Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This file is part of the SCTP kernel implementation
6 *
7 * Please send any bug reports or fixes you make to the
8 * email address(es):
9 * lksctp developers <linux-sctp@vger.kernel.org>
10 *
11 * Written or modified by:
12 * Vlad Yasevich <vladislav.yasevich@hp.com>
13 */
14
15#include <crypto/sha1.h>
16#include <crypto/sha2.h>
17#include <linux/slab.h>
18#include <linux/types.h>
19#include <net/sctp/sctp.h>
20#include <net/sctp/auth.h>
21
22static const struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
23 {
24 /* id 0 is reserved. as all 0 */
25 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
26 },
27 {
28 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
29 .hmac_len = SHA1_DIGEST_SIZE,
30 },
31 {
32 /* id 2 is reserved as well */
33 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
34 },
35 {
36 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
37 .hmac_len = SHA256_DIGEST_SIZE,
38 }
39};
40
41static bool sctp_hmac_supported(__u16 hmac_id)
42{
43 return hmac_id < ARRAY_SIZE(sctp_hmac_list) &&
44 sctp_hmac_list[hmac_id].hmac_len != 0;
45}
46
47void sctp_auth_key_put(struct sctp_auth_bytes *key)
48{
49 if (!key)
50 return;
51
52 if (refcount_dec_and_test(&key->refcnt)) {
53 kfree_sensitive(key);
54 SCTP_DBG_OBJCNT_DEC(keys);
55 }
56}
57
58/* Create a new key structure of a given length */
59static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
60{
61 struct sctp_auth_bytes *key;
62
63 /* Verify that we are not going to overflow INT_MAX */
64 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
65 return NULL;
66
67 /* Allocate the shared key */
68 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
69 if (!key)
70 return NULL;
71
72 key->len = key_len;
73 refcount_set(&key->refcnt, 1);
74 SCTP_DBG_OBJCNT_INC(keys);
75
76 return key;
77}
78
79/* Create a new shared key container with a give key id */
80struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
81{
82 struct sctp_shared_key *new;
83
84 /* Allocate the shared key container */
85 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
86 if (!new)
87 return NULL;
88
89 INIT_LIST_HEAD(&new->key_list);
90 refcount_set(&new->refcnt, 1);
91 new->key_id = key_id;
92
93 return new;
94}
95
96/* Free the shared key structure */
97static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
98{
99 BUG_ON(!list_empty(&sh_key->key_list));
100 sctp_auth_key_put(sh_key->key);
101 sh_key->key = NULL;
102 kfree(sh_key);
103}
104
105void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
106{
107 if (refcount_dec_and_test(&sh_key->refcnt))
108 sctp_auth_shkey_destroy(sh_key);
109}
110
111void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
112{
113 refcount_inc(&sh_key->refcnt);
114}
115
116/* Destroy the entire key list. This is done during the
117 * associon and endpoint free process.
118 */
119void sctp_auth_destroy_keys(struct list_head *keys)
120{
121 struct sctp_shared_key *ep_key;
122 struct sctp_shared_key *tmp;
123
124 if (list_empty(keys))
125 return;
126
127 key_for_each_safe(ep_key, tmp, keys) {
128 list_del_init(&ep_key->key_list);
129 sctp_auth_shkey_release(ep_key);
130 }
131}
132
133/* Compare two byte vectors as numbers. Return values
134 * are:
135 * 0 - vectors are equal
136 * < 0 - vector 1 is smaller than vector2
137 * > 0 - vector 1 is greater than vector2
138 *
139 * Algorithm is:
140 * This is performed by selecting the numerically smaller key vector...
141 * If the key vectors are equal as numbers but differ in length ...
142 * the shorter vector is considered smaller
143 *
144 * Examples (with small values):
145 * 000123456789 > 123456789 (first number is longer)
146 * 000123456789 < 234567891 (second number is larger numerically)
147 * 123456789 > 2345678 (first number is both larger & longer)
148 */
149static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
150 struct sctp_auth_bytes *vector2)
151{
152 int diff;
153 int i;
154 const __u8 *longer;
155
156 diff = vector1->len - vector2->len;
157 if (diff) {
158 longer = (diff > 0) ? vector1->data : vector2->data;
159
160 /* Check to see if the longer number is
161 * lead-zero padded. If it is not, it
162 * is automatically larger numerically.
163 */
164 for (i = 0; i < abs(diff); i++) {
165 if (longer[i] != 0)
166 return diff;
167 }
168 }
169
170 /* lengths are the same, compare numbers */
171 return memcmp(vector1->data, vector2->data, vector1->len);
172}
173
174/*
175 * Create a key vector as described in SCTP-AUTH, Section 6.1
176 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
177 * parameter sent by each endpoint are concatenated as byte vectors.
178 * These parameters include the parameter type, parameter length, and
179 * the parameter value, but padding is omitted; all padding MUST be
180 * removed from this concatenation before proceeding with further
181 * computation of keys. Parameters which were not sent are simply
182 * omitted from the concatenation process. The resulting two vectors
183 * are called the two key vectors.
184 */
185static struct sctp_auth_bytes *sctp_auth_make_key_vector(
186 struct sctp_random_param *random,
187 struct sctp_chunks_param *chunks,
188 struct sctp_hmac_algo_param *hmacs,
189 gfp_t gfp)
190{
191 struct sctp_auth_bytes *new;
192 __u32 len;
193 __u32 offset = 0;
194 __u16 random_len, hmacs_len, chunks_len = 0;
195
196 random_len = ntohs(random->param_hdr.length);
197 hmacs_len = ntohs(hmacs->param_hdr.length);
198 if (chunks)
199 chunks_len = ntohs(chunks->param_hdr.length);
200
201 len = random_len + hmacs_len + chunks_len;
202
203 new = sctp_auth_create_key(len, gfp);
204 if (!new)
205 return NULL;
206
207 memcpy(new->data, random, random_len);
208 offset += random_len;
209
210 if (chunks) {
211 memcpy(new->data + offset, chunks, chunks_len);
212 offset += chunks_len;
213 }
214
215 memcpy(new->data + offset, hmacs, hmacs_len);
216
217 return new;
218}
219
220
221/* Make a key vector based on our local parameters */
222static struct sctp_auth_bytes *sctp_auth_make_local_vector(
223 const struct sctp_association *asoc,
224 gfp_t gfp)
225{
226 return sctp_auth_make_key_vector(
227 (struct sctp_random_param *)asoc->c.auth_random,
228 (struct sctp_chunks_param *)asoc->c.auth_chunks,
229 (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
230}
231
232/* Make a key vector based on peer's parameters */
233static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
234 const struct sctp_association *asoc,
235 gfp_t gfp)
236{
237 return sctp_auth_make_key_vector(asoc->peer.peer_random,
238 asoc->peer.peer_chunks,
239 asoc->peer.peer_hmacs,
240 gfp);
241}
242
243
244/* Set the value of the association shared key base on the parameters
245 * given. The algorithm is:
246 * From the endpoint pair shared keys and the key vectors the
247 * association shared keys are computed. This is performed by selecting
248 * the numerically smaller key vector and concatenating it to the
249 * endpoint pair shared key, and then concatenating the numerically
250 * larger key vector to that. The result of the concatenation is the
251 * association shared key.
252 */
253static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
254 struct sctp_shared_key *ep_key,
255 struct sctp_auth_bytes *first_vector,
256 struct sctp_auth_bytes *last_vector,
257 gfp_t gfp)
258{
259 struct sctp_auth_bytes *secret;
260 __u32 offset = 0;
261 __u32 auth_len;
262
263 auth_len = first_vector->len + last_vector->len;
264 if (ep_key->key)
265 auth_len += ep_key->key->len;
266
267 secret = sctp_auth_create_key(auth_len, gfp);
268 if (!secret)
269 return NULL;
270
271 if (ep_key->key) {
272 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
273 offset += ep_key->key->len;
274 }
275
276 memcpy(secret->data + offset, first_vector->data, first_vector->len);
277 offset += first_vector->len;
278
279 memcpy(secret->data + offset, last_vector->data, last_vector->len);
280
281 return secret;
282}
283
284/* Create an association shared key. Follow the algorithm
285 * described in SCTP-AUTH, Section 6.1
286 */
287static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
288 const struct sctp_association *asoc,
289 struct sctp_shared_key *ep_key,
290 gfp_t gfp)
291{
292 struct sctp_auth_bytes *local_key_vector;
293 struct sctp_auth_bytes *peer_key_vector;
294 struct sctp_auth_bytes *first_vector,
295 *last_vector;
296 struct sctp_auth_bytes *secret = NULL;
297 int cmp;
298
299
300 /* Now we need to build the key vectors
301 * SCTP-AUTH , Section 6.1
302 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
303 * parameter sent by each endpoint are concatenated as byte vectors.
304 * These parameters include the parameter type, parameter length, and
305 * the parameter value, but padding is omitted; all padding MUST be
306 * removed from this concatenation before proceeding with further
307 * computation of keys. Parameters which were not sent are simply
308 * omitted from the concatenation process. The resulting two vectors
309 * are called the two key vectors.
310 */
311
312 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
313 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
314
315 if (!peer_key_vector || !local_key_vector)
316 goto out;
317
318 /* Figure out the order in which the key_vectors will be
319 * added to the endpoint shared key.
320 * SCTP-AUTH, Section 6.1:
321 * This is performed by selecting the numerically smaller key
322 * vector and concatenating it to the endpoint pair shared
323 * key, and then concatenating the numerically larger key
324 * vector to that. If the key vectors are equal as numbers
325 * but differ in length, then the concatenation order is the
326 * endpoint shared key, followed by the shorter key vector,
327 * followed by the longer key vector. Otherwise, the key
328 * vectors are identical, and may be concatenated to the
329 * endpoint pair key in any order.
330 */
331 cmp = sctp_auth_compare_vectors(local_key_vector,
332 peer_key_vector);
333 if (cmp < 0) {
334 first_vector = local_key_vector;
335 last_vector = peer_key_vector;
336 } else {
337 first_vector = peer_key_vector;
338 last_vector = local_key_vector;
339 }
340
341 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
342 gfp);
343out:
344 sctp_auth_key_put(local_key_vector);
345 sctp_auth_key_put(peer_key_vector);
346
347 return secret;
348}
349
350/*
351 * Populate the association overlay list with the list
352 * from the endpoint.
353 */
354int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
355 struct sctp_association *asoc,
356 gfp_t gfp)
357{
358 struct sctp_shared_key *sh_key;
359 struct sctp_shared_key *new;
360
361 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
362
363 key_for_each(sh_key, &ep->endpoint_shared_keys) {
364 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
365 if (!new)
366 goto nomem;
367
368 new->key = sh_key->key;
369 sctp_auth_key_hold(new->key);
370 list_add(&new->key_list, &asoc->endpoint_shared_keys);
371 }
372
373 return 0;
374
375nomem:
376 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
377 return -ENOMEM;
378}
379
380
381/* Public interface to create the association shared key.
382 * See code above for the algorithm.
383 */
384int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
385{
386 struct sctp_auth_bytes *secret;
387 struct sctp_shared_key *ep_key;
388 struct sctp_chunk *chunk;
389
390 /* If we don't support AUTH, or peer is not capable
391 * we don't need to do anything.
392 */
393 if (!asoc->peer.auth_capable)
394 return 0;
395
396 /* If the key_id is non-zero and we couldn't find an
397 * endpoint pair shared key, we can't compute the
398 * secret.
399 * For key_id 0, endpoint pair shared key is a NULL key.
400 */
401 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
402 BUG_ON(!ep_key);
403
404 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
405 if (!secret)
406 return -ENOMEM;
407
408 sctp_auth_key_put(asoc->asoc_shared_key);
409 asoc->asoc_shared_key = secret;
410 asoc->shkey = ep_key;
411
412 /* Update send queue in case any chunk already in there now
413 * needs authenticating
414 */
415 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
416 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
417 chunk->auth = 1;
418 if (!chunk->shkey) {
419 chunk->shkey = asoc->shkey;
420 sctp_auth_shkey_hold(chunk->shkey);
421 }
422 }
423 }
424
425 return 0;
426}
427
428
429/* Find the endpoint pair shared key based on the key_id */
430struct sctp_shared_key *sctp_auth_get_shkey(
431 const struct sctp_association *asoc,
432 __u16 key_id)
433{
434 struct sctp_shared_key *key;
435
436 /* First search associations set of endpoint pair shared keys */
437 key_for_each(key, &asoc->endpoint_shared_keys) {
438 if (key->key_id == key_id) {
439 if (!key->deactivated)
440 return key;
441 break;
442 }
443 }
444
445 return NULL;
446}
447
448const struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
449{
450 return &sctp_hmac_list[hmac_id];
451}
452
453/* Get an hmac description information that we can use to build
454 * the AUTH chunk
455 */
456const struct sctp_hmac *
457sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
458{
459 struct sctp_hmac_algo_param *hmacs;
460 __u16 n_elt;
461 __u16 id = 0;
462 int i;
463
464 /* If we have a default entry, use it */
465 if (asoc->default_hmac_id)
466 return &sctp_hmac_list[asoc->default_hmac_id];
467
468 /* Since we do not have a default entry, find the first entry
469 * we support and return that. Do not cache that id.
470 */
471 hmacs = asoc->peer.peer_hmacs;
472 if (!hmacs)
473 return NULL;
474
475 n_elt = (ntohs(hmacs->param_hdr.length) -
476 sizeof(struct sctp_paramhdr)) >> 1;
477 for (i = 0; i < n_elt; i++) {
478 id = ntohs(hmacs->hmac_ids[i]);
479 if (sctp_hmac_supported(id))
480 return &sctp_hmac_list[id];
481 }
482 return NULL;
483}
484
485static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
486{
487 int found = 0;
488 int i;
489
490 for (i = 0; i < n_elts; i++) {
491 if (hmac_id == hmacs[i]) {
492 found = 1;
493 break;
494 }
495 }
496
497 return found;
498}
499
500/* See if the HMAC_ID is one that we claim as supported */
501int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
502 __be16 hmac_id)
503{
504 struct sctp_hmac_algo_param *hmacs;
505 __u16 n_elt;
506
507 if (!asoc)
508 return 0;
509
510 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
511 n_elt = (ntohs(hmacs->param_hdr.length) -
512 sizeof(struct sctp_paramhdr)) >> 1;
513
514 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
515}
516
517
518/* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
519 * Section 6.1:
520 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
521 * algorithm it supports.
522 */
523void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
524 struct sctp_hmac_algo_param *hmacs)
525{
526 __u16 id;
527 int i;
528 int n_params;
529
530 /* if the default id is already set, use it */
531 if (asoc->default_hmac_id)
532 return;
533
534 n_params = (ntohs(hmacs->param_hdr.length) -
535 sizeof(struct sctp_paramhdr)) >> 1;
536 for (i = 0; i < n_params; i++) {
537 id = ntohs(hmacs->hmac_ids[i]);
538 if (sctp_hmac_supported(id)) {
539 asoc->default_hmac_id = id;
540 break;
541 }
542 }
543}
544
545
546/* Check to see if the given chunk is supposed to be authenticated */
547static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
548{
549 unsigned short len;
550 int found = 0;
551 int i;
552
553 if (!param || param->param_hdr.length == 0)
554 return 0;
555
556 len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
557
558 /* SCTP-AUTH, Section 3.2
559 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
560 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
561 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
562 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
563 */
564 for (i = 0; !found && i < len; i++) {
565 switch (param->chunks[i]) {
566 case SCTP_CID_INIT:
567 case SCTP_CID_INIT_ACK:
568 case SCTP_CID_SHUTDOWN_COMPLETE:
569 case SCTP_CID_AUTH:
570 break;
571
572 default:
573 if (param->chunks[i] == chunk)
574 found = 1;
575 break;
576 }
577 }
578
579 return found;
580}
581
582/* Check if peer requested that this chunk is authenticated */
583int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
584{
585 if (!asoc)
586 return 0;
587
588 if (!asoc->peer.auth_capable)
589 return 0;
590
591 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
592}
593
594/* Check if we requested that peer authenticate this chunk. */
595int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
596{
597 if (!asoc)
598 return 0;
599
600 if (!asoc->peer.auth_capable)
601 return 0;
602
603 return __sctp_auth_cid(chunk,
604 (struct sctp_chunks_param *)asoc->c.auth_chunks);
605}
606
607/* SCTP-AUTH: Section 6.2:
608 * The sender MUST calculate the MAC as described in RFC2104 [2] using
609 * the hash function H as described by the MAC Identifier and the shared
610 * association key K based on the endpoint pair shared key described by
611 * the shared key identifier. The 'data' used for the computation of
612 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
613 * zero (as shown in Figure 6) followed by all chunks that are placed
614 * after the AUTH chunk in the SCTP packet.
615 */
616void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
617 struct sk_buff *skb, struct sctp_auth_chunk *auth,
618 struct sctp_shared_key *ep_key, gfp_t gfp)
619{
620 struct sctp_auth_bytes *asoc_key;
621 __u16 key_id, hmac_id;
622 int free_key = 0;
623 size_t data_len;
624 __u8 *digest;
625
626 /* Extract the info we need:
627 * - hmac id
628 * - key id
629 */
630 key_id = ntohs(auth->auth_hdr.shkey_id);
631 hmac_id = ntohs(auth->auth_hdr.hmac_id);
632
633 if (key_id == asoc->active_key_id)
634 asoc_key = asoc->asoc_shared_key;
635 else {
636 /* ep_key can't be NULL here */
637 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
638 if (!asoc_key)
639 return;
640
641 free_key = 1;
642 }
643
644 data_len = skb_tail_pointer(skb) - (unsigned char *)auth;
645 digest = (u8 *)(&auth->auth_hdr + 1);
646 if (hmac_id == SCTP_AUTH_HMAC_ID_SHA1) {
647 hmac_sha1_usingrawkey(asoc_key->data, asoc_key->len,
648 (const u8 *)auth, data_len, digest);
649 } else {
650 WARN_ON_ONCE(hmac_id != SCTP_AUTH_HMAC_ID_SHA256);
651 hmac_sha256_usingrawkey(asoc_key->data, asoc_key->len,
652 (const u8 *)auth, data_len, digest);
653 }
654
655 if (free_key)
656 sctp_auth_key_put(asoc_key);
657}
658
659/* API Helpers */
660
661/* Add a chunk to the endpoint authenticated chunk list */
662int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
663{
664 struct sctp_chunks_param *p = ep->auth_chunk_list;
665 __u16 nchunks;
666 __u16 param_len;
667
668 /* If this chunk is already specified, we are done */
669 if (__sctp_auth_cid(chunk_id, p))
670 return 0;
671
672 /* Check if we can add this chunk to the array */
673 param_len = ntohs(p->param_hdr.length);
674 nchunks = param_len - sizeof(struct sctp_paramhdr);
675 if (nchunks == SCTP_NUM_CHUNK_TYPES)
676 return -EINVAL;
677
678 p->chunks[nchunks] = chunk_id;
679 p->param_hdr.length = htons(param_len + 1);
680 return 0;
681}
682
683/* Add hmac identifires to the endpoint list of supported hmac ids */
684int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
685 struct sctp_hmacalgo *hmacs)
686{
687 int has_sha1 = 0;
688 __u16 id;
689 int i;
690
691 /* Scan the list looking for unsupported id. Also make sure that
692 * SHA1 is specified.
693 */
694 for (i = 0; i < hmacs->shmac_num_idents; i++) {
695 id = hmacs->shmac_idents[i];
696
697 if (!sctp_hmac_supported(id))
698 return -EOPNOTSUPP;
699
700 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
701 has_sha1 = 1;
702 }
703
704 if (!has_sha1)
705 return -EINVAL;
706
707 for (i = 0; i < hmacs->shmac_num_idents; i++)
708 ep->auth_hmacs_list->hmac_ids[i] =
709 htons(hmacs->shmac_idents[i]);
710 ep->auth_hmacs_list->param_hdr.length =
711 htons(sizeof(struct sctp_paramhdr) +
712 hmacs->shmac_num_idents * sizeof(__u16));
713 return 0;
714}
715
716/* Set a new shared key on either endpoint or association. If the
717 * key with a same ID already exists, replace the key (remove the
718 * old key and add a new one).
719 */
720int sctp_auth_set_key(struct sctp_endpoint *ep,
721 struct sctp_association *asoc,
722 struct sctp_authkey *auth_key)
723{
724 struct sctp_shared_key *cur_key, *shkey;
725 struct sctp_auth_bytes *key;
726 struct list_head *sh_keys;
727 int replace = 0;
728
729 /* Try to find the given key id to see if
730 * we are doing a replace, or adding a new key
731 */
732 if (asoc) {
733 if (!asoc->peer.auth_capable)
734 return -EACCES;
735 sh_keys = &asoc->endpoint_shared_keys;
736 } else {
737 if (!ep->auth_enable)
738 return -EACCES;
739 sh_keys = &ep->endpoint_shared_keys;
740 }
741
742 key_for_each(shkey, sh_keys) {
743 if (shkey->key_id == auth_key->sca_keynumber) {
744 replace = 1;
745 break;
746 }
747 }
748
749 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
750 if (!cur_key)
751 return -ENOMEM;
752
753 /* Create a new key data based on the info passed in */
754 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
755 if (!key) {
756 kfree(cur_key);
757 return -ENOMEM;
758 }
759
760 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
761 cur_key->key = key;
762
763 if (!replace) {
764 list_add(&cur_key->key_list, sh_keys);
765 return 0;
766 }
767
768 list_del_init(&shkey->key_list);
769 list_add(&cur_key->key_list, sh_keys);
770
771 if (asoc && asoc->active_key_id == auth_key->sca_keynumber &&
772 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL)) {
773 list_del_init(&cur_key->key_list);
774 sctp_auth_shkey_release(cur_key);
775 list_add(&shkey->key_list, sh_keys);
776 return -ENOMEM;
777 }
778
779 sctp_auth_shkey_release(shkey);
780 return 0;
781}
782
783int sctp_auth_set_active_key(struct sctp_endpoint *ep,
784 struct sctp_association *asoc,
785 __u16 key_id)
786{
787 struct sctp_shared_key *key;
788 struct list_head *sh_keys;
789 int found = 0;
790
791 /* The key identifier MUST correst to an existing key */
792 if (asoc) {
793 if (!asoc->peer.auth_capable)
794 return -EACCES;
795 sh_keys = &asoc->endpoint_shared_keys;
796 } else {
797 if (!ep->auth_enable)
798 return -EACCES;
799 sh_keys = &ep->endpoint_shared_keys;
800 }
801
802 key_for_each(key, sh_keys) {
803 if (key->key_id == key_id) {
804 found = 1;
805 break;
806 }
807 }
808
809 if (!found || key->deactivated)
810 return -EINVAL;
811
812 if (asoc) {
813 __u16 active_key_id = asoc->active_key_id;
814
815 asoc->active_key_id = key_id;
816 if (sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL)) {
817 asoc->active_key_id = active_key_id;
818 return -ENOMEM;
819 }
820 } else
821 ep->active_key_id = key_id;
822
823 return 0;
824}
825
826int sctp_auth_del_key_id(struct sctp_endpoint *ep,
827 struct sctp_association *asoc,
828 __u16 key_id)
829{
830 struct sctp_shared_key *key;
831 struct list_head *sh_keys;
832 int found = 0;
833
834 /* The key identifier MUST NOT be the current active key
835 * The key identifier MUST correst to an existing key
836 */
837 if (asoc) {
838 if (!asoc->peer.auth_capable)
839 return -EACCES;
840 if (asoc->active_key_id == key_id)
841 return -EINVAL;
842
843 sh_keys = &asoc->endpoint_shared_keys;
844 } else {
845 if (!ep->auth_enable)
846 return -EACCES;
847 if (ep->active_key_id == key_id)
848 return -EINVAL;
849
850 sh_keys = &ep->endpoint_shared_keys;
851 }
852
853 key_for_each(key, sh_keys) {
854 if (key->key_id == key_id) {
855 found = 1;
856 break;
857 }
858 }
859
860 if (!found)
861 return -EINVAL;
862
863 /* Delete the shared key */
864 list_del_init(&key->key_list);
865 sctp_auth_shkey_release(key);
866
867 return 0;
868}
869
870int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
871 struct sctp_association *asoc, __u16 key_id)
872{
873 struct sctp_shared_key *key;
874 struct list_head *sh_keys;
875 int found = 0;
876
877 /* The key identifier MUST NOT be the current active key
878 * The key identifier MUST correst to an existing key
879 */
880 if (asoc) {
881 if (!asoc->peer.auth_capable)
882 return -EACCES;
883 if (asoc->active_key_id == key_id)
884 return -EINVAL;
885
886 sh_keys = &asoc->endpoint_shared_keys;
887 } else {
888 if (!ep->auth_enable)
889 return -EACCES;
890 if (ep->active_key_id == key_id)
891 return -EINVAL;
892
893 sh_keys = &ep->endpoint_shared_keys;
894 }
895
896 key_for_each(key, sh_keys) {
897 if (key->key_id == key_id) {
898 found = 1;
899 break;
900 }
901 }
902
903 if (!found)
904 return -EINVAL;
905
906 /* refcnt == 1 and !list_empty mean it's not being used anywhere
907 * and deactivated will be set, so it's time to notify userland
908 * that this shkey can be freed.
909 */
910 if (asoc && !list_empty(&key->key_list) &&
911 refcount_read(&key->refcnt) == 1) {
912 struct sctp_ulpevent *ev;
913
914 ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
915 SCTP_AUTH_FREE_KEY, GFP_KERNEL);
916 if (ev)
917 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
918 }
919
920 key->deactivated = 1;
921
922 return 0;
923}
924
925int sctp_auth_init(struct sctp_endpoint *ep, gfp_t gfp)
926{
927 /* Allocate space for HMACS and CHUNKS authentication
928 * variables. There are arrays that we encode directly
929 * into parameters to make the rest of the operations easier.
930 */
931 if (!ep->auth_hmacs_list) {
932 struct sctp_hmac_algo_param *auth_hmacs;
933
934 auth_hmacs = kzalloc(struct_size(auth_hmacs, hmac_ids,
935 SCTP_AUTH_NUM_HMACS), gfp);
936 if (!auth_hmacs)
937 goto nomem;
938 /* Initialize the HMACS parameter.
939 * SCTP-AUTH: Section 3.3
940 * Every endpoint supporting SCTP chunk authentication MUST
941 * support the HMAC based on the SHA-1 algorithm.
942 */
943 auth_hmacs->param_hdr.type = SCTP_PARAM_HMAC_ALGO;
944 auth_hmacs->param_hdr.length =
945 htons(sizeof(struct sctp_paramhdr) + 2);
946 auth_hmacs->hmac_ids[0] = htons(SCTP_AUTH_HMAC_ID_SHA1);
947 ep->auth_hmacs_list = auth_hmacs;
948 }
949
950 if (!ep->auth_chunk_list) {
951 struct sctp_chunks_param *auth_chunks;
952
953 auth_chunks = kzalloc(sizeof(*auth_chunks) +
954 SCTP_NUM_CHUNK_TYPES, gfp);
955 if (!auth_chunks)
956 goto nomem;
957 /* Initialize the CHUNKS parameter */
958 auth_chunks->param_hdr.type = SCTP_PARAM_CHUNKS;
959 auth_chunks->param_hdr.length =
960 htons(sizeof(struct sctp_paramhdr));
961 ep->auth_chunk_list = auth_chunks;
962 }
963
964 return 0;
965
966nomem:
967 /* Free all allocations */
968 kfree(ep->auth_hmacs_list);
969 kfree(ep->auth_chunk_list);
970 ep->auth_hmacs_list = NULL;
971 ep->auth_chunk_list = NULL;
972 return -ENOMEM;
973}
974
975void sctp_auth_free(struct sctp_endpoint *ep)
976{
977 kfree(ep->auth_hmacs_list);
978 kfree(ep->auth_chunk_list);
979 ep->auth_hmacs_list = NULL;
980 ep->auth_chunk_list = NULL;
981}