unlock;
3944
3945 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3946
3947 unlock:
3948 rcu_read_unlock();
3949 return current_ev;
3950}
3951
3952
3953static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3954 struct iw_request_info *info,
3955 char *buf, size_t len)
3956{
3957 char *current_ev = buf;
3958 char *end_buf = buf + len;
3959 struct cfg80211_internal_bss *bss;
3960 int err = 0;
3961
3962 spin_lock_bh(&rdev->bss_lock);
3963 cfg80211_bss_expire(rdev);
3964
3965 list_for_each_entry(bss, &rdev->bss_list, list) {
3966 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3967 err = -E2BIG;
3968 break;
3969 }
3970 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3971 current_ev, end_buf);
3972 if (IS_ERR(current_ev)) {
3973 err = PTR_ERR(current_ev);
3974 break;
3975 }
3976 }
3977 spin_unlock_bh(&rdev->bss_lock);
3978
3979 if (err)
3980 return err;
3981 return current_ev - buf;
3982}
3983
3984
3985int cfg80211_wext_giwscan(struct net_device *dev,
3986 struct iw_request_info *info,
3987 union iwreq_data *wrqu, char *extra)
3988{
3989 struct iw_point *data = &wrqu->data;
3990 struct cfg80211_registered_device *rdev;
3991 int res;
3992
3993 if (!netif_running(dev))
3994 return -ENETDOWN;
3995
3996 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3997
3998 if (IS_ERR(rdev))
3999 return PTR_ERR(rdev);
4000
4001 if (rdev->scan_req || rdev->scan_msg)
4002 return -EAGAIN;
4003
4004 res = ieee80211_scan_results(rdev, info, extra, data->length);
4005 data->length = 0;
4006 if (res >= 0) {
4007 data->length = res;
4008 res = 0;
4009 }
4010
4011 return res;
4012}
4013#endif