at master 105 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapsulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75#define pr_fmt(fmt) "UDP: " fmt 76 77#include <linux/bpf-cgroup.h> 78#include <linux/uaccess.h> 79#include <asm/ioctls.h> 80#include <linux/memblock.h> 81#include <linux/highmem.h> 82#include <linux/types.h> 83#include <linux/fcntl.h> 84#include <linux/module.h> 85#include <linux/socket.h> 86#include <linux/sockios.h> 87#include <linux/igmp.h> 88#include <linux/inetdevice.h> 89#include <linux/in.h> 90#include <linux/errno.h> 91#include <linux/timer.h> 92#include <linux/mm.h> 93#include <linux/inet.h> 94#include <linux/netdevice.h> 95#include <linux/slab.h> 96#include <linux/sock_diag.h> 97#include <net/tcp_states.h> 98#include <linux/skbuff.h> 99#include <linux/proc_fs.h> 100#include <linux/seq_file.h> 101#include <net/net_namespace.h> 102#include <net/icmp.h> 103#include <net/inet_hashtables.h> 104#include <net/ip.h> 105#include <net/ip_tunnels.h> 106#include <net/route.h> 107#include <net/checksum.h> 108#include <net/gso.h> 109#include <net/xfrm.h> 110#include <trace/events/udp.h> 111#include <linux/static_key.h> 112#include <linux/btf_ids.h> 113#include <trace/events/skb.h> 114#include <net/busy_poll.h> 115#include "udp_impl.h" 116#include <net/sock_reuseport.h> 117#include <net/addrconf.h> 118#include <net/udp_tunnel.h> 119#include <net/gro.h> 120#if IS_ENABLED(CONFIG_IPV6) 121#include <net/ipv6_stubs.h> 122#endif 123#include <net/rps.h> 124 125struct udp_table udp_table __read_mostly; 126 127long sysctl_udp_mem[3] __read_mostly; 128EXPORT_IPV6_MOD(sysctl_udp_mem); 129 130DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133#define MAX_UDP_PORTS 65536 134#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136static struct udp_table *udp_get_table_prot(struct sock *sk) 137{ 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139} 140 141static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145{ 146 kuid_t uid = sk_uid(sk); 147 struct sock *sk2; 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sk_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171} 172 173/* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180{ 181 kuid_t uid = sk_uid(sk); 182 struct sock *sk2; 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sk_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206} 207 208static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209{ 210 struct net *net = sock_net(sk); 211 kuid_t uid = sk_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sk_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229} 230 231/** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241{ 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sock_set_flag(sk, SOCK_RCU_FREE); 330 331 sk_add_node_rcu(sk, &hslot->head); 332 hslot->count++; 333 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 334 335 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 336 spin_lock(&hslot2->lock); 337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 338 sk->sk_family == AF_INET6) 339 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 340 &hslot2->head); 341 else 342 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 343 &hslot2->head); 344 hslot2->count++; 345 spin_unlock(&hslot2->lock); 346 } 347 348 error = 0; 349fail_unlock: 350 spin_unlock_bh(&hslot->lock); 351fail: 352 return error; 353} 354EXPORT_IPV6_MOD(udp_lib_get_port); 355 356int udp_v4_get_port(struct sock *sk, unsigned short snum) 357{ 358 unsigned int hash2_nulladdr = 359 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 360 unsigned int hash2_partial = 361 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 362 363 /* precompute partial secondary hash */ 364 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 365 return udp_lib_get_port(sk, snum, hash2_nulladdr); 366} 367 368static int compute_score(struct sock *sk, const struct net *net, 369 __be32 saddr, __be16 sport, 370 __be32 daddr, unsigned short hnum, 371 int dif, int sdif) 372{ 373 int score; 374 struct inet_sock *inet; 375 bool dev_match; 376 377 if (!net_eq(sock_net(sk), net) || 378 udp_sk(sk)->udp_port_hash != hnum || 379 ipv6_only_sock(sk)) 380 return -1; 381 382 if (sk->sk_rcv_saddr != daddr) 383 return -1; 384 385 score = (sk->sk_family == PF_INET) ? 2 : 1; 386 387 inet = inet_sk(sk); 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 401 dif, sdif); 402 if (!dev_match) 403 return -1; 404 if (sk->sk_bound_dev_if) 405 score += 4; 406 407 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 408 score++; 409 return score; 410} 411 412u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 413 const __be32 faddr, const __be16 fport) 414{ 415 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 416 417 return __inet_ehashfn(laddr, lport, faddr, fport, 418 udp_ehash_secret + net_hash_mix(net)); 419} 420EXPORT_IPV6_MOD(udp_ehashfn); 421 422/** 423 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port) 424 * @net: Network namespace 425 * @saddr: Source address, network order 426 * @sport: Source port, network order 427 * @daddr: Destination address, network order 428 * @hnum: Destination port, host order 429 * @dif: Destination interface index 430 * @sdif: Destination bridge port index, if relevant 431 * @udptable: Set of UDP hash tables 432 * 433 * Simplified lookup to be used as fallback if no sockets are found due to a 434 * potential race between (receive) address change, and lookup happening before 435 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring 436 * result sockets, because if we have one, we don't need the fallback at all. 437 * 438 * Called under rcu_read_lock(). 439 * 440 * Return: socket with highest matching score if any, NULL if none 441 */ 442static struct sock *udp4_lib_lookup1(const struct net *net, 443 __be32 saddr, __be16 sport, 444 __be32 daddr, unsigned int hnum, 445 int dif, int sdif, 446 const struct udp_table *udptable) 447{ 448 unsigned int slot = udp_hashfn(net, hnum, udptable->mask); 449 struct udp_hslot *hslot = &udptable->hash[slot]; 450 struct sock *sk, *result = NULL; 451 int score, badness = 0; 452 453 sk_for_each_rcu(sk, &hslot->head) { 454 score = compute_score(sk, net, 455 saddr, sport, daddr, hnum, dif, sdif); 456 if (score > badness) { 457 result = sk; 458 badness = score; 459 } 460 } 461 462 return result; 463} 464 465/* called with rcu_read_lock() */ 466static struct sock *udp4_lib_lookup2(const struct net *net, 467 __be32 saddr, __be16 sport, 468 __be32 daddr, unsigned int hnum, 469 int dif, int sdif, 470 struct udp_hslot *hslot2, 471 struct sk_buff *skb) 472{ 473 struct sock *sk, *result; 474 int score, badness; 475 bool need_rescore; 476 477 result = NULL; 478 badness = 0; 479 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 480 need_rescore = false; 481rescore: 482 score = compute_score(need_rescore ? result : sk, net, saddr, 483 sport, daddr, hnum, dif, sdif); 484 if (score > badness) { 485 badness = score; 486 487 if (need_rescore) 488 continue; 489 490 if (sk->sk_state == TCP_ESTABLISHED) { 491 result = sk; 492 continue; 493 } 494 495 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 496 saddr, sport, daddr, hnum, udp_ehashfn); 497 if (!result) { 498 result = sk; 499 continue; 500 } 501 502 /* Fall back to scoring if group has connections */ 503 if (!reuseport_has_conns(sk)) 504 return result; 505 506 /* Reuseport logic returned an error, keep original score. */ 507 if (IS_ERR(result)) 508 continue; 509 510 /* compute_score is too long of a function to be 511 * inlined, and calling it again here yields 512 * measurable overhead for some 513 * workloads. Work around it by jumping 514 * backwards to rescore 'result'. 515 */ 516 need_rescore = true; 517 goto rescore; 518 } 519 } 520 return result; 521} 522 523#if IS_ENABLED(CONFIG_BASE_SMALL) 524static struct sock *udp4_lib_lookup4(const struct net *net, 525 __be32 saddr, __be16 sport, 526 __be32 daddr, unsigned int hnum, 527 int dif, int sdif, 528 struct udp_table *udptable) 529{ 530 return NULL; 531} 532 533static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 534 u16 newhash4) 535{ 536} 537 538static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 539{ 540} 541#else /* !CONFIG_BASE_SMALL */ 542static struct sock *udp4_lib_lookup4(const struct net *net, 543 __be32 saddr, __be16 sport, 544 __be32 daddr, unsigned int hnum, 545 int dif, int sdif, 546 struct udp_table *udptable) 547{ 548 const __portpair ports = INET_COMBINED_PORTS(sport, hnum); 549 const struct hlist_nulls_node *node; 550 struct udp_hslot *hslot4; 551 unsigned int hash4, slot; 552 struct udp_sock *up; 553 struct sock *sk; 554 555 hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport); 556 slot = hash4 & udptable->mask; 557 hslot4 = &udptable->hash4[slot]; 558 INET_ADDR_COOKIE(acookie, saddr, daddr); 559 560begin: 561 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */ 562 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) { 563 sk = (struct sock *)up; 564 if (inet_match(net, sk, acookie, ports, dif, sdif)) 565 return sk; 566 } 567 568 /* if the nulls value we got at the end of this lookup is not the 569 * expected one, we must restart lookup. We probably met an item that 570 * was moved to another chain due to rehash. 571 */ 572 if (get_nulls_value(node) != slot) 573 goto begin; 574 575 return NULL; 576} 577 578/* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */ 579static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 580 u16 newhash4) 581{ 582 struct udp_hslot *hslot4, *nhslot4; 583 584 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 585 nhslot4 = udp_hashslot4(udptable, newhash4); 586 udp_sk(sk)->udp_lrpa_hash = newhash4; 587 588 if (hslot4 != nhslot4) { 589 spin_lock_bh(&hslot4->lock); 590 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 591 hslot4->count--; 592 spin_unlock_bh(&hslot4->lock); 593 594 spin_lock_bh(&nhslot4->lock); 595 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 596 &nhslot4->nulls_head); 597 nhslot4->count++; 598 spin_unlock_bh(&nhslot4->lock); 599 } 600} 601 602static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 603{ 604 struct udp_hslot *hslot2, *hslot4; 605 606 if (udp_hashed4(sk)) { 607 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 608 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 609 610 spin_lock(&hslot4->lock); 611 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 612 hslot4->count--; 613 spin_unlock(&hslot4->lock); 614 615 spin_lock(&hslot2->lock); 616 udp_hash4_dec(hslot2); 617 spin_unlock(&hslot2->lock); 618 } 619} 620 621void udp_lib_hash4(struct sock *sk, u16 hash) 622{ 623 struct udp_hslot *hslot, *hslot2, *hslot4; 624 struct net *net = sock_net(sk); 625 struct udp_table *udptable; 626 627 /* Connected udp socket can re-connect to another remote address, which 628 * will be handled by rehash. Thus no need to redo hash4 here. 629 */ 630 if (udp_hashed4(sk)) 631 return; 632 633 udptable = net->ipv4.udp_table; 634 hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash); 635 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 636 hslot4 = udp_hashslot4(udptable, hash); 637 udp_sk(sk)->udp_lrpa_hash = hash; 638 639 spin_lock_bh(&hslot->lock); 640 if (rcu_access_pointer(sk->sk_reuseport_cb)) 641 reuseport_detach_sock(sk); 642 643 spin_lock(&hslot4->lock); 644 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 645 &hslot4->nulls_head); 646 hslot4->count++; 647 spin_unlock(&hslot4->lock); 648 649 spin_lock(&hslot2->lock); 650 udp_hash4_inc(hslot2); 651 spin_unlock(&hslot2->lock); 652 653 spin_unlock_bh(&hslot->lock); 654} 655EXPORT_IPV6_MOD(udp_lib_hash4); 656 657/* call with sock lock */ 658void udp4_hash4(struct sock *sk) 659{ 660 struct net *net = sock_net(sk); 661 unsigned int hash; 662 663 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY)) 664 return; 665 666 hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num, 667 sk->sk_daddr, sk->sk_dport); 668 669 udp_lib_hash4(sk, hash); 670} 671EXPORT_IPV6_MOD(udp4_hash4); 672#endif /* CONFIG_BASE_SMALL */ 673 674/* UDP is nearly always wildcards out the wazoo, it makes no sense to try 675 * harder than this. -DaveM 676 */ 677struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 678 __be16 sport, __be32 daddr, __be16 dport, int dif, 679 int sdif, struct udp_table *udptable, struct sk_buff *skb) 680{ 681 unsigned short hnum = ntohs(dport); 682 struct udp_hslot *hslot2; 683 struct sock *result, *sk; 684 unsigned int hash2; 685 686 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 687 hslot2 = udp_hashslot2(udptable, hash2); 688 689 if (udp_has_hash4(hslot2)) { 690 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum, 691 dif, sdif, udptable); 692 if (result) /* udp4_lib_lookup4 return sk or NULL */ 693 return result; 694 } 695 696 /* Lookup connected or non-wildcard socket */ 697 result = udp4_lib_lookup2(net, saddr, sport, 698 daddr, hnum, dif, sdif, 699 hslot2, skb); 700 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 701 goto done; 702 703 /* Lookup redirect from BPF */ 704 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 705 udptable == net->ipv4.udp_table) { 706 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 707 saddr, sport, daddr, hnum, dif, 708 udp_ehashfn); 709 if (sk) { 710 result = sk; 711 goto done; 712 } 713 } 714 715 /* Got non-wildcard socket or error on first lookup */ 716 if (result) 717 goto done; 718 719 /* Lookup wildcard sockets */ 720 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 721 hslot2 = udp_hashslot2(udptable, hash2); 722 723 result = udp4_lib_lookup2(net, saddr, sport, 724 htonl(INADDR_ANY), hnum, dif, sdif, 725 hslot2, skb); 726 if (!IS_ERR_OR_NULL(result)) 727 goto done; 728 729 /* Primary hash (destination port) lookup as fallback for this race: 730 * 1. __ip4_datagram_connect() sets sk_rcv_saddr 731 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet 732 * 3. rehash operation updating _secondary and four-tuple_ hashes 733 * The primary hash doesn't need an update after 1., so, thanks to this 734 * further step, 1. and 3. don't need to be atomic against the lookup. 735 */ 736 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif, 737 udptable); 738 739done: 740 if (IS_ERR(result)) 741 return NULL; 742 return result; 743} 744EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 745 746static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 747 __be16 sport, __be16 dport, 748 struct udp_table *udptable) 749{ 750 const struct iphdr *iph = ip_hdr(skb); 751 752 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 753 iph->daddr, dport, inet_iif(skb), 754 inet_sdif(skb), udptable, skb); 755} 756 757struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 758 __be16 sport, __be16 dport) 759{ 760 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 761 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 762 struct net *net = dev_net(skb->dev); 763 int iif, sdif; 764 765 inet_get_iif_sdif(skb, &iif, &sdif); 766 767 return __udp4_lib_lookup(net, iph->saddr, sport, 768 iph->daddr, dport, iif, 769 sdif, net->ipv4.udp_table, NULL); 770} 771 772/* Must be called under rcu_read_lock(). 773 * Does increment socket refcount. 774 */ 775#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 776struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 777 __be32 daddr, __be16 dport, int dif) 778{ 779 struct sock *sk; 780 781 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 782 dif, 0, net->ipv4.udp_table, NULL); 783 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 784 sk = NULL; 785 return sk; 786} 787EXPORT_SYMBOL_GPL(udp4_lib_lookup); 788#endif 789 790static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 791 __be16 loc_port, __be32 loc_addr, 792 __be16 rmt_port, __be32 rmt_addr, 793 int dif, int sdif, unsigned short hnum) 794{ 795 const struct inet_sock *inet = inet_sk(sk); 796 797 if (!net_eq(sock_net(sk), net) || 798 udp_sk(sk)->udp_port_hash != hnum || 799 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 800 (inet->inet_dport != rmt_port && inet->inet_dport) || 801 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 802 ipv6_only_sock(sk) || 803 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 804 return false; 805 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 806 return false; 807 return true; 808} 809 810DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 811EXPORT_IPV6_MOD(udp_encap_needed_key); 812 813#if IS_ENABLED(CONFIG_IPV6) 814DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 815EXPORT_IPV6_MOD(udpv6_encap_needed_key); 816#endif 817 818void udp_encap_enable(void) 819{ 820 static_branch_inc(&udp_encap_needed_key); 821} 822EXPORT_SYMBOL(udp_encap_enable); 823 824void udp_encap_disable(void) 825{ 826 static_branch_dec(&udp_encap_needed_key); 827} 828EXPORT_SYMBOL(udp_encap_disable); 829 830/* Handler for tunnels with arbitrary destination ports: no socket lookup, go 831 * through error handlers in encapsulations looking for a match. 832 */ 833static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 834{ 835 int i; 836 837 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 838 int (*handler)(struct sk_buff *skb, u32 info); 839 const struct ip_tunnel_encap_ops *encap; 840 841 encap = rcu_dereference(iptun_encaps[i]); 842 if (!encap) 843 continue; 844 handler = encap->err_handler; 845 if (handler && !handler(skb, info)) 846 return 0; 847 } 848 849 return -ENOENT; 850} 851 852/* Try to match ICMP errors to UDP tunnels by looking up a socket without 853 * reversing source and destination port: this will match tunnels that force the 854 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 855 * lwtunnels might actually break this assumption by being configured with 856 * different destination ports on endpoints, in this case we won't be able to 857 * trace ICMP messages back to them. 858 * 859 * If this doesn't match any socket, probe tunnels with arbitrary destination 860 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 861 * we've sent packets to won't necessarily match the local destination port. 862 * 863 * Then ask the tunnel implementation to match the error against a valid 864 * association. 865 * 866 * Return an error if we can't find a match, the socket if we need further 867 * processing, zero otherwise. 868 */ 869static struct sock *__udp4_lib_err_encap(struct net *net, 870 const struct iphdr *iph, 871 struct udphdr *uh, 872 struct udp_table *udptable, 873 struct sock *sk, 874 struct sk_buff *skb, u32 info) 875{ 876 int (*lookup)(struct sock *sk, struct sk_buff *skb); 877 int network_offset, transport_offset; 878 struct udp_sock *up; 879 880 network_offset = skb_network_offset(skb); 881 transport_offset = skb_transport_offset(skb); 882 883 /* Network header needs to point to the outer IPv4 header inside ICMP */ 884 skb_reset_network_header(skb); 885 886 /* Transport header needs to point to the UDP header */ 887 skb_set_transport_header(skb, iph->ihl << 2); 888 889 if (sk) { 890 up = udp_sk(sk); 891 892 lookup = READ_ONCE(up->encap_err_lookup); 893 if (lookup && lookup(sk, skb)) 894 sk = NULL; 895 896 goto out; 897 } 898 899 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 900 iph->saddr, uh->dest, skb->dev->ifindex, 0, 901 udptable, NULL); 902 if (sk) { 903 up = udp_sk(sk); 904 905 lookup = READ_ONCE(up->encap_err_lookup); 906 if (!lookup || lookup(sk, skb)) 907 sk = NULL; 908 } 909 910out: 911 if (!sk) 912 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 913 914 skb_set_transport_header(skb, transport_offset); 915 skb_set_network_header(skb, network_offset); 916 917 return sk; 918} 919 920/* 921 * This routine is called by the ICMP module when it gets some 922 * sort of error condition. If err < 0 then the socket should 923 * be closed and the error returned to the user. If err > 0 924 * it's just the icmp type << 8 | icmp code. 925 * Header points to the ip header of the error packet. We move 926 * on past this. Then (as it used to claim before adjustment) 927 * header points to the first 8 bytes of the udp header. We need 928 * to find the appropriate port. 929 */ 930 931int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 932{ 933 struct inet_sock *inet; 934 const struct iphdr *iph = (const struct iphdr *)skb->data; 935 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 936 const int type = icmp_hdr(skb)->type; 937 const int code = icmp_hdr(skb)->code; 938 bool tunnel = false; 939 struct sock *sk; 940 int harderr; 941 int err; 942 struct net *net = dev_net(skb->dev); 943 944 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 945 iph->saddr, uh->source, skb->dev->ifindex, 946 inet_sdif(skb), udptable, NULL); 947 948 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 949 /* No socket for error: try tunnels before discarding */ 950 if (static_branch_unlikely(&udp_encap_needed_key)) { 951 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 952 info); 953 if (!sk) 954 return 0; 955 } else 956 sk = ERR_PTR(-ENOENT); 957 958 if (IS_ERR(sk)) { 959 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 960 return PTR_ERR(sk); 961 } 962 963 tunnel = true; 964 } 965 966 err = 0; 967 harderr = 0; 968 inet = inet_sk(sk); 969 970 switch (type) { 971 default: 972 case ICMP_TIME_EXCEEDED: 973 err = EHOSTUNREACH; 974 break; 975 case ICMP_SOURCE_QUENCH: 976 goto out; 977 case ICMP_PARAMETERPROB: 978 err = EPROTO; 979 harderr = 1; 980 break; 981 case ICMP_DEST_UNREACH: 982 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 983 ipv4_sk_update_pmtu(skb, sk, info); 984 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 985 err = EMSGSIZE; 986 harderr = 1; 987 break; 988 } 989 goto out; 990 } 991 err = EHOSTUNREACH; 992 if (code <= NR_ICMP_UNREACH) { 993 harderr = icmp_err_convert[code].fatal; 994 err = icmp_err_convert[code].errno; 995 } 996 break; 997 case ICMP_REDIRECT: 998 ipv4_sk_redirect(skb, sk); 999 goto out; 1000 } 1001 1002 /* 1003 * RFC1122: OK. Passes ICMP errors back to application, as per 1004 * 4.1.3.3. 1005 */ 1006 if (tunnel) { 1007 /* ...not for tunnels though: we don't have a sending socket */ 1008 if (udp_sk(sk)->encap_err_rcv) 1009 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 1010 (u8 *)(uh+1)); 1011 goto out; 1012 } 1013 if (!inet_test_bit(RECVERR, sk)) { 1014 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 1015 goto out; 1016 } else 1017 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 1018 1019 sk->sk_err = err; 1020 sk_error_report(sk); 1021out: 1022 return 0; 1023} 1024 1025int udp_err(struct sk_buff *skb, u32 info) 1026{ 1027 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 1028} 1029 1030/* 1031 * Throw away all pending data and cancel the corking. Socket is locked. 1032 */ 1033void udp_flush_pending_frames(struct sock *sk) 1034{ 1035 struct udp_sock *up = udp_sk(sk); 1036 1037 if (up->pending) { 1038 up->len = 0; 1039 WRITE_ONCE(up->pending, 0); 1040 ip_flush_pending_frames(sk); 1041 } 1042} 1043EXPORT_IPV6_MOD(udp_flush_pending_frames); 1044 1045/** 1046 * udp4_hwcsum - handle outgoing HW checksumming 1047 * @skb: sk_buff containing the filled-in UDP header 1048 * (checksum field must be zeroed out) 1049 * @src: source IP address 1050 * @dst: destination IP address 1051 */ 1052void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 1053{ 1054 struct udphdr *uh = udp_hdr(skb); 1055 int offset = skb_transport_offset(skb); 1056 int len = skb->len - offset; 1057 int hlen = len; 1058 __wsum csum = 0; 1059 1060 if (!skb_has_frag_list(skb)) { 1061 /* 1062 * Only one fragment on the socket. 1063 */ 1064 skb->csum_start = skb_transport_header(skb) - skb->head; 1065 skb->csum_offset = offsetof(struct udphdr, check); 1066 uh->check = ~csum_tcpudp_magic(src, dst, len, 1067 IPPROTO_UDP, 0); 1068 } else { 1069 struct sk_buff *frags; 1070 1071 /* 1072 * HW-checksum won't work as there are two or more 1073 * fragments on the socket so that all csums of sk_buffs 1074 * should be together 1075 */ 1076 skb_walk_frags(skb, frags) { 1077 csum = csum_add(csum, frags->csum); 1078 hlen -= frags->len; 1079 } 1080 1081 csum = skb_checksum(skb, offset, hlen, csum); 1082 skb->ip_summed = CHECKSUM_NONE; 1083 1084 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 1085 if (uh->check == 0) 1086 uh->check = CSUM_MANGLED_0; 1087 } 1088} 1089EXPORT_SYMBOL_GPL(udp4_hwcsum); 1090 1091/* Function to set UDP checksum for an IPv4 UDP packet. This is intended 1092 * for the simple case like when setting the checksum for a UDP tunnel. 1093 */ 1094void udp_set_csum(bool nocheck, struct sk_buff *skb, 1095 __be32 saddr, __be32 daddr, int len) 1096{ 1097 struct udphdr *uh = udp_hdr(skb); 1098 1099 if (nocheck) { 1100 uh->check = 0; 1101 } else if (skb_is_gso(skb)) { 1102 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1103 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 1104 uh->check = 0; 1105 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 1106 if (uh->check == 0) 1107 uh->check = CSUM_MANGLED_0; 1108 } else { 1109 skb->ip_summed = CHECKSUM_PARTIAL; 1110 skb->csum_start = skb_transport_header(skb) - skb->head; 1111 skb->csum_offset = offsetof(struct udphdr, check); 1112 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1113 } 1114} 1115EXPORT_SYMBOL(udp_set_csum); 1116 1117static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 1118 struct inet_cork *cork) 1119{ 1120 struct sock *sk = skb->sk; 1121 struct inet_sock *inet = inet_sk(sk); 1122 struct udphdr *uh; 1123 int err; 1124 int is_udplite = IS_UDPLITE(sk); 1125 int offset = skb_transport_offset(skb); 1126 int len = skb->len - offset; 1127 int datalen = len - sizeof(*uh); 1128 __wsum csum = 0; 1129 1130 /* 1131 * Create a UDP header 1132 */ 1133 uh = udp_hdr(skb); 1134 uh->source = inet->inet_sport; 1135 uh->dest = fl4->fl4_dport; 1136 uh->len = htons(len); 1137 uh->check = 0; 1138 1139 if (cork->gso_size) { 1140 const int hlen = skb_network_header_len(skb) + 1141 sizeof(struct udphdr); 1142 1143 if (hlen + min(datalen, cork->gso_size) > cork->fragsize) { 1144 kfree_skb(skb); 1145 return -EMSGSIZE; 1146 } 1147 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 1148 kfree_skb(skb); 1149 return -EINVAL; 1150 } 1151 if (sk->sk_no_check_tx) { 1152 kfree_skb(skb); 1153 return -EINVAL; 1154 } 1155 if (is_udplite || dst_xfrm(skb_dst(skb))) { 1156 kfree_skb(skb); 1157 return -EIO; 1158 } 1159 1160 if (datalen > cork->gso_size) { 1161 skb_shinfo(skb)->gso_size = cork->gso_size; 1162 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 1163 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 1164 cork->gso_size); 1165 1166 /* Don't checksum the payload, skb will get segmented */ 1167 goto csum_partial; 1168 } 1169 } 1170 1171 if (is_udplite) /* UDP-Lite */ 1172 csum = udplite_csum(skb); 1173 1174 else if (sk->sk_no_check_tx) { /* UDP csum off */ 1175 1176 skb->ip_summed = CHECKSUM_NONE; 1177 goto send; 1178 1179 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 1180csum_partial: 1181 1182 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 1183 goto send; 1184 1185 } else 1186 csum = udp_csum(skb); 1187 1188 /* add protocol-dependent pseudo-header */ 1189 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 1190 sk->sk_protocol, csum); 1191 if (uh->check == 0) 1192 uh->check = CSUM_MANGLED_0; 1193 1194send: 1195 err = ip_send_skb(sock_net(sk), skb); 1196 if (err) { 1197 if (err == -ENOBUFS && 1198 !inet_test_bit(RECVERR, sk)) { 1199 UDP_INC_STATS(sock_net(sk), 1200 UDP_MIB_SNDBUFERRORS, is_udplite); 1201 err = 0; 1202 } 1203 } else 1204 UDP_INC_STATS(sock_net(sk), 1205 UDP_MIB_OUTDATAGRAMS, is_udplite); 1206 return err; 1207} 1208 1209/* 1210 * Push out all pending data as one UDP datagram. Socket is locked. 1211 */ 1212int udp_push_pending_frames(struct sock *sk) 1213{ 1214 struct udp_sock *up = udp_sk(sk); 1215 struct inet_sock *inet = inet_sk(sk); 1216 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1217 struct sk_buff *skb; 1218 int err = 0; 1219 1220 skb = ip_finish_skb(sk, fl4); 1221 if (!skb) 1222 goto out; 1223 1224 err = udp_send_skb(skb, fl4, &inet->cork.base); 1225 1226out: 1227 up->len = 0; 1228 WRITE_ONCE(up->pending, 0); 1229 return err; 1230} 1231EXPORT_IPV6_MOD(udp_push_pending_frames); 1232 1233static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1234{ 1235 switch (cmsg->cmsg_type) { 1236 case UDP_SEGMENT: 1237 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1238 return -EINVAL; 1239 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1240 return 0; 1241 default: 1242 return -EINVAL; 1243 } 1244} 1245 1246int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1247{ 1248 struct cmsghdr *cmsg; 1249 bool need_ip = false; 1250 int err; 1251 1252 for_each_cmsghdr(cmsg, msg) { 1253 if (!CMSG_OK(msg, cmsg)) 1254 return -EINVAL; 1255 1256 if (cmsg->cmsg_level != SOL_UDP) { 1257 need_ip = true; 1258 continue; 1259 } 1260 1261 err = __udp_cmsg_send(cmsg, gso_size); 1262 if (err) 1263 return err; 1264 } 1265 1266 return need_ip; 1267} 1268EXPORT_IPV6_MOD_GPL(udp_cmsg_send); 1269 1270int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1271{ 1272 struct inet_sock *inet = inet_sk(sk); 1273 struct udp_sock *up = udp_sk(sk); 1274 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1275 struct flowi4 fl4_stack; 1276 struct flowi4 *fl4; 1277 int ulen = len; 1278 struct ipcm_cookie ipc; 1279 struct rtable *rt = NULL; 1280 int free = 0; 1281 int connected = 0; 1282 __be32 daddr, faddr, saddr; 1283 u8 scope; 1284 __be16 dport; 1285 int err, is_udplite = IS_UDPLITE(sk); 1286 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1287 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1288 struct sk_buff *skb; 1289 struct ip_options_data opt_copy; 1290 int uc_index; 1291 1292 if (len > 0xFFFF) 1293 return -EMSGSIZE; 1294 1295 /* 1296 * Check the flags. 1297 */ 1298 1299 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1300 return -EOPNOTSUPP; 1301 1302 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1303 1304 fl4 = &inet->cork.fl.u.ip4; 1305 if (READ_ONCE(up->pending)) { 1306 /* 1307 * There are pending frames. 1308 * The socket lock must be held while it's corked. 1309 */ 1310 lock_sock(sk); 1311 if (likely(up->pending)) { 1312 if (unlikely(up->pending != AF_INET)) { 1313 release_sock(sk); 1314 return -EINVAL; 1315 } 1316 goto do_append_data; 1317 } 1318 release_sock(sk); 1319 } 1320 ulen += sizeof(struct udphdr); 1321 1322 /* 1323 * Get and verify the address. 1324 */ 1325 if (usin) { 1326 if (msg->msg_namelen < sizeof(*usin)) 1327 return -EINVAL; 1328 if (usin->sin_family != AF_INET) { 1329 if (usin->sin_family != AF_UNSPEC) 1330 return -EAFNOSUPPORT; 1331 } 1332 1333 daddr = usin->sin_addr.s_addr; 1334 dport = usin->sin_port; 1335 if (dport == 0) 1336 return -EINVAL; 1337 } else { 1338 if (sk->sk_state != TCP_ESTABLISHED) 1339 return -EDESTADDRREQ; 1340 daddr = inet->inet_daddr; 1341 dport = inet->inet_dport; 1342 /* Open fast path for connected socket. 1343 Route will not be used, if at least one option is set. 1344 */ 1345 connected = 1; 1346 } 1347 1348 ipcm_init_sk(&ipc, inet); 1349 ipc.gso_size = READ_ONCE(up->gso_size); 1350 1351 if (msg->msg_controllen) { 1352 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1353 if (err > 0) { 1354 err = ip_cmsg_send(sk, msg, &ipc, 1355 sk->sk_family == AF_INET6); 1356 connected = 0; 1357 } 1358 if (unlikely(err < 0)) { 1359 kfree(ipc.opt); 1360 return err; 1361 } 1362 if (ipc.opt) 1363 free = 1; 1364 } 1365 if (!ipc.opt) { 1366 struct ip_options_rcu *inet_opt; 1367 1368 rcu_read_lock(); 1369 inet_opt = rcu_dereference(inet->inet_opt); 1370 if (inet_opt) { 1371 memcpy(&opt_copy, inet_opt, 1372 sizeof(*inet_opt) + inet_opt->opt.optlen); 1373 ipc.opt = &opt_copy.opt; 1374 } 1375 rcu_read_unlock(); 1376 } 1377 1378 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1379 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1380 (struct sockaddr *)usin, 1381 &msg->msg_namelen, 1382 &ipc.addr); 1383 if (err) 1384 goto out_free; 1385 if (usin) { 1386 if (usin->sin_port == 0) { 1387 /* BPF program set invalid port. Reject it. */ 1388 err = -EINVAL; 1389 goto out_free; 1390 } 1391 daddr = usin->sin_addr.s_addr; 1392 dport = usin->sin_port; 1393 } 1394 } 1395 1396 saddr = ipc.addr; 1397 ipc.addr = faddr = daddr; 1398 1399 if (ipc.opt && ipc.opt->opt.srr) { 1400 if (!daddr) { 1401 err = -EINVAL; 1402 goto out_free; 1403 } 1404 faddr = ipc.opt->opt.faddr; 1405 connected = 0; 1406 } 1407 scope = ip_sendmsg_scope(inet, &ipc, msg); 1408 if (scope == RT_SCOPE_LINK) 1409 connected = 0; 1410 1411 uc_index = READ_ONCE(inet->uc_index); 1412 if (ipv4_is_multicast(daddr)) { 1413 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1414 ipc.oif = READ_ONCE(inet->mc_index); 1415 if (!saddr) 1416 saddr = READ_ONCE(inet->mc_addr); 1417 connected = 0; 1418 } else if (!ipc.oif) { 1419 ipc.oif = uc_index; 1420 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1421 /* oif is set, packet is to local broadcast and 1422 * uc_index is set. oif is most likely set 1423 * by sk_bound_dev_if. If uc_index != oif check if the 1424 * oif is an L3 master and uc_index is an L3 slave. 1425 * If so, we want to allow the send using the uc_index. 1426 */ 1427 if (ipc.oif != uc_index && 1428 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1429 uc_index)) { 1430 ipc.oif = uc_index; 1431 } 1432 } 1433 1434 if (connected) 1435 rt = dst_rtable(sk_dst_check(sk, 0)); 1436 1437 if (!rt) { 1438 struct net *net = sock_net(sk); 1439 __u8 flow_flags = inet_sk_flowi_flags(sk); 1440 1441 fl4 = &fl4_stack; 1442 1443 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, 1444 ipc.tos & INET_DSCP_MASK, scope, 1445 sk->sk_protocol, flow_flags, faddr, saddr, 1446 dport, inet->inet_sport, 1447 sk_uid(sk)); 1448 1449 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1450 rt = ip_route_output_flow(net, fl4, sk); 1451 if (IS_ERR(rt)) { 1452 err = PTR_ERR(rt); 1453 rt = NULL; 1454 if (err == -ENETUNREACH) 1455 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1456 goto out; 1457 } 1458 1459 err = -EACCES; 1460 if ((rt->rt_flags & RTCF_BROADCAST) && 1461 !sock_flag(sk, SOCK_BROADCAST)) 1462 goto out; 1463 if (connected) 1464 sk_dst_set(sk, dst_clone(&rt->dst)); 1465 } 1466 1467 if (msg->msg_flags&MSG_CONFIRM) 1468 goto do_confirm; 1469back_from_confirm: 1470 1471 saddr = fl4->saddr; 1472 if (!ipc.addr) 1473 daddr = ipc.addr = fl4->daddr; 1474 1475 /* Lockless fast path for the non-corking case. */ 1476 if (!corkreq) { 1477 struct inet_cork cork; 1478 1479 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1480 sizeof(struct udphdr), &ipc, &rt, 1481 &cork, msg->msg_flags); 1482 err = PTR_ERR(skb); 1483 if (!IS_ERR_OR_NULL(skb)) 1484 err = udp_send_skb(skb, fl4, &cork); 1485 goto out; 1486 } 1487 1488 lock_sock(sk); 1489 if (unlikely(up->pending)) { 1490 /* The socket is already corked while preparing it. */ 1491 /* ... which is an evident application bug. --ANK */ 1492 release_sock(sk); 1493 1494 net_dbg_ratelimited("socket already corked\n"); 1495 err = -EINVAL; 1496 goto out; 1497 } 1498 /* 1499 * Now cork the socket to pend data. 1500 */ 1501 fl4 = &inet->cork.fl.u.ip4; 1502 fl4->daddr = daddr; 1503 fl4->saddr = saddr; 1504 fl4->fl4_dport = dport; 1505 fl4->fl4_sport = inet->inet_sport; 1506 WRITE_ONCE(up->pending, AF_INET); 1507 1508do_append_data: 1509 up->len += ulen; 1510 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1511 sizeof(struct udphdr), &ipc, &rt, 1512 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1513 if (err) 1514 udp_flush_pending_frames(sk); 1515 else if (!corkreq) 1516 err = udp_push_pending_frames(sk); 1517 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1518 WRITE_ONCE(up->pending, 0); 1519 release_sock(sk); 1520 1521out: 1522 ip_rt_put(rt); 1523out_free: 1524 if (free) 1525 kfree(ipc.opt); 1526 if (!err) 1527 return len; 1528 /* 1529 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1530 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1531 * we don't have a good statistic (IpOutDiscards but it can be too many 1532 * things). We could add another new stat but at least for now that 1533 * seems like overkill. 1534 */ 1535 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1536 UDP_INC_STATS(sock_net(sk), 1537 UDP_MIB_SNDBUFERRORS, is_udplite); 1538 } 1539 return err; 1540 1541do_confirm: 1542 if (msg->msg_flags & MSG_PROBE) 1543 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1544 if (!(msg->msg_flags&MSG_PROBE) || len) 1545 goto back_from_confirm; 1546 err = 0; 1547 goto out; 1548} 1549EXPORT_SYMBOL(udp_sendmsg); 1550 1551void udp_splice_eof(struct socket *sock) 1552{ 1553 struct sock *sk = sock->sk; 1554 struct udp_sock *up = udp_sk(sk); 1555 1556 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1557 return; 1558 1559 lock_sock(sk); 1560 if (up->pending && !udp_test_bit(CORK, sk)) 1561 udp_push_pending_frames(sk); 1562 release_sock(sk); 1563} 1564EXPORT_IPV6_MOD_GPL(udp_splice_eof); 1565 1566#define UDP_SKB_IS_STATELESS 0x80000000 1567 1568/* all head states (dst, sk, nf conntrack) except skb extensions are 1569 * cleared by udp_rcv(). 1570 * 1571 * We need to preserve secpath, if present, to eventually process 1572 * IP_CMSG_PASSSEC at recvmsg() time. 1573 * 1574 * Other extensions can be cleared. 1575 */ 1576static bool udp_try_make_stateless(struct sk_buff *skb) 1577{ 1578 if (!skb_has_extensions(skb)) 1579 return true; 1580 1581 if (!secpath_exists(skb)) { 1582 skb_ext_reset(skb); 1583 return true; 1584 } 1585 1586 return false; 1587} 1588 1589static void udp_set_dev_scratch(struct sk_buff *skb) 1590{ 1591 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1592 1593 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1594 scratch->_tsize_state = skb->truesize; 1595#if BITS_PER_LONG == 64 1596 scratch->len = skb->len; 1597 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1598 scratch->is_linear = !skb_is_nonlinear(skb); 1599#endif 1600 if (udp_try_make_stateless(skb)) 1601 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1602} 1603 1604static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1605{ 1606 /* We come here after udp_lib_checksum_complete() returned 0. 1607 * This means that __skb_checksum_complete() might have 1608 * set skb->csum_valid to 1. 1609 * On 64bit platforms, we can set csum_unnecessary 1610 * to true, but only if the skb is not shared. 1611 */ 1612#if BITS_PER_LONG == 64 1613 if (!skb_shared(skb)) 1614 udp_skb_scratch(skb)->csum_unnecessary = true; 1615#endif 1616} 1617 1618static int udp_skb_truesize(struct sk_buff *skb) 1619{ 1620 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1621} 1622 1623static bool udp_skb_has_head_state(struct sk_buff *skb) 1624{ 1625 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1626} 1627 1628/* fully reclaim rmem/fwd memory allocated for skb */ 1629static void udp_rmem_release(struct sock *sk, unsigned int size, 1630 int partial, bool rx_queue_lock_held) 1631{ 1632 struct udp_sock *up = udp_sk(sk); 1633 struct sk_buff_head *sk_queue; 1634 unsigned int amt; 1635 1636 if (likely(partial)) { 1637 up->forward_deficit += size; 1638 size = up->forward_deficit; 1639 if (size < READ_ONCE(up->forward_threshold) && 1640 !skb_queue_empty(&up->reader_queue)) 1641 return; 1642 } else { 1643 size += up->forward_deficit; 1644 } 1645 up->forward_deficit = 0; 1646 1647 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1648 * if the called don't held it already 1649 */ 1650 sk_queue = &sk->sk_receive_queue; 1651 if (!rx_queue_lock_held) 1652 spin_lock(&sk_queue->lock); 1653 1654 amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1655 sk_forward_alloc_add(sk, size - amt); 1656 1657 if (amt) 1658 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1659 1660 atomic_sub(size, &sk->sk_rmem_alloc); 1661 1662 /* this can save us from acquiring the rx queue lock on next receive */ 1663 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1664 1665 if (!rx_queue_lock_held) 1666 spin_unlock(&sk_queue->lock); 1667} 1668 1669/* Note: called with reader_queue.lock held. 1670 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1671 * This avoids a cache line miss while receive_queue lock is held. 1672 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1673 */ 1674void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1675{ 1676 prefetch(&skb->data); 1677 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1678} 1679EXPORT_IPV6_MOD(udp_skb_destructor); 1680 1681/* as above, but the caller held the rx queue lock, too */ 1682static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1683{ 1684 prefetch(&skb->data); 1685 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1686} 1687 1688static int udp_rmem_schedule(struct sock *sk, int size) 1689{ 1690 int delta; 1691 1692 delta = size - sk->sk_forward_alloc; 1693 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1694 return -ENOBUFS; 1695 1696 return 0; 1697} 1698 1699int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1700{ 1701 struct sk_buff_head *list = &sk->sk_receive_queue; 1702 struct udp_prod_queue *udp_prod_queue; 1703 struct sk_buff *next, *to_drop = NULL; 1704 struct llist_node *ll_list; 1705 unsigned int rmem, rcvbuf; 1706 int size, err = -ENOMEM; 1707 int total_size = 0; 1708 int q_size = 0; 1709 int dropcount; 1710 int nb = 0; 1711 1712 rmem = atomic_read(&sk->sk_rmem_alloc); 1713 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1714 size = skb->truesize; 1715 1716 udp_prod_queue = &udp_sk(sk)->udp_prod_queue[numa_node_id()]; 1717 1718 rmem += atomic_read(&udp_prod_queue->rmem_alloc); 1719 1720 /* Immediately drop when the receive queue is full. 1721 * Cast to unsigned int performs the boundary check for INT_MAX. 1722 */ 1723 if (rmem + size > rcvbuf) { 1724 if (rcvbuf > INT_MAX >> 1) 1725 goto drop; 1726 1727 /* Accept the packet if queue is empty. */ 1728 if (rmem) 1729 goto drop; 1730 } 1731 1732 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1733 * having linear skbs : 1734 * - Reduce memory overhead and thus increase receive queue capacity 1735 * - Less cache line misses at copyout() time 1736 * - Less work at consume_skb() (less alien page frag freeing) 1737 */ 1738 if (rmem > (rcvbuf >> 1)) { 1739 skb_condense(skb); 1740 size = skb->truesize; 1741 } 1742 1743 udp_set_dev_scratch(skb); 1744 1745 atomic_add(size, &udp_prod_queue->rmem_alloc); 1746 1747 if (!llist_add(&skb->ll_node, &udp_prod_queue->ll_root)) 1748 return 0; 1749 1750 dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? sk_drops_read(sk) : 0; 1751 1752 spin_lock(&list->lock); 1753 1754 ll_list = llist_del_all(&udp_prod_queue->ll_root); 1755 1756 ll_list = llist_reverse_order(ll_list); 1757 1758 llist_for_each_entry_safe(skb, next, ll_list, ll_node) { 1759 size = udp_skb_truesize(skb); 1760 total_size += size; 1761 err = udp_rmem_schedule(sk, size); 1762 if (unlikely(err)) { 1763 /* Free the skbs outside of locked section. */ 1764 skb->next = to_drop; 1765 to_drop = skb; 1766 continue; 1767 } 1768 1769 q_size += size; 1770 sk_forward_alloc_add(sk, -size); 1771 1772 /* no need to setup a destructor, we will explicitly release the 1773 * forward allocated memory on dequeue 1774 */ 1775 SOCK_SKB_CB(skb)->dropcount = dropcount; 1776 nb++; 1777 __skb_queue_tail(list, skb); 1778 } 1779 1780 atomic_add(q_size, &sk->sk_rmem_alloc); 1781 1782 spin_unlock(&list->lock); 1783 1784 if (!sock_flag(sk, SOCK_DEAD)) { 1785 /* Multiple threads might be blocked in recvmsg(), 1786 * using prepare_to_wait_exclusive(). 1787 */ 1788 while (nb) { 1789 INDIRECT_CALL_1(sk->sk_data_ready, 1790 sock_def_readable, sk); 1791 nb--; 1792 } 1793 } 1794 1795 if (unlikely(to_drop)) { 1796 for (nb = 0; to_drop != NULL; nb++) { 1797 skb = to_drop; 1798 to_drop = skb->next; 1799 skb_mark_not_on_list(skb); 1800 /* TODO: update SNMP values. */ 1801 sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_PROTO_MEM); 1802 } 1803 numa_drop_add(&udp_sk(sk)->drop_counters, nb); 1804 } 1805 1806 atomic_sub(total_size, &udp_prod_queue->rmem_alloc); 1807 1808 return 0; 1809 1810drop: 1811 udp_drops_inc(sk); 1812 return err; 1813} 1814EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb); 1815 1816void udp_destruct_common(struct sock *sk) 1817{ 1818 /* reclaim completely the forward allocated memory */ 1819 struct udp_sock *up = udp_sk(sk); 1820 unsigned int total = 0; 1821 struct sk_buff *skb; 1822 1823 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1824 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1825 total += skb->truesize; 1826 kfree_skb(skb); 1827 } 1828 udp_rmem_release(sk, total, 0, true); 1829 kfree(up->udp_prod_queue); 1830} 1831EXPORT_IPV6_MOD_GPL(udp_destruct_common); 1832 1833static void udp_destruct_sock(struct sock *sk) 1834{ 1835 udp_destruct_common(sk); 1836 inet_sock_destruct(sk); 1837} 1838 1839int udp_init_sock(struct sock *sk) 1840{ 1841 int res = udp_lib_init_sock(sk); 1842 1843 sk->sk_destruct = udp_destruct_sock; 1844 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1845 return res; 1846} 1847 1848void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1849{ 1850 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1851 sk_peek_offset_bwd(sk, len); 1852 1853 if (!skb_shared(skb)) { 1854 skb_orphan(skb); 1855 skb_attempt_defer_free(skb); 1856 return; 1857 } 1858 1859 if (!skb_unref(skb)) 1860 return; 1861 1862 /* In the more common cases we cleared the head states previously, 1863 * see __udp_queue_rcv_skb(). 1864 */ 1865 if (unlikely(udp_skb_has_head_state(skb))) 1866 skb_release_head_state(skb); 1867 __consume_stateless_skb(skb); 1868} 1869EXPORT_IPV6_MOD_GPL(skb_consume_udp); 1870 1871static struct sk_buff *__first_packet_length(struct sock *sk, 1872 struct sk_buff_head *rcvq, 1873 unsigned int *total) 1874{ 1875 struct sk_buff *skb; 1876 1877 while ((skb = skb_peek(rcvq)) != NULL) { 1878 if (udp_lib_checksum_complete(skb)) { 1879 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1880 IS_UDPLITE(sk)); 1881 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1882 IS_UDPLITE(sk)); 1883 udp_drops_inc(sk); 1884 __skb_unlink(skb, rcvq); 1885 *total += skb->truesize; 1886 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 1887 } else { 1888 udp_skb_csum_unnecessary_set(skb); 1889 break; 1890 } 1891 } 1892 return skb; 1893} 1894 1895/** 1896 * first_packet_length - return length of first packet in receive queue 1897 * @sk: socket 1898 * 1899 * Drops all bad checksum frames, until a valid one is found. 1900 * Returns the length of found skb, or -1 if none is found. 1901 */ 1902static int first_packet_length(struct sock *sk) 1903{ 1904 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1905 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1906 unsigned int total = 0; 1907 struct sk_buff *skb; 1908 int res; 1909 1910 spin_lock_bh(&rcvq->lock); 1911 skb = __first_packet_length(sk, rcvq, &total); 1912 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1913 spin_lock(&sk_queue->lock); 1914 skb_queue_splice_tail_init(sk_queue, rcvq); 1915 spin_unlock(&sk_queue->lock); 1916 1917 skb = __first_packet_length(sk, rcvq, &total); 1918 } 1919 res = skb ? skb->len : -1; 1920 if (total) 1921 udp_rmem_release(sk, total, 1, false); 1922 spin_unlock_bh(&rcvq->lock); 1923 return res; 1924} 1925 1926/* 1927 * IOCTL requests applicable to the UDP protocol 1928 */ 1929 1930int udp_ioctl(struct sock *sk, int cmd, int *karg) 1931{ 1932 switch (cmd) { 1933 case SIOCOUTQ: 1934 { 1935 *karg = sk_wmem_alloc_get(sk); 1936 return 0; 1937 } 1938 1939 case SIOCINQ: 1940 { 1941 *karg = max_t(int, 0, first_packet_length(sk)); 1942 return 0; 1943 } 1944 1945 default: 1946 return -ENOIOCTLCMD; 1947 } 1948 1949 return 0; 1950} 1951EXPORT_IPV6_MOD(udp_ioctl); 1952 1953struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1954 int *off, int *err) 1955{ 1956 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1957 struct sk_buff_head *queue; 1958 struct sk_buff *last; 1959 long timeo; 1960 int error; 1961 1962 queue = &udp_sk(sk)->reader_queue; 1963 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1964 do { 1965 struct sk_buff *skb; 1966 1967 error = sock_error(sk); 1968 if (error) 1969 break; 1970 1971 error = -EAGAIN; 1972 do { 1973 spin_lock_bh(&queue->lock); 1974 skb = __skb_try_recv_from_queue(queue, flags, off, err, 1975 &last); 1976 if (skb) { 1977 if (!(flags & MSG_PEEK)) 1978 udp_skb_destructor(sk, skb); 1979 spin_unlock_bh(&queue->lock); 1980 return skb; 1981 } 1982 1983 if (skb_queue_empty_lockless(sk_queue)) { 1984 spin_unlock_bh(&queue->lock); 1985 goto busy_check; 1986 } 1987 1988 /* refill the reader queue and walk it again 1989 * keep both queues locked to avoid re-acquiring 1990 * the sk_receive_queue lock if fwd memory scheduling 1991 * is needed. 1992 */ 1993 spin_lock(&sk_queue->lock); 1994 skb_queue_splice_tail_init(sk_queue, queue); 1995 1996 skb = __skb_try_recv_from_queue(queue, flags, off, err, 1997 &last); 1998 if (skb && !(flags & MSG_PEEK)) 1999 udp_skb_dtor_locked(sk, skb); 2000 spin_unlock(&sk_queue->lock); 2001 spin_unlock_bh(&queue->lock); 2002 if (skb) 2003 return skb; 2004 2005busy_check: 2006 if (!sk_can_busy_loop(sk)) 2007 break; 2008 2009 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2010 } while (!skb_queue_empty_lockless(sk_queue)); 2011 2012 /* sk_queue is empty, reader_queue may contain peeked packets */ 2013 } while (timeo && 2014 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2015 &error, &timeo, 2016 (struct sk_buff *)sk_queue)); 2017 2018 *err = error; 2019 return NULL; 2020} 2021EXPORT_SYMBOL(__skb_recv_udp); 2022 2023int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2024{ 2025 struct sk_buff *skb; 2026 int err; 2027 2028try_again: 2029 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 2030 if (!skb) 2031 return err; 2032 2033 if (udp_lib_checksum_complete(skb)) { 2034 int is_udplite = IS_UDPLITE(sk); 2035 struct net *net = sock_net(sk); 2036 2037 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 2038 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 2039 udp_drops_inc(sk); 2040 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2041 goto try_again; 2042 } 2043 2044 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 2045 return recv_actor(sk, skb); 2046} 2047EXPORT_IPV6_MOD(udp_read_skb); 2048 2049/* 2050 * This should be easy, if there is something there we 2051 * return it, otherwise we block. 2052 */ 2053 2054int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2055 int *addr_len) 2056{ 2057 struct inet_sock *inet = inet_sk(sk); 2058 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 2059 struct sk_buff *skb; 2060 unsigned int ulen, copied; 2061 int off, err, peeking = flags & MSG_PEEK; 2062 int is_udplite = IS_UDPLITE(sk); 2063 bool checksum_valid = false; 2064 2065 if (flags & MSG_ERRQUEUE) 2066 return ip_recv_error(sk, msg, len, addr_len); 2067 2068try_again: 2069 off = sk_peek_offset(sk, flags); 2070 skb = __skb_recv_udp(sk, flags, &off, &err); 2071 if (!skb) 2072 return err; 2073 2074 ulen = udp_skb_len(skb); 2075 copied = len; 2076 if (copied > ulen - off) 2077 copied = ulen - off; 2078 else if (copied < ulen) 2079 msg->msg_flags |= MSG_TRUNC; 2080 2081 /* 2082 * If checksum is needed at all, try to do it while copying the 2083 * data. If the data is truncated, or if we only want a partial 2084 * coverage checksum (UDP-Lite), do it before the copy. 2085 */ 2086 2087 if (copied < ulen || peeking || 2088 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 2089 checksum_valid = udp_skb_csum_unnecessary(skb) || 2090 !__udp_lib_checksum_complete(skb); 2091 if (!checksum_valid) 2092 goto csum_copy_err; 2093 } 2094 2095 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 2096 if (udp_skb_is_linear(skb)) 2097 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 2098 else 2099 err = skb_copy_datagram_msg(skb, off, msg, copied); 2100 } else { 2101 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 2102 2103 if (err == -EINVAL) 2104 goto csum_copy_err; 2105 } 2106 2107 if (unlikely(err)) { 2108 if (!peeking) { 2109 udp_drops_inc(sk); 2110 UDP_INC_STATS(sock_net(sk), 2111 UDP_MIB_INERRORS, is_udplite); 2112 } 2113 kfree_skb(skb); 2114 return err; 2115 } 2116 2117 if (!peeking) 2118 UDP_INC_STATS(sock_net(sk), 2119 UDP_MIB_INDATAGRAMS, is_udplite); 2120 2121 sock_recv_cmsgs(msg, sk, skb); 2122 2123 /* Copy the address. */ 2124 if (sin) { 2125 sin->sin_family = AF_INET; 2126 sin->sin_port = udp_hdr(skb)->source; 2127 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 2128 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2129 *addr_len = sizeof(*sin); 2130 2131 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 2132 (struct sockaddr *)sin, 2133 addr_len); 2134 } 2135 2136 if (udp_test_bit(GRO_ENABLED, sk)) 2137 udp_cmsg_recv(msg, sk, skb); 2138 2139 if (inet_cmsg_flags(inet)) 2140 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 2141 2142 err = copied; 2143 if (flags & MSG_TRUNC) 2144 err = ulen; 2145 2146 skb_consume_udp(sk, skb, peeking ? -err : err); 2147 return err; 2148 2149csum_copy_err: 2150 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 2151 udp_skb_destructor)) { 2152 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2153 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2154 } 2155 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2156 2157 /* starting over for a new packet, but check if we need to yield */ 2158 cond_resched(); 2159 msg->msg_flags &= ~MSG_TRUNC; 2160 goto try_again; 2161} 2162 2163int udp_pre_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 2164 int addr_len) 2165{ 2166 /* This check is replicated from __ip4_datagram_connect() and 2167 * intended to prevent BPF program called below from accessing bytes 2168 * that are out of the bound specified by user in addr_len. 2169 */ 2170 if (addr_len < sizeof(struct sockaddr_in)) 2171 return -EINVAL; 2172 2173 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 2174} 2175EXPORT_IPV6_MOD(udp_pre_connect); 2176 2177static int udp_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 2178 int addr_len) 2179{ 2180 int res; 2181 2182 lock_sock(sk); 2183 res = __ip4_datagram_connect(sk, uaddr, addr_len); 2184 if (!res) 2185 udp4_hash4(sk); 2186 release_sock(sk); 2187 return res; 2188} 2189 2190int __udp_disconnect(struct sock *sk, int flags) 2191{ 2192 struct inet_sock *inet = inet_sk(sk); 2193 /* 2194 * 1003.1g - break association. 2195 */ 2196 2197 sk->sk_state = TCP_CLOSE; 2198 inet->inet_daddr = 0; 2199 inet->inet_dport = 0; 2200 sock_rps_reset_rxhash(sk); 2201 sk->sk_bound_dev_if = 0; 2202 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 2203 inet_reset_saddr(sk); 2204 if (sk->sk_prot->rehash && 2205 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2206 sk->sk_prot->rehash(sk); 2207 } 2208 2209 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 2210 sk->sk_prot->unhash(sk); 2211 inet->inet_sport = 0; 2212 } 2213 sk_dst_reset(sk); 2214 return 0; 2215} 2216EXPORT_SYMBOL(__udp_disconnect); 2217 2218int udp_disconnect(struct sock *sk, int flags) 2219{ 2220 lock_sock(sk); 2221 __udp_disconnect(sk, flags); 2222 release_sock(sk); 2223 return 0; 2224} 2225EXPORT_IPV6_MOD(udp_disconnect); 2226 2227void udp_lib_unhash(struct sock *sk) 2228{ 2229 if (sk_hashed(sk)) { 2230 struct udp_table *udptable = udp_get_table_prot(sk); 2231 struct udp_hslot *hslot, *hslot2; 2232 2233 sock_rps_delete_flow(sk); 2234 hslot = udp_hashslot(udptable, sock_net(sk), 2235 udp_sk(sk)->udp_port_hash); 2236 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2237 2238 spin_lock_bh(&hslot->lock); 2239 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2240 reuseport_detach_sock(sk); 2241 if (sk_del_node_init_rcu(sk)) { 2242 hslot->count--; 2243 inet_sk(sk)->inet_num = 0; 2244 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2245 2246 spin_lock(&hslot2->lock); 2247 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2248 hslot2->count--; 2249 spin_unlock(&hslot2->lock); 2250 2251 udp_unhash4(udptable, sk); 2252 } 2253 spin_unlock_bh(&hslot->lock); 2254 } 2255} 2256EXPORT_IPV6_MOD(udp_lib_unhash); 2257 2258/* 2259 * inet_rcv_saddr was changed, we must rehash secondary hash 2260 */ 2261void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4) 2262{ 2263 if (sk_hashed(sk)) { 2264 struct udp_table *udptable = udp_get_table_prot(sk); 2265 struct udp_hslot *hslot, *hslot2, *nhslot2; 2266 2267 hslot = udp_hashslot(udptable, sock_net(sk), 2268 udp_sk(sk)->udp_port_hash); 2269 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2270 nhslot2 = udp_hashslot2(udptable, newhash); 2271 udp_sk(sk)->udp_portaddr_hash = newhash; 2272 2273 if (hslot2 != nhslot2 || 2274 rcu_access_pointer(sk->sk_reuseport_cb)) { 2275 /* we must lock primary chain too */ 2276 spin_lock_bh(&hslot->lock); 2277 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2278 reuseport_detach_sock(sk); 2279 2280 if (hslot2 != nhslot2) { 2281 spin_lock(&hslot2->lock); 2282 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2283 hslot2->count--; 2284 spin_unlock(&hslot2->lock); 2285 2286 spin_lock(&nhslot2->lock); 2287 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2288 &nhslot2->head); 2289 nhslot2->count++; 2290 spin_unlock(&nhslot2->lock); 2291 } 2292 2293 spin_unlock_bh(&hslot->lock); 2294 } 2295 2296 /* Now process hash4 if necessary: 2297 * (1) update hslot4; 2298 * (2) update hslot2->hash4_cnt. 2299 * Note that hslot2/hslot4 should be checked separately, as 2300 * either of them may change with the other unchanged. 2301 */ 2302 if (udp_hashed4(sk)) { 2303 spin_lock_bh(&hslot->lock); 2304 2305 udp_rehash4(udptable, sk, newhash4); 2306 if (hslot2 != nhslot2) { 2307 spin_lock(&hslot2->lock); 2308 udp_hash4_dec(hslot2); 2309 spin_unlock(&hslot2->lock); 2310 2311 spin_lock(&nhslot2->lock); 2312 udp_hash4_inc(nhslot2); 2313 spin_unlock(&nhslot2->lock); 2314 } 2315 2316 spin_unlock_bh(&hslot->lock); 2317 } 2318 } 2319} 2320EXPORT_IPV6_MOD(udp_lib_rehash); 2321 2322void udp_v4_rehash(struct sock *sk) 2323{ 2324 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2325 inet_sk(sk)->inet_rcv_saddr, 2326 inet_sk(sk)->inet_num); 2327 u16 new_hash4 = udp_ehashfn(sock_net(sk), 2328 sk->sk_rcv_saddr, sk->sk_num, 2329 sk->sk_daddr, sk->sk_dport); 2330 2331 udp_lib_rehash(sk, new_hash, new_hash4); 2332} 2333 2334static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2335{ 2336 int rc; 2337 2338 if (inet_sk(sk)->inet_daddr) { 2339 sock_rps_save_rxhash(sk, skb); 2340 sk_mark_napi_id(sk, skb); 2341 sk_incoming_cpu_update(sk); 2342 } else { 2343 sk_mark_napi_id_once(sk, skb); 2344 } 2345 2346 rc = __udp_enqueue_schedule_skb(sk, skb); 2347 if (rc < 0) { 2348 int is_udplite = IS_UDPLITE(sk); 2349 int drop_reason; 2350 2351 /* Note that an ENOMEM error is charged twice */ 2352 if (rc == -ENOMEM) { 2353 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2354 is_udplite); 2355 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2356 } else { 2357 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2358 is_udplite); 2359 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2360 } 2361 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2362 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2363 sk_skb_reason_drop(sk, skb, drop_reason); 2364 return -1; 2365 } 2366 2367 return 0; 2368} 2369 2370/* returns: 2371 * -1: error 2372 * 0: success 2373 * >0: "udp encap" protocol resubmission 2374 * 2375 * Note that in the success and error cases, the skb is assumed to 2376 * have either been requeued or freed. 2377 */ 2378static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2379{ 2380 enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2381 struct udp_sock *up = udp_sk(sk); 2382 int is_udplite = IS_UDPLITE(sk); 2383 2384 /* 2385 * Charge it to the socket, dropping if the queue is full. 2386 */ 2387 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2388 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2389 goto drop; 2390 } 2391 nf_reset_ct(skb); 2392 2393 if (static_branch_unlikely(&udp_encap_needed_key) && 2394 READ_ONCE(up->encap_type)) { 2395 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2396 2397 /* 2398 * This is an encapsulation socket so pass the skb to 2399 * the socket's udp_encap_rcv() hook. Otherwise, just 2400 * fall through and pass this up the UDP socket. 2401 * up->encap_rcv() returns the following value: 2402 * =0 if skb was successfully passed to the encap 2403 * handler or was discarded by it. 2404 * >0 if skb should be passed on to UDP. 2405 * <0 if skb should be resubmitted as proto -N 2406 */ 2407 2408 /* if we're overly short, let UDP handle it */ 2409 encap_rcv = READ_ONCE(up->encap_rcv); 2410 if (encap_rcv) { 2411 int ret; 2412 2413 /* Verify checksum before giving to encap */ 2414 if (udp_lib_checksum_complete(skb)) 2415 goto csum_error; 2416 2417 ret = encap_rcv(sk, skb); 2418 if (ret <= 0) { 2419 __UDP_INC_STATS(sock_net(sk), 2420 UDP_MIB_INDATAGRAMS, 2421 is_udplite); 2422 return -ret; 2423 } 2424 } 2425 2426 /* FALLTHROUGH -- it's a UDP Packet */ 2427 } 2428 2429 /* 2430 * UDP-Lite specific tests, ignored on UDP sockets 2431 */ 2432 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2433 u16 pcrlen = READ_ONCE(up->pcrlen); 2434 2435 /* 2436 * MIB statistics other than incrementing the error count are 2437 * disabled for the following two types of errors: these depend 2438 * on the application settings, not on the functioning of the 2439 * protocol stack as such. 2440 * 2441 * RFC 3828 here recommends (sec 3.3): "There should also be a 2442 * way ... to ... at least let the receiving application block 2443 * delivery of packets with coverage values less than a value 2444 * provided by the application." 2445 */ 2446 if (pcrlen == 0) { /* full coverage was set */ 2447 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2448 UDP_SKB_CB(skb)->cscov, skb->len); 2449 goto drop; 2450 } 2451 /* The next case involves violating the min. coverage requested 2452 * by the receiver. This is subtle: if receiver wants x and x is 2453 * greater than the buffersize/MTU then receiver will complain 2454 * that it wants x while sender emits packets of smaller size y. 2455 * Therefore the above ...()->partial_cov statement is essential. 2456 */ 2457 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2458 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2459 UDP_SKB_CB(skb)->cscov, pcrlen); 2460 goto drop; 2461 } 2462 } 2463 2464 prefetch(&sk->sk_rmem_alloc); 2465 if (rcu_access_pointer(sk->sk_filter) && 2466 udp_lib_checksum_complete(skb)) 2467 goto csum_error; 2468 2469 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr), &drop_reason)) 2470 goto drop; 2471 2472 udp_csum_pull_header(skb); 2473 2474 ipv4_pktinfo_prepare(sk, skb, true); 2475 return __udp_queue_rcv_skb(sk, skb); 2476 2477csum_error: 2478 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2479 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2480drop: 2481 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2482 udp_drops_inc(sk); 2483 sk_skb_reason_drop(sk, skb, drop_reason); 2484 return -1; 2485} 2486 2487static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2488{ 2489 struct sk_buff *next, *segs; 2490 int ret; 2491 2492 if (likely(!udp_unexpected_gso(sk, skb))) 2493 return udp_queue_rcv_one_skb(sk, skb); 2494 2495 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2496 __skb_push(skb, -skb_mac_offset(skb)); 2497 segs = udp_rcv_segment(sk, skb, true); 2498 skb_list_walk_safe(segs, skb, next) { 2499 __skb_pull(skb, skb_transport_offset(skb)); 2500 2501 udp_post_segment_fix_csum(skb); 2502 ret = udp_queue_rcv_one_skb(sk, skb); 2503 if (ret > 0) 2504 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2505 } 2506 return 0; 2507} 2508 2509/* For TCP sockets, sk_rx_dst is protected by socket lock 2510 * For UDP, we use xchg() to guard against concurrent changes. 2511 */ 2512bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2513{ 2514 struct dst_entry *old; 2515 2516 if (dst_hold_safe(dst)) { 2517 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2518 dst_release(old); 2519 return old != dst; 2520 } 2521 return false; 2522} 2523EXPORT_IPV6_MOD(udp_sk_rx_dst_set); 2524 2525/* 2526 * Multicasts and broadcasts go to each listener. 2527 * 2528 * Note: called only from the BH handler context. 2529 */ 2530static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2531 struct udphdr *uh, 2532 __be32 saddr, __be32 daddr, 2533 struct udp_table *udptable, 2534 int proto) 2535{ 2536 struct sock *sk, *first = NULL; 2537 unsigned short hnum = ntohs(uh->dest); 2538 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2539 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2540 unsigned int offset = offsetof(typeof(*sk), sk_node); 2541 int dif = skb->dev->ifindex; 2542 int sdif = inet_sdif(skb); 2543 struct hlist_node *node; 2544 struct sk_buff *nskb; 2545 2546 if (use_hash2) { 2547 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2548 udptable->mask; 2549 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2550start_lookup: 2551 hslot = &udptable->hash2[hash2].hslot; 2552 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2553 } 2554 2555 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2556 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2557 uh->source, saddr, dif, sdif, hnum)) 2558 continue; 2559 2560 if (!first) { 2561 first = sk; 2562 continue; 2563 } 2564 nskb = skb_clone(skb, GFP_ATOMIC); 2565 2566 if (unlikely(!nskb)) { 2567 udp_drops_inc(sk); 2568 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2569 IS_UDPLITE(sk)); 2570 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2571 IS_UDPLITE(sk)); 2572 continue; 2573 } 2574 if (udp_queue_rcv_skb(sk, nskb) > 0) 2575 consume_skb(nskb); 2576 } 2577 2578 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2579 if (use_hash2 && hash2 != hash2_any) { 2580 hash2 = hash2_any; 2581 goto start_lookup; 2582 } 2583 2584 if (first) { 2585 if (udp_queue_rcv_skb(first, skb) > 0) 2586 consume_skb(skb); 2587 } else { 2588 kfree_skb(skb); 2589 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2590 proto == IPPROTO_UDPLITE); 2591 } 2592 return 0; 2593} 2594 2595/* Initialize UDP checksum. If exited with zero value (success), 2596 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2597 * Otherwise, csum completion requires checksumming packet body, 2598 * including udp header and folding it to skb->csum. 2599 */ 2600static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2601 int proto) 2602{ 2603 int err; 2604 2605 UDP_SKB_CB(skb)->partial_cov = 0; 2606 UDP_SKB_CB(skb)->cscov = skb->len; 2607 2608 if (proto == IPPROTO_UDPLITE) { 2609 err = udplite_checksum_init(skb, uh); 2610 if (err) 2611 return err; 2612 2613 if (UDP_SKB_CB(skb)->partial_cov) { 2614 skb->csum = inet_compute_pseudo(skb, proto); 2615 return 0; 2616 } 2617 } 2618 2619 /* Note, we are only interested in != 0 or == 0, thus the 2620 * force to int. 2621 */ 2622 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2623 inet_compute_pseudo); 2624 if (err) 2625 return err; 2626 2627 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2628 /* If SW calculated the value, we know it's bad */ 2629 if (skb->csum_complete_sw) 2630 return 1; 2631 2632 /* HW says the value is bad. Let's validate that. 2633 * skb->csum is no longer the full packet checksum, 2634 * so don't treat it as such. 2635 */ 2636 skb_checksum_complete_unset(skb); 2637 } 2638 2639 return 0; 2640} 2641 2642/* wrapper for udp_queue_rcv_skb taking care of csum conversion and 2643 * return code conversion for ip layer consumption 2644 */ 2645static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2646 struct udphdr *uh) 2647{ 2648 int ret; 2649 2650 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2651 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2652 2653 ret = udp_queue_rcv_skb(sk, skb); 2654 2655 /* a return value > 0 means to resubmit the input, but 2656 * it wants the return to be -protocol, or 0 2657 */ 2658 if (ret > 0) 2659 return -ret; 2660 return 0; 2661} 2662 2663/* 2664 * All we need to do is get the socket, and then do a checksum. 2665 */ 2666 2667int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2668 int proto) 2669{ 2670 struct sock *sk = NULL; 2671 struct udphdr *uh; 2672 unsigned short ulen; 2673 struct rtable *rt = skb_rtable(skb); 2674 __be32 saddr, daddr; 2675 struct net *net = dev_net(skb->dev); 2676 bool refcounted; 2677 int drop_reason; 2678 2679 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2680 2681 /* 2682 * Validate the packet. 2683 */ 2684 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2685 goto drop; /* No space for header. */ 2686 2687 uh = udp_hdr(skb); 2688 ulen = ntohs(uh->len); 2689 saddr = ip_hdr(skb)->saddr; 2690 daddr = ip_hdr(skb)->daddr; 2691 2692 if (ulen > skb->len) 2693 goto short_packet; 2694 2695 if (proto == IPPROTO_UDP) { 2696 /* UDP validates ulen. */ 2697 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2698 goto short_packet; 2699 uh = udp_hdr(skb); 2700 } 2701 2702 if (udp4_csum_init(skb, uh, proto)) 2703 goto csum_error; 2704 2705 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2706 &refcounted, udp_ehashfn); 2707 if (IS_ERR(sk)) 2708 goto no_sk; 2709 2710 if (sk) { 2711 struct dst_entry *dst = skb_dst(skb); 2712 int ret; 2713 2714 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2715 udp_sk_rx_dst_set(sk, dst); 2716 2717 ret = udp_unicast_rcv_skb(sk, skb, uh); 2718 if (refcounted) 2719 sock_put(sk); 2720 return ret; 2721 } 2722 2723 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2724 return __udp4_lib_mcast_deliver(net, skb, uh, 2725 saddr, daddr, udptable, proto); 2726 2727 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2728 if (sk) 2729 return udp_unicast_rcv_skb(sk, skb, uh); 2730no_sk: 2731 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2732 goto drop; 2733 nf_reset_ct(skb); 2734 2735 /* No socket. Drop packet silently, if checksum is wrong */ 2736 if (udp_lib_checksum_complete(skb)) 2737 goto csum_error; 2738 2739 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2740 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2741 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2742 2743 /* 2744 * Hmm. We got an UDP packet to a port to which we 2745 * don't wanna listen. Ignore it. 2746 */ 2747 sk_skb_reason_drop(sk, skb, drop_reason); 2748 return 0; 2749 2750short_packet: 2751 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2752 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2753 proto == IPPROTO_UDPLITE ? "Lite" : "", 2754 &saddr, ntohs(uh->source), 2755 ulen, skb->len, 2756 &daddr, ntohs(uh->dest)); 2757 goto drop; 2758 2759csum_error: 2760 /* 2761 * RFC1122: OK. Discards the bad packet silently (as far as 2762 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2763 */ 2764 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2765 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2766 proto == IPPROTO_UDPLITE ? "Lite" : "", 2767 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2768 ulen); 2769 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2770drop: 2771 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2772 sk_skb_reason_drop(sk, skb, drop_reason); 2773 return 0; 2774} 2775 2776/* We can only early demux multicast if there is a single matching socket. 2777 * If more than one socket found returns NULL 2778 */ 2779static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2780 __be16 loc_port, __be32 loc_addr, 2781 __be16 rmt_port, __be32 rmt_addr, 2782 int dif, int sdif) 2783{ 2784 struct udp_table *udptable = net->ipv4.udp_table; 2785 unsigned short hnum = ntohs(loc_port); 2786 struct sock *sk, *result; 2787 struct udp_hslot *hslot; 2788 unsigned int slot; 2789 2790 slot = udp_hashfn(net, hnum, udptable->mask); 2791 hslot = &udptable->hash[slot]; 2792 2793 /* Do not bother scanning a too big list */ 2794 if (hslot->count > 10) 2795 return NULL; 2796 2797 result = NULL; 2798 sk_for_each_rcu(sk, &hslot->head) { 2799 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2800 rmt_port, rmt_addr, dif, sdif, hnum)) { 2801 if (result) 2802 return NULL; 2803 result = sk; 2804 } 2805 } 2806 2807 return result; 2808} 2809 2810/* For unicast we should only early demux connected sockets or we can 2811 * break forwarding setups. The chains here can be long so only check 2812 * if the first socket is an exact match and if not move on. 2813 */ 2814static struct sock *__udp4_lib_demux_lookup(struct net *net, 2815 __be16 loc_port, __be32 loc_addr, 2816 __be16 rmt_port, __be32 rmt_addr, 2817 int dif, int sdif) 2818{ 2819 struct udp_table *udptable = net->ipv4.udp_table; 2820 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2821 unsigned short hnum = ntohs(loc_port); 2822 struct udp_hslot *hslot2; 2823 unsigned int hash2; 2824 __portpair ports; 2825 struct sock *sk; 2826 2827 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2828 hslot2 = udp_hashslot2(udptable, hash2); 2829 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2830 2831 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2832 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2833 return sk; 2834 /* Only check first socket in chain */ 2835 break; 2836 } 2837 return NULL; 2838} 2839 2840enum skb_drop_reason udp_v4_early_demux(struct sk_buff *skb) 2841{ 2842 struct net *net = dev_net(skb->dev); 2843 struct in_device *in_dev = NULL; 2844 const struct iphdr *iph; 2845 const struct udphdr *uh; 2846 struct sock *sk = NULL; 2847 struct dst_entry *dst; 2848 int dif = skb->dev->ifindex; 2849 int sdif = inet_sdif(skb); 2850 int ours; 2851 2852 /* validate the packet */ 2853 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2854 return SKB_NOT_DROPPED_YET; 2855 2856 iph = ip_hdr(skb); 2857 uh = udp_hdr(skb); 2858 2859 if (skb->pkt_type == PACKET_MULTICAST) { 2860 in_dev = __in_dev_get_rcu(skb->dev); 2861 2862 if (!in_dev) 2863 return SKB_NOT_DROPPED_YET; 2864 2865 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2866 iph->protocol); 2867 if (!ours) 2868 return SKB_NOT_DROPPED_YET; 2869 2870 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2871 uh->source, iph->saddr, 2872 dif, sdif); 2873 } else if (skb->pkt_type == PACKET_HOST) { 2874 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2875 uh->source, iph->saddr, dif, sdif); 2876 } 2877 2878 if (!sk) 2879 return SKB_NOT_DROPPED_YET; 2880 2881 skb->sk = sk; 2882 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2883 skb->destructor = sock_pfree; 2884 dst = rcu_dereference(sk->sk_rx_dst); 2885 2886 if (dst) 2887 dst = dst_check(dst, 0); 2888 if (dst) { 2889 u32 itag = 0; 2890 2891 /* set noref for now. 2892 * any place which wants to hold dst has to call 2893 * dst_hold_safe() 2894 */ 2895 skb_dst_set_noref(skb, dst); 2896 2897 /* for unconnected multicast sockets we need to validate 2898 * the source on each packet 2899 */ 2900 if (!inet_sk(sk)->inet_daddr && in_dev) 2901 return ip_mc_validate_source(skb, iph->daddr, 2902 iph->saddr, 2903 ip4h_dscp(iph), 2904 skb->dev, in_dev, &itag); 2905 } 2906 return SKB_NOT_DROPPED_YET; 2907} 2908 2909int udp_rcv(struct sk_buff *skb) 2910{ 2911 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2912} 2913 2914void udp_destroy_sock(struct sock *sk) 2915{ 2916 struct udp_sock *up = udp_sk(sk); 2917 bool slow = lock_sock_fast(sk); 2918 2919 /* protects from races with udp_abort() */ 2920 sock_set_flag(sk, SOCK_DEAD); 2921 udp_flush_pending_frames(sk); 2922 unlock_sock_fast(sk, slow); 2923 if (static_branch_unlikely(&udp_encap_needed_key)) { 2924 if (up->encap_type) { 2925 void (*encap_destroy)(struct sock *sk); 2926 encap_destroy = READ_ONCE(up->encap_destroy); 2927 if (encap_destroy) 2928 encap_destroy(sk); 2929 } 2930 if (udp_test_bit(ENCAP_ENABLED, sk)) { 2931 static_branch_dec(&udp_encap_needed_key); 2932 udp_tunnel_cleanup_gro(sk); 2933 } 2934 } 2935} 2936 2937typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk, 2938 struct list_head *head, 2939 struct sk_buff *skb); 2940 2941static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2942 struct sock *sk) 2943{ 2944#ifdef CONFIG_XFRM 2945 udp_gro_receive_t new_gro_receive; 2946 2947 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2948 if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2949 new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv; 2950 else 2951 new_gro_receive = xfrm4_gro_udp_encap_rcv; 2952 2953 if (udp_sk(sk)->gro_receive != new_gro_receive) { 2954 /* 2955 * With IPV6_ADDRFORM the gro callback could change 2956 * after being set, unregister the old one, if valid. 2957 */ 2958 if (udp_sk(sk)->gro_receive) 2959 udp_tunnel_update_gro_rcv(sk, false); 2960 2961 WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive); 2962 udp_tunnel_update_gro_rcv(sk, true); 2963 } 2964 } 2965#endif 2966} 2967 2968/* 2969 * Socket option code for UDP 2970 */ 2971int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2972 sockptr_t optval, unsigned int optlen, 2973 int (*push_pending_frames)(struct sock *)) 2974{ 2975 struct udp_sock *up = udp_sk(sk); 2976 int val, valbool; 2977 int err = 0; 2978 int is_udplite = IS_UDPLITE(sk); 2979 2980 if (level == SOL_SOCKET) { 2981 err = sk_setsockopt(sk, level, optname, optval, optlen); 2982 2983 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2984 sockopt_lock_sock(sk); 2985 /* paired with READ_ONCE in udp_rmem_release() */ 2986 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2987 sockopt_release_sock(sk); 2988 } 2989 return err; 2990 } 2991 2992 if (optlen < sizeof(int)) 2993 return -EINVAL; 2994 2995 if (copy_from_sockptr(&val, optval, sizeof(val))) 2996 return -EFAULT; 2997 2998 valbool = val ? 1 : 0; 2999 3000 switch (optname) { 3001 case UDP_CORK: 3002 if (val != 0) { 3003 udp_set_bit(CORK, sk); 3004 } else { 3005 udp_clear_bit(CORK, sk); 3006 lock_sock(sk); 3007 push_pending_frames(sk); 3008 release_sock(sk); 3009 } 3010 break; 3011 3012 case UDP_ENCAP: 3013 sockopt_lock_sock(sk); 3014 switch (val) { 3015 case 0: 3016#ifdef CONFIG_XFRM 3017 case UDP_ENCAP_ESPINUDP: 3018 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 3019#if IS_ENABLED(CONFIG_IPV6) 3020 if (sk->sk_family == AF_INET6) 3021 WRITE_ONCE(up->encap_rcv, 3022 ipv6_stub->xfrm6_udp_encap_rcv); 3023 else 3024#endif 3025 WRITE_ONCE(up->encap_rcv, 3026 xfrm4_udp_encap_rcv); 3027#endif 3028 fallthrough; 3029 case UDP_ENCAP_L2TPINUDP: 3030 WRITE_ONCE(up->encap_type, val); 3031 udp_tunnel_encap_enable(sk); 3032 break; 3033 default: 3034 err = -ENOPROTOOPT; 3035 break; 3036 } 3037 sockopt_release_sock(sk); 3038 break; 3039 3040 case UDP_NO_CHECK6_TX: 3041 udp_set_no_check6_tx(sk, valbool); 3042 break; 3043 3044 case UDP_NO_CHECK6_RX: 3045 udp_set_no_check6_rx(sk, valbool); 3046 break; 3047 3048 case UDP_SEGMENT: 3049 if (val < 0 || val > USHRT_MAX) 3050 return -EINVAL; 3051 WRITE_ONCE(up->gso_size, val); 3052 break; 3053 3054 case UDP_GRO: 3055 sockopt_lock_sock(sk); 3056 /* when enabling GRO, accept the related GSO packet type */ 3057 if (valbool) 3058 udp_tunnel_encap_enable(sk); 3059 udp_assign_bit(GRO_ENABLED, sk, valbool); 3060 udp_assign_bit(ACCEPT_L4, sk, valbool); 3061 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 3062 sockopt_release_sock(sk); 3063 break; 3064 3065 /* 3066 * UDP-Lite's partial checksum coverage (RFC 3828). 3067 */ 3068 /* The sender sets actual checksum coverage length via this option. 3069 * The case coverage > packet length is handled by send module. */ 3070 case UDPLITE_SEND_CSCOV: 3071 if (!is_udplite) /* Disable the option on UDP sockets */ 3072 return -ENOPROTOOPT; 3073 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 3074 val = 8; 3075 else if (val > USHRT_MAX) 3076 val = USHRT_MAX; 3077 WRITE_ONCE(up->pcslen, val); 3078 udp_set_bit(UDPLITE_SEND_CC, sk); 3079 break; 3080 3081 /* The receiver specifies a minimum checksum coverage value. To make 3082 * sense, this should be set to at least 8 (as done below). If zero is 3083 * used, this again means full checksum coverage. */ 3084 case UDPLITE_RECV_CSCOV: 3085 if (!is_udplite) /* Disable the option on UDP sockets */ 3086 return -ENOPROTOOPT; 3087 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 3088 val = 8; 3089 else if (val > USHRT_MAX) 3090 val = USHRT_MAX; 3091 WRITE_ONCE(up->pcrlen, val); 3092 udp_set_bit(UDPLITE_RECV_CC, sk); 3093 break; 3094 3095 default: 3096 err = -ENOPROTOOPT; 3097 break; 3098 } 3099 3100 return err; 3101} 3102EXPORT_IPV6_MOD(udp_lib_setsockopt); 3103 3104int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3105 unsigned int optlen) 3106{ 3107 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 3108 return udp_lib_setsockopt(sk, level, optname, 3109 optval, optlen, 3110 udp_push_pending_frames); 3111 return ip_setsockopt(sk, level, optname, optval, optlen); 3112} 3113 3114int udp_lib_getsockopt(struct sock *sk, int level, int optname, 3115 char __user *optval, int __user *optlen) 3116{ 3117 struct udp_sock *up = udp_sk(sk); 3118 int val, len; 3119 3120 if (get_user(len, optlen)) 3121 return -EFAULT; 3122 3123 if (len < 0) 3124 return -EINVAL; 3125 3126 len = min_t(unsigned int, len, sizeof(int)); 3127 3128 switch (optname) { 3129 case UDP_CORK: 3130 val = udp_test_bit(CORK, sk); 3131 break; 3132 3133 case UDP_ENCAP: 3134 val = READ_ONCE(up->encap_type); 3135 break; 3136 3137 case UDP_NO_CHECK6_TX: 3138 val = udp_get_no_check6_tx(sk); 3139 break; 3140 3141 case UDP_NO_CHECK6_RX: 3142 val = udp_get_no_check6_rx(sk); 3143 break; 3144 3145 case UDP_SEGMENT: 3146 val = READ_ONCE(up->gso_size); 3147 break; 3148 3149 case UDP_GRO: 3150 val = udp_test_bit(GRO_ENABLED, sk); 3151 break; 3152 3153 /* The following two cannot be changed on UDP sockets, the return is 3154 * always 0 (which corresponds to the full checksum coverage of UDP). */ 3155 case UDPLITE_SEND_CSCOV: 3156 val = READ_ONCE(up->pcslen); 3157 break; 3158 3159 case UDPLITE_RECV_CSCOV: 3160 val = READ_ONCE(up->pcrlen); 3161 break; 3162 3163 default: 3164 return -ENOPROTOOPT; 3165 } 3166 3167 if (put_user(len, optlen)) 3168 return -EFAULT; 3169 if (copy_to_user(optval, &val, len)) 3170 return -EFAULT; 3171 return 0; 3172} 3173EXPORT_IPV6_MOD(udp_lib_getsockopt); 3174 3175int udp_getsockopt(struct sock *sk, int level, int optname, 3176 char __user *optval, int __user *optlen) 3177{ 3178 if (level == SOL_UDP || level == SOL_UDPLITE) 3179 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 3180 return ip_getsockopt(sk, level, optname, optval, optlen); 3181} 3182 3183/** 3184 * udp_poll - wait for a UDP event. 3185 * @file: - file struct 3186 * @sock: - socket 3187 * @wait: - poll table 3188 * 3189 * This is same as datagram poll, except for the special case of 3190 * blocking sockets. If application is using a blocking fd 3191 * and a packet with checksum error is in the queue; 3192 * then it could get return from select indicating data available 3193 * but then block when reading it. Add special case code 3194 * to work around these arguably broken applications. 3195 */ 3196__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 3197{ 3198 __poll_t mask = datagram_poll(file, sock, wait); 3199 struct sock *sk = sock->sk; 3200 3201 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 3202 mask |= EPOLLIN | EPOLLRDNORM; 3203 3204 /* Check for false positives due to checksum errors */ 3205 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 3206 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 3207 mask &= ~(EPOLLIN | EPOLLRDNORM); 3208 3209 /* psock ingress_msg queue should not contain any bad checksum frames */ 3210 if (sk_is_readable(sk)) 3211 mask |= EPOLLIN | EPOLLRDNORM; 3212 return mask; 3213 3214} 3215EXPORT_IPV6_MOD(udp_poll); 3216 3217int udp_abort(struct sock *sk, int err) 3218{ 3219 if (!has_current_bpf_ctx()) 3220 lock_sock(sk); 3221 3222 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 3223 * with close() 3224 */ 3225 if (sock_flag(sk, SOCK_DEAD)) 3226 goto out; 3227 3228 sk->sk_err = err; 3229 sk_error_report(sk); 3230 __udp_disconnect(sk, 0); 3231 3232out: 3233 if (!has_current_bpf_ctx()) 3234 release_sock(sk); 3235 3236 return 0; 3237} 3238EXPORT_IPV6_MOD_GPL(udp_abort); 3239 3240struct proto udp_prot = { 3241 .name = "UDP", 3242 .owner = THIS_MODULE, 3243 .close = udp_lib_close, 3244 .pre_connect = udp_pre_connect, 3245 .connect = udp_connect, 3246 .disconnect = udp_disconnect, 3247 .ioctl = udp_ioctl, 3248 .init = udp_init_sock, 3249 .destroy = udp_destroy_sock, 3250 .setsockopt = udp_setsockopt, 3251 .getsockopt = udp_getsockopt, 3252 .sendmsg = udp_sendmsg, 3253 .recvmsg = udp_recvmsg, 3254 .splice_eof = udp_splice_eof, 3255 .release_cb = ip4_datagram_release_cb, 3256 .hash = udp_lib_hash, 3257 .unhash = udp_lib_unhash, 3258 .rehash = udp_v4_rehash, 3259 .get_port = udp_v4_get_port, 3260 .put_port = udp_lib_unhash, 3261#ifdef CONFIG_BPF_SYSCALL 3262 .psock_update_sk_prot = udp_bpf_update_proto, 3263#endif 3264 .memory_allocated = &net_aligned_data.udp_memory_allocated, 3265 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 3266 3267 .sysctl_mem = sysctl_udp_mem, 3268 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 3269 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 3270 .obj_size = sizeof(struct udp_sock), 3271 .h.udp_table = NULL, 3272 .diag_destroy = udp_abort, 3273}; 3274EXPORT_SYMBOL(udp_prot); 3275 3276/* ------------------------------------------------------------------------ */ 3277#ifdef CONFIG_PROC_FS 3278 3279static unsigned short seq_file_family(const struct seq_file *seq); 3280static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 3281{ 3282 unsigned short family = seq_file_family(seq); 3283 3284 /* AF_UNSPEC is used as a match all */ 3285 return ((family == AF_UNSPEC || family == sk->sk_family) && 3286 net_eq(sock_net(sk), seq_file_net(seq))); 3287} 3288 3289#ifdef CONFIG_BPF_SYSCALL 3290static const struct seq_operations bpf_iter_udp_seq_ops; 3291#endif 3292static struct udp_table *udp_get_table_seq(struct seq_file *seq, 3293 struct net *net) 3294{ 3295 const struct udp_seq_afinfo *afinfo; 3296 3297#ifdef CONFIG_BPF_SYSCALL 3298 if (seq->op == &bpf_iter_udp_seq_ops) 3299 return net->ipv4.udp_table; 3300#endif 3301 3302 afinfo = pde_data(file_inode(seq->file)); 3303 return afinfo->udp_table ? : net->ipv4.udp_table; 3304} 3305 3306static struct sock *udp_get_first(struct seq_file *seq, int start) 3307{ 3308 struct udp_iter_state *state = seq->private; 3309 struct net *net = seq_file_net(seq); 3310 struct udp_table *udptable; 3311 struct sock *sk; 3312 3313 udptable = udp_get_table_seq(seq, net); 3314 3315 for (state->bucket = start; state->bucket <= udptable->mask; 3316 ++state->bucket) { 3317 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3318 3319 if (hlist_empty(&hslot->head)) 3320 continue; 3321 3322 spin_lock_bh(&hslot->lock); 3323 sk_for_each(sk, &hslot->head) { 3324 if (seq_sk_match(seq, sk)) 3325 goto found; 3326 } 3327 spin_unlock_bh(&hslot->lock); 3328 } 3329 sk = NULL; 3330found: 3331 return sk; 3332} 3333 3334static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3335{ 3336 struct udp_iter_state *state = seq->private; 3337 struct net *net = seq_file_net(seq); 3338 struct udp_table *udptable; 3339 3340 do { 3341 sk = sk_next(sk); 3342 } while (sk && !seq_sk_match(seq, sk)); 3343 3344 if (!sk) { 3345 udptable = udp_get_table_seq(seq, net); 3346 3347 if (state->bucket <= udptable->mask) 3348 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3349 3350 return udp_get_first(seq, state->bucket + 1); 3351 } 3352 return sk; 3353} 3354 3355static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3356{ 3357 struct sock *sk = udp_get_first(seq, 0); 3358 3359 if (sk) 3360 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3361 --pos; 3362 return pos ? NULL : sk; 3363} 3364 3365void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3366{ 3367 struct udp_iter_state *state = seq->private; 3368 state->bucket = MAX_UDP_PORTS; 3369 3370 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3371} 3372EXPORT_IPV6_MOD(udp_seq_start); 3373 3374void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3375{ 3376 struct sock *sk; 3377 3378 if (v == SEQ_START_TOKEN) 3379 sk = udp_get_idx(seq, 0); 3380 else 3381 sk = udp_get_next(seq, v); 3382 3383 ++*pos; 3384 return sk; 3385} 3386EXPORT_IPV6_MOD(udp_seq_next); 3387 3388void udp_seq_stop(struct seq_file *seq, void *v) 3389{ 3390 struct udp_iter_state *state = seq->private; 3391 struct udp_table *udptable; 3392 3393 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3394 3395 if (state->bucket <= udptable->mask) 3396 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3397} 3398EXPORT_IPV6_MOD(udp_seq_stop); 3399 3400/* ------------------------------------------------------------------------ */ 3401static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3402 int bucket) 3403{ 3404 struct inet_sock *inet = inet_sk(sp); 3405 __be32 dest = inet->inet_daddr; 3406 __be32 src = inet->inet_rcv_saddr; 3407 __u16 destp = ntohs(inet->inet_dport); 3408 __u16 srcp = ntohs(inet->inet_sport); 3409 3410 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3411 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3412 bucket, src, srcp, dest, destp, sp->sk_state, 3413 sk_wmem_alloc_get(sp), 3414 udp_rqueue_get(sp), 3415 0, 0L, 0, 3416 from_kuid_munged(seq_user_ns(f), sk_uid(sp)), 3417 0, sock_i_ino(sp), 3418 refcount_read(&sp->sk_refcnt), sp, 3419 sk_drops_read(sp)); 3420} 3421 3422int udp4_seq_show(struct seq_file *seq, void *v) 3423{ 3424 seq_setwidth(seq, 127); 3425 if (v == SEQ_START_TOKEN) 3426 seq_puts(seq, " sl local_address rem_address st tx_queue " 3427 "rx_queue tr tm->when retrnsmt uid timeout " 3428 "inode ref pointer drops"); 3429 else { 3430 struct udp_iter_state *state = seq->private; 3431 3432 udp4_format_sock(v, seq, state->bucket); 3433 } 3434 seq_pad(seq, '\n'); 3435 return 0; 3436} 3437 3438#ifdef CONFIG_BPF_SYSCALL 3439struct bpf_iter__udp { 3440 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3441 __bpf_md_ptr(struct udp_sock *, udp_sk); 3442 uid_t uid __aligned(8); 3443 int bucket __aligned(8); 3444}; 3445 3446union bpf_udp_iter_batch_item { 3447 struct sock *sk; 3448 __u64 cookie; 3449}; 3450 3451struct bpf_udp_iter_state { 3452 struct udp_iter_state state; 3453 unsigned int cur_sk; 3454 unsigned int end_sk; 3455 unsigned int max_sk; 3456 union bpf_udp_iter_batch_item *batch; 3457}; 3458 3459static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3460 unsigned int new_batch_sz, gfp_t flags); 3461static struct sock *bpf_iter_udp_resume(struct sock *first_sk, 3462 union bpf_udp_iter_batch_item *cookies, 3463 int n_cookies) 3464{ 3465 struct sock *sk = NULL; 3466 int i; 3467 3468 for (i = 0; i < n_cookies; i++) { 3469 sk = first_sk; 3470 udp_portaddr_for_each_entry_from(sk) 3471 if (cookies[i].cookie == atomic64_read(&sk->sk_cookie)) 3472 goto done; 3473 } 3474done: 3475 return sk; 3476} 3477 3478static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3479{ 3480 struct bpf_udp_iter_state *iter = seq->private; 3481 struct udp_iter_state *state = &iter->state; 3482 unsigned int find_cookie, end_cookie; 3483 struct net *net = seq_file_net(seq); 3484 struct udp_table *udptable; 3485 unsigned int batch_sks = 0; 3486 int resume_bucket; 3487 int resizes = 0; 3488 struct sock *sk; 3489 int err = 0; 3490 3491 resume_bucket = state->bucket; 3492 3493 /* The current batch is done, so advance the bucket. */ 3494 if (iter->cur_sk == iter->end_sk) 3495 state->bucket++; 3496 3497 udptable = udp_get_table_seq(seq, net); 3498 3499again: 3500 /* New batch for the next bucket. 3501 * Iterate over the hash table to find a bucket with sockets matching 3502 * the iterator attributes, and return the first matching socket from 3503 * the bucket. The remaining matched sockets from the bucket are batched 3504 * before releasing the bucket lock. This allows BPF programs that are 3505 * called in seq_show to acquire the bucket lock if needed. 3506 */ 3507 find_cookie = iter->cur_sk; 3508 end_cookie = iter->end_sk; 3509 iter->cur_sk = 0; 3510 iter->end_sk = 0; 3511 batch_sks = 0; 3512 3513 for (; state->bucket <= udptable->mask; state->bucket++) { 3514 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot; 3515 3516 if (hlist_empty(&hslot2->head)) 3517 goto next_bucket; 3518 3519 spin_lock_bh(&hslot2->lock); 3520 sk = hlist_entry_safe(hslot2->head.first, struct sock, 3521 __sk_common.skc_portaddr_node); 3522 /* Resume from the first (in iteration order) unseen socket from 3523 * the last batch that still exists in resume_bucket. Most of 3524 * the time this will just be where the last iteration left off 3525 * in resume_bucket unless that socket disappeared between 3526 * reads. 3527 */ 3528 if (state->bucket == resume_bucket) 3529 sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie], 3530 end_cookie - find_cookie); 3531fill_batch: 3532 udp_portaddr_for_each_entry_from(sk) { 3533 if (seq_sk_match(seq, sk)) { 3534 if (iter->end_sk < iter->max_sk) { 3535 sock_hold(sk); 3536 iter->batch[iter->end_sk++].sk = sk; 3537 } 3538 batch_sks++; 3539 } 3540 } 3541 3542 /* Allocate a larger batch and try again. */ 3543 if (unlikely(resizes <= 1 && iter->end_sk && 3544 iter->end_sk != batch_sks)) { 3545 resizes++; 3546 3547 /* First, try with GFP_USER to maximize the chances of 3548 * grabbing more memory. 3549 */ 3550 if (resizes == 1) { 3551 spin_unlock_bh(&hslot2->lock); 3552 err = bpf_iter_udp_realloc_batch(iter, 3553 batch_sks * 3 / 2, 3554 GFP_USER); 3555 if (err) 3556 return ERR_PTR(err); 3557 /* Start over. */ 3558 goto again; 3559 } 3560 3561 /* Next, hold onto the lock, so the bucket doesn't 3562 * change while we get the rest of the sockets. 3563 */ 3564 err = bpf_iter_udp_realloc_batch(iter, batch_sks, 3565 GFP_NOWAIT); 3566 if (err) { 3567 spin_unlock_bh(&hslot2->lock); 3568 return ERR_PTR(err); 3569 } 3570 3571 /* Pick up where we left off. */ 3572 sk = iter->batch[iter->end_sk - 1].sk; 3573 sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next, 3574 struct sock, 3575 __sk_common.skc_portaddr_node); 3576 batch_sks = iter->end_sk; 3577 goto fill_batch; 3578 } 3579 3580 spin_unlock_bh(&hslot2->lock); 3581 3582 if (iter->end_sk) 3583 break; 3584next_bucket: 3585 resizes = 0; 3586 } 3587 3588 WARN_ON_ONCE(iter->end_sk != batch_sks); 3589 return iter->end_sk ? iter->batch[0].sk : NULL; 3590} 3591 3592static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3593{ 3594 struct bpf_udp_iter_state *iter = seq->private; 3595 struct sock *sk; 3596 3597 /* Whenever seq_next() is called, the iter->cur_sk is 3598 * done with seq_show(), so unref the iter->cur_sk. 3599 */ 3600 if (iter->cur_sk < iter->end_sk) 3601 sock_put(iter->batch[iter->cur_sk++].sk); 3602 3603 /* After updating iter->cur_sk, check if there are more sockets 3604 * available in the current bucket batch. 3605 */ 3606 if (iter->cur_sk < iter->end_sk) 3607 sk = iter->batch[iter->cur_sk].sk; 3608 else 3609 /* Prepare a new batch. */ 3610 sk = bpf_iter_udp_batch(seq); 3611 3612 ++*pos; 3613 return sk; 3614} 3615 3616static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3617{ 3618 /* bpf iter does not support lseek, so it always 3619 * continue from where it was stop()-ped. 3620 */ 3621 if (*pos) 3622 return bpf_iter_udp_batch(seq); 3623 3624 return SEQ_START_TOKEN; 3625} 3626 3627static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3628 struct udp_sock *udp_sk, uid_t uid, int bucket) 3629{ 3630 struct bpf_iter__udp ctx; 3631 3632 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3633 ctx.meta = meta; 3634 ctx.udp_sk = udp_sk; 3635 ctx.uid = uid; 3636 ctx.bucket = bucket; 3637 return bpf_iter_run_prog(prog, &ctx); 3638} 3639 3640static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3641{ 3642 struct udp_iter_state *state = seq->private; 3643 struct bpf_iter_meta meta; 3644 struct bpf_prog *prog; 3645 struct sock *sk = v; 3646 uid_t uid; 3647 int ret; 3648 3649 if (v == SEQ_START_TOKEN) 3650 return 0; 3651 3652 lock_sock(sk); 3653 3654 if (unlikely(sk_unhashed(sk))) { 3655 ret = SEQ_SKIP; 3656 goto unlock; 3657 } 3658 3659 uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk)); 3660 meta.seq = seq; 3661 prog = bpf_iter_get_info(&meta, false); 3662 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3663 3664unlock: 3665 release_sock(sk); 3666 return ret; 3667} 3668 3669static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3670{ 3671 union bpf_udp_iter_batch_item *item; 3672 unsigned int cur_sk = iter->cur_sk; 3673 __u64 cookie; 3674 3675 /* Remember the cookies of the sockets we haven't seen yet, so we can 3676 * pick up where we left off next time around. 3677 */ 3678 while (cur_sk < iter->end_sk) { 3679 item = &iter->batch[cur_sk++]; 3680 cookie = sock_gen_cookie(item->sk); 3681 sock_put(item->sk); 3682 item->cookie = cookie; 3683 } 3684} 3685 3686static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3687{ 3688 struct bpf_udp_iter_state *iter = seq->private; 3689 struct bpf_iter_meta meta; 3690 struct bpf_prog *prog; 3691 3692 if (!v) { 3693 meta.seq = seq; 3694 prog = bpf_iter_get_info(&meta, true); 3695 if (prog) 3696 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3697 } 3698 3699 if (iter->cur_sk < iter->end_sk) 3700 bpf_iter_udp_put_batch(iter); 3701} 3702 3703static const struct seq_operations bpf_iter_udp_seq_ops = { 3704 .start = bpf_iter_udp_seq_start, 3705 .next = bpf_iter_udp_seq_next, 3706 .stop = bpf_iter_udp_seq_stop, 3707 .show = bpf_iter_udp_seq_show, 3708}; 3709#endif 3710 3711static unsigned short seq_file_family(const struct seq_file *seq) 3712{ 3713 const struct udp_seq_afinfo *afinfo; 3714 3715#ifdef CONFIG_BPF_SYSCALL 3716 /* BPF iterator: bpf programs to filter sockets. */ 3717 if (seq->op == &bpf_iter_udp_seq_ops) 3718 return AF_UNSPEC; 3719#endif 3720 3721 /* Proc fs iterator */ 3722 afinfo = pde_data(file_inode(seq->file)); 3723 return afinfo->family; 3724} 3725 3726const struct seq_operations udp_seq_ops = { 3727 .start = udp_seq_start, 3728 .next = udp_seq_next, 3729 .stop = udp_seq_stop, 3730 .show = udp4_seq_show, 3731}; 3732EXPORT_IPV6_MOD(udp_seq_ops); 3733 3734static struct udp_seq_afinfo udp4_seq_afinfo = { 3735 .family = AF_INET, 3736 .udp_table = NULL, 3737}; 3738 3739static int __net_init udp4_proc_init_net(struct net *net) 3740{ 3741 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3742 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3743 return -ENOMEM; 3744 return 0; 3745} 3746 3747static void __net_exit udp4_proc_exit_net(struct net *net) 3748{ 3749 remove_proc_entry("udp", net->proc_net); 3750} 3751 3752static struct pernet_operations udp4_net_ops = { 3753 .init = udp4_proc_init_net, 3754 .exit = udp4_proc_exit_net, 3755}; 3756 3757int __init udp4_proc_init(void) 3758{ 3759 return register_pernet_subsys(&udp4_net_ops); 3760} 3761 3762void udp4_proc_exit(void) 3763{ 3764 unregister_pernet_subsys(&udp4_net_ops); 3765} 3766#endif /* CONFIG_PROC_FS */ 3767 3768static __initdata unsigned long uhash_entries; 3769static int __init set_uhash_entries(char *str) 3770{ 3771 ssize_t ret; 3772 3773 if (!str) 3774 return 0; 3775 3776 ret = kstrtoul(str, 0, &uhash_entries); 3777 if (ret) 3778 return 0; 3779 3780 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3781 uhash_entries = UDP_HTABLE_SIZE_MIN; 3782 return 1; 3783} 3784__setup("uhash_entries=", set_uhash_entries); 3785 3786void __init udp_table_init(struct udp_table *table, const char *name) 3787{ 3788 unsigned int i, slot_size; 3789 3790 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3791 udp_hash4_slot_size(); 3792 table->hash = alloc_large_system_hash(name, 3793 slot_size, 3794 uhash_entries, 3795 21, /* one slot per 2 MB */ 3796 0, 3797 &table->log, 3798 &table->mask, 3799 UDP_HTABLE_SIZE_MIN, 3800 UDP_HTABLE_SIZE_MAX); 3801 3802 table->hash2 = (void *)(table->hash + (table->mask + 1)); 3803 for (i = 0; i <= table->mask; i++) { 3804 INIT_HLIST_HEAD(&table->hash[i].head); 3805 table->hash[i].count = 0; 3806 spin_lock_init(&table->hash[i].lock); 3807 } 3808 for (i = 0; i <= table->mask; i++) { 3809 INIT_HLIST_HEAD(&table->hash2[i].hslot.head); 3810 table->hash2[i].hslot.count = 0; 3811 spin_lock_init(&table->hash2[i].hslot.lock); 3812 } 3813 udp_table_hash4_init(table); 3814} 3815 3816u32 udp_flow_hashrnd(void) 3817{ 3818 static u32 hashrnd __read_mostly; 3819 3820 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3821 3822 return hashrnd; 3823} 3824EXPORT_SYMBOL(udp_flow_hashrnd); 3825 3826static void __net_init udp_sysctl_init(struct net *net) 3827{ 3828 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3829 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3830 3831#ifdef CONFIG_NET_L3_MASTER_DEV 3832 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3833#endif 3834} 3835 3836static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3837{ 3838 struct udp_table *udptable; 3839 unsigned int slot_size; 3840 int i; 3841 3842 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3843 if (!udptable) 3844 goto out; 3845 3846 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3847 udp_hash4_slot_size(); 3848 udptable->hash = vmalloc_huge(hash_entries * slot_size, 3849 GFP_KERNEL_ACCOUNT); 3850 if (!udptable->hash) 3851 goto free_table; 3852 3853 udptable->hash2 = (void *)(udptable->hash + hash_entries); 3854 udptable->mask = hash_entries - 1; 3855 udptable->log = ilog2(hash_entries); 3856 3857 for (i = 0; i < hash_entries; i++) { 3858 INIT_HLIST_HEAD(&udptable->hash[i].head); 3859 udptable->hash[i].count = 0; 3860 spin_lock_init(&udptable->hash[i].lock); 3861 3862 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head); 3863 udptable->hash2[i].hslot.count = 0; 3864 spin_lock_init(&udptable->hash2[i].hslot.lock); 3865 } 3866 udp_table_hash4_init(udptable); 3867 3868 return udptable; 3869 3870free_table: 3871 kfree(udptable); 3872out: 3873 return NULL; 3874} 3875 3876static void __net_exit udp_pernet_table_free(struct net *net) 3877{ 3878 struct udp_table *udptable = net->ipv4.udp_table; 3879 3880 if (udptable == &udp_table) 3881 return; 3882 3883 kvfree(udptable->hash); 3884 kfree(udptable); 3885} 3886 3887static void __net_init udp_set_table(struct net *net) 3888{ 3889 struct udp_table *udptable; 3890 unsigned int hash_entries; 3891 struct net *old_net; 3892 3893 if (net_eq(net, &init_net)) 3894 goto fallback; 3895 3896 old_net = current->nsproxy->net_ns; 3897 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3898 if (!hash_entries) 3899 goto fallback; 3900 3901 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3902 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3903 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3904 else 3905 hash_entries = roundup_pow_of_two(hash_entries); 3906 3907 udptable = udp_pernet_table_alloc(hash_entries); 3908 if (udptable) { 3909 net->ipv4.udp_table = udptable; 3910 } else { 3911 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3912 "for a netns, fallback to the global one\n", 3913 hash_entries); 3914fallback: 3915 net->ipv4.udp_table = &udp_table; 3916 } 3917} 3918 3919static int __net_init udp_pernet_init(struct net *net) 3920{ 3921#if IS_ENABLED(CONFIG_NET_UDP_TUNNEL) 3922 int i; 3923 3924 /* No tunnel is configured */ 3925 for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) { 3926 INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list); 3927 RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL); 3928 } 3929#endif 3930 udp_sysctl_init(net); 3931 udp_set_table(net); 3932 3933 return 0; 3934} 3935 3936static void __net_exit udp_pernet_exit(struct net *net) 3937{ 3938 udp_pernet_table_free(net); 3939} 3940 3941static struct pernet_operations __net_initdata udp_sysctl_ops = { 3942 .init = udp_pernet_init, 3943 .exit = udp_pernet_exit, 3944}; 3945 3946#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3947DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3948 struct udp_sock *udp_sk, uid_t uid, int bucket) 3949 3950static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3951 unsigned int new_batch_sz, gfp_t flags) 3952{ 3953 union bpf_udp_iter_batch_item *new_batch; 3954 3955 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3956 flags | __GFP_NOWARN); 3957 if (!new_batch) 3958 return -ENOMEM; 3959 3960 if (flags != GFP_NOWAIT) 3961 bpf_iter_udp_put_batch(iter); 3962 3963 memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk); 3964 kvfree(iter->batch); 3965 iter->batch = new_batch; 3966 iter->max_sk = new_batch_sz; 3967 3968 return 0; 3969} 3970 3971#define INIT_BATCH_SZ 16 3972 3973static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3974{ 3975 struct bpf_udp_iter_state *iter = priv_data; 3976 int ret; 3977 3978 ret = bpf_iter_init_seq_net(priv_data, aux); 3979 if (ret) 3980 return ret; 3981 3982 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER); 3983 if (ret) 3984 bpf_iter_fini_seq_net(priv_data); 3985 3986 iter->state.bucket = -1; 3987 3988 return ret; 3989} 3990 3991static void bpf_iter_fini_udp(void *priv_data) 3992{ 3993 struct bpf_udp_iter_state *iter = priv_data; 3994 3995 bpf_iter_fini_seq_net(priv_data); 3996 kvfree(iter->batch); 3997} 3998 3999static const struct bpf_iter_seq_info udp_seq_info = { 4000 .seq_ops = &bpf_iter_udp_seq_ops, 4001 .init_seq_private = bpf_iter_init_udp, 4002 .fini_seq_private = bpf_iter_fini_udp, 4003 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 4004}; 4005 4006static struct bpf_iter_reg udp_reg_info = { 4007 .target = "udp", 4008 .ctx_arg_info_size = 1, 4009 .ctx_arg_info = { 4010 { offsetof(struct bpf_iter__udp, udp_sk), 4011 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 4012 }, 4013 .seq_info = &udp_seq_info, 4014}; 4015 4016static void __init bpf_iter_register(void) 4017{ 4018 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 4019 if (bpf_iter_reg_target(&udp_reg_info)) 4020 pr_warn("Warning: could not register bpf iterator udp\n"); 4021} 4022#endif 4023 4024void __init udp_init(void) 4025{ 4026 unsigned long limit; 4027 4028 udp_table_init(&udp_table, "UDP"); 4029 limit = nr_free_buffer_pages() / 8; 4030 limit = max(limit, 128UL); 4031 sysctl_udp_mem[0] = limit / 4 * 3; 4032 sysctl_udp_mem[1] = limit; 4033 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 4034 4035 if (register_pernet_subsys(&udp_sysctl_ops)) 4036 panic("UDP: failed to init sysctl parameters.\n"); 4037 4038#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 4039 bpf_iter_register(); 4040#endif 4041}