Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2014 Nicira, Inc.
4 */
5
6#include "flow.h"
7#include "datapath.h"
8#include "flow_netlink.h"
9#include <linux/uaccess.h>
10#include <linux/netdevice.h>
11#include <linux/etherdevice.h>
12#include <linux/if_ether.h>
13#include <linux/if_vlan.h>
14#include <net/llc_pdu.h>
15#include <linux/kernel.h>
16#include <linux/jhash.h>
17#include <linux/jiffies.h>
18#include <linux/llc.h>
19#include <linux/module.h>
20#include <linux/in.h>
21#include <linux/rcupdate.h>
22#include <linux/cpumask.h>
23#include <linux/if_arp.h>
24#include <linux/ip.h>
25#include <linux/ipv6.h>
26#include <linux/sctp.h>
27#include <linux/tcp.h>
28#include <linux/udp.h>
29#include <linux/icmp.h>
30#include <linux/icmpv6.h>
31#include <linux/rculist.h>
32#include <linux/sort.h>
33#include <net/ip.h>
34#include <net/ipv6.h>
35#include <net/ndisc.h>
36
37#define TBL_MIN_BUCKETS 1024
38#define MASK_ARRAY_SIZE_MIN 16
39#define REHASH_INTERVAL (10 * 60 * HZ)
40
41#define MC_DEFAULT_HASH_ENTRIES 256
42#define MC_HASH_SHIFT 8
43#define MC_HASH_SEGS ((sizeof(uint32_t) * 8) / MC_HASH_SHIFT)
44
45static struct kmem_cache *flow_cache;
46struct kmem_cache *flow_stats_cache __read_mostly;
47
48static u16 range_n_bytes(const struct sw_flow_key_range *range)
49{
50 return range->end - range->start;
51}
52
53void ovs_flow_mask_key(struct sw_flow_key *dst, const struct sw_flow_key *src,
54 bool full, const struct sw_flow_mask *mask)
55{
56 int start = full ? 0 : mask->range.start;
57 int len = full ? sizeof *dst : range_n_bytes(&mask->range);
58 const long *m = (const long *)((const u8 *)&mask->key + start);
59 const long *s = (const long *)((const u8 *)src + start);
60 long *d = (long *)((u8 *)dst + start);
61 int i;
62
63 /* If 'full' is true then all of 'dst' is fully initialized. Otherwise,
64 * if 'full' is false the memory outside of the 'mask->range' is left
65 * uninitialized. This can be used as an optimization when further
66 * operations on 'dst' only use contents within 'mask->range'.
67 */
68 for (i = 0; i < len; i += sizeof(long))
69 *d++ = *s++ & *m++;
70}
71
72struct sw_flow *ovs_flow_alloc(void)
73{
74 struct sw_flow *flow;
75 struct sw_flow_stats *stats;
76
77 flow = kmem_cache_zalloc(flow_cache, GFP_KERNEL);
78 if (!flow)
79 return ERR_PTR(-ENOMEM);
80
81 flow->stats_last_writer = -1;
82 flow->cpu_used_mask = (struct cpumask *)&flow->stats[nr_cpu_ids];
83
84 /* Initialize the default stat node. */
85 stats = kmem_cache_alloc_node(flow_stats_cache,
86 GFP_KERNEL | __GFP_ZERO,
87 node_online(0) ? 0 : NUMA_NO_NODE);
88 if (!stats)
89 goto err;
90
91 spin_lock_init(&stats->lock);
92
93 RCU_INIT_POINTER(flow->stats[0], stats);
94
95 cpumask_set_cpu(0, flow->cpu_used_mask);
96
97 return flow;
98err:
99 kmem_cache_free(flow_cache, flow);
100 return ERR_PTR(-ENOMEM);
101}
102
103int ovs_flow_tbl_count(const struct flow_table *table)
104{
105 return table->count;
106}
107
108static void flow_free(struct sw_flow *flow)
109{
110 unsigned int cpu;
111
112 if (ovs_identifier_is_key(&flow->id))
113 kfree(flow->id.unmasked_key);
114 if (flow->sf_acts)
115 ovs_nla_free_flow_actions((struct sw_flow_actions __force *)
116 flow->sf_acts);
117
118 for_each_cpu(cpu, flow->cpu_used_mask) {
119 if (flow->stats[cpu])
120 kmem_cache_free(flow_stats_cache,
121 (struct sw_flow_stats __force *)flow->stats[cpu]);
122 }
123
124 kmem_cache_free(flow_cache, flow);
125}
126
127static void rcu_free_flow_callback(struct rcu_head *rcu)
128{
129 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
130
131 flow_free(flow);
132}
133
134void ovs_flow_free(struct sw_flow *flow, bool deferred)
135{
136 if (!flow)
137 return;
138
139 if (deferred)
140 call_rcu(&flow->rcu, rcu_free_flow_callback);
141 else
142 flow_free(flow);
143}
144
145static void __table_instance_destroy(struct table_instance *ti)
146{
147 kvfree(ti->buckets);
148 kfree(ti);
149}
150
151static struct table_instance *table_instance_alloc(int new_size)
152{
153 struct table_instance *ti = kmalloc(sizeof(*ti), GFP_KERNEL);
154 int i;
155
156 if (!ti)
157 return NULL;
158
159 ti->buckets = kvmalloc_array(new_size, sizeof(struct hlist_head),
160 GFP_KERNEL);
161 if (!ti->buckets) {
162 kfree(ti);
163 return NULL;
164 }
165
166 for (i = 0; i < new_size; i++)
167 INIT_HLIST_HEAD(&ti->buckets[i]);
168
169 ti->n_buckets = new_size;
170 ti->node_ver = 0;
171 get_random_bytes(&ti->hash_seed, sizeof(u32));
172
173 return ti;
174}
175
176static void __mask_array_destroy(struct mask_array *ma)
177{
178 free_percpu(ma->masks_usage_stats);
179 kfree(ma);
180}
181
182static void mask_array_rcu_cb(struct rcu_head *rcu)
183{
184 struct mask_array *ma = container_of(rcu, struct mask_array, rcu);
185
186 __mask_array_destroy(ma);
187}
188
189static void tbl_mask_array_reset_counters(struct mask_array *ma)
190{
191 int i, cpu;
192
193 /* As the per CPU counters are not atomic we can not go ahead and
194 * reset them from another CPU. To be able to still have an approximate
195 * zero based counter we store the value at reset, and subtract it
196 * later when processing.
197 */
198 for (i = 0; i < ma->max; i++) {
199 ma->masks_usage_zero_cntr[i] = 0;
200
201 for_each_possible_cpu(cpu) {
202 struct mask_array_stats *stats;
203 unsigned int start;
204 u64 counter;
205
206 stats = per_cpu_ptr(ma->masks_usage_stats, cpu);
207 do {
208 start = u64_stats_fetch_begin(&stats->syncp);
209 counter = stats->usage_cntrs[i];
210 } while (u64_stats_fetch_retry(&stats->syncp, start));
211
212 ma->masks_usage_zero_cntr[i] += counter;
213 }
214 }
215}
216
217static struct mask_array *tbl_mask_array_alloc(int size)
218{
219 struct mask_array *new;
220
221 size = max(MASK_ARRAY_SIZE_MIN, size);
222 new = kzalloc(struct_size(new, masks, size) +
223 sizeof(u64) * size, GFP_KERNEL);
224 if (!new)
225 return NULL;
226
227 new->masks_usage_zero_cntr = (u64 *)((u8 *)new +
228 struct_size(new, masks, size));
229
230 new->masks_usage_stats = __alloc_percpu(sizeof(struct mask_array_stats) +
231 sizeof(u64) * size,
232 __alignof__(u64));
233 if (!new->masks_usage_stats) {
234 kfree(new);
235 return NULL;
236 }
237
238 new->count = 0;
239 new->max = size;
240
241 return new;
242}
243
244static int tbl_mask_array_realloc(struct flow_table *tbl, int size)
245{
246 struct mask_array *old;
247 struct mask_array *new;
248
249 new = tbl_mask_array_alloc(size);
250 if (!new)
251 return -ENOMEM;
252
253 old = ovsl_dereference(tbl->mask_array);
254 if (old) {
255 int i;
256
257 for (i = 0; i < old->max; i++) {
258 if (ovsl_dereference(old->masks[i]))
259 new->masks[new->count++] = old->masks[i];
260 }
261 call_rcu(&old->rcu, mask_array_rcu_cb);
262 }
263
264 rcu_assign_pointer(tbl->mask_array, new);
265
266 return 0;
267}
268
269static int tbl_mask_array_add_mask(struct flow_table *tbl,
270 struct sw_flow_mask *new)
271{
272 struct mask_array *ma = ovsl_dereference(tbl->mask_array);
273 int err, ma_count = READ_ONCE(ma->count);
274
275 if (ma_count >= ma->max) {
276 err = tbl_mask_array_realloc(tbl, ma->max +
277 MASK_ARRAY_SIZE_MIN);
278 if (err)
279 return err;
280
281 ma = ovsl_dereference(tbl->mask_array);
282 } else {
283 /* On every add or delete we need to reset the counters so
284 * every new mask gets a fair chance of being prioritized.
285 */
286 tbl_mask_array_reset_counters(ma);
287 }
288
289 BUG_ON(ovsl_dereference(ma->masks[ma_count]));
290
291 rcu_assign_pointer(ma->masks[ma_count], new);
292 WRITE_ONCE(ma->count, ma_count + 1);
293
294 return 0;
295}
296
297static void tbl_mask_array_del_mask(struct flow_table *tbl,
298 struct sw_flow_mask *mask)
299{
300 struct mask_array *ma = ovsl_dereference(tbl->mask_array);
301 int i, ma_count = READ_ONCE(ma->count);
302
303 /* Remove the deleted mask pointers from the array */
304 for (i = 0; i < ma_count; i++) {
305 if (mask == ovsl_dereference(ma->masks[i]))
306 goto found;
307 }
308
309 BUG();
310 return;
311
312found:
313 WRITE_ONCE(ma->count, ma_count - 1);
314
315 rcu_assign_pointer(ma->masks[i], ma->masks[ma_count - 1]);
316 RCU_INIT_POINTER(ma->masks[ma_count - 1], NULL);
317
318 kfree_rcu(mask, rcu);
319
320 /* Shrink the mask array if necessary. */
321 if (ma->max >= (MASK_ARRAY_SIZE_MIN * 2) &&
322 ma_count <= (ma->max / 3))
323 tbl_mask_array_realloc(tbl, ma->max / 2);
324 else
325 tbl_mask_array_reset_counters(ma);
326
327}
328
329/* Remove 'mask' from the mask list, if it is not needed any more. */
330static void flow_mask_remove(struct flow_table *tbl, struct sw_flow_mask *mask)
331{
332 if (mask) {
333 /* ovs-lock is required to protect mask-refcount and
334 * mask list.
335 */
336 ASSERT_OVSL();
337 BUG_ON(!mask->ref_count);
338 mask->ref_count--;
339
340 if (!mask->ref_count)
341 tbl_mask_array_del_mask(tbl, mask);
342 }
343}
344
345static void __mask_cache_destroy(struct mask_cache *mc)
346{
347 free_percpu(mc->mask_cache);
348 kfree(mc);
349}
350
351static void mask_cache_rcu_cb(struct rcu_head *rcu)
352{
353 struct mask_cache *mc = container_of(rcu, struct mask_cache, rcu);
354
355 __mask_cache_destroy(mc);
356}
357
358static struct mask_cache *tbl_mask_cache_alloc(u32 size)
359{
360 struct mask_cache_entry __percpu *cache = NULL;
361 struct mask_cache *new;
362
363 /* Only allow size to be 0, or a power of 2, and does not exceed
364 * percpu allocation size.
365 */
366 if ((!is_power_of_2(size) && size != 0) ||
367 (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
368 return NULL;
369
370 new = kzalloc(sizeof(*new), GFP_KERNEL);
371 if (!new)
372 return NULL;
373
374 new->cache_size = size;
375 if (new->cache_size > 0) {
376 cache = __alloc_percpu(array_size(sizeof(struct mask_cache_entry),
377 new->cache_size),
378 __alignof__(struct mask_cache_entry));
379 if (!cache) {
380 kfree(new);
381 return NULL;
382 }
383 }
384
385 new->mask_cache = cache;
386 return new;
387}
388int ovs_flow_tbl_masks_cache_resize(struct flow_table *table, u32 size)
389{
390 struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
391 struct mask_cache *new;
392
393 if (size == mc->cache_size)
394 return 0;
395
396 if ((!is_power_of_2(size) && size != 0) ||
397 (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
398 return -EINVAL;
399
400 new = tbl_mask_cache_alloc(size);
401 if (!new)
402 return -ENOMEM;
403
404 rcu_assign_pointer(table->mask_cache, new);
405 call_rcu(&mc->rcu, mask_cache_rcu_cb);
406
407 return 0;
408}
409
410int ovs_flow_tbl_init(struct flow_table *table)
411{
412 struct table_instance *ti, *ufid_ti;
413 struct mask_cache *mc;
414 struct mask_array *ma;
415
416 mc = tbl_mask_cache_alloc(MC_DEFAULT_HASH_ENTRIES);
417 if (!mc)
418 return -ENOMEM;
419
420 ma = tbl_mask_array_alloc(MASK_ARRAY_SIZE_MIN);
421 if (!ma)
422 goto free_mask_cache;
423
424 ti = table_instance_alloc(TBL_MIN_BUCKETS);
425 if (!ti)
426 goto free_mask_array;
427
428 ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
429 if (!ufid_ti)
430 goto free_ti;
431
432 rcu_assign_pointer(table->ti, ti);
433 rcu_assign_pointer(table->ufid_ti, ufid_ti);
434 rcu_assign_pointer(table->mask_array, ma);
435 rcu_assign_pointer(table->mask_cache, mc);
436 table->last_rehash = jiffies;
437 table->count = 0;
438 table->ufid_count = 0;
439 return 0;
440
441free_ti:
442 __table_instance_destroy(ti);
443free_mask_array:
444 __mask_array_destroy(ma);
445free_mask_cache:
446 __mask_cache_destroy(mc);
447 return -ENOMEM;
448}
449
450static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
451{
452 struct table_instance *ti;
453
454 ti = container_of(rcu, struct table_instance, rcu);
455 __table_instance_destroy(ti);
456}
457
458static void table_instance_flow_free(struct flow_table *table,
459 struct table_instance *ti,
460 struct table_instance *ufid_ti,
461 struct sw_flow *flow)
462{
463 hlist_del_rcu(&flow->flow_table.node[ti->node_ver]);
464 table->count--;
465
466 if (ovs_identifier_is_ufid(&flow->id)) {
467 hlist_del_rcu(&flow->ufid_table.node[ufid_ti->node_ver]);
468 table->ufid_count--;
469 }
470
471 flow_mask_remove(table, flow->mask);
472}
473
474/* Must be called with OVS mutex held. */
475void table_instance_flow_flush(struct flow_table *table,
476 struct table_instance *ti,
477 struct table_instance *ufid_ti)
478{
479 int i;
480
481 for (i = 0; i < ti->n_buckets; i++) {
482 struct hlist_head *head = &ti->buckets[i];
483 struct hlist_node *n;
484 struct sw_flow *flow;
485
486 hlist_for_each_entry_safe(flow, n, head,
487 flow_table.node[ti->node_ver]) {
488
489 table_instance_flow_free(table, ti, ufid_ti,
490 flow);
491 ovs_flow_free(flow, true);
492 }
493 }
494
495 if (WARN_ON(table->count != 0 ||
496 table->ufid_count != 0)) {
497 table->count = 0;
498 table->ufid_count = 0;
499 }
500}
501
502static void table_instance_destroy(struct table_instance *ti,
503 struct table_instance *ufid_ti)
504{
505 call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
506 call_rcu(&ufid_ti->rcu, flow_tbl_destroy_rcu_cb);
507}
508
509/* No need for locking this function is called from RCU callback or
510 * error path.
511 */
512void ovs_flow_tbl_destroy(struct flow_table *table)
513{
514 struct table_instance *ti = rcu_dereference_raw(table->ti);
515 struct table_instance *ufid_ti = rcu_dereference_raw(table->ufid_ti);
516 struct mask_cache *mc = rcu_dereference_raw(table->mask_cache);
517 struct mask_array *ma = rcu_dereference_raw(table->mask_array);
518
519 call_rcu(&mc->rcu, mask_cache_rcu_cb);
520 call_rcu(&ma->rcu, mask_array_rcu_cb);
521 table_instance_destroy(ti, ufid_ti);
522}
523
524struct sw_flow *ovs_flow_tbl_dump_next(struct table_instance *ti,
525 u32 *bucket, u32 *last)
526{
527 struct sw_flow *flow;
528 struct hlist_head *head;
529 int ver;
530 int i;
531
532 ver = ti->node_ver;
533 while (*bucket < ti->n_buckets) {
534 i = 0;
535 head = &ti->buckets[*bucket];
536 hlist_for_each_entry_rcu(flow, head, flow_table.node[ver]) {
537 if (i < *last) {
538 i++;
539 continue;
540 }
541 *last = i + 1;
542 return flow;
543 }
544 (*bucket)++;
545 *last = 0;
546 }
547
548 return NULL;
549}
550
551static struct hlist_head *find_bucket(struct table_instance *ti, u32 hash)
552{
553 hash = jhash_1word(hash, ti->hash_seed);
554 return &ti->buckets[hash & (ti->n_buckets - 1)];
555}
556
557static void table_instance_insert(struct table_instance *ti,
558 struct sw_flow *flow)
559{
560 struct hlist_head *head;
561
562 head = find_bucket(ti, flow->flow_table.hash);
563 hlist_add_head_rcu(&flow->flow_table.node[ti->node_ver], head);
564}
565
566static void ufid_table_instance_insert(struct table_instance *ti,
567 struct sw_flow *flow)
568{
569 struct hlist_head *head;
570
571 head = find_bucket(ti, flow->ufid_table.hash);
572 hlist_add_head_rcu(&flow->ufid_table.node[ti->node_ver], head);
573}
574
575static void flow_table_copy_flows(struct table_instance *old,
576 struct table_instance *new, bool ufid)
577{
578 int old_ver;
579 int i;
580
581 old_ver = old->node_ver;
582 new->node_ver = !old_ver;
583
584 /* Insert in new table. */
585 for (i = 0; i < old->n_buckets; i++) {
586 struct sw_flow *flow;
587 struct hlist_head *head = &old->buckets[i];
588
589 if (ufid)
590 hlist_for_each_entry_rcu(flow, head,
591 ufid_table.node[old_ver],
592 lockdep_ovsl_is_held())
593 ufid_table_instance_insert(new, flow);
594 else
595 hlist_for_each_entry_rcu(flow, head,
596 flow_table.node[old_ver],
597 lockdep_ovsl_is_held())
598 table_instance_insert(new, flow);
599 }
600}
601
602static struct table_instance *table_instance_rehash(struct table_instance *ti,
603 int n_buckets, bool ufid)
604{
605 struct table_instance *new_ti;
606
607 new_ti = table_instance_alloc(n_buckets);
608 if (!new_ti)
609 return NULL;
610
611 flow_table_copy_flows(ti, new_ti, ufid);
612
613 return new_ti;
614}
615
616int ovs_flow_tbl_flush(struct flow_table *flow_table)
617{
618 struct table_instance *old_ti, *new_ti;
619 struct table_instance *old_ufid_ti, *new_ufid_ti;
620
621 new_ti = table_instance_alloc(TBL_MIN_BUCKETS);
622 if (!new_ti)
623 return -ENOMEM;
624 new_ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
625 if (!new_ufid_ti)
626 goto err_free_ti;
627
628 old_ti = ovsl_dereference(flow_table->ti);
629 old_ufid_ti = ovsl_dereference(flow_table->ufid_ti);
630
631 rcu_assign_pointer(flow_table->ti, new_ti);
632 rcu_assign_pointer(flow_table->ufid_ti, new_ufid_ti);
633 flow_table->last_rehash = jiffies;
634
635 table_instance_flow_flush(flow_table, old_ti, old_ufid_ti);
636 table_instance_destroy(old_ti, old_ufid_ti);
637 return 0;
638
639err_free_ti:
640 __table_instance_destroy(new_ti);
641 return -ENOMEM;
642}
643
644static u32 flow_hash(const struct sw_flow_key *key,
645 const struct sw_flow_key_range *range)
646{
647 const u32 *hash_key = (const u32 *)((const u8 *)key + range->start);
648
649 /* Make sure number of hash bytes are multiple of u32. */
650 int hash_u32s = range_n_bytes(range) >> 2;
651
652 return jhash2(hash_key, hash_u32s, 0);
653}
654
655static int flow_key_start(const struct sw_flow_key *key)
656{
657 if (key->tun_proto)
658 return 0;
659 else
660 return rounddown(offsetof(struct sw_flow_key, phy),
661 sizeof(long));
662}
663
664static bool cmp_key(const struct sw_flow_key *key1,
665 const struct sw_flow_key *key2,
666 int key_start, int key_end)
667{
668 const long *cp1 = (const long *)((const u8 *)key1 + key_start);
669 const long *cp2 = (const long *)((const u8 *)key2 + key_start);
670 int i;
671
672 for (i = key_start; i < key_end; i += sizeof(long))
673 if (*cp1++ ^ *cp2++)
674 return false;
675
676 return true;
677}
678
679static bool flow_cmp_masked_key(const struct sw_flow *flow,
680 const struct sw_flow_key *key,
681 const struct sw_flow_key_range *range)
682{
683 return cmp_key(&flow->key, key, range->start, range->end);
684}
685
686static bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
687 const struct sw_flow_match *match)
688{
689 struct sw_flow_key *key = match->key;
690 int key_start = flow_key_start(key);
691 int key_end = match->range.end;
692
693 BUG_ON(ovs_identifier_is_ufid(&flow->id));
694 return cmp_key(flow->id.unmasked_key, key, key_start, key_end);
695}
696
697static struct sw_flow *masked_flow_lookup(struct table_instance *ti,
698 const struct sw_flow_key *unmasked,
699 const struct sw_flow_mask *mask,
700 u32 *n_mask_hit)
701{
702 struct sw_flow *flow;
703 struct hlist_head *head;
704 u32 hash;
705 struct sw_flow_key masked_key;
706
707 ovs_flow_mask_key(&masked_key, unmasked, false, mask);
708 hash = flow_hash(&masked_key, &mask->range);
709 head = find_bucket(ti, hash);
710 (*n_mask_hit)++;
711
712 hlist_for_each_entry_rcu(flow, head, flow_table.node[ti->node_ver],
713 lockdep_ovsl_is_held()) {
714 if (flow->mask == mask && flow->flow_table.hash == hash &&
715 flow_cmp_masked_key(flow, &masked_key, &mask->range))
716 return flow;
717 }
718 return NULL;
719}
720
721/* Flow lookup does full lookup on flow table. It starts with
722 * mask from index passed in *index.
723 * This function MUST be called with BH disabled due to the use
724 * of CPU specific variables.
725 */
726static struct sw_flow *flow_lookup(struct flow_table *tbl,
727 struct table_instance *ti,
728 struct mask_array *ma,
729 const struct sw_flow_key *key,
730 u32 *n_mask_hit,
731 u32 *n_cache_hit,
732 u32 *index)
733{
734 struct mask_array_stats *stats = this_cpu_ptr(ma->masks_usage_stats);
735 struct sw_flow *flow;
736 struct sw_flow_mask *mask;
737 int i;
738
739 if (likely(*index < ma->max)) {
740 mask = rcu_dereference_ovsl(ma->masks[*index]);
741 if (mask) {
742 flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
743 if (flow) {
744 u64_stats_update_begin(&stats->syncp);
745 stats->usage_cntrs[*index]++;
746 u64_stats_update_end(&stats->syncp);
747 (*n_cache_hit)++;
748 return flow;
749 }
750 }
751 }
752
753 for (i = 0; i < ma->max; i++) {
754
755 if (i == *index)
756 continue;
757
758 mask = rcu_dereference_ovsl(ma->masks[i]);
759 if (unlikely(!mask))
760 break;
761
762 flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
763 if (flow) { /* Found */
764 *index = i;
765 u64_stats_update_begin(&stats->syncp);
766 stats->usage_cntrs[*index]++;
767 u64_stats_update_end(&stats->syncp);
768 return flow;
769 }
770 }
771
772 return NULL;
773}
774
775/*
776 * mask_cache maps flow to probable mask. This cache is not tightly
777 * coupled cache, It means updates to mask list can result in inconsistent
778 * cache entry in mask cache.
779 * This is per cpu cache and is divided in MC_HASH_SEGS segments.
780 * In case of a hash collision the entry is hashed in next segment.
781 * */
782struct sw_flow *ovs_flow_tbl_lookup_stats(struct flow_table *tbl,
783 const struct sw_flow_key *key,
784 u32 skb_hash,
785 u32 *n_mask_hit,
786 u32 *n_cache_hit)
787{
788 struct mask_cache *mc = rcu_dereference(tbl->mask_cache);
789 struct mask_array *ma = rcu_dereference(tbl->mask_array);
790 struct table_instance *ti = rcu_dereference(tbl->ti);
791 struct mask_cache_entry *entries, *ce;
792 struct sw_flow *flow;
793 u32 hash;
794 int seg;
795
796 *n_mask_hit = 0;
797 *n_cache_hit = 0;
798 if (unlikely(!skb_hash || mc->cache_size == 0)) {
799 u32 mask_index = 0;
800 u32 cache = 0;
801
802 return flow_lookup(tbl, ti, ma, key, n_mask_hit, &cache,
803 &mask_index);
804 }
805
806 /* Pre and post recirulation flows usually have the same skb_hash
807 * value. To avoid hash collisions, rehash the 'skb_hash' with
808 * 'recirc_id'. */
809 if (key->recirc_id)
810 skb_hash = jhash_1word(skb_hash, key->recirc_id);
811
812 ce = NULL;
813 hash = skb_hash;
814 entries = this_cpu_ptr(mc->mask_cache);
815
816 /* Find the cache entry 'ce' to operate on. */
817 for (seg = 0; seg < MC_HASH_SEGS; seg++) {
818 int index = hash & (mc->cache_size - 1);
819 struct mask_cache_entry *e;
820
821 e = &entries[index];
822 if (e->skb_hash == skb_hash) {
823 flow = flow_lookup(tbl, ti, ma, key, n_mask_hit,
824 n_cache_hit, &e->mask_index);
825 if (!flow)
826 e->skb_hash = 0;
827 return flow;
828 }
829
830 if (!ce || e->skb_hash < ce->skb_hash)
831 ce = e; /* A better replacement cache candidate. */
832
833 hash >>= MC_HASH_SHIFT;
834 }
835
836 /* Cache miss, do full lookup. */
837 flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit,
838 &ce->mask_index);
839 if (flow)
840 ce->skb_hash = skb_hash;
841
842 *n_cache_hit = 0;
843 return flow;
844}
845
846struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *tbl,
847 const struct sw_flow_key *key)
848{
849 struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
850 struct mask_array *ma = rcu_dereference_ovsl(tbl->mask_array);
851 u32 __always_unused n_mask_hit;
852 u32 __always_unused n_cache_hit;
853 struct sw_flow *flow;
854 u32 index = 0;
855
856 /* This function gets called trough the netlink interface and therefore
857 * is preemptible. However, flow_lookup() function needs to be called
858 * with BH disabled due to CPU specific variables.
859 */
860 local_bh_disable();
861 flow = flow_lookup(tbl, ti, ma, key, &n_mask_hit, &n_cache_hit, &index);
862 local_bh_enable();
863 return flow;
864}
865
866struct sw_flow *ovs_flow_tbl_lookup_exact(struct flow_table *tbl,
867 const struct sw_flow_match *match)
868{
869 struct mask_array *ma = ovsl_dereference(tbl->mask_array);
870 int i;
871
872 /* Always called under ovs-mutex. */
873 for (i = 0; i < ma->max; i++) {
874 struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
875 u32 __always_unused n_mask_hit;
876 struct sw_flow_mask *mask;
877 struct sw_flow *flow;
878
879 mask = ovsl_dereference(ma->masks[i]);
880 if (!mask)
881 continue;
882
883 flow = masked_flow_lookup(ti, match->key, mask, &n_mask_hit);
884 if (flow && ovs_identifier_is_key(&flow->id) &&
885 ovs_flow_cmp_unmasked_key(flow, match)) {
886 return flow;
887 }
888 }
889
890 return NULL;
891}
892
893static u32 ufid_hash(const struct sw_flow_id *sfid)
894{
895 return jhash(sfid->ufid, sfid->ufid_len, 0);
896}
897
898static bool ovs_flow_cmp_ufid(const struct sw_flow *flow,
899 const struct sw_flow_id *sfid)
900{
901 if (flow->id.ufid_len != sfid->ufid_len)
902 return false;
903
904 return !memcmp(flow->id.ufid, sfid->ufid, sfid->ufid_len);
905}
906
907bool ovs_flow_cmp(const struct sw_flow *flow,
908 const struct sw_flow_match *match)
909{
910 if (ovs_identifier_is_ufid(&flow->id))
911 return flow_cmp_masked_key(flow, match->key, &match->range);
912
913 return ovs_flow_cmp_unmasked_key(flow, match);
914}
915
916struct sw_flow *ovs_flow_tbl_lookup_ufid(struct flow_table *tbl,
917 const struct sw_flow_id *ufid)
918{
919 struct table_instance *ti = rcu_dereference_ovsl(tbl->ufid_ti);
920 struct sw_flow *flow;
921 struct hlist_head *head;
922 u32 hash;
923
924 hash = ufid_hash(ufid);
925 head = find_bucket(ti, hash);
926 hlist_for_each_entry_rcu(flow, head, ufid_table.node[ti->node_ver],
927 lockdep_ovsl_is_held()) {
928 if (flow->ufid_table.hash == hash &&
929 ovs_flow_cmp_ufid(flow, ufid))
930 return flow;
931 }
932 return NULL;
933}
934
935int ovs_flow_tbl_num_masks(const struct flow_table *table)
936{
937 struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
938 return READ_ONCE(ma->count);
939}
940
941u32 ovs_flow_tbl_masks_cache_size(const struct flow_table *table)
942{
943 struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
944
945 return READ_ONCE(mc->cache_size);
946}
947
948static struct table_instance *table_instance_expand(struct table_instance *ti,
949 bool ufid)
950{
951 return table_instance_rehash(ti, ti->n_buckets * 2, ufid);
952}
953
954/* Must be called with OVS mutex held. */
955void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
956{
957 struct table_instance *ti = ovsl_dereference(table->ti);
958 struct table_instance *ufid_ti = ovsl_dereference(table->ufid_ti);
959
960 BUG_ON(table->count == 0);
961 table_instance_flow_free(table, ti, ufid_ti, flow);
962}
963
964static struct sw_flow_mask *mask_alloc(void)
965{
966 struct sw_flow_mask *mask;
967
968 mask = kmalloc(sizeof(*mask), GFP_KERNEL);
969 if (mask)
970 mask->ref_count = 1;
971
972 return mask;
973}
974
975static bool mask_equal(const struct sw_flow_mask *a,
976 const struct sw_flow_mask *b)
977{
978 const u8 *a_ = (const u8 *)&a->key + a->range.start;
979 const u8 *b_ = (const u8 *)&b->key + b->range.start;
980
981 return (a->range.end == b->range.end)
982 && (a->range.start == b->range.start)
983 && (memcmp(a_, b_, range_n_bytes(&a->range)) == 0);
984}
985
986static struct sw_flow_mask *flow_mask_find(const struct flow_table *tbl,
987 const struct sw_flow_mask *mask)
988{
989 struct mask_array *ma;
990 int i;
991
992 ma = ovsl_dereference(tbl->mask_array);
993 for (i = 0; i < ma->max; i++) {
994 struct sw_flow_mask *t;
995 t = ovsl_dereference(ma->masks[i]);
996
997 if (t && mask_equal(mask, t))
998 return t;
999 }
1000
1001 return NULL;
1002}
1003
1004/* Add 'mask' into the mask list, if it is not already there. */
1005static int flow_mask_insert(struct flow_table *tbl, struct sw_flow *flow,
1006 const struct sw_flow_mask *new)
1007{
1008 struct sw_flow_mask *mask;
1009
1010 mask = flow_mask_find(tbl, new);
1011 if (!mask) {
1012 /* Allocate a new mask if none exists. */
1013 mask = mask_alloc();
1014 if (!mask)
1015 return -ENOMEM;
1016 mask->key = new->key;
1017 mask->range = new->range;
1018
1019 /* Add mask to mask-list. */
1020 if (tbl_mask_array_add_mask(tbl, mask)) {
1021 kfree(mask);
1022 return -ENOMEM;
1023 }
1024 } else {
1025 BUG_ON(!mask->ref_count);
1026 mask->ref_count++;
1027 }
1028
1029 flow->mask = mask;
1030 return 0;
1031}
1032
1033/* Must be called with OVS mutex held. */
1034static void flow_key_insert(struct flow_table *table, struct sw_flow *flow)
1035{
1036 struct table_instance *new_ti = NULL;
1037 struct table_instance *ti;
1038
1039 flow->flow_table.hash = flow_hash(&flow->key, &flow->mask->range);
1040 ti = ovsl_dereference(table->ti);
1041 table_instance_insert(ti, flow);
1042 table->count++;
1043
1044 /* Expand table, if necessary, to make room. */
1045 if (table->count > ti->n_buckets)
1046 new_ti = table_instance_expand(ti, false);
1047 else if (time_after(jiffies, table->last_rehash + REHASH_INTERVAL))
1048 new_ti = table_instance_rehash(ti, ti->n_buckets, false);
1049
1050 if (new_ti) {
1051 rcu_assign_pointer(table->ti, new_ti);
1052 call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1053 table->last_rehash = jiffies;
1054 }
1055}
1056
1057/* Must be called with OVS mutex held. */
1058static void flow_ufid_insert(struct flow_table *table, struct sw_flow *flow)
1059{
1060 struct table_instance *ti;
1061
1062 flow->ufid_table.hash = ufid_hash(&flow->id);
1063 ti = ovsl_dereference(table->ufid_ti);
1064 ufid_table_instance_insert(ti, flow);
1065 table->ufid_count++;
1066
1067 /* Expand table, if necessary, to make room. */
1068 if (table->ufid_count > ti->n_buckets) {
1069 struct table_instance *new_ti;
1070
1071 new_ti = table_instance_expand(ti, true);
1072 if (new_ti) {
1073 rcu_assign_pointer(table->ufid_ti, new_ti);
1074 call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1075 }
1076 }
1077}
1078
1079/* Must be called with OVS mutex held. */
1080int ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow,
1081 const struct sw_flow_mask *mask)
1082{
1083 int err;
1084
1085 err = flow_mask_insert(table, flow, mask);
1086 if (err)
1087 return err;
1088 flow_key_insert(table, flow);
1089 if (ovs_identifier_is_ufid(&flow->id))
1090 flow_ufid_insert(table, flow);
1091
1092 return 0;
1093}
1094
1095static int compare_mask_and_count(const void *a, const void *b)
1096{
1097 const struct mask_count *mc_a = a;
1098 const struct mask_count *mc_b = b;
1099
1100 return (s64)mc_b->counter - (s64)mc_a->counter;
1101}
1102
1103/* Must be called with OVS mutex held. */
1104void ovs_flow_masks_rebalance(struct flow_table *table)
1105{
1106 struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
1107 struct mask_count *masks_and_count;
1108 struct mask_array *new;
1109 int masks_entries = 0;
1110 int i;
1111
1112 /* Build array of all current entries with use counters. */
1113 masks_and_count = kmalloc_array(ma->max, sizeof(*masks_and_count),
1114 GFP_KERNEL);
1115 if (!masks_and_count)
1116 return;
1117
1118 for (i = 0; i < ma->max; i++) {
1119 struct sw_flow_mask *mask;
1120 int cpu;
1121
1122 mask = rcu_dereference_ovsl(ma->masks[i]);
1123 if (unlikely(!mask))
1124 break;
1125
1126 masks_and_count[i].index = i;
1127 masks_and_count[i].counter = 0;
1128
1129 for_each_possible_cpu(cpu) {
1130 struct mask_array_stats *stats;
1131 unsigned int start;
1132 u64 counter;
1133
1134 stats = per_cpu_ptr(ma->masks_usage_stats, cpu);
1135 do {
1136 start = u64_stats_fetch_begin(&stats->syncp);
1137 counter = stats->usage_cntrs[i];
1138 } while (u64_stats_fetch_retry(&stats->syncp, start));
1139
1140 masks_and_count[i].counter += counter;
1141 }
1142
1143 /* Subtract the zero count value. */
1144 masks_and_count[i].counter -= ma->masks_usage_zero_cntr[i];
1145
1146 /* Rather than calling tbl_mask_array_reset_counters()
1147 * below when no change is needed, do it inline here.
1148 */
1149 ma->masks_usage_zero_cntr[i] += masks_and_count[i].counter;
1150 }
1151
1152 if (i == 0)
1153 goto free_mask_entries;
1154
1155 /* Sort the entries */
1156 masks_entries = i;
1157 sort(masks_and_count, masks_entries, sizeof(*masks_and_count),
1158 compare_mask_and_count, NULL);
1159
1160 /* If the order is the same, nothing to do... */
1161 for (i = 0; i < masks_entries; i++) {
1162 if (i != masks_and_count[i].index)
1163 break;
1164 }
1165 if (i == masks_entries)
1166 goto free_mask_entries;
1167
1168 /* Rebuilt the new list in order of usage. */
1169 new = tbl_mask_array_alloc(ma->max);
1170 if (!new)
1171 goto free_mask_entries;
1172
1173 for (i = 0; i < masks_entries; i++) {
1174 int index = masks_and_count[i].index;
1175
1176 if (ovsl_dereference(ma->masks[index]))
1177 new->masks[new->count++] = ma->masks[index];
1178 }
1179
1180 rcu_assign_pointer(table->mask_array, new);
1181 call_rcu(&ma->rcu, mask_array_rcu_cb);
1182
1183free_mask_entries:
1184 kfree(masks_and_count);
1185}
1186
1187/* Initializes the flow module.
1188 * Returns zero if successful or a negative error code. */
1189int ovs_flow_init(void)
1190{
1191 BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long));
1192 BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long));
1193
1194 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow)
1195 + (nr_cpu_ids
1196 * sizeof(struct sw_flow_stats *))
1197 + cpumask_size(),
1198 0, 0, NULL);
1199 if (flow_cache == NULL)
1200 return -ENOMEM;
1201
1202 flow_stats_cache
1203 = kmem_cache_create("sw_flow_stats", sizeof(struct sw_flow_stats),
1204 0, SLAB_HWCACHE_ALIGN, NULL);
1205 if (flow_stats_cache == NULL) {
1206 kmem_cache_destroy(flow_cache);
1207 flow_cache = NULL;
1208 return -ENOMEM;
1209 }
1210
1211 return 0;
1212}
1213
1214/* Uninitializes the flow module. */
1215void ovs_flow_exit(void)
1216{
1217 kmem_cache_destroy(flow_stats_cache);
1218 kmem_cache_destroy(flow_cache);
1219}