Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4 *
5 * Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com>
6 *
7 * Meant to be mostly used for locally generated traffic :
8 * Fast classification depends on skb->sk being set before reaching us.
9 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10 * All packets belonging to a socket are considered as a 'flow'.
11 *
12 * Flows are dynamically allocated and stored in a hash table of RB trees
13 * They are also part of one Round Robin 'queues' (new or old flows)
14 *
15 * Burst avoidance (aka pacing) capability :
16 *
17 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18 * bunch of packets, and this packet scheduler adds delay between
19 * packets to respect rate limitation.
20 *
21 * enqueue() :
22 * - lookup one RB tree (out of 1024 or more) to find the flow.
23 * If non existent flow, create it, add it to the tree.
24 * Add skb to the per flow list of skb (fifo).
25 * - Use a special fifo for high prio packets
26 *
27 * dequeue() : serves flows in Round Robin
28 * Note : When a flow becomes empty, we do not immediately remove it from
29 * rb trees, for performance reasons (its expected to send additional packets,
30 * or SLAB cache will reuse socket for another flow)
31 */
32
33#include <linux/module.h>
34#include <linux/types.h>
35#include <linux/kernel.h>
36#include <linux/jiffies.h>
37#include <linux/string.h>
38#include <linux/in.h>
39#include <linux/errno.h>
40#include <linux/init.h>
41#include <linux/skbuff.h>
42#include <linux/slab.h>
43#include <linux/rbtree.h>
44#include <linux/hash.h>
45#include <linux/prefetch.h>
46#include <linux/vmalloc.h>
47#include <net/netlink.h>
48#include <net/pkt_sched.h>
49#include <net/sock.h>
50#include <net/tcp_states.h>
51#include <net/tcp.h>
52
53struct fq_skb_cb {
54 u64 time_to_send;
55 u8 band;
56};
57
58static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
59{
60 qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
61 return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
62}
63
64/*
65 * Per flow structure, dynamically allocated.
66 * If packets have monotically increasing time_to_send, they are placed in O(1)
67 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
68 */
69struct fq_flow {
70/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
71 struct rb_root t_root;
72 struct sk_buff *head; /* list of skbs for this flow : first skb */
73 union {
74 struct sk_buff *tail; /* last skb in the list */
75 unsigned long age; /* (jiffies | 1UL) when flow was emptied, for gc */
76 };
77 union {
78 struct rb_node fq_node; /* anchor in fq_root[] trees */
79 /* Following field is only used for q->internal,
80 * because q->internal is not hashed in fq_root[]
81 */
82 u64 stat_fastpath_packets;
83 };
84 struct sock *sk;
85 u32 socket_hash; /* sk_hash */
86 int qlen; /* number of packets in flow queue */
87
88/* Second cache line */
89 int credit;
90 int band;
91 struct fq_flow *next; /* next pointer in RR lists */
92
93 struct rb_node rate_node; /* anchor in q->delayed tree */
94 u64 time_next_packet;
95};
96
97struct fq_flow_head {
98 struct fq_flow *first;
99 struct fq_flow *last;
100};
101
102struct fq_perband_flows {
103 struct fq_flow_head new_flows;
104 struct fq_flow_head old_flows;
105 int credit;
106 int quantum; /* based on band nr : 576KB, 192KB, 64KB */
107};
108
109#define FQ_PRIO2BAND_CRUMB_SIZE ((TC_PRIO_MAX + 1) >> 2)
110
111struct fq_sched_data {
112/* Read mostly cache line */
113
114 u64 offload_horizon;
115 u32 quantum;
116 u32 initial_quantum;
117 u32 flow_refill_delay;
118 u32 flow_plimit; /* max packets per flow */
119 unsigned long flow_max_rate; /* optional max rate per flow */
120 u64 ce_threshold;
121 u64 horizon; /* horizon in ns */
122 u32 orphan_mask; /* mask for orphaned skb */
123 u32 low_rate_threshold;
124 struct rb_root *fq_root;
125 u8 rate_enable;
126 u8 fq_trees_log;
127 u8 horizon_drop;
128 u8 prio2band[FQ_PRIO2BAND_CRUMB_SIZE];
129 u32 timer_slack; /* hrtimer slack in ns */
130
131/* Read/Write fields. */
132
133 unsigned int band_nr; /* band being serviced in fq_dequeue() */
134
135 struct fq_perband_flows band_flows[FQ_BANDS];
136
137 struct fq_flow internal; /* fastpath queue. */
138 struct rb_root delayed; /* for rate limited flows */
139 u64 time_next_delayed_flow;
140 unsigned long unthrottle_latency_ns;
141
142 u32 band_pkt_count[FQ_BANDS];
143 u32 flows;
144 u32 inactive_flows; /* Flows with no packet to send. */
145 u32 throttled_flows;
146
147 u64 stat_throttled;
148 struct qdisc_watchdog watchdog;
149 u64 stat_gc_flows;
150
151/* Seldom used fields. */
152
153 u64 stat_band_drops[FQ_BANDS];
154 u64 stat_ce_mark;
155 u64 stat_horizon_drops;
156 u64 stat_horizon_caps;
157 u64 stat_flows_plimit;
158 u64 stat_pkts_too_long;
159 u64 stat_allocation_errors;
160};
161
162/* return the i-th 2-bit value ("crumb") */
163static u8 fq_prio2band(const u8 *prio2band, unsigned int prio)
164{
165 return (READ_ONCE(prio2band[prio / 4]) >> (2 * (prio & 0x3))) & 0x3;
166}
167
168/*
169 * f->tail and f->age share the same location.
170 * We can use the low order bit to differentiate if this location points
171 * to a sk_buff or contains a jiffies value, if we force this value to be odd.
172 * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
173 */
174static void fq_flow_set_detached(struct fq_flow *f)
175{
176 f->age = jiffies | 1UL;
177}
178
179static bool fq_flow_is_detached(const struct fq_flow *f)
180{
181 return !!(f->age & 1UL);
182}
183
184/* special value to mark a throttled flow (not on old/new list) */
185static struct fq_flow throttled;
186
187static bool fq_flow_is_throttled(const struct fq_flow *f)
188{
189 return f->next == &throttled;
190}
191
192enum new_flow {
193 NEW_FLOW,
194 OLD_FLOW
195};
196
197static void fq_flow_add_tail(struct fq_sched_data *q, struct fq_flow *flow,
198 enum new_flow list_sel)
199{
200 struct fq_perband_flows *pband = &q->band_flows[flow->band];
201 struct fq_flow_head *head = (list_sel == NEW_FLOW) ?
202 &pband->new_flows :
203 &pband->old_flows;
204
205 if (head->first)
206 head->last->next = flow;
207 else
208 head->first = flow;
209 head->last = flow;
210 flow->next = NULL;
211}
212
213static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
214{
215 rb_erase(&f->rate_node, &q->delayed);
216 q->throttled_flows--;
217 fq_flow_add_tail(q, f, OLD_FLOW);
218}
219
220static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
221{
222 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
223
224 while (*p) {
225 struct fq_flow *aux;
226
227 parent = *p;
228 aux = rb_entry(parent, struct fq_flow, rate_node);
229 if (f->time_next_packet >= aux->time_next_packet)
230 p = &parent->rb_right;
231 else
232 p = &parent->rb_left;
233 }
234 rb_link_node(&f->rate_node, parent, p);
235 rb_insert_color(&f->rate_node, &q->delayed);
236 q->throttled_flows++;
237 q->stat_throttled++;
238
239 f->next = &throttled;
240 if (q->time_next_delayed_flow > f->time_next_packet)
241 q->time_next_delayed_flow = f->time_next_packet;
242}
243
244
245static struct kmem_cache *fq_flow_cachep __read_mostly;
246
247
248/* limit number of collected flows per round */
249#define FQ_GC_MAX 8
250#define FQ_GC_AGE (3*HZ)
251
252static bool fq_gc_candidate(const struct fq_flow *f)
253{
254 return fq_flow_is_detached(f) &&
255 time_after(jiffies, f->age + FQ_GC_AGE);
256}
257
258static void fq_gc(struct fq_sched_data *q,
259 struct rb_root *root,
260 struct sock *sk)
261{
262 struct rb_node **p, *parent;
263 void *tofree[FQ_GC_MAX];
264 struct fq_flow *f;
265 int i, fcnt = 0;
266
267 p = &root->rb_node;
268 parent = NULL;
269 while (*p) {
270 parent = *p;
271
272 f = rb_entry(parent, struct fq_flow, fq_node);
273 if (f->sk == sk)
274 break;
275
276 if (fq_gc_candidate(f)) {
277 tofree[fcnt++] = f;
278 if (fcnt == FQ_GC_MAX)
279 break;
280 }
281
282 if (f->sk > sk)
283 p = &parent->rb_right;
284 else
285 p = &parent->rb_left;
286 }
287
288 if (!fcnt)
289 return;
290
291 for (i = fcnt; i > 0; ) {
292 f = tofree[--i];
293 rb_erase(&f->fq_node, root);
294 }
295 q->flows -= fcnt;
296 q->inactive_flows -= fcnt;
297 q->stat_gc_flows += fcnt;
298
299 kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
300}
301
302/* Fast path can be used if :
303 * 1) Packet tstamp is in the past, or within the pacing offload horizon.
304 * 2) FQ qlen == 0 OR
305 * (no flow is currently eligible for transmit,
306 * AND fast path queue has less than 8 packets)
307 * 3) No SO_MAX_PACING_RATE on the socket (if any).
308 * 4) No @maxrate attribute on this qdisc,
309 *
310 * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure.
311 */
312static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb,
313 u64 now)
314{
315 const struct fq_sched_data *q = qdisc_priv(sch);
316 const struct sock *sk;
317
318 if (fq_skb_cb(skb)->time_to_send > now + q->offload_horizon)
319 return false;
320
321 if (sch->q.qlen != 0) {
322 /* Even if some packets are stored in this qdisc,
323 * we can still enable fast path if all of them are
324 * scheduled in the future (ie no flows are eligible)
325 * or in the fast path queue.
326 */
327 if (q->flows != q->inactive_flows + q->throttled_flows)
328 return false;
329
330 /* Do not allow fast path queue to explode, we want Fair Queue mode
331 * under pressure.
332 */
333 if (q->internal.qlen >= 8)
334 return false;
335
336 /* Ordering invariants fall apart if some delayed flows
337 * are ready but we haven't serviced them, yet.
338 */
339 if (q->time_next_delayed_flow <= now + q->offload_horizon)
340 return false;
341 }
342
343 sk = skb->sk;
344 if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) &&
345 sk->sk_max_pacing_rate != ~0UL)
346 return false;
347
348 if (q->flow_max_rate != ~0UL)
349 return false;
350
351 return true;
352}
353
354static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb,
355 u64 now)
356{
357 struct fq_sched_data *q = qdisc_priv(sch);
358 struct rb_node **p, *parent;
359 struct sock *sk = skb->sk;
360 struct rb_root *root;
361 struct fq_flow *f;
362
363 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
364 * or a listener (SYNCOOKIE mode)
365 * 1) request sockets are not full blown,
366 * they do not contain sk_pacing_rate
367 * 2) They are not part of a 'flow' yet
368 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
369 * especially if the listener set SO_MAX_PACING_RATE
370 * 4) We pretend they are orphaned
371 * TCP can also associate TIME_WAIT sockets with RST or ACK packets.
372 */
373 if (!sk || sk_listener_or_tw(sk)) {
374 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
375
376 /* By forcing low order bit to 1, we make sure to not
377 * collide with a local flow (socket pointers are word aligned)
378 */
379 sk = (struct sock *)((hash << 1) | 1UL);
380 skb_orphan(skb);
381 } else if (sk->sk_state == TCP_CLOSE) {
382 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
383 /*
384 * Sockets in TCP_CLOSE are non connected.
385 * Typical use case is UDP sockets, they can send packets
386 * with sendto() to many different destinations.
387 * We probably could use a generic bit advertising
388 * non connected sockets, instead of sk_state == TCP_CLOSE,
389 * if we care enough.
390 */
391 sk = (struct sock *)((hash << 1) | 1UL);
392 }
393
394 if (fq_fastpath_check(sch, skb, now)) {
395 q->internal.stat_fastpath_packets++;
396 if (skb->sk == sk && q->rate_enable &&
397 READ_ONCE(sk->sk_pacing_status) != SK_PACING_FQ)
398 smp_store_release(&sk->sk_pacing_status,
399 SK_PACING_FQ);
400 return &q->internal;
401 }
402
403 root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
404
405 fq_gc(q, root, sk);
406
407 p = &root->rb_node;
408 parent = NULL;
409 while (*p) {
410 parent = *p;
411
412 f = rb_entry(parent, struct fq_flow, fq_node);
413 if (f->sk == sk) {
414 /* socket might have been reallocated, so check
415 * if its sk_hash is the same.
416 * It not, we need to refill credit with
417 * initial quantum
418 */
419 if (unlikely(skb->sk == sk &&
420 f->socket_hash != sk->sk_hash)) {
421 f->credit = q->initial_quantum;
422 f->socket_hash = sk->sk_hash;
423 if (q->rate_enable)
424 smp_store_release(&sk->sk_pacing_status,
425 SK_PACING_FQ);
426 if (fq_flow_is_throttled(f))
427 fq_flow_unset_throttled(q, f);
428 f->time_next_packet = 0ULL;
429 }
430 return f;
431 }
432 if (f->sk > sk)
433 p = &parent->rb_right;
434 else
435 p = &parent->rb_left;
436 }
437
438 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
439 if (unlikely(!f)) {
440 q->stat_allocation_errors++;
441 return &q->internal;
442 }
443 /* f->t_root is already zeroed after kmem_cache_zalloc() */
444
445 fq_flow_set_detached(f);
446 f->sk = sk;
447 if (skb->sk == sk) {
448 f->socket_hash = sk->sk_hash;
449 if (q->rate_enable)
450 smp_store_release(&sk->sk_pacing_status,
451 SK_PACING_FQ);
452 }
453 f->credit = q->initial_quantum;
454
455 rb_link_node(&f->fq_node, parent, p);
456 rb_insert_color(&f->fq_node, root);
457
458 q->flows++;
459 q->inactive_flows++;
460 return f;
461}
462
463static struct sk_buff *fq_peek(struct fq_flow *flow)
464{
465 struct sk_buff *skb = skb_rb_first(&flow->t_root);
466 struct sk_buff *head = flow->head;
467
468 if (!skb)
469 return head;
470
471 if (!head)
472 return skb;
473
474 if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
475 return skb;
476 return head;
477}
478
479static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
480 struct sk_buff *skb)
481{
482 if (skb == flow->head) {
483 struct sk_buff *next = skb->next;
484
485 prefetch(next);
486 flow->head = next;
487 } else {
488 rb_erase(&skb->rbnode, &flow->t_root);
489 skb->dev = qdisc_dev(sch);
490 }
491}
492
493/* Remove one skb from flow queue.
494 * This skb must be the return value of prior fq_peek().
495 */
496static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
497 struct sk_buff *skb)
498{
499 fq_erase_head(sch, flow, skb);
500 skb_mark_not_on_list(skb);
501 qdisc_qstats_backlog_dec(sch, skb);
502 sch->q.qlen--;
503 qdisc_bstats_update(sch, skb);
504}
505
506static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
507{
508 struct rb_node **p, *parent;
509 struct sk_buff *head, *aux;
510
511 head = flow->head;
512 if (!head ||
513 fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
514 if (!head)
515 flow->head = skb;
516 else
517 flow->tail->next = skb;
518 flow->tail = skb;
519 skb->next = NULL;
520 return;
521 }
522
523 p = &flow->t_root.rb_node;
524 parent = NULL;
525
526 while (*p) {
527 parent = *p;
528 aux = rb_to_skb(parent);
529 if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
530 p = &parent->rb_right;
531 else
532 p = &parent->rb_left;
533 }
534 rb_link_node(&skb->rbnode, parent, p);
535 rb_insert_color(&skb->rbnode, &flow->t_root);
536}
537
538static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
539 const struct fq_sched_data *q, u64 now)
540{
541 return unlikely((s64)skb->tstamp > (s64)(now + q->horizon));
542}
543
544#define FQDR(reason) SKB_DROP_REASON_FQ_##reason
545
546static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
547 struct sk_buff **to_free)
548{
549 struct fq_sched_data *q = qdisc_priv(sch);
550 struct fq_flow *f;
551 u64 now;
552 u8 band;
553
554 band = fq_prio2band(q->prio2band, skb->priority & TC_PRIO_MAX);
555 if (unlikely(q->band_pkt_count[band] >= sch->limit)) {
556 q->stat_band_drops[band]++;
557 return qdisc_drop_reason(skb, sch, to_free,
558 FQDR(BAND_LIMIT));
559 }
560
561 now = ktime_get_ns();
562 if (!skb->tstamp) {
563 fq_skb_cb(skb)->time_to_send = now;
564 } else {
565 /* Check if packet timestamp is too far in the future. */
566 if (fq_packet_beyond_horizon(skb, q, now)) {
567 if (q->horizon_drop) {
568 q->stat_horizon_drops++;
569 return qdisc_drop_reason(skb, sch, to_free,
570 FQDR(HORIZON_LIMIT));
571 }
572 q->stat_horizon_caps++;
573 skb->tstamp = now + q->horizon;
574 }
575 fq_skb_cb(skb)->time_to_send = skb->tstamp;
576 }
577
578 f = fq_classify(sch, skb, now);
579
580 if (f != &q->internal) {
581 if (unlikely(f->qlen >= q->flow_plimit)) {
582 q->stat_flows_plimit++;
583 return qdisc_drop_reason(skb, sch, to_free,
584 FQDR(FLOW_LIMIT));
585 }
586
587 if (fq_flow_is_detached(f)) {
588 fq_flow_add_tail(q, f, NEW_FLOW);
589 if (time_after(jiffies, f->age + q->flow_refill_delay))
590 f->credit = max_t(u32, f->credit, q->quantum);
591 }
592
593 f->band = band;
594 q->band_pkt_count[band]++;
595 fq_skb_cb(skb)->band = band;
596 if (f->qlen == 0)
597 q->inactive_flows--;
598 }
599
600 f->qlen++;
601 /* Note: this overwrites f->age */
602 flow_queue_add(f, skb);
603
604 qdisc_qstats_backlog_inc(sch, skb);
605 sch->q.qlen++;
606
607 return NET_XMIT_SUCCESS;
608}
609#undef FQDR
610
611static void fq_check_throttled(struct fq_sched_data *q, u64 now)
612{
613 unsigned long sample;
614 struct rb_node *p;
615
616 if (q->time_next_delayed_flow > now + q->offload_horizon)
617 return;
618
619 /* Update unthrottle latency EWMA.
620 * This is cheap and can help diagnosing timer/latency problems.
621 */
622 sample = (unsigned long)(now - q->time_next_delayed_flow);
623 if ((long)sample > 0) {
624 q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
625 q->unthrottle_latency_ns += sample >> 3;
626 }
627 now += q->offload_horizon;
628
629 q->time_next_delayed_flow = ~0ULL;
630 while ((p = rb_first(&q->delayed)) != NULL) {
631 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
632
633 if (f->time_next_packet > now) {
634 q->time_next_delayed_flow = f->time_next_packet;
635 break;
636 }
637 fq_flow_unset_throttled(q, f);
638 }
639}
640
641static struct fq_flow_head *fq_pband_head_select(struct fq_perband_flows *pband)
642{
643 if (pband->credit <= 0)
644 return NULL;
645
646 if (pband->new_flows.first)
647 return &pband->new_flows;
648
649 return pband->old_flows.first ? &pband->old_flows : NULL;
650}
651
652static struct sk_buff *fq_dequeue(struct Qdisc *sch)
653{
654 struct fq_sched_data *q = qdisc_priv(sch);
655 struct fq_perband_flows *pband;
656 struct fq_flow_head *head;
657 struct sk_buff *skb;
658 struct fq_flow *f;
659 unsigned long rate;
660 int retry;
661 u32 plen;
662 u64 now;
663
664 if (!sch->q.qlen)
665 return NULL;
666
667 skb = fq_peek(&q->internal);
668 if (unlikely(skb)) {
669 q->internal.qlen--;
670 fq_dequeue_skb(sch, &q->internal, skb);
671 goto out;
672 }
673
674 now = ktime_get_ns();
675 fq_check_throttled(q, now);
676 retry = 0;
677 pband = &q->band_flows[q->band_nr];
678begin:
679 head = fq_pband_head_select(pband);
680 if (!head) {
681 while (++retry <= FQ_BANDS) {
682 if (++q->band_nr == FQ_BANDS)
683 q->band_nr = 0;
684 pband = &q->band_flows[q->band_nr];
685 pband->credit = min(pband->credit + pband->quantum,
686 pband->quantum);
687 if (pband->credit > 0)
688 goto begin;
689 retry = 0;
690 }
691 if (q->time_next_delayed_flow != ~0ULL)
692 qdisc_watchdog_schedule_range_ns(&q->watchdog,
693 q->time_next_delayed_flow,
694 q->timer_slack);
695 return NULL;
696 }
697 f = head->first;
698 retry = 0;
699 if (f->credit <= 0) {
700 f->credit += q->quantum;
701 head->first = f->next;
702 fq_flow_add_tail(q, f, OLD_FLOW);
703 goto begin;
704 }
705
706 skb = fq_peek(f);
707 if (skb) {
708 u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
709 f->time_next_packet);
710
711 if (now + q->offload_horizon < time_next_packet) {
712 head->first = f->next;
713 f->time_next_packet = time_next_packet;
714 fq_flow_set_throttled(q, f);
715 goto begin;
716 }
717 prefetch(&skb->end);
718 fq_dequeue_skb(sch, f, skb);
719 if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
720 INET_ECN_set_ce(skb);
721 q->stat_ce_mark++;
722 }
723 if (--f->qlen == 0)
724 q->inactive_flows++;
725 q->band_pkt_count[fq_skb_cb(skb)->band]--;
726 } else {
727 head->first = f->next;
728 /* force a pass through old_flows to prevent starvation */
729 if (head == &pband->new_flows) {
730 fq_flow_add_tail(q, f, OLD_FLOW);
731 } else {
732 fq_flow_set_detached(f);
733 }
734 goto begin;
735 }
736 plen = qdisc_pkt_len(skb);
737 f->credit -= plen;
738 pband->credit -= plen;
739
740 if (!q->rate_enable)
741 goto out;
742
743 rate = q->flow_max_rate;
744
745 /* If EDT time was provided for this skb, we need to
746 * update f->time_next_packet only if this qdisc enforces
747 * a flow max rate.
748 */
749 if (!skb->tstamp) {
750 if (skb->sk)
751 rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate);
752
753 if (rate <= q->low_rate_threshold) {
754 f->credit = 0;
755 } else {
756 plen = max(plen, q->quantum);
757 if (f->credit > 0)
758 goto out;
759 }
760 }
761 if (rate != ~0UL) {
762 u64 len = (u64)plen * NSEC_PER_SEC;
763
764 if (likely(rate))
765 len = div64_ul(len, rate);
766 /* Since socket rate can change later,
767 * clamp the delay to 1 second.
768 * Really, providers of too big packets should be fixed !
769 */
770 if (unlikely(len > NSEC_PER_SEC)) {
771 len = NSEC_PER_SEC;
772 q->stat_pkts_too_long++;
773 }
774 /* Account for schedule/timers drifts.
775 * f->time_next_packet was set when prior packet was sent,
776 * and current time (@now) can be too late by tens of us.
777 */
778 if (f->time_next_packet)
779 len -= min(len/2, now - f->time_next_packet);
780 f->time_next_packet = now + len;
781 }
782out:
783 return skb;
784}
785
786static void fq_flow_purge(struct fq_flow *flow)
787{
788 struct rb_node *p = rb_first(&flow->t_root);
789
790 while (p) {
791 struct sk_buff *skb = rb_to_skb(p);
792
793 p = rb_next(p);
794 rb_erase(&skb->rbnode, &flow->t_root);
795 rtnl_kfree_skbs(skb, skb);
796 }
797 rtnl_kfree_skbs(flow->head, flow->tail);
798 flow->head = NULL;
799 flow->qlen = 0;
800}
801
802static void fq_reset(struct Qdisc *sch)
803{
804 struct fq_sched_data *q = qdisc_priv(sch);
805 struct rb_root *root;
806 struct rb_node *p;
807 struct fq_flow *f;
808 unsigned int idx;
809
810 sch->q.qlen = 0;
811 sch->qstats.backlog = 0;
812
813 fq_flow_purge(&q->internal);
814
815 if (!q->fq_root)
816 return;
817
818 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
819 root = &q->fq_root[idx];
820 while ((p = rb_first(root)) != NULL) {
821 f = rb_entry(p, struct fq_flow, fq_node);
822 rb_erase(p, root);
823
824 fq_flow_purge(f);
825
826 kmem_cache_free(fq_flow_cachep, f);
827 }
828 }
829 for (idx = 0; idx < FQ_BANDS; idx++) {
830 q->band_flows[idx].new_flows.first = NULL;
831 q->band_flows[idx].old_flows.first = NULL;
832 }
833 q->delayed = RB_ROOT;
834 q->flows = 0;
835 q->inactive_flows = 0;
836 q->throttled_flows = 0;
837}
838
839static void fq_rehash(struct fq_sched_data *q,
840 struct rb_root *old_array, u32 old_log,
841 struct rb_root *new_array, u32 new_log)
842{
843 struct rb_node *op, **np, *parent;
844 struct rb_root *oroot, *nroot;
845 struct fq_flow *of, *nf;
846 int fcnt = 0;
847 u32 idx;
848
849 for (idx = 0; idx < (1U << old_log); idx++) {
850 oroot = &old_array[idx];
851 while ((op = rb_first(oroot)) != NULL) {
852 rb_erase(op, oroot);
853 of = rb_entry(op, struct fq_flow, fq_node);
854 if (fq_gc_candidate(of)) {
855 fcnt++;
856 kmem_cache_free(fq_flow_cachep, of);
857 continue;
858 }
859 nroot = &new_array[hash_ptr(of->sk, new_log)];
860
861 np = &nroot->rb_node;
862 parent = NULL;
863 while (*np) {
864 parent = *np;
865
866 nf = rb_entry(parent, struct fq_flow, fq_node);
867 BUG_ON(nf->sk == of->sk);
868
869 if (nf->sk > of->sk)
870 np = &parent->rb_right;
871 else
872 np = &parent->rb_left;
873 }
874
875 rb_link_node(&of->fq_node, parent, np);
876 rb_insert_color(&of->fq_node, nroot);
877 }
878 }
879 q->flows -= fcnt;
880 q->inactive_flows -= fcnt;
881 q->stat_gc_flows += fcnt;
882}
883
884static void fq_free(void *addr)
885{
886 kvfree(addr);
887}
888
889static int fq_resize(struct Qdisc *sch, u32 log)
890{
891 struct fq_sched_data *q = qdisc_priv(sch);
892 struct rb_root *array;
893 void *old_fq_root;
894 u32 idx;
895
896 if (q->fq_root && log == q->fq_trees_log)
897 return 0;
898
899 /* If XPS was setup, we can allocate memory on right NUMA node */
900 array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
901 netdev_queue_numa_node_read(sch->dev_queue));
902 if (!array)
903 return -ENOMEM;
904
905 for (idx = 0; idx < (1U << log); idx++)
906 array[idx] = RB_ROOT;
907
908 sch_tree_lock(sch);
909
910 old_fq_root = q->fq_root;
911 if (old_fq_root)
912 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
913
914 q->fq_root = array;
915 WRITE_ONCE(q->fq_trees_log, log);
916
917 sch_tree_unlock(sch);
918
919 fq_free(old_fq_root);
920
921 return 0;
922}
923
924static const struct netlink_range_validation iq_range = {
925 .max = INT_MAX,
926};
927
928static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
929 [TCA_FQ_UNSPEC] = { .strict_start_type = TCA_FQ_TIMER_SLACK },
930
931 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
932 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
933 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
934 [TCA_FQ_INITIAL_QUANTUM] = NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
935 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
936 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
937 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
938 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
939 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
940 [TCA_FQ_ORPHAN_MASK] = { .type = NLA_U32 },
941 [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
942 [TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 },
943 [TCA_FQ_TIMER_SLACK] = { .type = NLA_U32 },
944 [TCA_FQ_HORIZON] = { .type = NLA_U32 },
945 [TCA_FQ_HORIZON_DROP] = { .type = NLA_U8 },
946 [TCA_FQ_PRIOMAP] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt)),
947 [TCA_FQ_WEIGHTS] = NLA_POLICY_EXACT_LEN(FQ_BANDS * sizeof(s32)),
948 [TCA_FQ_OFFLOAD_HORIZON] = { .type = NLA_U32 },
949};
950
951/* compress a u8 array with all elems <= 3 to an array of 2-bit fields */
952static void fq_prio2band_compress_crumb(const u8 *in, u8 *out)
953{
954 const int num_elems = TC_PRIO_MAX + 1;
955 u8 tmp[FQ_PRIO2BAND_CRUMB_SIZE];
956 int i;
957
958 memset(tmp, 0, sizeof(tmp));
959 for (i = 0; i < num_elems; i++)
960 tmp[i / 4] |= in[i] << (2 * (i & 0x3));
961
962 for (i = 0; i < FQ_PRIO2BAND_CRUMB_SIZE; i++)
963 WRITE_ONCE(out[i], tmp[i]);
964}
965
966static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out)
967{
968 const int num_elems = TC_PRIO_MAX + 1;
969 int i;
970
971 for (i = 0; i < num_elems; i++)
972 out[i] = fq_prio2band(in, i);
973}
974
975static int fq_load_weights(struct fq_sched_data *q,
976 const struct nlattr *attr,
977 struct netlink_ext_ack *extack)
978{
979 s32 *weights = nla_data(attr);
980 int i;
981
982 for (i = 0; i < FQ_BANDS; i++) {
983 if (weights[i] < FQ_MIN_WEIGHT) {
984 NL_SET_ERR_MSG_FMT_MOD(extack, "Weight %d less that minimum allowed %d",
985 weights[i], FQ_MIN_WEIGHT);
986 return -EINVAL;
987 }
988 }
989 for (i = 0; i < FQ_BANDS; i++)
990 WRITE_ONCE(q->band_flows[i].quantum, weights[i]);
991 return 0;
992}
993
994static int fq_load_priomap(struct fq_sched_data *q,
995 const struct nlattr *attr,
996 struct netlink_ext_ack *extack)
997{
998 const struct tc_prio_qopt *map = nla_data(attr);
999 int i;
1000
1001 if (map->bands != FQ_BANDS) {
1002 NL_SET_ERR_MSG_MOD(extack, "FQ only supports 3 bands");
1003 return -EINVAL;
1004 }
1005 for (i = 0; i < TC_PRIO_MAX + 1; i++) {
1006 if (map->priomap[i] >= FQ_BANDS) {
1007 NL_SET_ERR_MSG_FMT_MOD(extack, "FQ priomap field %d maps to a too high band %d",
1008 i, map->priomap[i]);
1009 return -EINVAL;
1010 }
1011 }
1012 fq_prio2band_compress_crumb(map->priomap, q->prio2band);
1013 return 0;
1014}
1015
1016static int fq_change(struct Qdisc *sch, struct nlattr *opt,
1017 struct netlink_ext_ack *extack)
1018{
1019 unsigned int dropped_pkts = 0, dropped_bytes = 0;
1020 struct fq_sched_data *q = qdisc_priv(sch);
1021 struct nlattr *tb[TCA_FQ_MAX + 1];
1022 u32 fq_log;
1023 int err;
1024
1025 err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
1026 NULL);
1027 if (err < 0)
1028 return err;
1029
1030 sch_tree_lock(sch);
1031
1032 fq_log = q->fq_trees_log;
1033
1034 if (tb[TCA_FQ_BUCKETS_LOG]) {
1035 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
1036
1037 if (nval >= 1 && nval <= ilog2(256*1024))
1038 fq_log = nval;
1039 else
1040 err = -EINVAL;
1041 }
1042 if (tb[TCA_FQ_PLIMIT])
1043 WRITE_ONCE(sch->limit,
1044 nla_get_u32(tb[TCA_FQ_PLIMIT]));
1045
1046 if (tb[TCA_FQ_FLOW_PLIMIT])
1047 WRITE_ONCE(q->flow_plimit,
1048 nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]));
1049
1050 if (tb[TCA_FQ_QUANTUM]) {
1051 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
1052
1053 if (quantum > 0 && quantum <= (1 << 20)) {
1054 WRITE_ONCE(q->quantum, quantum);
1055 } else {
1056 NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
1057 err = -EINVAL;
1058 }
1059 }
1060
1061 if (tb[TCA_FQ_INITIAL_QUANTUM])
1062 WRITE_ONCE(q->initial_quantum,
1063 nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]));
1064
1065 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
1066 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
1067 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
1068
1069 if (tb[TCA_FQ_FLOW_MAX_RATE]) {
1070 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
1071
1072 WRITE_ONCE(q->flow_max_rate,
1073 (rate == ~0U) ? ~0UL : rate);
1074 }
1075 if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
1076 WRITE_ONCE(q->low_rate_threshold,
1077 nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]));
1078
1079 if (tb[TCA_FQ_RATE_ENABLE]) {
1080 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
1081
1082 if (enable <= 1)
1083 WRITE_ONCE(q->rate_enable,
1084 enable);
1085 else
1086 err = -EINVAL;
1087 }
1088
1089 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
1090 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
1091
1092 WRITE_ONCE(q->flow_refill_delay,
1093 usecs_to_jiffies(usecs_delay));
1094 }
1095
1096 if (!err && tb[TCA_FQ_PRIOMAP])
1097 err = fq_load_priomap(q, tb[TCA_FQ_PRIOMAP], extack);
1098
1099 if (!err && tb[TCA_FQ_WEIGHTS])
1100 err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack);
1101
1102 if (tb[TCA_FQ_ORPHAN_MASK])
1103 WRITE_ONCE(q->orphan_mask,
1104 nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]));
1105
1106 if (tb[TCA_FQ_CE_THRESHOLD])
1107 WRITE_ONCE(q->ce_threshold,
1108 (u64)NSEC_PER_USEC *
1109 nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]));
1110
1111 if (tb[TCA_FQ_TIMER_SLACK])
1112 WRITE_ONCE(q->timer_slack,
1113 nla_get_u32(tb[TCA_FQ_TIMER_SLACK]));
1114
1115 if (tb[TCA_FQ_HORIZON])
1116 WRITE_ONCE(q->horizon,
1117 (u64)NSEC_PER_USEC *
1118 nla_get_u32(tb[TCA_FQ_HORIZON]));
1119
1120 if (tb[TCA_FQ_HORIZON_DROP])
1121 WRITE_ONCE(q->horizon_drop,
1122 nla_get_u8(tb[TCA_FQ_HORIZON_DROP]));
1123
1124 if (tb[TCA_FQ_OFFLOAD_HORIZON]) {
1125 u64 offload_horizon = (u64)NSEC_PER_USEC *
1126 nla_get_u32(tb[TCA_FQ_OFFLOAD_HORIZON]);
1127
1128 if (offload_horizon <= qdisc_dev(sch)->max_pacing_offload_horizon) {
1129 WRITE_ONCE(q->offload_horizon, offload_horizon);
1130 } else {
1131 NL_SET_ERR_MSG_MOD(extack, "invalid offload_horizon");
1132 err = -EINVAL;
1133 }
1134 }
1135 if (!err) {
1136
1137 sch_tree_unlock(sch);
1138 err = fq_resize(sch, fq_log);
1139 sch_tree_lock(sch);
1140 }
1141
1142 while (sch->q.qlen > sch->limit) {
1143 struct sk_buff *skb = qdisc_dequeue_internal(sch, false);
1144
1145 if (!skb)
1146 break;
1147
1148 dropped_pkts++;
1149 dropped_bytes += qdisc_pkt_len(skb);
1150 rtnl_kfree_skbs(skb, skb);
1151 }
1152 qdisc_tree_reduce_backlog(sch, dropped_pkts, dropped_bytes);
1153
1154 sch_tree_unlock(sch);
1155 return err;
1156}
1157
1158static void fq_destroy(struct Qdisc *sch)
1159{
1160 struct fq_sched_data *q = qdisc_priv(sch);
1161
1162 fq_reset(sch);
1163 fq_free(q->fq_root);
1164 qdisc_watchdog_cancel(&q->watchdog);
1165}
1166
1167static int fq_init(struct Qdisc *sch, struct nlattr *opt,
1168 struct netlink_ext_ack *extack)
1169{
1170 struct fq_sched_data *q = qdisc_priv(sch);
1171 int i, err;
1172
1173 sch->limit = 10000;
1174 q->flow_plimit = 100;
1175 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
1176 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
1177 q->flow_refill_delay = msecs_to_jiffies(40);
1178 q->flow_max_rate = ~0UL;
1179 q->time_next_delayed_flow = ~0ULL;
1180 q->rate_enable = 1;
1181 for (i = 0; i < FQ_BANDS; i++) {
1182 q->band_flows[i].new_flows.first = NULL;
1183 q->band_flows[i].old_flows.first = NULL;
1184 }
1185 q->band_flows[0].quantum = 9 << 16;
1186 q->band_flows[1].quantum = 3 << 16;
1187 q->band_flows[2].quantum = 1 << 16;
1188 q->delayed = RB_ROOT;
1189 q->fq_root = NULL;
1190 q->fq_trees_log = ilog2(1024);
1191 q->orphan_mask = 1024 - 1;
1192 q->low_rate_threshold = 550000 / 8;
1193
1194 q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
1195
1196 q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
1197 q->horizon_drop = 1; /* by default, drop packets beyond horizon */
1198
1199 /* Default ce_threshold of 4294 seconds */
1200 q->ce_threshold = (u64)NSEC_PER_USEC * ~0U;
1201
1202 fq_prio2band_compress_crumb(sch_default_prio2band, q->prio2band);
1203 qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
1204
1205 if (opt)
1206 err = fq_change(sch, opt, extack);
1207 else
1208 err = fq_resize(sch, q->fq_trees_log);
1209
1210 return err;
1211}
1212
1213static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
1214{
1215 struct fq_sched_data *q = qdisc_priv(sch);
1216 struct tc_prio_qopt prio = {
1217 .bands = FQ_BANDS,
1218 };
1219 struct nlattr *opts;
1220 u64 offload_horizon;
1221 u64 ce_threshold;
1222 s32 weights[3];
1223 u64 horizon;
1224
1225 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
1226 if (opts == NULL)
1227 goto nla_put_failure;
1228
1229 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
1230
1231 ce_threshold = READ_ONCE(q->ce_threshold);
1232 do_div(ce_threshold, NSEC_PER_USEC);
1233
1234 horizon = READ_ONCE(q->horizon);
1235 do_div(horizon, NSEC_PER_USEC);
1236
1237 offload_horizon = READ_ONCE(q->offload_horizon);
1238 do_div(offload_horizon, NSEC_PER_USEC);
1239
1240 if (nla_put_u32(skb, TCA_FQ_PLIMIT,
1241 READ_ONCE(sch->limit)) ||
1242 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT,
1243 READ_ONCE(q->flow_plimit)) ||
1244 nla_put_u32(skb, TCA_FQ_QUANTUM,
1245 READ_ONCE(q->quantum)) ||
1246 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM,
1247 READ_ONCE(q->initial_quantum)) ||
1248 nla_put_u32(skb, TCA_FQ_RATE_ENABLE,
1249 READ_ONCE(q->rate_enable)) ||
1250 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
1251 min_t(unsigned long,
1252 READ_ONCE(q->flow_max_rate), ~0U)) ||
1253 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
1254 jiffies_to_usecs(READ_ONCE(q->flow_refill_delay))) ||
1255 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK,
1256 READ_ONCE(q->orphan_mask)) ||
1257 nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
1258 READ_ONCE(q->low_rate_threshold)) ||
1259 nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
1260 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG,
1261 READ_ONCE(q->fq_trees_log)) ||
1262 nla_put_u32(skb, TCA_FQ_TIMER_SLACK,
1263 READ_ONCE(q->timer_slack)) ||
1264 nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
1265 nla_put_u32(skb, TCA_FQ_OFFLOAD_HORIZON, (u32)offload_horizon) ||
1266 nla_put_u8(skb, TCA_FQ_HORIZON_DROP,
1267 READ_ONCE(q->horizon_drop)))
1268 goto nla_put_failure;
1269
1270 fq_prio2band_decompress_crumb(q->prio2band, prio.priomap);
1271 if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio))
1272 goto nla_put_failure;
1273
1274 weights[0] = READ_ONCE(q->band_flows[0].quantum);
1275 weights[1] = READ_ONCE(q->band_flows[1].quantum);
1276 weights[2] = READ_ONCE(q->band_flows[2].quantum);
1277 if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights))
1278 goto nla_put_failure;
1279
1280 return nla_nest_end(skb, opts);
1281
1282nla_put_failure:
1283 return -1;
1284}
1285
1286static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1287{
1288 struct fq_sched_data *q = qdisc_priv(sch);
1289 struct tc_fq_qd_stats st;
1290 int i;
1291
1292 st.pad = 0;
1293
1294 sch_tree_lock(sch);
1295
1296 st.gc_flows = q->stat_gc_flows;
1297 st.highprio_packets = 0;
1298 st.fastpath_packets = q->internal.stat_fastpath_packets;
1299 st.tcp_retrans = 0;
1300 st.throttled = q->stat_throttled;
1301 st.flows_plimit = q->stat_flows_plimit;
1302 st.pkts_too_long = q->stat_pkts_too_long;
1303 st.allocation_errors = q->stat_allocation_errors;
1304 st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1305 ktime_get_ns();
1306 st.flows = q->flows;
1307 st.inactive_flows = q->inactive_flows;
1308 st.throttled_flows = q->throttled_flows;
1309 st.unthrottle_latency_ns = min_t(unsigned long,
1310 q->unthrottle_latency_ns, ~0U);
1311 st.ce_mark = q->stat_ce_mark;
1312 st.horizon_drops = q->stat_horizon_drops;
1313 st.horizon_caps = q->stat_horizon_caps;
1314 for (i = 0; i < FQ_BANDS; i++) {
1315 st.band_drops[i] = q->stat_band_drops[i];
1316 st.band_pkt_count[i] = q->band_pkt_count[i];
1317 }
1318 sch_tree_unlock(sch);
1319
1320 return gnet_stats_copy_app(d, &st, sizeof(st));
1321}
1322
1323static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1324 .id = "fq",
1325 .priv_size = sizeof(struct fq_sched_data),
1326
1327 .enqueue = fq_enqueue,
1328 .dequeue = fq_dequeue,
1329 .peek = qdisc_peek_dequeued,
1330 .init = fq_init,
1331 .reset = fq_reset,
1332 .destroy = fq_destroy,
1333 .change = fq_change,
1334 .dump = fq_dump,
1335 .dump_stats = fq_dump_stats,
1336 .owner = THIS_MODULE,
1337};
1338MODULE_ALIAS_NET_SCH("fq");
1339
1340static int __init fq_module_init(void)
1341{
1342 int ret;
1343
1344 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1345 sizeof(struct fq_flow),
1346 0, SLAB_HWCACHE_ALIGN, NULL);
1347 if (!fq_flow_cachep)
1348 return -ENOMEM;
1349
1350 ret = register_qdisc(&fq_qdisc_ops);
1351 if (ret)
1352 kmem_cache_destroy(fq_flow_cachep);
1353 return ret;
1354}
1355
1356static void __exit fq_module_exit(void)
1357{
1358 unregister_qdisc(&fq_qdisc_ops);
1359 kmem_cache_destroy(fq_flow_cachep);
1360}
1361
1362module_init(fq_module_init)
1363module_exit(fq_module_exit)
1364MODULE_AUTHOR("Eric Dumazet");
1365MODULE_LICENSE("GPL");
1366MODULE_DESCRIPTION("Fair Queue Packet Scheduler");