Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244#define pr_fmt(fmt) "TCP: " fmt
245
246#include <crypto/md5.h>
247#include <linux/kernel.h>
248#include <linux/module.h>
249#include <linux/types.h>
250#include <linux/fcntl.h>
251#include <linux/poll.h>
252#include <linux/inet_diag.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/splice.h>
257#include <linux/net.h>
258#include <linux/socket.h>
259#include <linux/random.h>
260#include <linux/memblock.h>
261#include <linux/highmem.h>
262#include <linux/cache.h>
263#include <linux/err.h>
264#include <linux/time.h>
265#include <linux/slab.h>
266#include <linux/errqueue.h>
267#include <linux/static_key.h>
268#include <linux/btf.h>
269
270#include <net/icmp.h>
271#include <net/inet_common.h>
272#include <net/inet_ecn.h>
273#include <net/tcp.h>
274#include <net/tcp_ecn.h>
275#include <net/mptcp.h>
276#include <net/proto_memory.h>
277#include <net/xfrm.h>
278#include <net/ip.h>
279#include <net/psp.h>
280#include <net/sock.h>
281#include <net/rstreason.h>
282
283#include <linux/uaccess.h>
284#include <asm/ioctls.h>
285#include <net/busy_poll.h>
286#include <net/hotdata.h>
287#include <trace/events/tcp.h>
288#include <net/rps.h>
289
290#include "../core/devmem.h"
291
292/* Track pending CMSGs. */
293enum {
294 TCP_CMSG_INQ = 1,
295 TCP_CMSG_TS = 2
296};
297
298DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
299EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
300
301DEFINE_PER_CPU(u32, tcp_tw_isn);
302EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
303
304long sysctl_tcp_mem[3] __read_mostly;
305EXPORT_IPV6_MOD(sysctl_tcp_mem);
306
307DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309
310#if IS_ENABLED(CONFIG_SMC)
311DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312EXPORT_SYMBOL(tcp_have_smc);
313#endif
314
315/*
316 * Current number of TCP sockets.
317 */
318struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319EXPORT_IPV6_MOD(tcp_sockets_allocated);
320
321/*
322 * TCP splice context
323 */
324struct tcp_splice_state {
325 struct pipe_inode_info *pipe;
326 size_t len;
327 unsigned int flags;
328};
329
330/*
331 * Pressure flag: try to collapse.
332 * Technical note: it is used by multiple contexts non atomically.
333 * All the __sk_mem_schedule() is of this nature: accounting
334 * is strict, actions are advisory and have some latency.
335 */
336unsigned long tcp_memory_pressure __read_mostly;
337EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338
339void tcp_enter_memory_pressure(struct sock *sk)
340{
341 unsigned long val;
342
343 if (READ_ONCE(tcp_memory_pressure))
344 return;
345 val = jiffies;
346
347 if (!val)
348 val--;
349 if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351}
352EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353
354void tcp_leave_memory_pressure(struct sock *sk)
355{
356 unsigned long val;
357
358 if (!READ_ONCE(tcp_memory_pressure))
359 return;
360 val = xchg(&tcp_memory_pressure, 0);
361 if (val)
362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 jiffies_to_msecs(jiffies - val));
364}
365EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366
367/* Convert seconds to retransmits based on initial and max timeout */
368static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369{
370 u8 res = 0;
371
372 if (seconds > 0) {
373 int period = timeout;
374
375 res = 1;
376 while (seconds > period && res < 255) {
377 res++;
378 timeout <<= 1;
379 if (timeout > rto_max)
380 timeout = rto_max;
381 period += timeout;
382 }
383 }
384 return res;
385}
386
387/* Convert retransmits to seconds based on initial and max timeout */
388static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389{
390 int period = 0;
391
392 if (retrans > 0) {
393 period = timeout;
394 while (--retrans) {
395 timeout <<= 1;
396 if (timeout > rto_max)
397 timeout = rto_max;
398 period += timeout;
399 }
400 }
401 return period;
402}
403
404static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405{
406 u32 rate = READ_ONCE(tp->rate_delivered);
407 u32 intv = READ_ONCE(tp->rate_interval_us);
408 u64 rate64 = 0;
409
410 if (rate && intv) {
411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 do_div(rate64, intv);
413 }
414 return rate64;
415}
416
417#ifdef CONFIG_TCP_MD5SIG
418void tcp_md5_destruct_sock(struct sock *sk)
419{
420 struct tcp_sock *tp = tcp_sk(sk);
421
422 if (tp->md5sig_info) {
423
424 tcp_clear_md5_list(sk);
425 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 1));
426 static_branch_slow_dec_deferred(&tcp_md5_needed);
427 }
428}
429EXPORT_IPV6_MOD_GPL(tcp_md5_destruct_sock);
430#endif
431
432/* Address-family independent initialization for a tcp_sock.
433 *
434 * NOTE: A lot of things set to zero explicitly by call to
435 * sk_alloc() so need not be done here.
436 */
437void tcp_init_sock(struct sock *sk)
438{
439 struct inet_connection_sock *icsk = inet_csk(sk);
440 struct tcp_sock *tp = tcp_sk(sk);
441 int rto_min_us, rto_max_ms;
442
443 tp->out_of_order_queue = RB_ROOT;
444 sk->tcp_rtx_queue = RB_ROOT;
445 tcp_init_xmit_timers(sk);
446 INIT_LIST_HEAD(&tp->tsq_node);
447 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
448
449 icsk->icsk_rto = TCP_TIMEOUT_INIT;
450
451 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
452 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
453
454 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
455 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
456 icsk->icsk_delack_max = TCP_DELACK_MAX;
457 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
458 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
459
460 /* So many TCP implementations out there (incorrectly) count the
461 * initial SYN frame in their delayed-ACK and congestion control
462 * algorithms that we must have the following bandaid to talk
463 * efficiently to them. -DaveM
464 */
465 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
466
467 /* There's a bubble in the pipe until at least the first ACK. */
468 tp->app_limited = ~0U;
469 tp->rate_app_limited = 1;
470
471 /* See draft-stevens-tcpca-spec-01 for discussion of the
472 * initialization of these values.
473 */
474 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475 tp->snd_cwnd_clamp = ~0;
476 tp->mss_cache = TCP_MSS_DEFAULT;
477
478 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
479 tcp_assign_congestion_control(sk);
480
481 tp->tsoffset = 0;
482 tp->rack.reo_wnd_steps = 1;
483
484 sk->sk_write_space = sk_stream_write_space;
485 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
486
487 icsk->icsk_sync_mss = tcp_sync_mss;
488
489 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
490 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
491 tcp_scaling_ratio_init(sk);
492
493 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
494 sk_sockets_allocated_inc(sk);
495 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
496}
497EXPORT_IPV6_MOD(tcp_init_sock);
498
499static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
500{
501 struct sk_buff *skb = tcp_write_queue_tail(sk);
502 u32 tsflags = sockc->tsflags;
503
504 if (tsflags && skb) {
505 struct skb_shared_info *shinfo = skb_shinfo(skb);
506 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
507
508 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
509 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
510 tcb->txstamp_ack |= TSTAMP_ACK_SK;
511 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
512 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
513 }
514
515 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
516 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
517 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
518}
519
520static bool tcp_stream_is_readable(struct sock *sk, int target)
521{
522 if (tcp_epollin_ready(sk, target))
523 return true;
524 return sk_is_readable(sk);
525}
526
527/*
528 * Wait for a TCP event.
529 *
530 * Note that we don't need to lock the socket, as the upper poll layers
531 * take care of normal races (between the test and the event) and we don't
532 * go look at any of the socket buffers directly.
533 */
534__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
535{
536 __poll_t mask;
537 struct sock *sk = sock->sk;
538 const struct tcp_sock *tp = tcp_sk(sk);
539 u8 shutdown;
540 int state;
541
542 sock_poll_wait(file, sock, wait);
543
544 state = inet_sk_state_load(sk);
545 if (state == TCP_LISTEN)
546 return inet_csk_listen_poll(sk);
547
548 /* Socket is not locked. We are protected from async events
549 * by poll logic and correct handling of state changes
550 * made by other threads is impossible in any case.
551 */
552
553 mask = 0;
554
555 /*
556 * EPOLLHUP is certainly not done right. But poll() doesn't
557 * have a notion of HUP in just one direction, and for a
558 * socket the read side is more interesting.
559 *
560 * Some poll() documentation says that EPOLLHUP is incompatible
561 * with the EPOLLOUT/POLLWR flags, so somebody should check this
562 * all. But careful, it tends to be safer to return too many
563 * bits than too few, and you can easily break real applications
564 * if you don't tell them that something has hung up!
565 *
566 * Check-me.
567 *
568 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
569 * our fs/select.c). It means that after we received EOF,
570 * poll always returns immediately, making impossible poll() on write()
571 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
572 * if and only if shutdown has been made in both directions.
573 * Actually, it is interesting to look how Solaris and DUX
574 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
575 * then we could set it on SND_SHUTDOWN. BTW examples given
576 * in Stevens' books assume exactly this behaviour, it explains
577 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
578 *
579 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
580 * blocking on fresh not-connected or disconnected socket. --ANK
581 */
582 shutdown = READ_ONCE(sk->sk_shutdown);
583 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
584 mask |= EPOLLHUP;
585 if (shutdown & RCV_SHUTDOWN)
586 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
587
588 /* Connected or passive Fast Open socket? */
589 if (state != TCP_SYN_SENT &&
590 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
591 int target = sock_rcvlowat(sk, 0, INT_MAX);
592 u16 urg_data = READ_ONCE(tp->urg_data);
593
594 if (unlikely(urg_data) &&
595 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
596 !sock_flag(sk, SOCK_URGINLINE))
597 target++;
598
599 if (tcp_stream_is_readable(sk, target))
600 mask |= EPOLLIN | EPOLLRDNORM;
601
602 if (!(shutdown & SEND_SHUTDOWN)) {
603 if (__sk_stream_is_writeable(sk, 1)) {
604 mask |= EPOLLOUT | EPOLLWRNORM;
605 } else { /* send SIGIO later */
606 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
607 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
608
609 /* Race breaker. If space is freed after
610 * wspace test but before the flags are set,
611 * IO signal will be lost. Memory barrier
612 * pairs with the input side.
613 */
614 smp_mb__after_atomic();
615 if (__sk_stream_is_writeable(sk, 1))
616 mask |= EPOLLOUT | EPOLLWRNORM;
617 }
618 } else
619 mask |= EPOLLOUT | EPOLLWRNORM;
620
621 if (urg_data & TCP_URG_VALID)
622 mask |= EPOLLPRI;
623 } else if (state == TCP_SYN_SENT &&
624 inet_test_bit(DEFER_CONNECT, sk)) {
625 /* Active TCP fastopen socket with defer_connect
626 * Return EPOLLOUT so application can call write()
627 * in order for kernel to generate SYN+data
628 */
629 mask |= EPOLLOUT | EPOLLWRNORM;
630 }
631 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
632 smp_rmb();
633 if (READ_ONCE(sk->sk_err) ||
634 !skb_queue_empty_lockless(&sk->sk_error_queue))
635 mask |= EPOLLERR;
636
637 return mask;
638}
639EXPORT_SYMBOL(tcp_poll);
640
641int tcp_ioctl(struct sock *sk, int cmd, int *karg)
642{
643 struct tcp_sock *tp = tcp_sk(sk);
644 int answ;
645 bool slow;
646
647 switch (cmd) {
648 case SIOCINQ:
649 if (sk->sk_state == TCP_LISTEN)
650 return -EINVAL;
651
652 slow = lock_sock_fast(sk);
653 answ = tcp_inq(sk);
654 unlock_sock_fast(sk, slow);
655 break;
656 case SIOCATMARK:
657 answ = READ_ONCE(tp->urg_data) &&
658 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
659 break;
660 case SIOCOUTQ:
661 if (sk->sk_state == TCP_LISTEN)
662 return -EINVAL;
663
664 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
665 answ = 0;
666 else
667 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
668 break;
669 case SIOCOUTQNSD:
670 if (sk->sk_state == TCP_LISTEN)
671 return -EINVAL;
672
673 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
674 answ = 0;
675 else
676 answ = READ_ONCE(tp->write_seq) -
677 READ_ONCE(tp->snd_nxt);
678 break;
679 default:
680 return -ENOIOCTLCMD;
681 }
682
683 *karg = answ;
684 return 0;
685}
686EXPORT_IPV6_MOD(tcp_ioctl);
687
688void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
689{
690 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
691 tp->pushed_seq = tp->write_seq;
692}
693
694static inline bool forced_push(const struct tcp_sock *tp)
695{
696 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
697}
698
699void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
700{
701 struct tcp_sock *tp = tcp_sk(sk);
702 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
703
704 tcb->seq = tcb->end_seq = tp->write_seq;
705 tcb->tcp_flags = TCPHDR_ACK;
706 __skb_header_release(skb);
707 psp_enqueue_set_decrypted(sk, skb);
708 tcp_add_write_queue_tail(sk, skb);
709 sk_wmem_queued_add(sk, skb->truesize);
710 sk_mem_charge(sk, skb->truesize);
711 if (tp->nonagle & TCP_NAGLE_PUSH)
712 tp->nonagle &= ~TCP_NAGLE_PUSH;
713
714 tcp_slow_start_after_idle_check(sk);
715}
716
717static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
718{
719 if (flags & MSG_OOB)
720 tp->snd_up = tp->write_seq;
721}
722
723/* If a not yet filled skb is pushed, do not send it if
724 * we have data packets in Qdisc or NIC queues :
725 * Because TX completion will happen shortly, it gives a chance
726 * to coalesce future sendmsg() payload into this skb, without
727 * need for a timer, and with no latency trade off.
728 * As packets containing data payload have a bigger truesize
729 * than pure acks (dataless) packets, the last checks prevent
730 * autocorking if we only have an ACK in Qdisc/NIC queues,
731 * or if TX completion was delayed after we processed ACK packet.
732 */
733static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
734 int size_goal)
735{
736 return skb->len < size_goal &&
737 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
738 !tcp_rtx_queue_empty(sk) &&
739 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
740 tcp_skb_can_collapse_to(skb);
741}
742
743void tcp_push(struct sock *sk, int flags, int mss_now,
744 int nonagle, int size_goal)
745{
746 struct tcp_sock *tp = tcp_sk(sk);
747 struct sk_buff *skb;
748
749 skb = tcp_write_queue_tail(sk);
750 if (!skb)
751 return;
752 if (!(flags & MSG_MORE) || forced_push(tp))
753 tcp_mark_push(tp, skb);
754
755 tcp_mark_urg(tp, flags);
756
757 if (tcp_should_autocork(sk, skb, size_goal)) {
758
759 /* avoid atomic op if TSQ_THROTTLED bit is already set */
760 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
761 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
762 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
763 smp_mb__after_atomic();
764 }
765 /* It is possible TX completion already happened
766 * before we set TSQ_THROTTLED.
767 */
768 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
769 return;
770 }
771
772 if (flags & MSG_MORE)
773 nonagle = TCP_NAGLE_CORK;
774
775 __tcp_push_pending_frames(sk, mss_now, nonagle);
776}
777
778static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
779 unsigned int offset, size_t len)
780{
781 struct tcp_splice_state *tss = rd_desc->arg.data;
782 int ret;
783
784 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
785 min(rd_desc->count, len), tss->flags);
786 if (ret > 0)
787 rd_desc->count -= ret;
788 return ret;
789}
790
791static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
792{
793 /* Store TCP splice context information in read_descriptor_t. */
794 read_descriptor_t rd_desc = {
795 .arg.data = tss,
796 .count = tss->len,
797 };
798
799 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
800}
801
802/**
803 * tcp_splice_read - splice data from TCP socket to a pipe
804 * @sock: socket to splice from
805 * @ppos: position (not valid)
806 * @pipe: pipe to splice to
807 * @len: number of bytes to splice
808 * @flags: splice modifier flags
809 *
810 * Description:
811 * Will read pages from given socket and fill them into a pipe.
812 *
813 **/
814ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
815 struct pipe_inode_info *pipe, size_t len,
816 unsigned int flags)
817{
818 struct sock *sk = sock->sk;
819 struct tcp_splice_state tss = {
820 .pipe = pipe,
821 .len = len,
822 .flags = flags,
823 };
824 long timeo;
825 ssize_t spliced;
826 int ret;
827
828 sock_rps_record_flow(sk);
829 /*
830 * We can't seek on a socket input
831 */
832 if (unlikely(*ppos))
833 return -ESPIPE;
834
835 ret = spliced = 0;
836
837 lock_sock(sk);
838
839 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
840 while (tss.len) {
841 ret = __tcp_splice_read(sk, &tss);
842 if (ret < 0)
843 break;
844 else if (!ret) {
845 if (spliced)
846 break;
847 if (sock_flag(sk, SOCK_DONE))
848 break;
849 if (sk->sk_err) {
850 ret = sock_error(sk);
851 break;
852 }
853 if (sk->sk_shutdown & RCV_SHUTDOWN)
854 break;
855 if (sk->sk_state == TCP_CLOSE) {
856 /*
857 * This occurs when user tries to read
858 * from never connected socket.
859 */
860 ret = -ENOTCONN;
861 break;
862 }
863 if (!timeo) {
864 ret = -EAGAIN;
865 break;
866 }
867 /* if __tcp_splice_read() got nothing while we have
868 * an skb in receive queue, we do not want to loop.
869 * This might happen with URG data.
870 */
871 if (!skb_queue_empty(&sk->sk_receive_queue))
872 break;
873 ret = sk_wait_data(sk, &timeo, NULL);
874 if (ret < 0)
875 break;
876 if (signal_pending(current)) {
877 ret = sock_intr_errno(timeo);
878 break;
879 }
880 continue;
881 }
882 tss.len -= ret;
883 spliced += ret;
884
885 if (!tss.len || !timeo)
886 break;
887 release_sock(sk);
888 lock_sock(sk);
889
890 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
891 (sk->sk_shutdown & RCV_SHUTDOWN) ||
892 signal_pending(current))
893 break;
894 }
895
896 release_sock(sk);
897
898 if (spliced)
899 return spliced;
900
901 return ret;
902}
903EXPORT_IPV6_MOD(tcp_splice_read);
904
905struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
906 bool force_schedule)
907{
908 struct sk_buff *skb;
909
910 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
911 if (likely(skb)) {
912 bool mem_scheduled;
913
914 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
915 if (force_schedule) {
916 mem_scheduled = true;
917 sk_forced_mem_schedule(sk, skb->truesize);
918 } else {
919 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
920 }
921 if (likely(mem_scheduled)) {
922 skb_reserve(skb, MAX_TCP_HEADER);
923 skb->ip_summed = CHECKSUM_PARTIAL;
924 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
925 return skb;
926 }
927 __kfree_skb(skb);
928 } else {
929 if (!sk->sk_bypass_prot_mem)
930 tcp_enter_memory_pressure(sk);
931 sk_stream_moderate_sndbuf(sk);
932 }
933 return NULL;
934}
935
936static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
937 int large_allowed)
938{
939 struct tcp_sock *tp = tcp_sk(sk);
940 u32 new_size_goal, size_goal;
941
942 if (!large_allowed)
943 return mss_now;
944
945 /* Note : tcp_tso_autosize() will eventually split this later */
946 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
947
948 /* We try hard to avoid divides here */
949 size_goal = tp->gso_segs * mss_now;
950 if (unlikely(new_size_goal < size_goal ||
951 new_size_goal >= size_goal + mss_now)) {
952 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
953 sk->sk_gso_max_segs);
954 size_goal = tp->gso_segs * mss_now;
955 }
956
957 return max(size_goal, mss_now);
958}
959
960int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
961{
962 int mss_now;
963
964 mss_now = tcp_current_mss(sk);
965 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
966
967 return mss_now;
968}
969
970/* In some cases, sendmsg() could have added an skb to the write queue,
971 * but failed adding payload on it. We need to remove it to consume less
972 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
973 * epoll() users. Another reason is that tcp_write_xmit() does not like
974 * finding an empty skb in the write queue.
975 */
976void tcp_remove_empty_skb(struct sock *sk)
977{
978 struct sk_buff *skb = tcp_write_queue_tail(sk);
979
980 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
981 tcp_unlink_write_queue(skb, sk);
982 if (tcp_write_queue_empty(sk))
983 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
984 tcp_wmem_free_skb(sk, skb);
985 }
986}
987
988/* skb changing from pure zc to mixed, must charge zc */
989static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
990{
991 if (unlikely(skb_zcopy_pure(skb))) {
992 u32 extra = skb->truesize -
993 SKB_TRUESIZE(skb_end_offset(skb));
994
995 if (!sk_wmem_schedule(sk, extra))
996 return -ENOMEM;
997
998 sk_mem_charge(sk, extra);
999 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
1000 }
1001 return 0;
1002}
1003
1004
1005int tcp_wmem_schedule(struct sock *sk, int copy)
1006{
1007 int left;
1008
1009 if (likely(sk_wmem_schedule(sk, copy)))
1010 return copy;
1011
1012 /* We could be in trouble if we have nothing queued.
1013 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
1014 * to guarantee some progress.
1015 */
1016 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1017 if (left > 0)
1018 sk_forced_mem_schedule(sk, min(left, copy));
1019 return min(copy, sk->sk_forward_alloc);
1020}
1021
1022void tcp_free_fastopen_req(struct tcp_sock *tp)
1023{
1024 if (tp->fastopen_req) {
1025 kfree(tp->fastopen_req);
1026 tp->fastopen_req = NULL;
1027 }
1028}
1029
1030int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1031 size_t size, struct ubuf_info *uarg)
1032{
1033 struct tcp_sock *tp = tcp_sk(sk);
1034 struct inet_sock *inet = inet_sk(sk);
1035 struct sockaddr *uaddr = msg->msg_name;
1036 int err, flags;
1037
1038 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1039 TFO_CLIENT_ENABLE) ||
1040 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1041 uaddr->sa_family == AF_UNSPEC))
1042 return -EOPNOTSUPP;
1043 if (tp->fastopen_req)
1044 return -EALREADY; /* Another Fast Open is in progress */
1045
1046 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1047 sk->sk_allocation);
1048 if (unlikely(!tp->fastopen_req))
1049 return -ENOBUFS;
1050 tp->fastopen_req->data = msg;
1051 tp->fastopen_req->size = size;
1052 tp->fastopen_req->uarg = uarg;
1053
1054 if (inet_test_bit(DEFER_CONNECT, sk)) {
1055 err = tcp_connect(sk);
1056 /* Same failure procedure as in tcp_v4/6_connect */
1057 if (err) {
1058 tcp_set_state(sk, TCP_CLOSE);
1059 inet->inet_dport = 0;
1060 sk->sk_route_caps = 0;
1061 }
1062 }
1063 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1064 err = __inet_stream_connect(sk->sk_socket, (struct sockaddr_unsized *)uaddr,
1065 msg->msg_namelen, flags, 1);
1066 /* fastopen_req could already be freed in __inet_stream_connect
1067 * if the connection times out or gets rst
1068 */
1069 if (tp->fastopen_req) {
1070 *copied = tp->fastopen_req->copied;
1071 tcp_free_fastopen_req(tp);
1072 inet_clear_bit(DEFER_CONNECT, sk);
1073 }
1074 return err;
1075}
1076
1077int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1078{
1079 struct net_devmem_dmabuf_binding *binding = NULL;
1080 struct tcp_sock *tp = tcp_sk(sk);
1081 struct ubuf_info *uarg = NULL;
1082 struct sk_buff *skb;
1083 struct sockcm_cookie sockc;
1084 int flags, err, copied = 0;
1085 int mss_now = 0, size_goal, copied_syn = 0;
1086 int process_backlog = 0;
1087 int sockc_err = 0;
1088 int zc = 0;
1089 long timeo;
1090
1091 flags = msg->msg_flags;
1092
1093 sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) };
1094 if (msg->msg_controllen) {
1095 sockc_err = sock_cmsg_send(sk, msg, &sockc);
1096 /* Don't return error until MSG_FASTOPEN has been processed;
1097 * that may succeed even if the cmsg is invalid.
1098 */
1099 }
1100
1101 if ((flags & MSG_ZEROCOPY) && size) {
1102 if (msg->msg_ubuf) {
1103 uarg = msg->msg_ubuf;
1104 if (sk->sk_route_caps & NETIF_F_SG)
1105 zc = MSG_ZEROCOPY;
1106 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1107 skb = tcp_write_queue_tail(sk);
1108 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb),
1109 !sockc_err && sockc.dmabuf_id);
1110 if (!uarg) {
1111 err = -ENOBUFS;
1112 goto out_err;
1113 }
1114 if (sk->sk_route_caps & NETIF_F_SG)
1115 zc = MSG_ZEROCOPY;
1116 else
1117 uarg_to_msgzc(uarg)->zerocopy = 0;
1118
1119 if (!sockc_err && sockc.dmabuf_id) {
1120 binding = net_devmem_get_binding(sk, sockc.dmabuf_id);
1121 if (IS_ERR(binding)) {
1122 err = PTR_ERR(binding);
1123 binding = NULL;
1124 goto out_err;
1125 }
1126 }
1127 }
1128 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1129 if (sk->sk_route_caps & NETIF_F_SG)
1130 zc = MSG_SPLICE_PAGES;
1131 }
1132
1133 if (!sockc_err && sockc.dmabuf_id &&
1134 (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) {
1135 err = -EINVAL;
1136 goto out_err;
1137 }
1138
1139 if (unlikely(flags & MSG_FASTOPEN ||
1140 inet_test_bit(DEFER_CONNECT, sk)) &&
1141 !tp->repair) {
1142 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1143 if (err == -EINPROGRESS && copied_syn > 0)
1144 goto out;
1145 else if (err)
1146 goto out_err;
1147 }
1148
1149 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1150
1151 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1152
1153 /* Wait for a connection to finish. One exception is TCP Fast Open
1154 * (passive side) where data is allowed to be sent before a connection
1155 * is fully established.
1156 */
1157 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1158 !tcp_passive_fastopen(sk)) {
1159 err = sk_stream_wait_connect(sk, &timeo);
1160 if (err != 0)
1161 goto do_error;
1162 }
1163
1164 if (unlikely(tp->repair)) {
1165 if (tp->repair_queue == TCP_RECV_QUEUE) {
1166 copied = tcp_send_rcvq(sk, msg, size);
1167 goto out_nopush;
1168 }
1169
1170 err = -EINVAL;
1171 if (tp->repair_queue == TCP_NO_QUEUE)
1172 goto out_err;
1173
1174 /* 'common' sending to sendq */
1175 }
1176
1177 if (sockc_err) {
1178 err = sockc_err;
1179 goto out_err;
1180 }
1181
1182 /* This should be in poll */
1183 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1184
1185 /* Ok commence sending. */
1186 copied = 0;
1187
1188restart:
1189 mss_now = tcp_send_mss(sk, &size_goal, flags);
1190
1191 err = -EPIPE;
1192 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1193 goto do_error;
1194
1195 while (msg_data_left(msg)) {
1196 int copy = 0;
1197
1198 skb = tcp_write_queue_tail(sk);
1199 if (skb)
1200 copy = size_goal - skb->len;
1201
1202 trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1203
1204 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1205 bool first_skb;
1206
1207new_segment:
1208 if (!sk_stream_memory_free(sk))
1209 goto wait_for_space;
1210
1211 if (unlikely(process_backlog >= 16)) {
1212 process_backlog = 0;
1213 if (sk_flush_backlog(sk))
1214 goto restart;
1215 }
1216 first_skb = tcp_rtx_and_write_queues_empty(sk);
1217 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1218 first_skb);
1219 if (!skb)
1220 goto wait_for_space;
1221
1222 process_backlog++;
1223
1224#ifdef CONFIG_SKB_DECRYPTED
1225 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1226#endif
1227 tcp_skb_entail(sk, skb);
1228 copy = size_goal;
1229
1230 /* All packets are restored as if they have
1231 * already been sent. skb_mstamp_ns isn't set to
1232 * avoid wrong rtt estimation.
1233 */
1234 if (tp->repair)
1235 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1236 }
1237
1238 /* Try to append data to the end of skb. */
1239 if (copy > msg_data_left(msg))
1240 copy = msg_data_left(msg);
1241
1242 if (zc == 0) {
1243 bool merge = true;
1244 int i = skb_shinfo(skb)->nr_frags;
1245 struct page_frag *pfrag = sk_page_frag(sk);
1246
1247 if (!sk_page_frag_refill(sk, pfrag))
1248 goto wait_for_space;
1249
1250 if (!skb_can_coalesce(skb, i, pfrag->page,
1251 pfrag->offset)) {
1252 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1253 tcp_mark_push(tp, skb);
1254 goto new_segment;
1255 }
1256 merge = false;
1257 }
1258
1259 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1260
1261 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1262 if (tcp_downgrade_zcopy_pure(sk, skb))
1263 goto wait_for_space;
1264 skb_zcopy_downgrade_managed(skb);
1265 }
1266
1267 copy = tcp_wmem_schedule(sk, copy);
1268 if (!copy)
1269 goto wait_for_space;
1270
1271 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1272 pfrag->page,
1273 pfrag->offset,
1274 copy);
1275 if (err)
1276 goto do_error;
1277
1278 /* Update the skb. */
1279 if (merge) {
1280 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1281 } else {
1282 skb_fill_page_desc(skb, i, pfrag->page,
1283 pfrag->offset, copy);
1284 page_ref_inc(pfrag->page);
1285 }
1286 pfrag->offset += copy;
1287 } else if (zc == MSG_ZEROCOPY) {
1288 /* First append to a fragless skb builds initial
1289 * pure zerocopy skb
1290 */
1291 if (!skb->len)
1292 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1293
1294 if (!skb_zcopy_pure(skb)) {
1295 copy = tcp_wmem_schedule(sk, copy);
1296 if (!copy)
1297 goto wait_for_space;
1298 }
1299
1300 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg,
1301 binding);
1302 if (err == -EMSGSIZE || err == -EEXIST) {
1303 tcp_mark_push(tp, skb);
1304 goto new_segment;
1305 }
1306 if (err < 0)
1307 goto do_error;
1308 copy = err;
1309 } else if (zc == MSG_SPLICE_PAGES) {
1310 /* Splice in data if we can; copy if we can't. */
1311 if (tcp_downgrade_zcopy_pure(sk, skb))
1312 goto wait_for_space;
1313 copy = tcp_wmem_schedule(sk, copy);
1314 if (!copy)
1315 goto wait_for_space;
1316
1317 err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1318 if (err < 0) {
1319 if (err == -EMSGSIZE) {
1320 tcp_mark_push(tp, skb);
1321 goto new_segment;
1322 }
1323 goto do_error;
1324 }
1325 copy = err;
1326
1327 if (!(flags & MSG_NO_SHARED_FRAGS))
1328 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1329
1330 sk_wmem_queued_add(sk, copy);
1331 sk_mem_charge(sk, copy);
1332 }
1333
1334 if (!copied)
1335 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1336
1337 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1338 TCP_SKB_CB(skb)->end_seq += copy;
1339 tcp_skb_pcount_set(skb, 0);
1340
1341 copied += copy;
1342 if (!msg_data_left(msg)) {
1343 if (unlikely(flags & MSG_EOR))
1344 TCP_SKB_CB(skb)->eor = 1;
1345 goto out;
1346 }
1347
1348 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1349 continue;
1350
1351 if (forced_push(tp)) {
1352 tcp_mark_push(tp, skb);
1353 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1354 } else if (skb == tcp_send_head(sk))
1355 tcp_push_one(sk, mss_now);
1356 continue;
1357
1358wait_for_space:
1359 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1360 tcp_remove_empty_skb(sk);
1361 if (copied)
1362 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1363 TCP_NAGLE_PUSH, size_goal);
1364
1365 err = sk_stream_wait_memory(sk, &timeo);
1366 if (err != 0)
1367 goto do_error;
1368
1369 mss_now = tcp_send_mss(sk, &size_goal, flags);
1370 }
1371
1372out:
1373 if (copied) {
1374 tcp_tx_timestamp(sk, &sockc);
1375 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1376 }
1377out_nopush:
1378 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1379 if (uarg && !msg->msg_ubuf)
1380 net_zcopy_put(uarg);
1381 if (binding)
1382 net_devmem_dmabuf_binding_put(binding);
1383 return copied + copied_syn;
1384
1385do_error:
1386 tcp_remove_empty_skb(sk);
1387
1388 if (copied + copied_syn)
1389 goto out;
1390out_err:
1391 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1392 if (uarg && !msg->msg_ubuf)
1393 net_zcopy_put_abort(uarg, true);
1394 err = sk_stream_error(sk, flags, err);
1395 /* make sure we wake any epoll edge trigger waiter */
1396 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1397 sk->sk_write_space(sk);
1398 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1399 }
1400 if (binding)
1401 net_devmem_dmabuf_binding_put(binding);
1402
1403 return err;
1404}
1405EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1406
1407int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1408{
1409 int ret;
1410
1411 lock_sock(sk);
1412 ret = tcp_sendmsg_locked(sk, msg, size);
1413 release_sock(sk);
1414
1415 return ret;
1416}
1417EXPORT_SYMBOL(tcp_sendmsg);
1418
1419void tcp_splice_eof(struct socket *sock)
1420{
1421 struct sock *sk = sock->sk;
1422 struct tcp_sock *tp = tcp_sk(sk);
1423 int mss_now, size_goal;
1424
1425 if (!tcp_write_queue_tail(sk))
1426 return;
1427
1428 lock_sock(sk);
1429 mss_now = tcp_send_mss(sk, &size_goal, 0);
1430 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1431 release_sock(sk);
1432}
1433EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1434
1435/*
1436 * Handle reading urgent data. BSD has very simple semantics for
1437 * this, no blocking and very strange errors 8)
1438 */
1439
1440static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1441{
1442 struct tcp_sock *tp = tcp_sk(sk);
1443
1444 /* No URG data to read. */
1445 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1446 tp->urg_data == TCP_URG_READ)
1447 return -EINVAL; /* Yes this is right ! */
1448
1449 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1450 return -ENOTCONN;
1451
1452 if (tp->urg_data & TCP_URG_VALID) {
1453 int err = 0;
1454 char c = tp->urg_data;
1455
1456 if (!(flags & MSG_PEEK))
1457 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1458
1459 /* Read urgent data. */
1460 msg->msg_flags |= MSG_OOB;
1461
1462 if (len > 0) {
1463 if (!(flags & MSG_TRUNC))
1464 err = memcpy_to_msg(msg, &c, 1);
1465 len = 1;
1466 } else
1467 msg->msg_flags |= MSG_TRUNC;
1468
1469 return err ? -EFAULT : len;
1470 }
1471
1472 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1473 return 0;
1474
1475 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1476 * the available implementations agree in this case:
1477 * this call should never block, independent of the
1478 * blocking state of the socket.
1479 * Mike <pall@rz.uni-karlsruhe.de>
1480 */
1481 return -EAGAIN;
1482}
1483
1484static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1485{
1486 struct sk_buff *skb;
1487 int copied = 0, err = 0;
1488
1489 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1490 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1491 if (err)
1492 return err;
1493 copied += skb->len;
1494 }
1495
1496 skb_queue_walk(&sk->sk_write_queue, skb) {
1497 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1498 if (err)
1499 break;
1500
1501 copied += skb->len;
1502 }
1503
1504 return err ?: copied;
1505}
1506
1507/* Clean up the receive buffer for full frames taken by the user,
1508 * then send an ACK if necessary. COPIED is the number of bytes
1509 * tcp_recvmsg has given to the user so far, it speeds up the
1510 * calculation of whether or not we must ACK for the sake of
1511 * a window update.
1512 */
1513void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1514{
1515 struct tcp_sock *tp = tcp_sk(sk);
1516 bool time_to_ack = false;
1517
1518 if (inet_csk_ack_scheduled(sk)) {
1519 const struct inet_connection_sock *icsk = inet_csk(sk);
1520
1521 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1522 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1523 /*
1524 * If this read emptied read buffer, we send ACK, if
1525 * connection is not bidirectional, user drained
1526 * receive buffer and there was a small segment
1527 * in queue.
1528 */
1529 (copied > 0 &&
1530 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1531 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1532 !inet_csk_in_pingpong_mode(sk))) &&
1533 !atomic_read(&sk->sk_rmem_alloc)))
1534 time_to_ack = true;
1535 }
1536
1537 /* We send an ACK if we can now advertise a non-zero window
1538 * which has been raised "significantly".
1539 *
1540 * Even if window raised up to infinity, do not send window open ACK
1541 * in states, where we will not receive more. It is useless.
1542 */
1543 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1544 __u32 rcv_window_now = tcp_receive_window(tp);
1545
1546 /* Optimize, __tcp_select_window() is not cheap. */
1547 if (2*rcv_window_now <= tp->window_clamp) {
1548 __u32 new_window = __tcp_select_window(sk);
1549
1550 /* Send ACK now, if this read freed lots of space
1551 * in our buffer. Certainly, new_window is new window.
1552 * We can advertise it now, if it is not less than current one.
1553 * "Lots" means "at least twice" here.
1554 */
1555 if (new_window && new_window >= 2 * rcv_window_now)
1556 time_to_ack = true;
1557 }
1558 }
1559 if (time_to_ack) {
1560 tcp_mstamp_refresh(tp);
1561 tcp_send_ack(sk);
1562 }
1563}
1564
1565void tcp_cleanup_rbuf(struct sock *sk, int copied)
1566{
1567 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1568 struct tcp_sock *tp = tcp_sk(sk);
1569
1570 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1571 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1572 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1573 __tcp_cleanup_rbuf(sk, copied);
1574}
1575
1576static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1577{
1578 __skb_unlink(skb, &sk->sk_receive_queue);
1579 if (likely(skb->destructor == sock_rfree)) {
1580 sock_rfree(skb);
1581 skb->destructor = NULL;
1582 skb->sk = NULL;
1583 return skb_attempt_defer_free(skb);
1584 }
1585 __kfree_skb(skb);
1586}
1587
1588struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1589{
1590 struct sk_buff *skb;
1591 u32 offset;
1592
1593 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1594 offset = seq - TCP_SKB_CB(skb)->seq;
1595 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1596 pr_err_once("%s: found a SYN, please report !\n", __func__);
1597 offset--;
1598 }
1599 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1600 *off = offset;
1601 return skb;
1602 }
1603 /* This looks weird, but this can happen if TCP collapsing
1604 * splitted a fat GRO packet, while we released socket lock
1605 * in skb_splice_bits()
1606 */
1607 tcp_eat_recv_skb(sk, skb);
1608 }
1609 return NULL;
1610}
1611EXPORT_SYMBOL(tcp_recv_skb);
1612
1613/*
1614 * This routine provides an alternative to tcp_recvmsg() for routines
1615 * that would like to handle copying from skbuffs directly in 'sendfile'
1616 * fashion.
1617 * Note:
1618 * - It is assumed that the socket was locked by the caller.
1619 * - The routine does not block.
1620 * - At present, there is no support for reading OOB data
1621 * or for 'peeking' the socket using this routine
1622 * (although both would be easy to implement).
1623 */
1624static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1625 sk_read_actor_t recv_actor, bool noack,
1626 u32 *copied_seq)
1627{
1628 struct sk_buff *skb;
1629 struct tcp_sock *tp = tcp_sk(sk);
1630 u32 seq = *copied_seq;
1631 u32 offset;
1632 int copied = 0;
1633
1634 if (sk->sk_state == TCP_LISTEN)
1635 return -ENOTCONN;
1636 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1637 if (offset < skb->len) {
1638 int used;
1639 size_t len;
1640
1641 len = skb->len - offset;
1642 /* Stop reading if we hit a patch of urgent data */
1643 if (unlikely(tp->urg_data)) {
1644 u32 urg_offset = tp->urg_seq - seq;
1645 if (urg_offset < len)
1646 len = urg_offset;
1647 if (!len)
1648 break;
1649 }
1650 used = recv_actor(desc, skb, offset, len);
1651 if (used <= 0) {
1652 if (!copied)
1653 copied = used;
1654 break;
1655 }
1656 if (WARN_ON_ONCE(used > len))
1657 used = len;
1658 seq += used;
1659 copied += used;
1660 offset += used;
1661
1662 /* If recv_actor drops the lock (e.g. TCP splice
1663 * receive) the skb pointer might be invalid when
1664 * getting here: tcp_collapse might have deleted it
1665 * while aggregating skbs from the socket queue.
1666 */
1667 skb = tcp_recv_skb(sk, seq - 1, &offset);
1668 if (!skb)
1669 break;
1670 /* TCP coalescing might have appended data to the skb.
1671 * Try to splice more frags
1672 */
1673 if (offset + 1 != skb->len)
1674 continue;
1675 }
1676 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1677 tcp_eat_recv_skb(sk, skb);
1678 ++seq;
1679 break;
1680 }
1681 tcp_eat_recv_skb(sk, skb);
1682 if (!desc->count)
1683 break;
1684 WRITE_ONCE(*copied_seq, seq);
1685 }
1686 WRITE_ONCE(*copied_seq, seq);
1687
1688 if (noack)
1689 goto out;
1690
1691 tcp_rcv_space_adjust(sk);
1692
1693 /* Clean up data we have read: This will do ACK frames. */
1694 if (copied > 0) {
1695 tcp_recv_skb(sk, seq, &offset);
1696 tcp_cleanup_rbuf(sk, copied);
1697 }
1698out:
1699 return copied;
1700}
1701
1702int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1703 sk_read_actor_t recv_actor)
1704{
1705 return __tcp_read_sock(sk, desc, recv_actor, false,
1706 &tcp_sk(sk)->copied_seq);
1707}
1708EXPORT_SYMBOL(tcp_read_sock);
1709
1710int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1711 sk_read_actor_t recv_actor, bool noack,
1712 u32 *copied_seq)
1713{
1714 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1715}
1716
1717int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1718{
1719 struct sk_buff *skb;
1720 int copied = 0;
1721
1722 if (sk->sk_state == TCP_LISTEN)
1723 return -ENOTCONN;
1724
1725 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1726 u8 tcp_flags;
1727 int used;
1728
1729 __skb_unlink(skb, &sk->sk_receive_queue);
1730 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1731 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1732 used = recv_actor(sk, skb);
1733 if (used < 0) {
1734 if (!copied)
1735 copied = used;
1736 break;
1737 }
1738 copied += used;
1739
1740 if (tcp_flags & TCPHDR_FIN)
1741 break;
1742 }
1743 return copied;
1744}
1745EXPORT_IPV6_MOD(tcp_read_skb);
1746
1747void tcp_read_done(struct sock *sk, size_t len)
1748{
1749 struct tcp_sock *tp = tcp_sk(sk);
1750 u32 seq = tp->copied_seq;
1751 struct sk_buff *skb;
1752 size_t left;
1753 u32 offset;
1754
1755 if (sk->sk_state == TCP_LISTEN)
1756 return;
1757
1758 left = len;
1759 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1760 int used;
1761
1762 used = min_t(size_t, skb->len - offset, left);
1763 seq += used;
1764 left -= used;
1765
1766 if (skb->len > offset + used)
1767 break;
1768
1769 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1770 tcp_eat_recv_skb(sk, skb);
1771 ++seq;
1772 break;
1773 }
1774 tcp_eat_recv_skb(sk, skb);
1775 }
1776 WRITE_ONCE(tp->copied_seq, seq);
1777
1778 tcp_rcv_space_adjust(sk);
1779
1780 /* Clean up data we have read: This will do ACK frames. */
1781 if (left != len)
1782 tcp_cleanup_rbuf(sk, len - left);
1783}
1784EXPORT_SYMBOL(tcp_read_done);
1785
1786int tcp_peek_len(struct socket *sock)
1787{
1788 return tcp_inq(sock->sk);
1789}
1790EXPORT_IPV6_MOD(tcp_peek_len);
1791
1792/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1793int tcp_set_rcvlowat(struct sock *sk, int val)
1794{
1795 struct tcp_sock *tp = tcp_sk(sk);
1796 int space, cap;
1797
1798 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1799 cap = sk->sk_rcvbuf >> 1;
1800 else
1801 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1802 val = min(val, cap);
1803 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1804
1805 /* Check if we need to signal EPOLLIN right now */
1806 tcp_data_ready(sk);
1807
1808 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1809 return 0;
1810
1811 space = tcp_space_from_win(sk, val);
1812 if (space > sk->sk_rcvbuf) {
1813 WRITE_ONCE(sk->sk_rcvbuf, space);
1814
1815 if (tp->window_clamp && tp->window_clamp < val)
1816 WRITE_ONCE(tp->window_clamp, val);
1817 }
1818 return 0;
1819}
1820EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1821
1822void tcp_update_recv_tstamps(struct sk_buff *skb,
1823 struct scm_timestamping_internal *tss)
1824{
1825 if (skb->tstamp)
1826 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1827 else
1828 tss->ts[0] = (struct timespec64) {0};
1829
1830 if (skb_hwtstamps(skb)->hwtstamp)
1831 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1832 else
1833 tss->ts[2] = (struct timespec64) {0};
1834}
1835
1836#ifdef CONFIG_MMU
1837static const struct vm_operations_struct tcp_vm_ops = {
1838};
1839
1840int tcp_mmap(struct file *file, struct socket *sock,
1841 struct vm_area_struct *vma)
1842{
1843 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1844 return -EPERM;
1845 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1846
1847 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1848 vm_flags_set(vma, VM_MIXEDMAP);
1849
1850 vma->vm_ops = &tcp_vm_ops;
1851 return 0;
1852}
1853EXPORT_IPV6_MOD(tcp_mmap);
1854
1855static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1856 u32 *offset_frag)
1857{
1858 skb_frag_t *frag;
1859
1860 if (unlikely(offset_skb >= skb->len))
1861 return NULL;
1862
1863 offset_skb -= skb_headlen(skb);
1864 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1865 return NULL;
1866
1867 frag = skb_shinfo(skb)->frags;
1868 while (offset_skb) {
1869 if (skb_frag_size(frag) > offset_skb) {
1870 *offset_frag = offset_skb;
1871 return frag;
1872 }
1873 offset_skb -= skb_frag_size(frag);
1874 ++frag;
1875 }
1876 *offset_frag = 0;
1877 return frag;
1878}
1879
1880static bool can_map_frag(const skb_frag_t *frag)
1881{
1882 struct page *page;
1883
1884 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1885 return false;
1886
1887 page = skb_frag_page(frag);
1888
1889 if (PageCompound(page) || page->mapping)
1890 return false;
1891
1892 return true;
1893}
1894
1895static int find_next_mappable_frag(const skb_frag_t *frag,
1896 int remaining_in_skb)
1897{
1898 int offset = 0;
1899
1900 if (likely(can_map_frag(frag)))
1901 return 0;
1902
1903 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1904 offset += skb_frag_size(frag);
1905 ++frag;
1906 }
1907 return offset;
1908}
1909
1910static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1911 struct tcp_zerocopy_receive *zc,
1912 struct sk_buff *skb, u32 offset)
1913{
1914 u32 frag_offset, partial_frag_remainder = 0;
1915 int mappable_offset;
1916 skb_frag_t *frag;
1917
1918 /* worst case: skip to next skb. try to improve on this case below */
1919 zc->recv_skip_hint = skb->len - offset;
1920
1921 /* Find the frag containing this offset (and how far into that frag) */
1922 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1923 if (!frag)
1924 return;
1925
1926 if (frag_offset) {
1927 struct skb_shared_info *info = skb_shinfo(skb);
1928
1929 /* We read part of the last frag, must recvmsg() rest of skb. */
1930 if (frag == &info->frags[info->nr_frags - 1])
1931 return;
1932
1933 /* Else, we must at least read the remainder in this frag. */
1934 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1935 zc->recv_skip_hint -= partial_frag_remainder;
1936 ++frag;
1937 }
1938
1939 /* partial_frag_remainder: If part way through a frag, must read rest.
1940 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1941 * in partial_frag_remainder.
1942 */
1943 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1944 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1945}
1946
1947static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1948 int flags, struct scm_timestamping_internal *tss,
1949 int *cmsg_flags);
1950static int receive_fallback_to_copy(struct sock *sk,
1951 struct tcp_zerocopy_receive *zc, int inq,
1952 struct scm_timestamping_internal *tss)
1953{
1954 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1955 struct msghdr msg = {};
1956 int err;
1957
1958 zc->length = 0;
1959 zc->recv_skip_hint = 0;
1960
1961 if (copy_address != zc->copybuf_address)
1962 return -EINVAL;
1963
1964 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1965 &msg.msg_iter);
1966 if (err)
1967 return err;
1968
1969 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1970 tss, &zc->msg_flags);
1971 if (err < 0)
1972 return err;
1973
1974 zc->copybuf_len = err;
1975 if (likely(zc->copybuf_len)) {
1976 struct sk_buff *skb;
1977 u32 offset;
1978
1979 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1980 if (skb)
1981 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1982 }
1983 return 0;
1984}
1985
1986static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1987 struct sk_buff *skb, u32 copylen,
1988 u32 *offset, u32 *seq)
1989{
1990 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1991 struct msghdr msg = {};
1992 int err;
1993
1994 if (copy_address != zc->copybuf_address)
1995 return -EINVAL;
1996
1997 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1998 &msg.msg_iter);
1999 if (err)
2000 return err;
2001 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2002 if (err)
2003 return err;
2004 zc->recv_skip_hint -= copylen;
2005 *offset += copylen;
2006 *seq += copylen;
2007 return (__s32)copylen;
2008}
2009
2010static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2011 struct sock *sk,
2012 struct sk_buff *skb,
2013 u32 *seq,
2014 s32 copybuf_len,
2015 struct scm_timestamping_internal *tss)
2016{
2017 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2018
2019 if (!copylen)
2020 return 0;
2021 /* skb is null if inq < PAGE_SIZE. */
2022 if (skb) {
2023 offset = *seq - TCP_SKB_CB(skb)->seq;
2024 } else {
2025 skb = tcp_recv_skb(sk, *seq, &offset);
2026 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2027 tcp_update_recv_tstamps(skb, tss);
2028 zc->msg_flags |= TCP_CMSG_TS;
2029 }
2030 }
2031
2032 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2033 seq);
2034 return zc->copybuf_len < 0 ? 0 : copylen;
2035}
2036
2037static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2038 struct page **pending_pages,
2039 unsigned long pages_remaining,
2040 unsigned long *address,
2041 u32 *length,
2042 u32 *seq,
2043 struct tcp_zerocopy_receive *zc,
2044 u32 total_bytes_to_map,
2045 int err)
2046{
2047 /* At least one page did not map. Try zapping if we skipped earlier. */
2048 if (err == -EBUSY &&
2049 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2050 u32 maybe_zap_len;
2051
2052 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
2053 *length + /* Mapped or pending */
2054 (pages_remaining * PAGE_SIZE); /* Failed map. */
2055 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2056 err = 0;
2057 }
2058
2059 if (!err) {
2060 unsigned long leftover_pages = pages_remaining;
2061 int bytes_mapped;
2062
2063 /* We called zap_page_range_single, try to reinsert. */
2064 err = vm_insert_pages(vma, *address,
2065 pending_pages,
2066 &pages_remaining);
2067 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2068 *seq += bytes_mapped;
2069 *address += bytes_mapped;
2070 }
2071 if (err) {
2072 /* Either we were unable to zap, OR we zapped, retried an
2073 * insert, and still had an issue. Either ways, pages_remaining
2074 * is the number of pages we were unable to map, and we unroll
2075 * some state we speculatively touched before.
2076 */
2077 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2078
2079 *length -= bytes_not_mapped;
2080 zc->recv_skip_hint += bytes_not_mapped;
2081 }
2082 return err;
2083}
2084
2085static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2086 struct page **pages,
2087 unsigned int pages_to_map,
2088 unsigned long *address,
2089 u32 *length,
2090 u32 *seq,
2091 struct tcp_zerocopy_receive *zc,
2092 u32 total_bytes_to_map)
2093{
2094 unsigned long pages_remaining = pages_to_map;
2095 unsigned int pages_mapped;
2096 unsigned int bytes_mapped;
2097 int err;
2098
2099 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2100 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2101 bytes_mapped = PAGE_SIZE * pages_mapped;
2102 /* Even if vm_insert_pages fails, it may have partially succeeded in
2103 * mapping (some but not all of the pages).
2104 */
2105 *seq += bytes_mapped;
2106 *address += bytes_mapped;
2107
2108 if (likely(!err))
2109 return 0;
2110
2111 /* Error: maybe zap and retry + rollback state for failed inserts. */
2112 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2113 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2114 err);
2115}
2116
2117#define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
2118static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2119 struct tcp_zerocopy_receive *zc,
2120 struct scm_timestamping_internal *tss)
2121{
2122 unsigned long msg_control_addr;
2123 struct msghdr cmsg_dummy;
2124
2125 msg_control_addr = (unsigned long)zc->msg_control;
2126 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2127 cmsg_dummy.msg_controllen =
2128 (__kernel_size_t)zc->msg_controllen;
2129 cmsg_dummy.msg_flags = in_compat_syscall()
2130 ? MSG_CMSG_COMPAT : 0;
2131 cmsg_dummy.msg_control_is_user = true;
2132 zc->msg_flags = 0;
2133 if (zc->msg_control == msg_control_addr &&
2134 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2135 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2136 zc->msg_control = (__u64)
2137 ((uintptr_t)cmsg_dummy.msg_control_user);
2138 zc->msg_controllen =
2139 (__u64)cmsg_dummy.msg_controllen;
2140 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2141 }
2142}
2143
2144static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2145 unsigned long address,
2146 bool *mmap_locked)
2147{
2148 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2149
2150 if (vma) {
2151 if (vma->vm_ops != &tcp_vm_ops) {
2152 vma_end_read(vma);
2153 return NULL;
2154 }
2155 *mmap_locked = false;
2156 return vma;
2157 }
2158
2159 mmap_read_lock(mm);
2160 vma = vma_lookup(mm, address);
2161 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2162 mmap_read_unlock(mm);
2163 return NULL;
2164 }
2165 *mmap_locked = true;
2166 return vma;
2167}
2168
2169#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2170static int tcp_zerocopy_receive(struct sock *sk,
2171 struct tcp_zerocopy_receive *zc,
2172 struct scm_timestamping_internal *tss)
2173{
2174 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2175 unsigned long address = (unsigned long)zc->address;
2176 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2177 s32 copybuf_len = zc->copybuf_len;
2178 struct tcp_sock *tp = tcp_sk(sk);
2179 const skb_frag_t *frags = NULL;
2180 unsigned int pages_to_map = 0;
2181 struct vm_area_struct *vma;
2182 struct sk_buff *skb = NULL;
2183 u32 seq = tp->copied_seq;
2184 u32 total_bytes_to_map;
2185 int inq = tcp_inq(sk);
2186 bool mmap_locked;
2187 int ret;
2188
2189 zc->copybuf_len = 0;
2190 zc->msg_flags = 0;
2191
2192 if (address & (PAGE_SIZE - 1) || address != zc->address)
2193 return -EINVAL;
2194
2195 if (sk->sk_state == TCP_LISTEN)
2196 return -ENOTCONN;
2197
2198 sock_rps_record_flow(sk);
2199
2200 if (inq && inq <= copybuf_len)
2201 return receive_fallback_to_copy(sk, zc, inq, tss);
2202
2203 if (inq < PAGE_SIZE) {
2204 zc->length = 0;
2205 zc->recv_skip_hint = inq;
2206 if (!inq && sock_flag(sk, SOCK_DONE))
2207 return -EIO;
2208 return 0;
2209 }
2210
2211 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2212 if (!vma)
2213 return -EINVAL;
2214
2215 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2216 avail_len = min_t(u32, vma_len, inq);
2217 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2218 if (total_bytes_to_map) {
2219 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2220 zap_page_range_single(vma, address, total_bytes_to_map,
2221 NULL);
2222 zc->length = total_bytes_to_map;
2223 zc->recv_skip_hint = 0;
2224 } else {
2225 zc->length = avail_len;
2226 zc->recv_skip_hint = avail_len;
2227 }
2228 ret = 0;
2229 while (length + PAGE_SIZE <= zc->length) {
2230 int mappable_offset;
2231 struct page *page;
2232
2233 if (zc->recv_skip_hint < PAGE_SIZE) {
2234 u32 offset_frag;
2235
2236 if (skb) {
2237 if (zc->recv_skip_hint > 0)
2238 break;
2239 skb = skb->next;
2240 offset = seq - TCP_SKB_CB(skb)->seq;
2241 } else {
2242 skb = tcp_recv_skb(sk, seq, &offset);
2243 }
2244
2245 if (!skb_frags_readable(skb))
2246 break;
2247
2248 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2249 tcp_update_recv_tstamps(skb, tss);
2250 zc->msg_flags |= TCP_CMSG_TS;
2251 }
2252 zc->recv_skip_hint = skb->len - offset;
2253 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2254 if (!frags || offset_frag)
2255 break;
2256 }
2257
2258 mappable_offset = find_next_mappable_frag(frags,
2259 zc->recv_skip_hint);
2260 if (mappable_offset) {
2261 zc->recv_skip_hint = mappable_offset;
2262 break;
2263 }
2264 page = skb_frag_page(frags);
2265 if (WARN_ON_ONCE(!page))
2266 break;
2267
2268 prefetchw(page);
2269 pages[pages_to_map++] = page;
2270 length += PAGE_SIZE;
2271 zc->recv_skip_hint -= PAGE_SIZE;
2272 frags++;
2273 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2274 zc->recv_skip_hint < PAGE_SIZE) {
2275 /* Either full batch, or we're about to go to next skb
2276 * (and we cannot unroll failed ops across skbs).
2277 */
2278 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2279 pages_to_map,
2280 &address, &length,
2281 &seq, zc,
2282 total_bytes_to_map);
2283 if (ret)
2284 goto out;
2285 pages_to_map = 0;
2286 }
2287 }
2288 if (pages_to_map) {
2289 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2290 &address, &length, &seq,
2291 zc, total_bytes_to_map);
2292 }
2293out:
2294 if (mmap_locked)
2295 mmap_read_unlock(current->mm);
2296 else
2297 vma_end_read(vma);
2298 /* Try to copy straggler data. */
2299 if (!ret)
2300 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2301
2302 if (length + copylen) {
2303 WRITE_ONCE(tp->copied_seq, seq);
2304 tcp_rcv_space_adjust(sk);
2305
2306 /* Clean up data we have read: This will do ACK frames. */
2307 tcp_recv_skb(sk, seq, &offset);
2308 tcp_cleanup_rbuf(sk, length + copylen);
2309 ret = 0;
2310 if (length == zc->length)
2311 zc->recv_skip_hint = 0;
2312 } else {
2313 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2314 ret = -EIO;
2315 }
2316 zc->length = length;
2317 return ret;
2318}
2319#endif
2320
2321/* Similar to __sock_recv_timestamp, but does not require an skb */
2322void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2323 struct scm_timestamping_internal *tss)
2324{
2325 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2326 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2327 bool has_timestamping = false;
2328
2329 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2330 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2331 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2332 if (new_tstamp) {
2333 struct __kernel_timespec kts = {
2334 .tv_sec = tss->ts[0].tv_sec,
2335 .tv_nsec = tss->ts[0].tv_nsec,
2336 };
2337 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2338 sizeof(kts), &kts);
2339 } else {
2340 struct __kernel_old_timespec ts_old = {
2341 .tv_sec = tss->ts[0].tv_sec,
2342 .tv_nsec = tss->ts[0].tv_nsec,
2343 };
2344 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2345 sizeof(ts_old), &ts_old);
2346 }
2347 } else {
2348 if (new_tstamp) {
2349 struct __kernel_sock_timeval stv = {
2350 .tv_sec = tss->ts[0].tv_sec,
2351 .tv_usec = tss->ts[0].tv_nsec / 1000,
2352 };
2353 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2354 sizeof(stv), &stv);
2355 } else {
2356 struct __kernel_old_timeval tv = {
2357 .tv_sec = tss->ts[0].tv_sec,
2358 .tv_usec = tss->ts[0].tv_nsec / 1000,
2359 };
2360 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2361 sizeof(tv), &tv);
2362 }
2363 }
2364 }
2365
2366 if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2367 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2368 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2369 has_timestamping = true;
2370 else
2371 tss->ts[0] = (struct timespec64) {0};
2372 }
2373
2374 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2375 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2376 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2377 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2378 has_timestamping = true;
2379 else
2380 tss->ts[2] = (struct timespec64) {0};
2381 }
2382
2383 if (has_timestamping) {
2384 tss->ts[1] = (struct timespec64) {0};
2385 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2386 put_cmsg_scm_timestamping64(msg, tss);
2387 else
2388 put_cmsg_scm_timestamping(msg, tss);
2389 }
2390}
2391
2392static int tcp_inq_hint(struct sock *sk)
2393{
2394 const struct tcp_sock *tp = tcp_sk(sk);
2395 u32 copied_seq = READ_ONCE(tp->copied_seq);
2396 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2397 int inq;
2398
2399 inq = rcv_nxt - copied_seq;
2400 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2401 lock_sock(sk);
2402 inq = tp->rcv_nxt - tp->copied_seq;
2403 release_sock(sk);
2404 }
2405 /* After receiving a FIN, tell the user-space to continue reading
2406 * by returning a non-zero inq.
2407 */
2408 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2409 inq = 1;
2410 return inq;
2411}
2412
2413/* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2414struct tcp_xa_pool {
2415 u8 max; /* max <= MAX_SKB_FRAGS */
2416 u8 idx; /* idx <= max */
2417 __u32 tokens[MAX_SKB_FRAGS];
2418 netmem_ref netmems[MAX_SKB_FRAGS];
2419};
2420
2421static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2422{
2423 int i;
2424
2425 /* Commit part that has been copied to user space. */
2426 for (i = 0; i < p->idx; i++)
2427 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2428 (__force void *)p->netmems[i], GFP_KERNEL);
2429 /* Rollback what has been pre-allocated and is no longer needed. */
2430 for (; i < p->max; i++)
2431 __xa_erase(&sk->sk_user_frags, p->tokens[i]);
2432
2433 p->max = 0;
2434 p->idx = 0;
2435}
2436
2437static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2438{
2439 if (!p->max)
2440 return;
2441
2442 xa_lock_bh(&sk->sk_user_frags);
2443
2444 tcp_xa_pool_commit_locked(sk, p);
2445
2446 xa_unlock_bh(&sk->sk_user_frags);
2447}
2448
2449static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2450 unsigned int max_frags)
2451{
2452 int err, k;
2453
2454 if (p->idx < p->max)
2455 return 0;
2456
2457 xa_lock_bh(&sk->sk_user_frags);
2458
2459 tcp_xa_pool_commit_locked(sk, p);
2460
2461 for (k = 0; k < max_frags; k++) {
2462 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2463 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2464 if (err)
2465 break;
2466 }
2467
2468 xa_unlock_bh(&sk->sk_user_frags);
2469
2470 p->max = k;
2471 p->idx = 0;
2472 return k ? 0 : err;
2473}
2474
2475/* On error, returns the -errno. On success, returns number of bytes sent to the
2476 * user. May not consume all of @remaining_len.
2477 */
2478static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2479 unsigned int offset, struct msghdr *msg,
2480 int remaining_len)
2481{
2482 struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2483 struct tcp_xa_pool tcp_xa_pool;
2484 unsigned int start;
2485 int i, copy, n;
2486 int sent = 0;
2487 int err = 0;
2488
2489 tcp_xa_pool.max = 0;
2490 tcp_xa_pool.idx = 0;
2491 do {
2492 start = skb_headlen(skb);
2493
2494 if (skb_frags_readable(skb)) {
2495 err = -ENODEV;
2496 goto out;
2497 }
2498
2499 /* Copy header. */
2500 copy = start - offset;
2501 if (copy > 0) {
2502 copy = min(copy, remaining_len);
2503
2504 n = copy_to_iter(skb->data + offset, copy,
2505 &msg->msg_iter);
2506 if (n != copy) {
2507 err = -EFAULT;
2508 goto out;
2509 }
2510
2511 offset += copy;
2512 remaining_len -= copy;
2513
2514 /* First a dmabuf_cmsg for # bytes copied to user
2515 * buffer.
2516 */
2517 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2518 dmabuf_cmsg.frag_size = copy;
2519 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2520 SO_DEVMEM_LINEAR,
2521 sizeof(dmabuf_cmsg),
2522 &dmabuf_cmsg);
2523 if (err)
2524 goto out;
2525
2526 sent += copy;
2527
2528 if (remaining_len == 0)
2529 goto out;
2530 }
2531
2532 /* after that, send information of dmabuf pages through a
2533 * sequence of cmsg
2534 */
2535 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2536 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2537 struct net_iov *niov;
2538 u64 frag_offset;
2539 int end;
2540
2541 /* !skb_frags_readable() should indicate that ALL the
2542 * frags in this skb are dmabuf net_iovs. We're checking
2543 * for that flag above, but also check individual frags
2544 * here. If the tcp stack is not setting
2545 * skb_frags_readable() correctly, we still don't want
2546 * to crash here.
2547 */
2548 if (!skb_frag_net_iov(frag)) {
2549 net_err_ratelimited("Found non-dmabuf skb with net_iov");
2550 err = -ENODEV;
2551 goto out;
2552 }
2553
2554 niov = skb_frag_net_iov(frag);
2555 if (!net_is_devmem_iov(niov)) {
2556 err = -ENODEV;
2557 goto out;
2558 }
2559
2560 end = start + skb_frag_size(frag);
2561 copy = end - offset;
2562
2563 if (copy > 0) {
2564 copy = min(copy, remaining_len);
2565
2566 frag_offset = net_iov_virtual_addr(niov) +
2567 skb_frag_off(frag) + offset -
2568 start;
2569 dmabuf_cmsg.frag_offset = frag_offset;
2570 dmabuf_cmsg.frag_size = copy;
2571 err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2572 skb_shinfo(skb)->nr_frags - i);
2573 if (err)
2574 goto out;
2575
2576 /* Will perform the exchange later */
2577 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2578 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2579
2580 offset += copy;
2581 remaining_len -= copy;
2582
2583 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2584 SO_DEVMEM_DMABUF,
2585 sizeof(dmabuf_cmsg),
2586 &dmabuf_cmsg);
2587 if (err)
2588 goto out;
2589
2590 atomic_long_inc(&niov->desc.pp_ref_count);
2591 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2592
2593 sent += copy;
2594
2595 if (remaining_len == 0)
2596 goto out;
2597 }
2598 start = end;
2599 }
2600
2601 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2602 if (!remaining_len)
2603 goto out;
2604
2605 /* if remaining_len is not satisfied yet, we need to go to the
2606 * next frag in the frag_list to satisfy remaining_len.
2607 */
2608 skb = skb_shinfo(skb)->frag_list ?: skb->next;
2609
2610 offset = offset - start;
2611 } while (skb);
2612
2613 if (remaining_len) {
2614 err = -EFAULT;
2615 goto out;
2616 }
2617
2618out:
2619 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2620 if (!sent)
2621 sent = err;
2622
2623 return sent;
2624}
2625
2626/*
2627 * This routine copies from a sock struct into the user buffer.
2628 *
2629 * Technical note: in 2.3 we work on _locked_ socket, so that
2630 * tricks with *seq access order and skb->users are not required.
2631 * Probably, code can be easily improved even more.
2632 */
2633
2634static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2635 int flags, struct scm_timestamping_internal *tss,
2636 int *cmsg_flags)
2637{
2638 struct tcp_sock *tp = tcp_sk(sk);
2639 int last_copied_dmabuf = -1; /* uninitialized */
2640 int copied = 0;
2641 u32 peek_seq;
2642 u32 *seq;
2643 unsigned long used;
2644 int err;
2645 int target; /* Read at least this many bytes */
2646 long timeo;
2647 struct sk_buff *skb, *last;
2648 u32 peek_offset = 0;
2649 u32 urg_hole = 0;
2650
2651 err = -ENOTCONN;
2652 if (sk->sk_state == TCP_LISTEN)
2653 goto out;
2654
2655 if (tp->recvmsg_inq)
2656 *cmsg_flags = TCP_CMSG_INQ;
2657 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2658
2659 /* Urgent data needs to be handled specially. */
2660 if (flags & MSG_OOB)
2661 goto recv_urg;
2662
2663 if (unlikely(tp->repair)) {
2664 err = -EPERM;
2665 if (!(flags & MSG_PEEK))
2666 goto out;
2667
2668 if (tp->repair_queue == TCP_SEND_QUEUE)
2669 goto recv_sndq;
2670
2671 err = -EINVAL;
2672 if (tp->repair_queue == TCP_NO_QUEUE)
2673 goto out;
2674
2675 /* 'common' recv queue MSG_PEEK-ing */
2676 }
2677
2678 seq = &tp->copied_seq;
2679 if (flags & MSG_PEEK) {
2680 peek_offset = max(sk_peek_offset(sk, flags), 0);
2681 peek_seq = tp->copied_seq + peek_offset;
2682 seq = &peek_seq;
2683 }
2684
2685 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2686
2687 do {
2688 u32 offset;
2689
2690 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2691 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2692 if (copied)
2693 break;
2694 if (signal_pending(current)) {
2695 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2696 break;
2697 }
2698 }
2699
2700 /* Next get a buffer. */
2701
2702 last = skb_peek_tail(&sk->sk_receive_queue);
2703 skb_queue_walk(&sk->sk_receive_queue, skb) {
2704 last = skb;
2705 /* Now that we have two receive queues this
2706 * shouldn't happen.
2707 */
2708 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2709 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2710 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2711 flags))
2712 break;
2713
2714 offset = *seq - TCP_SKB_CB(skb)->seq;
2715 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2716 pr_err_once("%s: found a SYN, please report !\n", __func__);
2717 offset--;
2718 }
2719 if (offset < skb->len)
2720 goto found_ok_skb;
2721 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2722 goto found_fin_ok;
2723 WARN(!(flags & MSG_PEEK),
2724 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2725 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2726 }
2727
2728 /* Well, if we have backlog, try to process it now yet. */
2729
2730 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2731 break;
2732
2733 if (copied) {
2734 if (!timeo ||
2735 sk->sk_err ||
2736 sk->sk_state == TCP_CLOSE ||
2737 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2738 signal_pending(current))
2739 break;
2740 } else {
2741 if (sock_flag(sk, SOCK_DONE))
2742 break;
2743
2744 if (sk->sk_err) {
2745 copied = sock_error(sk);
2746 break;
2747 }
2748
2749 if (sk->sk_shutdown & RCV_SHUTDOWN)
2750 break;
2751
2752 if (sk->sk_state == TCP_CLOSE) {
2753 /* This occurs when user tries to read
2754 * from never connected socket.
2755 */
2756 copied = -ENOTCONN;
2757 break;
2758 }
2759
2760 if (!timeo) {
2761 copied = -EAGAIN;
2762 break;
2763 }
2764
2765 if (signal_pending(current)) {
2766 copied = sock_intr_errno(timeo);
2767 break;
2768 }
2769 }
2770
2771 if (copied >= target) {
2772 /* Do not sleep, just process backlog. */
2773 __sk_flush_backlog(sk);
2774 } else {
2775 tcp_cleanup_rbuf(sk, copied);
2776 err = sk_wait_data(sk, &timeo, last);
2777 if (err < 0) {
2778 err = copied ? : err;
2779 goto out;
2780 }
2781 }
2782
2783 if ((flags & MSG_PEEK) &&
2784 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2785 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2786 current->comm,
2787 task_pid_nr(current));
2788 peek_seq = tp->copied_seq + peek_offset;
2789 }
2790 continue;
2791
2792found_ok_skb:
2793 /* Ok so how much can we use? */
2794 used = skb->len - offset;
2795 if (len < used)
2796 used = len;
2797
2798 /* Do we have urgent data here? */
2799 if (unlikely(tp->urg_data)) {
2800 u32 urg_offset = tp->urg_seq - *seq;
2801 if (urg_offset < used) {
2802 if (!urg_offset) {
2803 if (!sock_flag(sk, SOCK_URGINLINE)) {
2804 WRITE_ONCE(*seq, *seq + 1);
2805 urg_hole++;
2806 offset++;
2807 used--;
2808 if (!used)
2809 goto skip_copy;
2810 }
2811 } else
2812 used = urg_offset;
2813 }
2814 }
2815
2816 if (!(flags & MSG_TRUNC)) {
2817 if (last_copied_dmabuf != -1 &&
2818 last_copied_dmabuf != !skb_frags_readable(skb))
2819 break;
2820
2821 if (skb_frags_readable(skb)) {
2822 err = skb_copy_datagram_msg(skb, offset, msg,
2823 used);
2824 if (err) {
2825 /* Exception. Bailout! */
2826 if (!copied)
2827 copied = -EFAULT;
2828 break;
2829 }
2830 } else {
2831 if (!(flags & MSG_SOCK_DEVMEM)) {
2832 /* dmabuf skbs can only be received
2833 * with the MSG_SOCK_DEVMEM flag.
2834 */
2835 if (!copied)
2836 copied = -EFAULT;
2837
2838 break;
2839 }
2840
2841 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2842 used);
2843 if (err < 0) {
2844 if (!copied)
2845 copied = err;
2846
2847 break;
2848 }
2849 used = err;
2850 }
2851 }
2852
2853 last_copied_dmabuf = !skb_frags_readable(skb);
2854
2855 WRITE_ONCE(*seq, *seq + used);
2856 copied += used;
2857 len -= used;
2858 if (flags & MSG_PEEK)
2859 sk_peek_offset_fwd(sk, used);
2860 else
2861 sk_peek_offset_bwd(sk, used);
2862 tcp_rcv_space_adjust(sk);
2863
2864skip_copy:
2865 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2866 WRITE_ONCE(tp->urg_data, 0);
2867 tcp_fast_path_check(sk);
2868 }
2869
2870 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2871 tcp_update_recv_tstamps(skb, tss);
2872 *cmsg_flags |= TCP_CMSG_TS;
2873 }
2874
2875 if (used + offset < skb->len)
2876 continue;
2877
2878 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2879 goto found_fin_ok;
2880 if (!(flags & MSG_PEEK))
2881 tcp_eat_recv_skb(sk, skb);
2882 continue;
2883
2884found_fin_ok:
2885 /* Process the FIN. */
2886 WRITE_ONCE(*seq, *seq + 1);
2887 if (!(flags & MSG_PEEK))
2888 tcp_eat_recv_skb(sk, skb);
2889 break;
2890 } while (len > 0);
2891
2892 /* According to UNIX98, msg_name/msg_namelen are ignored
2893 * on connected socket. I was just happy when found this 8) --ANK
2894 */
2895
2896 /* Clean up data we have read: This will do ACK frames. */
2897 tcp_cleanup_rbuf(sk, copied);
2898 return copied;
2899
2900out:
2901 return err;
2902
2903recv_urg:
2904 err = tcp_recv_urg(sk, msg, len, flags);
2905 goto out;
2906
2907recv_sndq:
2908 err = tcp_peek_sndq(sk, msg, len);
2909 goto out;
2910}
2911
2912int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2913 int *addr_len)
2914{
2915 int cmsg_flags = 0, ret;
2916 struct scm_timestamping_internal tss;
2917
2918 if (unlikely(flags & MSG_ERRQUEUE))
2919 return inet_recv_error(sk, msg, len, addr_len);
2920
2921 if (sk_can_busy_loop(sk) &&
2922 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2923 sk->sk_state == TCP_ESTABLISHED)
2924 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2925
2926 lock_sock(sk);
2927 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2928 release_sock(sk);
2929
2930 if ((cmsg_flags | msg->msg_get_inq) && ret >= 0) {
2931 if (cmsg_flags & TCP_CMSG_TS)
2932 tcp_recv_timestamp(msg, sk, &tss);
2933 if ((cmsg_flags & TCP_CMSG_INQ) | msg->msg_get_inq) {
2934 msg->msg_inq = tcp_inq_hint(sk);
2935 if (cmsg_flags & TCP_CMSG_INQ)
2936 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2937 sizeof(msg->msg_inq), &msg->msg_inq);
2938 }
2939 }
2940 return ret;
2941}
2942EXPORT_IPV6_MOD(tcp_recvmsg);
2943
2944void tcp_set_state(struct sock *sk, int state)
2945{
2946 int oldstate = sk->sk_state;
2947
2948 /* We defined a new enum for TCP states that are exported in BPF
2949 * so as not force the internal TCP states to be frozen. The
2950 * following checks will detect if an internal state value ever
2951 * differs from the BPF value. If this ever happens, then we will
2952 * need to remap the internal value to the BPF value before calling
2953 * tcp_call_bpf_2arg.
2954 */
2955 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2956 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2957 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2958 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2959 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2960 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2961 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2962 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2963 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2964 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2965 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2966 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2967 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2968 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2969
2970 /* bpf uapi header bpf.h defines an anonymous enum with values
2971 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2972 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2973 * But clang built vmlinux does not have this enum in DWARF
2974 * since clang removes the above code before generating IR/debuginfo.
2975 * Let us explicitly emit the type debuginfo to ensure the
2976 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2977 * regardless of which compiler is used.
2978 */
2979 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2980
2981 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2982 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2983
2984 switch (state) {
2985 case TCP_ESTABLISHED:
2986 if (oldstate != TCP_ESTABLISHED)
2987 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2988 break;
2989 case TCP_CLOSE_WAIT:
2990 if (oldstate == TCP_SYN_RECV)
2991 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2992 break;
2993
2994 case TCP_CLOSE:
2995 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2996 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2997
2998 sk->sk_prot->unhash(sk);
2999 if (inet_csk(sk)->icsk_bind_hash &&
3000 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
3001 inet_put_port(sk);
3002 fallthrough;
3003 default:
3004 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3005 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
3006 }
3007
3008 /* Change state AFTER socket is unhashed to avoid closed
3009 * socket sitting in hash tables.
3010 */
3011 inet_sk_state_store(sk, state);
3012}
3013EXPORT_SYMBOL_GPL(tcp_set_state);
3014
3015/*
3016 * State processing on a close. This implements the state shift for
3017 * sending our FIN frame. Note that we only send a FIN for some
3018 * states. A shutdown() may have already sent the FIN, or we may be
3019 * closed.
3020 */
3021
3022static const unsigned char new_state[16] = {
3023 /* current state: new state: action: */
3024 [0 /* (Invalid) */] = TCP_CLOSE,
3025 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3026 [TCP_SYN_SENT] = TCP_CLOSE,
3027 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3028 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
3029 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
3030 [TCP_TIME_WAIT] = TCP_CLOSE,
3031 [TCP_CLOSE] = TCP_CLOSE,
3032 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
3033 [TCP_LAST_ACK] = TCP_LAST_ACK,
3034 [TCP_LISTEN] = TCP_CLOSE,
3035 [TCP_CLOSING] = TCP_CLOSING,
3036 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
3037};
3038
3039static int tcp_close_state(struct sock *sk)
3040{
3041 int next = (int)new_state[sk->sk_state];
3042 int ns = next & TCP_STATE_MASK;
3043
3044 tcp_set_state(sk, ns);
3045
3046 return next & TCP_ACTION_FIN;
3047}
3048
3049/*
3050 * Shutdown the sending side of a connection. Much like close except
3051 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3052 */
3053
3054void tcp_shutdown(struct sock *sk, int how)
3055{
3056 /* We need to grab some memory, and put together a FIN,
3057 * and then put it into the queue to be sent.
3058 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3059 */
3060 if (!(how & SEND_SHUTDOWN))
3061 return;
3062
3063 /* If we've already sent a FIN, or it's a closed state, skip this. */
3064 if ((1 << sk->sk_state) &
3065 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3066 TCPF_CLOSE_WAIT)) {
3067 /* Clear out any half completed packets. FIN if needed. */
3068 if (tcp_close_state(sk))
3069 tcp_send_fin(sk);
3070 }
3071}
3072EXPORT_IPV6_MOD(tcp_shutdown);
3073
3074int tcp_orphan_count_sum(void)
3075{
3076 int i, total = 0;
3077
3078 for_each_possible_cpu(i)
3079 total += per_cpu(tcp_orphan_count, i);
3080
3081 return max(total, 0);
3082}
3083
3084static int tcp_orphan_cache;
3085static struct timer_list tcp_orphan_timer;
3086#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3087
3088static void tcp_orphan_update(struct timer_list *unused)
3089{
3090 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3091 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3092}
3093
3094static bool tcp_too_many_orphans(int shift)
3095{
3096 return READ_ONCE(tcp_orphan_cache) << shift >
3097 READ_ONCE(sysctl_tcp_max_orphans);
3098}
3099
3100static bool tcp_out_of_memory(const struct sock *sk)
3101{
3102 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3103 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3104 return true;
3105 return false;
3106}
3107
3108bool tcp_check_oom(const struct sock *sk, int shift)
3109{
3110 bool too_many_orphans, out_of_socket_memory;
3111
3112 too_many_orphans = tcp_too_many_orphans(shift);
3113 out_of_socket_memory = tcp_out_of_memory(sk);
3114
3115 if (too_many_orphans)
3116 net_info_ratelimited("too many orphaned sockets\n");
3117 if (out_of_socket_memory)
3118 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3119 return too_many_orphans || out_of_socket_memory;
3120}
3121
3122void __tcp_close(struct sock *sk, long timeout)
3123{
3124 bool data_was_unread = false;
3125 struct sk_buff *skb;
3126 int state;
3127
3128 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3129
3130 if (sk->sk_state == TCP_LISTEN) {
3131 tcp_set_state(sk, TCP_CLOSE);
3132
3133 /* Special case. */
3134 inet_csk_listen_stop(sk);
3135
3136 goto adjudge_to_death;
3137 }
3138
3139 /* We need to flush the recv. buffs. We do this only on the
3140 * descriptor close, not protocol-sourced closes, because the
3141 * reader process may not have drained the data yet!
3142 */
3143 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
3144 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3145
3146 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3147 end_seq--;
3148 if (after(end_seq, tcp_sk(sk)->copied_seq))
3149 data_was_unread = true;
3150 tcp_eat_recv_skb(sk, skb);
3151 }
3152
3153 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3154 if (sk->sk_state == TCP_CLOSE)
3155 goto adjudge_to_death;
3156
3157 /* As outlined in RFC 2525, section 2.17, we send a RST here because
3158 * data was lost. To witness the awful effects of the old behavior of
3159 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3160 * GET in an FTP client, suspend the process, wait for the client to
3161 * advertise a zero window, then kill -9 the FTP client, wheee...
3162 * Note: timeout is always zero in such a case.
3163 */
3164 if (unlikely(tcp_sk(sk)->repair)) {
3165 sk->sk_prot->disconnect(sk, 0);
3166 } else if (data_was_unread) {
3167 /* Unread data was tossed, zap the connection. */
3168 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3169 tcp_set_state(sk, TCP_CLOSE);
3170 tcp_send_active_reset(sk, sk->sk_allocation,
3171 SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3172 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3173 /* Check zero linger _after_ checking for unread data. */
3174 sk->sk_prot->disconnect(sk, 0);
3175 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3176 } else if (tcp_close_state(sk)) {
3177 /* We FIN if the application ate all the data before
3178 * zapping the connection.
3179 */
3180
3181 /* RED-PEN. Formally speaking, we have broken TCP state
3182 * machine. State transitions:
3183 *
3184 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3185 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
3186 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3187 *
3188 * are legal only when FIN has been sent (i.e. in window),
3189 * rather than queued out of window. Purists blame.
3190 *
3191 * F.e. "RFC state" is ESTABLISHED,
3192 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3193 *
3194 * The visible declinations are that sometimes
3195 * we enter time-wait state, when it is not required really
3196 * (harmless), do not send active resets, when they are
3197 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3198 * they look as CLOSING or LAST_ACK for Linux)
3199 * Probably, I missed some more holelets.
3200 * --ANK
3201 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3202 * in a single packet! (May consider it later but will
3203 * probably need API support or TCP_CORK SYN-ACK until
3204 * data is written and socket is closed.)
3205 */
3206 tcp_send_fin(sk);
3207 }
3208
3209 sk_stream_wait_close(sk, timeout);
3210
3211adjudge_to_death:
3212 state = sk->sk_state;
3213 sock_hold(sk);
3214 sock_orphan(sk);
3215
3216 local_bh_disable();
3217 bh_lock_sock(sk);
3218 /* remove backlog if any, without releasing ownership. */
3219 __release_sock(sk);
3220
3221 tcp_orphan_count_inc();
3222
3223 /* Have we already been destroyed by a softirq or backlog? */
3224 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3225 goto out;
3226
3227 /* This is a (useful) BSD violating of the RFC. There is a
3228 * problem with TCP as specified in that the other end could
3229 * keep a socket open forever with no application left this end.
3230 * We use a 1 minute timeout (about the same as BSD) then kill
3231 * our end. If they send after that then tough - BUT: long enough
3232 * that we won't make the old 4*rto = almost no time - whoops
3233 * reset mistake.
3234 *
3235 * Nope, it was not mistake. It is really desired behaviour
3236 * f.e. on http servers, when such sockets are useless, but
3237 * consume significant resources. Let's do it with special
3238 * linger2 option. --ANK
3239 */
3240
3241 if (sk->sk_state == TCP_FIN_WAIT2) {
3242 struct tcp_sock *tp = tcp_sk(sk);
3243 if (READ_ONCE(tp->linger2) < 0) {
3244 tcp_set_state(sk, TCP_CLOSE);
3245 tcp_send_active_reset(sk, GFP_ATOMIC,
3246 SK_RST_REASON_TCP_ABORT_ON_LINGER);
3247 __NET_INC_STATS(sock_net(sk),
3248 LINUX_MIB_TCPABORTONLINGER);
3249 } else {
3250 const int tmo = tcp_fin_time(sk);
3251
3252 if (tmo > TCP_TIMEWAIT_LEN) {
3253 tcp_reset_keepalive_timer(sk,
3254 tmo - TCP_TIMEWAIT_LEN);
3255 } else {
3256 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3257 goto out;
3258 }
3259 }
3260 }
3261 if (sk->sk_state != TCP_CLOSE) {
3262 if (tcp_check_oom(sk, 0)) {
3263 tcp_set_state(sk, TCP_CLOSE);
3264 tcp_send_active_reset(sk, GFP_ATOMIC,
3265 SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3266 __NET_INC_STATS(sock_net(sk),
3267 LINUX_MIB_TCPABORTONMEMORY);
3268 } else if (!check_net(sock_net(sk))) {
3269 /* Not possible to send reset; just close */
3270 tcp_set_state(sk, TCP_CLOSE);
3271 }
3272 }
3273
3274 if (sk->sk_state == TCP_CLOSE) {
3275 struct request_sock *req;
3276
3277 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3278 lockdep_sock_is_held(sk));
3279 /* We could get here with a non-NULL req if the socket is
3280 * aborted (e.g., closed with unread data) before 3WHS
3281 * finishes.
3282 */
3283 if (req)
3284 reqsk_fastopen_remove(sk, req, false);
3285 inet_csk_destroy_sock(sk);
3286 }
3287 /* Otherwise, socket is reprieved until protocol close. */
3288
3289out:
3290 bh_unlock_sock(sk);
3291 local_bh_enable();
3292}
3293
3294void tcp_close(struct sock *sk, long timeout)
3295{
3296 lock_sock(sk);
3297 __tcp_close(sk, timeout);
3298 release_sock(sk);
3299 if (!sk->sk_net_refcnt)
3300 inet_csk_clear_xmit_timers_sync(sk);
3301 sock_put(sk);
3302}
3303EXPORT_SYMBOL(tcp_close);
3304
3305/* These states need RST on ABORT according to RFC793 */
3306
3307static inline bool tcp_need_reset(int state)
3308{
3309 return (1 << state) &
3310 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3311 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3312}
3313
3314static void tcp_rtx_queue_purge(struct sock *sk)
3315{
3316 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3317
3318 tcp_sk(sk)->highest_sack = NULL;
3319 while (p) {
3320 struct sk_buff *skb = rb_to_skb(p);
3321
3322 p = rb_next(p);
3323 /* Since we are deleting whole queue, no need to
3324 * list_del(&skb->tcp_tsorted_anchor)
3325 */
3326 tcp_rtx_queue_unlink(skb, sk);
3327 tcp_wmem_free_skb(sk, skb);
3328 }
3329}
3330
3331void tcp_write_queue_purge(struct sock *sk)
3332{
3333 struct sk_buff *skb;
3334
3335 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3336 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3337 tcp_skb_tsorted_anchor_cleanup(skb);
3338 tcp_wmem_free_skb(sk, skb);
3339 }
3340 tcp_rtx_queue_purge(sk);
3341 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3342 tcp_clear_all_retrans_hints(tcp_sk(sk));
3343 tcp_sk(sk)->packets_out = 0;
3344 inet_csk(sk)->icsk_backoff = 0;
3345}
3346
3347int tcp_disconnect(struct sock *sk, int flags)
3348{
3349 struct inet_sock *inet = inet_sk(sk);
3350 struct inet_connection_sock *icsk = inet_csk(sk);
3351 struct tcp_sock *tp = tcp_sk(sk);
3352 int old_state = sk->sk_state;
3353 struct request_sock *req;
3354 u32 seq;
3355
3356 if (old_state != TCP_CLOSE)
3357 tcp_set_state(sk, TCP_CLOSE);
3358
3359 /* ABORT function of RFC793 */
3360 if (old_state == TCP_LISTEN) {
3361 inet_csk_listen_stop(sk);
3362 } else if (unlikely(tp->repair)) {
3363 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3364 } else if (tcp_need_reset(old_state)) {
3365 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3366 WRITE_ONCE(sk->sk_err, ECONNRESET);
3367 } else if (tp->snd_nxt != tp->write_seq &&
3368 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3369 /* The last check adjusts for discrepancy of Linux wrt. RFC
3370 * states
3371 */
3372 tcp_send_active_reset(sk, gfp_any(),
3373 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3374 WRITE_ONCE(sk->sk_err, ECONNRESET);
3375 } else if (old_state == TCP_SYN_SENT)
3376 WRITE_ONCE(sk->sk_err, ECONNRESET);
3377
3378 tcp_clear_xmit_timers(sk);
3379 __skb_queue_purge(&sk->sk_receive_queue);
3380 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3381 WRITE_ONCE(tp->urg_data, 0);
3382 sk_set_peek_off(sk, -1);
3383 tcp_write_queue_purge(sk);
3384 tcp_fastopen_active_disable_ofo_check(sk);
3385 skb_rbtree_purge(&tp->out_of_order_queue);
3386
3387 inet->inet_dport = 0;
3388
3389 inet_bhash2_reset_saddr(sk);
3390
3391 WRITE_ONCE(sk->sk_shutdown, 0);
3392 sock_reset_flag(sk, SOCK_DONE);
3393 tp->srtt_us = 0;
3394 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3395 tp->rcv_rtt_last_tsecr = 0;
3396
3397 seq = tp->write_seq + tp->max_window + 2;
3398 if (!seq)
3399 seq = 1;
3400 WRITE_ONCE(tp->write_seq, seq);
3401
3402 icsk->icsk_backoff = 0;
3403 WRITE_ONCE(icsk->icsk_probes_out, 0);
3404 icsk->icsk_probes_tstamp = 0;
3405 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3406 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3407 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3408 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3409 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3410 tp->snd_cwnd_cnt = 0;
3411 tp->is_cwnd_limited = 0;
3412 tp->max_packets_out = 0;
3413 tp->window_clamp = 0;
3414 tp->delivered = 0;
3415 tp->delivered_ce = 0;
3416 tp->accecn_fail_mode = 0;
3417 tp->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN;
3418 tcp_accecn_init_counters(tp);
3419 tp->prev_ecnfield = 0;
3420 tp->accecn_opt_tstamp = 0;
3421 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3422 icsk->icsk_ca_ops->release(sk);
3423 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3424 icsk->icsk_ca_initialized = 0;
3425 tcp_set_ca_state(sk, TCP_CA_Open);
3426 tp->is_sack_reneg = 0;
3427 tcp_clear_retrans(tp);
3428 tp->total_retrans = 0;
3429 inet_csk_delack_init(sk);
3430 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3431 * issue in __tcp_select_window()
3432 */
3433 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3434 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3435 __sk_dst_reset(sk);
3436 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3437 tcp_saved_syn_free(tp);
3438 tp->compressed_ack = 0;
3439 tp->segs_in = 0;
3440 tp->segs_out = 0;
3441 tp->bytes_sent = 0;
3442 tp->bytes_acked = 0;
3443 tp->bytes_received = 0;
3444 tp->bytes_retrans = 0;
3445 tp->data_segs_in = 0;
3446 tp->data_segs_out = 0;
3447 tp->duplicate_sack[0].start_seq = 0;
3448 tp->duplicate_sack[0].end_seq = 0;
3449 tp->dsack_dups = 0;
3450 tp->reord_seen = 0;
3451 tp->retrans_out = 0;
3452 tp->sacked_out = 0;
3453 tp->tlp_high_seq = 0;
3454 tp->last_oow_ack_time = 0;
3455 tp->plb_rehash = 0;
3456 /* There's a bubble in the pipe until at least the first ACK. */
3457 tp->app_limited = ~0U;
3458 tp->rate_app_limited = 1;
3459 tp->rack.mstamp = 0;
3460 tp->rack.advanced = 0;
3461 tp->rack.reo_wnd_steps = 1;
3462 tp->rack.last_delivered = 0;
3463 tp->rack.reo_wnd_persist = 0;
3464 tp->rack.dsack_seen = 0;
3465 tp->syn_data_acked = 0;
3466 tp->syn_fastopen_child = 0;
3467 tp->rx_opt.saw_tstamp = 0;
3468 tp->rx_opt.dsack = 0;
3469 tp->rx_opt.num_sacks = 0;
3470 tp->rcv_ooopack = 0;
3471
3472
3473 /* Clean up fastopen related fields */
3474 req = rcu_dereference_protected(tp->fastopen_rsk,
3475 lockdep_sock_is_held(sk));
3476 if (req)
3477 reqsk_fastopen_remove(sk, req, false);
3478 tcp_free_fastopen_req(tp);
3479 inet_clear_bit(DEFER_CONNECT, sk);
3480 tp->fastopen_client_fail = 0;
3481
3482 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3483
3484 if (sk->sk_frag.page) {
3485 put_page(sk->sk_frag.page);
3486 sk->sk_frag.page = NULL;
3487 sk->sk_frag.offset = 0;
3488 }
3489 sk_error_report(sk);
3490 return 0;
3491}
3492EXPORT_SYMBOL(tcp_disconnect);
3493
3494static inline bool tcp_can_repair_sock(const struct sock *sk)
3495{
3496 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3497 (sk->sk_state != TCP_LISTEN);
3498}
3499
3500static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3501{
3502 struct tcp_repair_window opt;
3503
3504 if (!tp->repair)
3505 return -EPERM;
3506
3507 if (len != sizeof(opt))
3508 return -EINVAL;
3509
3510 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3511 return -EFAULT;
3512
3513 if (opt.max_window < opt.snd_wnd)
3514 return -EINVAL;
3515
3516 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3517 return -EINVAL;
3518
3519 if (after(opt.rcv_wup, tp->rcv_nxt))
3520 return -EINVAL;
3521
3522 tp->snd_wl1 = opt.snd_wl1;
3523 tp->snd_wnd = opt.snd_wnd;
3524 tp->max_window = opt.max_window;
3525
3526 tp->rcv_wnd = opt.rcv_wnd;
3527 tp->rcv_wup = opt.rcv_wup;
3528
3529 return 0;
3530}
3531
3532static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3533 unsigned int len)
3534{
3535 struct tcp_sock *tp = tcp_sk(sk);
3536 struct tcp_repair_opt opt;
3537 size_t offset = 0;
3538
3539 while (len >= sizeof(opt)) {
3540 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3541 return -EFAULT;
3542
3543 offset += sizeof(opt);
3544 len -= sizeof(opt);
3545
3546 switch (opt.opt_code) {
3547 case TCPOPT_MSS:
3548 tp->rx_opt.mss_clamp = opt.opt_val;
3549 tcp_mtup_init(sk);
3550 break;
3551 case TCPOPT_WINDOW:
3552 {
3553 u16 snd_wscale = opt.opt_val & 0xFFFF;
3554 u16 rcv_wscale = opt.opt_val >> 16;
3555
3556 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3557 return -EFBIG;
3558
3559 tp->rx_opt.snd_wscale = snd_wscale;
3560 tp->rx_opt.rcv_wscale = rcv_wscale;
3561 tp->rx_opt.wscale_ok = 1;
3562 }
3563 break;
3564 case TCPOPT_SACK_PERM:
3565 if (opt.opt_val != 0)
3566 return -EINVAL;
3567
3568 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3569 break;
3570 case TCPOPT_TIMESTAMP:
3571 if (opt.opt_val != 0)
3572 return -EINVAL;
3573
3574 tp->rx_opt.tstamp_ok = 1;
3575 break;
3576 }
3577 }
3578
3579 return 0;
3580}
3581
3582DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3583EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3584
3585static void tcp_enable_tx_delay(struct sock *sk, int val)
3586{
3587 struct tcp_sock *tp = tcp_sk(sk);
3588 s32 delta = (val - tp->tcp_tx_delay) << 3;
3589
3590 if (val && !static_branch_unlikely(&tcp_tx_delay_enabled)) {
3591 static int __tcp_tx_delay_enabled = 0;
3592
3593 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3594 static_branch_enable(&tcp_tx_delay_enabled);
3595 pr_info("TCP_TX_DELAY enabled\n");
3596 }
3597 }
3598 /* If we change tcp_tx_delay on a live flow, adjust tp->srtt_us,
3599 * tp->rtt_min, icsk_rto and sk->sk_pacing_rate.
3600 * This is best effort.
3601 */
3602 if (delta && sk->sk_state == TCP_ESTABLISHED) {
3603 s64 srtt = (s64)tp->srtt_us + delta;
3604
3605 tp->srtt_us = clamp_t(s64, srtt, 1, ~0U);
3606
3607 /* Note: does not deal with non zero icsk_backoff */
3608 tcp_set_rto(sk);
3609
3610 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
3611
3612 tcp_update_pacing_rate(sk);
3613 }
3614}
3615
3616/* When set indicates to always queue non-full frames. Later the user clears
3617 * this option and we transmit any pending partial frames in the queue. This is
3618 * meant to be used alongside sendfile() to get properly filled frames when the
3619 * user (for example) must write out headers with a write() call first and then
3620 * use sendfile to send out the data parts.
3621 *
3622 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3623 * TCP_NODELAY.
3624 */
3625void __tcp_sock_set_cork(struct sock *sk, bool on)
3626{
3627 struct tcp_sock *tp = tcp_sk(sk);
3628
3629 if (on) {
3630 tp->nonagle |= TCP_NAGLE_CORK;
3631 } else {
3632 tp->nonagle &= ~TCP_NAGLE_CORK;
3633 if (tp->nonagle & TCP_NAGLE_OFF)
3634 tp->nonagle |= TCP_NAGLE_PUSH;
3635 tcp_push_pending_frames(sk);
3636 }
3637}
3638
3639void tcp_sock_set_cork(struct sock *sk, bool on)
3640{
3641 lock_sock(sk);
3642 __tcp_sock_set_cork(sk, on);
3643 release_sock(sk);
3644}
3645EXPORT_SYMBOL(tcp_sock_set_cork);
3646
3647/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3648 * remembered, but it is not activated until cork is cleared.
3649 *
3650 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3651 * even TCP_CORK for currently queued segments.
3652 */
3653void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3654{
3655 if (on) {
3656 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3657 tcp_push_pending_frames(sk);
3658 } else {
3659 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3660 }
3661}
3662
3663void tcp_sock_set_nodelay(struct sock *sk)
3664{
3665 lock_sock(sk);
3666 __tcp_sock_set_nodelay(sk, true);
3667 release_sock(sk);
3668}
3669EXPORT_SYMBOL(tcp_sock_set_nodelay);
3670
3671static void __tcp_sock_set_quickack(struct sock *sk, int val)
3672{
3673 if (!val) {
3674 inet_csk_enter_pingpong_mode(sk);
3675 return;
3676 }
3677
3678 inet_csk_exit_pingpong_mode(sk);
3679 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3680 inet_csk_ack_scheduled(sk)) {
3681 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3682 tcp_cleanup_rbuf(sk, 1);
3683 if (!(val & 1))
3684 inet_csk_enter_pingpong_mode(sk);
3685 }
3686}
3687
3688void tcp_sock_set_quickack(struct sock *sk, int val)
3689{
3690 lock_sock(sk);
3691 __tcp_sock_set_quickack(sk, val);
3692 release_sock(sk);
3693}
3694EXPORT_SYMBOL(tcp_sock_set_quickack);
3695
3696int tcp_sock_set_syncnt(struct sock *sk, int val)
3697{
3698 if (val < 1 || val > MAX_TCP_SYNCNT)
3699 return -EINVAL;
3700
3701 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3702 return 0;
3703}
3704EXPORT_SYMBOL(tcp_sock_set_syncnt);
3705
3706int tcp_sock_set_user_timeout(struct sock *sk, int val)
3707{
3708 /* Cap the max time in ms TCP will retry or probe the window
3709 * before giving up and aborting (ETIMEDOUT) a connection.
3710 */
3711 if (val < 0)
3712 return -EINVAL;
3713
3714 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3715 return 0;
3716}
3717EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3718
3719int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3720{
3721 struct tcp_sock *tp = tcp_sk(sk);
3722
3723 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3724 return -EINVAL;
3725
3726 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3727 WRITE_ONCE(tp->keepalive_time, val * HZ);
3728 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3729 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3730 u32 elapsed = keepalive_time_elapsed(tp);
3731
3732 if (tp->keepalive_time > elapsed)
3733 elapsed = tp->keepalive_time - elapsed;
3734 else
3735 elapsed = 0;
3736 tcp_reset_keepalive_timer(sk, elapsed);
3737 }
3738
3739 return 0;
3740}
3741
3742int tcp_sock_set_keepidle(struct sock *sk, int val)
3743{
3744 int err;
3745
3746 lock_sock(sk);
3747 err = tcp_sock_set_keepidle_locked(sk, val);
3748 release_sock(sk);
3749 return err;
3750}
3751EXPORT_SYMBOL(tcp_sock_set_keepidle);
3752
3753int tcp_sock_set_keepintvl(struct sock *sk, int val)
3754{
3755 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3756 return -EINVAL;
3757
3758 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3759 return 0;
3760}
3761EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3762
3763int tcp_sock_set_keepcnt(struct sock *sk, int val)
3764{
3765 if (val < 1 || val > MAX_TCP_KEEPCNT)
3766 return -EINVAL;
3767
3768 /* Paired with READ_ONCE() in keepalive_probes() */
3769 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3770 return 0;
3771}
3772EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3773
3774int tcp_set_window_clamp(struct sock *sk, int val)
3775{
3776 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3777 struct tcp_sock *tp = tcp_sk(sk);
3778
3779 if (!val) {
3780 if (sk->sk_state != TCP_CLOSE)
3781 return -EINVAL;
3782 WRITE_ONCE(tp->window_clamp, 0);
3783 return 0;
3784 }
3785
3786 old_window_clamp = tp->window_clamp;
3787 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3788
3789 if (new_window_clamp == old_window_clamp)
3790 return 0;
3791
3792 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3793
3794 /* Need to apply the reserved mem provisioning only
3795 * when shrinking the window clamp.
3796 */
3797 if (new_window_clamp < old_window_clamp) {
3798 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3799 } else {
3800 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3801 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3802 }
3803 return 0;
3804}
3805
3806int tcp_sock_set_maxseg(struct sock *sk, int val)
3807{
3808 /* Values greater than interface MTU won't take effect. However
3809 * at the point when this call is done we typically don't yet
3810 * know which interface is going to be used
3811 */
3812 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW))
3813 return -EINVAL;
3814
3815 WRITE_ONCE(tcp_sk(sk)->rx_opt.user_mss, val);
3816 return 0;
3817}
3818
3819/*
3820 * Socket option code for TCP.
3821 */
3822int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3823 sockptr_t optval, unsigned int optlen)
3824{
3825 struct tcp_sock *tp = tcp_sk(sk);
3826 struct inet_connection_sock *icsk = inet_csk(sk);
3827 struct net *net = sock_net(sk);
3828 int val;
3829 int err = 0;
3830
3831 /* These are data/string values, all the others are ints */
3832 switch (optname) {
3833 case TCP_CONGESTION: {
3834 char name[TCP_CA_NAME_MAX];
3835
3836 if (optlen < 1)
3837 return -EINVAL;
3838
3839 val = strncpy_from_sockptr(name, optval,
3840 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3841 if (val < 0)
3842 return -EFAULT;
3843 name[val] = 0;
3844
3845 sockopt_lock_sock(sk);
3846 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3847 sockopt_ns_capable(sock_net(sk)->user_ns,
3848 CAP_NET_ADMIN));
3849 sockopt_release_sock(sk);
3850 return err;
3851 }
3852 case TCP_ULP: {
3853 char name[TCP_ULP_NAME_MAX];
3854
3855 if (optlen < 1)
3856 return -EINVAL;
3857
3858 val = strncpy_from_sockptr(name, optval,
3859 min_t(long, TCP_ULP_NAME_MAX - 1,
3860 optlen));
3861 if (val < 0)
3862 return -EFAULT;
3863 name[val] = 0;
3864
3865 sockopt_lock_sock(sk);
3866 err = tcp_set_ulp(sk, name);
3867 sockopt_release_sock(sk);
3868 return err;
3869 }
3870 case TCP_FASTOPEN_KEY: {
3871 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3872 __u8 *backup_key = NULL;
3873
3874 /* Allow a backup key as well to facilitate key rotation
3875 * First key is the active one.
3876 */
3877 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3878 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3879 return -EINVAL;
3880
3881 if (copy_from_sockptr(key, optval, optlen))
3882 return -EFAULT;
3883
3884 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3885 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3886
3887 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3888 }
3889 default:
3890 /* fallthru */
3891 break;
3892 }
3893
3894 if (optlen < sizeof(int))
3895 return -EINVAL;
3896
3897 if (copy_from_sockptr(&val, optval, sizeof(val)))
3898 return -EFAULT;
3899
3900 /* Handle options that can be set without locking the socket. */
3901 switch (optname) {
3902 case TCP_SYNCNT:
3903 return tcp_sock_set_syncnt(sk, val);
3904 case TCP_USER_TIMEOUT:
3905 return tcp_sock_set_user_timeout(sk, val);
3906 case TCP_KEEPINTVL:
3907 return tcp_sock_set_keepintvl(sk, val);
3908 case TCP_KEEPCNT:
3909 return tcp_sock_set_keepcnt(sk, val);
3910 case TCP_LINGER2:
3911 if (val < 0)
3912 WRITE_ONCE(tp->linger2, -1);
3913 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3914 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3915 else
3916 WRITE_ONCE(tp->linger2, val * HZ);
3917 return 0;
3918 case TCP_DEFER_ACCEPT:
3919 /* Translate value in seconds to number of retransmits */
3920 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3921 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3922 TCP_RTO_MAX / HZ));
3923 return 0;
3924 case TCP_RTO_MAX_MS:
3925 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3926 return -EINVAL;
3927 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3928 return 0;
3929 case TCP_RTO_MIN_US: {
3930 int rto_min = usecs_to_jiffies(val);
3931
3932 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3933 return -EINVAL;
3934 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3935 return 0;
3936 }
3937 case TCP_DELACK_MAX_US: {
3938 int delack_max = usecs_to_jiffies(val);
3939
3940 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3941 return -EINVAL;
3942 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3943 return 0;
3944 }
3945 case TCP_MAXSEG:
3946 return tcp_sock_set_maxseg(sk, val);
3947 }
3948
3949 sockopt_lock_sock(sk);
3950
3951 switch (optname) {
3952 case TCP_NODELAY:
3953 __tcp_sock_set_nodelay(sk, val);
3954 break;
3955
3956 case TCP_THIN_LINEAR_TIMEOUTS:
3957 if (val < 0 || val > 1)
3958 err = -EINVAL;
3959 else
3960 tp->thin_lto = val;
3961 break;
3962
3963 case TCP_THIN_DUPACK:
3964 if (val < 0 || val > 1)
3965 err = -EINVAL;
3966 break;
3967
3968 case TCP_REPAIR:
3969 if (!tcp_can_repair_sock(sk))
3970 err = -EPERM;
3971 else if (val == TCP_REPAIR_ON) {
3972 tp->repair = 1;
3973 sk->sk_reuse = SK_FORCE_REUSE;
3974 tp->repair_queue = TCP_NO_QUEUE;
3975 } else if (val == TCP_REPAIR_OFF) {
3976 tp->repair = 0;
3977 sk->sk_reuse = SK_NO_REUSE;
3978 tcp_send_window_probe(sk);
3979 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3980 tp->repair = 0;
3981 sk->sk_reuse = SK_NO_REUSE;
3982 } else
3983 err = -EINVAL;
3984
3985 break;
3986
3987 case TCP_REPAIR_QUEUE:
3988 if (!tp->repair)
3989 err = -EPERM;
3990 else if ((unsigned int)val < TCP_QUEUES_NR)
3991 tp->repair_queue = val;
3992 else
3993 err = -EINVAL;
3994 break;
3995
3996 case TCP_QUEUE_SEQ:
3997 if (sk->sk_state != TCP_CLOSE) {
3998 err = -EPERM;
3999 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
4000 if (!tcp_rtx_queue_empty(sk))
4001 err = -EPERM;
4002 else
4003 WRITE_ONCE(tp->write_seq, val);
4004 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
4005 if (tp->rcv_nxt != tp->copied_seq) {
4006 err = -EPERM;
4007 } else {
4008 WRITE_ONCE(tp->rcv_nxt, val);
4009 WRITE_ONCE(tp->copied_seq, val);
4010 }
4011 } else {
4012 err = -EINVAL;
4013 }
4014 break;
4015
4016 case TCP_REPAIR_OPTIONS:
4017 if (!tp->repair)
4018 err = -EINVAL;
4019 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
4020 err = tcp_repair_options_est(sk, optval, optlen);
4021 else
4022 err = -EPERM;
4023 break;
4024
4025 case TCP_CORK:
4026 __tcp_sock_set_cork(sk, val);
4027 break;
4028
4029 case TCP_KEEPIDLE:
4030 err = tcp_sock_set_keepidle_locked(sk, val);
4031 break;
4032 case TCP_SAVE_SYN:
4033 /* 0: disable, 1: enable, 2: start from ether_header */
4034 if (val < 0 || val > 2)
4035 err = -EINVAL;
4036 else
4037 tp->save_syn = val;
4038 break;
4039
4040 case TCP_WINDOW_CLAMP:
4041 err = tcp_set_window_clamp(sk, val);
4042 break;
4043
4044 case TCP_QUICKACK:
4045 __tcp_sock_set_quickack(sk, val);
4046 break;
4047
4048 case TCP_AO_REPAIR:
4049 if (!tcp_can_repair_sock(sk)) {
4050 err = -EPERM;
4051 break;
4052 }
4053 err = tcp_ao_set_repair(sk, optval, optlen);
4054 break;
4055#ifdef CONFIG_TCP_AO
4056 case TCP_AO_ADD_KEY:
4057 case TCP_AO_DEL_KEY:
4058 case TCP_AO_INFO: {
4059 /* If this is the first TCP-AO setsockopt() on the socket,
4060 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4061 * in any state.
4062 */
4063 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
4064 goto ao_parse;
4065 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
4066 lockdep_sock_is_held(sk)))
4067 goto ao_parse;
4068 if (tp->repair)
4069 goto ao_parse;
4070 err = -EISCONN;
4071 break;
4072ao_parse:
4073 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4074 break;
4075 }
4076#endif
4077#ifdef CONFIG_TCP_MD5SIG
4078 case TCP_MD5SIG:
4079 case TCP_MD5SIG_EXT:
4080 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4081 break;
4082#endif
4083 case TCP_FASTOPEN:
4084 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4085 TCPF_LISTEN))) {
4086 tcp_fastopen_init_key_once(net);
4087
4088 fastopen_queue_tune(sk, val);
4089 } else {
4090 err = -EINVAL;
4091 }
4092 break;
4093 case TCP_FASTOPEN_CONNECT:
4094 if (val > 1 || val < 0) {
4095 err = -EINVAL;
4096 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4097 TFO_CLIENT_ENABLE) {
4098 if (sk->sk_state == TCP_CLOSE)
4099 tp->fastopen_connect = val;
4100 else
4101 err = -EINVAL;
4102 } else {
4103 err = -EOPNOTSUPP;
4104 }
4105 break;
4106 case TCP_FASTOPEN_NO_COOKIE:
4107 if (val > 1 || val < 0)
4108 err = -EINVAL;
4109 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4110 err = -EINVAL;
4111 else
4112 tp->fastopen_no_cookie = val;
4113 break;
4114 case TCP_TIMESTAMP:
4115 if (!tp->repair) {
4116 err = -EPERM;
4117 break;
4118 }
4119 /* val is an opaque field,
4120 * and low order bit contains usec_ts enable bit.
4121 * Its a best effort, and we do not care if user makes an error.
4122 */
4123 tp->tcp_usec_ts = val & 1;
4124 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4125 break;
4126 case TCP_REPAIR_WINDOW:
4127 err = tcp_repair_set_window(tp, optval, optlen);
4128 break;
4129 case TCP_NOTSENT_LOWAT:
4130 WRITE_ONCE(tp->notsent_lowat, val);
4131 sk->sk_write_space(sk);
4132 break;
4133 case TCP_INQ:
4134 if (val > 1 || val < 0)
4135 err = -EINVAL;
4136 else
4137 tp->recvmsg_inq = val;
4138 break;
4139 case TCP_TX_DELAY:
4140 /* tp->srtt_us is u32, and is shifted by 3 */
4141 if (val < 0 || val >= (1U << (31 - 3))) {
4142 err = -EINVAL;
4143 break;
4144 }
4145 tcp_enable_tx_delay(sk, val);
4146 WRITE_ONCE(tp->tcp_tx_delay, val);
4147 break;
4148 default:
4149 err = -ENOPROTOOPT;
4150 break;
4151 }
4152
4153 sockopt_release_sock(sk);
4154 return err;
4155}
4156
4157int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4158 unsigned int optlen)
4159{
4160 const struct inet_connection_sock *icsk = inet_csk(sk);
4161
4162 if (level != SOL_TCP)
4163 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4164 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4165 optval, optlen);
4166 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4167}
4168EXPORT_IPV6_MOD(tcp_setsockopt);
4169
4170static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4171 struct tcp_info *info)
4172{
4173 u64 stats[__TCP_CHRONO_MAX], total = 0;
4174 enum tcp_chrono i;
4175
4176 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4177 stats[i] = tp->chrono_stat[i - 1];
4178 if (i == tp->chrono_type)
4179 stats[i] += tcp_jiffies32 - tp->chrono_start;
4180 stats[i] *= USEC_PER_SEC / HZ;
4181 total += stats[i];
4182 }
4183
4184 info->tcpi_busy_time = total;
4185 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4186 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4187}
4188
4189/* Return information about state of tcp endpoint in API format. */
4190void tcp_get_info(struct sock *sk, struct tcp_info *info)
4191{
4192 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4193 const struct inet_connection_sock *icsk = inet_csk(sk);
4194 const u8 ect1_idx = INET_ECN_ECT_1 - 1;
4195 const u8 ect0_idx = INET_ECN_ECT_0 - 1;
4196 const u8 ce_idx = INET_ECN_CE - 1;
4197 unsigned long rate;
4198 u32 now;
4199 u64 rate64;
4200 bool slow;
4201
4202 memset(info, 0, sizeof(*info));
4203 if (sk->sk_type != SOCK_STREAM)
4204 return;
4205
4206 info->tcpi_state = inet_sk_state_load(sk);
4207
4208 /* Report meaningful fields for all TCP states, including listeners */
4209 rate = READ_ONCE(sk->sk_pacing_rate);
4210 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4211 info->tcpi_pacing_rate = rate64;
4212
4213 rate = READ_ONCE(sk->sk_max_pacing_rate);
4214 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4215 info->tcpi_max_pacing_rate = rate64;
4216
4217 info->tcpi_reordering = tp->reordering;
4218 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4219
4220 if (info->tcpi_state == TCP_LISTEN) {
4221 /* listeners aliased fields :
4222 * tcpi_unacked -> Number of children ready for accept()
4223 * tcpi_sacked -> max backlog
4224 */
4225 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4226 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4227 return;
4228 }
4229
4230 slow = lock_sock_fast(sk);
4231
4232 info->tcpi_ca_state = icsk->icsk_ca_state;
4233 info->tcpi_retransmits = icsk->icsk_retransmits;
4234 info->tcpi_probes = icsk->icsk_probes_out;
4235 info->tcpi_backoff = icsk->icsk_backoff;
4236
4237 if (tp->rx_opt.tstamp_ok)
4238 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4239 if (tcp_is_sack(tp))
4240 info->tcpi_options |= TCPI_OPT_SACK;
4241 if (tp->rx_opt.wscale_ok) {
4242 info->tcpi_options |= TCPI_OPT_WSCALE;
4243 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4244 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4245 }
4246
4247 if (tcp_ecn_mode_any(tp))
4248 info->tcpi_options |= TCPI_OPT_ECN;
4249 if (tp->ecn_flags & TCP_ECN_SEEN)
4250 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4251 if (tp->syn_data_acked)
4252 info->tcpi_options |= TCPI_OPT_SYN_DATA;
4253 if (tp->tcp_usec_ts)
4254 info->tcpi_options |= TCPI_OPT_USEC_TS;
4255 if (tp->syn_fastopen_child)
4256 info->tcpi_options |= TCPI_OPT_TFO_CHILD;
4257
4258 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4259 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4260 tcp_delack_max(sk)));
4261 info->tcpi_snd_mss = tp->mss_cache;
4262 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4263
4264 info->tcpi_unacked = tp->packets_out;
4265 info->tcpi_sacked = tp->sacked_out;
4266
4267 info->tcpi_lost = tp->lost_out;
4268 info->tcpi_retrans = tp->retrans_out;
4269
4270 now = tcp_jiffies32;
4271 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4272 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4273 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4274
4275 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4276 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4277 info->tcpi_rtt = tp->srtt_us >> 3;
4278 info->tcpi_rttvar = tp->mdev_us >> 2;
4279 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4280 info->tcpi_advmss = tp->advmss;
4281
4282 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4283 info->tcpi_rcv_space = tp->rcvq_space.space;
4284
4285 info->tcpi_total_retrans = tp->total_retrans;
4286
4287 info->tcpi_bytes_acked = tp->bytes_acked;
4288 info->tcpi_bytes_received = tp->bytes_received;
4289 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4290 tcp_get_info_chrono_stats(tp, info);
4291
4292 info->tcpi_segs_out = tp->segs_out;
4293
4294 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4295 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4296 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4297
4298 info->tcpi_min_rtt = tcp_min_rtt(tp);
4299 info->tcpi_data_segs_out = tp->data_segs_out;
4300
4301 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4302 rate64 = tcp_compute_delivery_rate(tp);
4303 if (rate64)
4304 info->tcpi_delivery_rate = rate64;
4305 info->tcpi_delivered = tp->delivered;
4306 info->tcpi_delivered_ce = tp->delivered_ce;
4307 info->tcpi_bytes_sent = tp->bytes_sent;
4308 info->tcpi_bytes_retrans = tp->bytes_retrans;
4309 info->tcpi_dsack_dups = tp->dsack_dups;
4310 info->tcpi_reord_seen = tp->reord_seen;
4311 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4312 info->tcpi_snd_wnd = tp->snd_wnd;
4313 info->tcpi_rcv_wnd = tp->rcv_wnd;
4314 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4315 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4316
4317 info->tcpi_total_rto = tp->total_rto;
4318 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4319 info->tcpi_total_rto_time = tp->total_rto_time;
4320 if (tp->rto_stamp)
4321 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4322
4323 info->tcpi_accecn_fail_mode = tp->accecn_fail_mode;
4324 info->tcpi_accecn_opt_seen = tp->saw_accecn_opt;
4325 info->tcpi_received_ce = tp->received_ce;
4326 info->tcpi_delivered_e1_bytes = tp->delivered_ecn_bytes[ect1_idx];
4327 info->tcpi_delivered_e0_bytes = tp->delivered_ecn_bytes[ect0_idx];
4328 info->tcpi_delivered_ce_bytes = tp->delivered_ecn_bytes[ce_idx];
4329 info->tcpi_received_e1_bytes = tp->received_ecn_bytes[ect1_idx];
4330 info->tcpi_received_e0_bytes = tp->received_ecn_bytes[ect0_idx];
4331 info->tcpi_received_ce_bytes = tp->received_ecn_bytes[ce_idx];
4332
4333 unlock_sock_fast(sk, slow);
4334}
4335EXPORT_SYMBOL_GPL(tcp_get_info);
4336
4337static size_t tcp_opt_stats_get_size(void)
4338{
4339 return
4340 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4341 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4342 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4343 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4344 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4345 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4346 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4347 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4348 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4349 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4350 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4351 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4352 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4353 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4354 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4355 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4356 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4357 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4358 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4359 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4360 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4361 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4362 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4363 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4364 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4365 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4366 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4367 0;
4368}
4369
4370/* Returns TTL or hop limit of an incoming packet from skb. */
4371static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4372{
4373 if (skb->protocol == htons(ETH_P_IP))
4374 return ip_hdr(skb)->ttl;
4375 else if (skb->protocol == htons(ETH_P_IPV6))
4376 return ipv6_hdr(skb)->hop_limit;
4377 else
4378 return 0;
4379}
4380
4381struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4382 const struct sk_buff *orig_skb,
4383 const struct sk_buff *ack_skb)
4384{
4385 const struct tcp_sock *tp = tcp_sk(sk);
4386 struct sk_buff *stats;
4387 struct tcp_info info;
4388 unsigned long rate;
4389 u64 rate64;
4390
4391 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4392 if (!stats)
4393 return NULL;
4394
4395 tcp_get_info_chrono_stats(tp, &info);
4396 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4397 info.tcpi_busy_time, TCP_NLA_PAD);
4398 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4399 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4400 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4401 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4402 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4403 tp->data_segs_out, TCP_NLA_PAD);
4404 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4405 tp->total_retrans, TCP_NLA_PAD);
4406
4407 rate = READ_ONCE(sk->sk_pacing_rate);
4408 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4409 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4410
4411 rate64 = tcp_compute_delivery_rate(tp);
4412 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4413
4414 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4415 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4416 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4417
4418 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS,
4419 READ_ONCE(inet_csk(sk)->icsk_retransmits));
4420 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4421 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4422 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4423 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4424
4425 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4426 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4427
4428 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4429 TCP_NLA_PAD);
4430 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4431 TCP_NLA_PAD);
4432 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4433 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4434 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4435 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4436 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4437 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4438 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4439 TCP_NLA_PAD);
4440 if (ack_skb)
4441 nla_put_u8(stats, TCP_NLA_TTL,
4442 tcp_skb_ttl_or_hop_limit(ack_skb));
4443
4444 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4445 return stats;
4446}
4447
4448int do_tcp_getsockopt(struct sock *sk, int level,
4449 int optname, sockptr_t optval, sockptr_t optlen)
4450{
4451 struct inet_connection_sock *icsk = inet_csk(sk);
4452 struct tcp_sock *tp = tcp_sk(sk);
4453 struct net *net = sock_net(sk);
4454 int user_mss;
4455 int val, len;
4456
4457 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4458 return -EFAULT;
4459
4460 if (len < 0)
4461 return -EINVAL;
4462
4463 len = min_t(unsigned int, len, sizeof(int));
4464
4465 switch (optname) {
4466 case TCP_MAXSEG:
4467 val = tp->mss_cache;
4468 user_mss = READ_ONCE(tp->rx_opt.user_mss);
4469 if (user_mss &&
4470 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4471 val = user_mss;
4472 if (tp->repair)
4473 val = tp->rx_opt.mss_clamp;
4474 break;
4475 case TCP_NODELAY:
4476 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4477 break;
4478 case TCP_CORK:
4479 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4480 break;
4481 case TCP_KEEPIDLE:
4482 val = keepalive_time_when(tp) / HZ;
4483 break;
4484 case TCP_KEEPINTVL:
4485 val = keepalive_intvl_when(tp) / HZ;
4486 break;
4487 case TCP_KEEPCNT:
4488 val = keepalive_probes(tp);
4489 break;
4490 case TCP_SYNCNT:
4491 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4492 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4493 break;
4494 case TCP_LINGER2:
4495 val = READ_ONCE(tp->linger2);
4496 if (val >= 0)
4497 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4498 break;
4499 case TCP_DEFER_ACCEPT:
4500 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4501 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4502 TCP_RTO_MAX / HZ);
4503 break;
4504 case TCP_WINDOW_CLAMP:
4505 val = READ_ONCE(tp->window_clamp);
4506 break;
4507 case TCP_INFO: {
4508 struct tcp_info info;
4509
4510 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4511 return -EFAULT;
4512
4513 tcp_get_info(sk, &info);
4514
4515 len = min_t(unsigned int, len, sizeof(info));
4516 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4517 return -EFAULT;
4518 if (copy_to_sockptr(optval, &info, len))
4519 return -EFAULT;
4520 return 0;
4521 }
4522 case TCP_CC_INFO: {
4523 const struct tcp_congestion_ops *ca_ops;
4524 union tcp_cc_info info;
4525 size_t sz = 0;
4526 int attr;
4527
4528 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4529 return -EFAULT;
4530
4531 ca_ops = icsk->icsk_ca_ops;
4532 if (ca_ops && ca_ops->get_info)
4533 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4534
4535 len = min_t(unsigned int, len, sz);
4536 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4537 return -EFAULT;
4538 if (copy_to_sockptr(optval, &info, len))
4539 return -EFAULT;
4540 return 0;
4541 }
4542 case TCP_QUICKACK:
4543 val = !inet_csk_in_pingpong_mode(sk);
4544 break;
4545
4546 case TCP_CONGESTION:
4547 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4548 return -EFAULT;
4549 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4550 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4551 return -EFAULT;
4552 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4553 return -EFAULT;
4554 return 0;
4555
4556 case TCP_ULP:
4557 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4558 return -EFAULT;
4559 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4560 if (!icsk->icsk_ulp_ops) {
4561 len = 0;
4562 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4563 return -EFAULT;
4564 return 0;
4565 }
4566 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4567 return -EFAULT;
4568 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4569 return -EFAULT;
4570 return 0;
4571
4572 case TCP_FASTOPEN_KEY: {
4573 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4574 unsigned int key_len;
4575
4576 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4577 return -EFAULT;
4578
4579 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4580 TCP_FASTOPEN_KEY_LENGTH;
4581 len = min_t(unsigned int, len, key_len);
4582 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4583 return -EFAULT;
4584 if (copy_to_sockptr(optval, key, len))
4585 return -EFAULT;
4586 return 0;
4587 }
4588 case TCP_THIN_LINEAR_TIMEOUTS:
4589 val = tp->thin_lto;
4590 break;
4591
4592 case TCP_THIN_DUPACK:
4593 val = 0;
4594 break;
4595
4596 case TCP_REPAIR:
4597 val = tp->repair;
4598 break;
4599
4600 case TCP_REPAIR_QUEUE:
4601 if (tp->repair)
4602 val = tp->repair_queue;
4603 else
4604 return -EINVAL;
4605 break;
4606
4607 case TCP_REPAIR_WINDOW: {
4608 struct tcp_repair_window opt;
4609
4610 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4611 return -EFAULT;
4612
4613 if (len != sizeof(opt))
4614 return -EINVAL;
4615
4616 if (!tp->repair)
4617 return -EPERM;
4618
4619 opt.snd_wl1 = tp->snd_wl1;
4620 opt.snd_wnd = tp->snd_wnd;
4621 opt.max_window = tp->max_window;
4622 opt.rcv_wnd = tp->rcv_wnd;
4623 opt.rcv_wup = tp->rcv_wup;
4624
4625 if (copy_to_sockptr(optval, &opt, len))
4626 return -EFAULT;
4627 return 0;
4628 }
4629 case TCP_QUEUE_SEQ:
4630 if (tp->repair_queue == TCP_SEND_QUEUE)
4631 val = tp->write_seq;
4632 else if (tp->repair_queue == TCP_RECV_QUEUE)
4633 val = tp->rcv_nxt;
4634 else
4635 return -EINVAL;
4636 break;
4637
4638 case TCP_USER_TIMEOUT:
4639 val = READ_ONCE(icsk->icsk_user_timeout);
4640 break;
4641
4642 case TCP_FASTOPEN:
4643 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4644 break;
4645
4646 case TCP_FASTOPEN_CONNECT:
4647 val = tp->fastopen_connect;
4648 break;
4649
4650 case TCP_FASTOPEN_NO_COOKIE:
4651 val = tp->fastopen_no_cookie;
4652 break;
4653
4654 case TCP_TX_DELAY:
4655 val = READ_ONCE(tp->tcp_tx_delay);
4656 break;
4657
4658 case TCP_TIMESTAMP:
4659 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4660 if (tp->tcp_usec_ts)
4661 val |= 1;
4662 else
4663 val &= ~1;
4664 break;
4665 case TCP_NOTSENT_LOWAT:
4666 val = READ_ONCE(tp->notsent_lowat);
4667 break;
4668 case TCP_INQ:
4669 val = tp->recvmsg_inq;
4670 break;
4671 case TCP_SAVE_SYN:
4672 val = tp->save_syn;
4673 break;
4674 case TCP_SAVED_SYN: {
4675 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4676 return -EFAULT;
4677
4678 sockopt_lock_sock(sk);
4679 if (tp->saved_syn) {
4680 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4681 len = tcp_saved_syn_len(tp->saved_syn);
4682 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4683 sockopt_release_sock(sk);
4684 return -EFAULT;
4685 }
4686 sockopt_release_sock(sk);
4687 return -EINVAL;
4688 }
4689 len = tcp_saved_syn_len(tp->saved_syn);
4690 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4691 sockopt_release_sock(sk);
4692 return -EFAULT;
4693 }
4694 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4695 sockopt_release_sock(sk);
4696 return -EFAULT;
4697 }
4698 tcp_saved_syn_free(tp);
4699 sockopt_release_sock(sk);
4700 } else {
4701 sockopt_release_sock(sk);
4702 len = 0;
4703 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4704 return -EFAULT;
4705 }
4706 return 0;
4707 }
4708#ifdef CONFIG_MMU
4709 case TCP_ZEROCOPY_RECEIVE: {
4710 struct scm_timestamping_internal tss;
4711 struct tcp_zerocopy_receive zc = {};
4712 int err;
4713
4714 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4715 return -EFAULT;
4716 if (len < 0 ||
4717 len < offsetofend(struct tcp_zerocopy_receive, length))
4718 return -EINVAL;
4719 if (unlikely(len > sizeof(zc))) {
4720 err = check_zeroed_sockptr(optval, sizeof(zc),
4721 len - sizeof(zc));
4722 if (err < 1)
4723 return err == 0 ? -EINVAL : err;
4724 len = sizeof(zc);
4725 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4726 return -EFAULT;
4727 }
4728 if (copy_from_sockptr(&zc, optval, len))
4729 return -EFAULT;
4730 if (zc.reserved)
4731 return -EINVAL;
4732 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4733 return -EINVAL;
4734 sockopt_lock_sock(sk);
4735 err = tcp_zerocopy_receive(sk, &zc, &tss);
4736 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4737 &zc, &len, err);
4738 sockopt_release_sock(sk);
4739 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4740 goto zerocopy_rcv_cmsg;
4741 switch (len) {
4742 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4743 goto zerocopy_rcv_cmsg;
4744 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4745 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4746 case offsetofend(struct tcp_zerocopy_receive, flags):
4747 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4748 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4749 case offsetofend(struct tcp_zerocopy_receive, err):
4750 goto zerocopy_rcv_sk_err;
4751 case offsetofend(struct tcp_zerocopy_receive, inq):
4752 goto zerocopy_rcv_inq;
4753 case offsetofend(struct tcp_zerocopy_receive, length):
4754 default:
4755 goto zerocopy_rcv_out;
4756 }
4757zerocopy_rcv_cmsg:
4758 if (zc.msg_flags & TCP_CMSG_TS)
4759 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4760 else
4761 zc.msg_flags = 0;
4762zerocopy_rcv_sk_err:
4763 if (!err)
4764 zc.err = sock_error(sk);
4765zerocopy_rcv_inq:
4766 zc.inq = tcp_inq_hint(sk);
4767zerocopy_rcv_out:
4768 if (!err && copy_to_sockptr(optval, &zc, len))
4769 err = -EFAULT;
4770 return err;
4771 }
4772#endif
4773 case TCP_AO_REPAIR:
4774 if (!tcp_can_repair_sock(sk))
4775 return -EPERM;
4776 return tcp_ao_get_repair(sk, optval, optlen);
4777 case TCP_AO_GET_KEYS:
4778 case TCP_AO_INFO: {
4779 int err;
4780
4781 sockopt_lock_sock(sk);
4782 if (optname == TCP_AO_GET_KEYS)
4783 err = tcp_ao_get_mkts(sk, optval, optlen);
4784 else
4785 err = tcp_ao_get_sock_info(sk, optval, optlen);
4786 sockopt_release_sock(sk);
4787
4788 return err;
4789 }
4790 case TCP_IS_MPTCP:
4791 val = 0;
4792 break;
4793 case TCP_RTO_MAX_MS:
4794 val = jiffies_to_msecs(tcp_rto_max(sk));
4795 break;
4796 case TCP_RTO_MIN_US:
4797 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4798 break;
4799 case TCP_DELACK_MAX_US:
4800 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4801 break;
4802 default:
4803 return -ENOPROTOOPT;
4804 }
4805
4806 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4807 return -EFAULT;
4808 if (copy_to_sockptr(optval, &val, len))
4809 return -EFAULT;
4810 return 0;
4811}
4812
4813bool tcp_bpf_bypass_getsockopt(int level, int optname)
4814{
4815 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4816 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4817 */
4818 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4819 return true;
4820
4821 return false;
4822}
4823EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4824
4825int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4826 int __user *optlen)
4827{
4828 struct inet_connection_sock *icsk = inet_csk(sk);
4829
4830 if (level != SOL_TCP)
4831 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4832 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4833 optval, optlen);
4834 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4835 USER_SOCKPTR(optlen));
4836}
4837EXPORT_IPV6_MOD(tcp_getsockopt);
4838
4839#ifdef CONFIG_TCP_MD5SIG
4840void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb,
4841 unsigned int header_len)
4842{
4843 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4844 skb_headlen(skb) - header_len : 0;
4845 const struct skb_shared_info *shi = skb_shinfo(skb);
4846 struct sk_buff *frag_iter;
4847 unsigned int i;
4848
4849 md5_update(ctx, (const u8 *)tcp_hdr(skb) + header_len, head_data_len);
4850
4851 for (i = 0; i < shi->nr_frags; ++i) {
4852 const skb_frag_t *f = &shi->frags[i];
4853 u32 p_off, p_len, copied;
4854 const void *vaddr;
4855 struct page *p;
4856
4857 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
4858 p, p_off, p_len, copied) {
4859 vaddr = kmap_local_page(p);
4860 md5_update(ctx, vaddr + p_off, p_len);
4861 kunmap_local(vaddr);
4862 }
4863 }
4864
4865 skb_walk_frags(skb, frag_iter)
4866 tcp_md5_hash_skb_data(ctx, frag_iter, 0);
4867}
4868EXPORT_IPV6_MOD(tcp_md5_hash_skb_data);
4869
4870void tcp_md5_hash_key(struct md5_ctx *ctx,
4871 const struct tcp_md5sig_key *key)
4872{
4873 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4874
4875 /* We use data_race() because tcp_md5_do_add() might change
4876 * key->key under us
4877 */
4878 data_race(({ md5_update(ctx, key->key, keylen), 0; }));
4879}
4880EXPORT_IPV6_MOD(tcp_md5_hash_key);
4881
4882/* Called with rcu_read_lock() */
4883static enum skb_drop_reason
4884tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4885 const void *saddr, const void *daddr,
4886 int family, int l3index, const __u8 *hash_location)
4887{
4888 /* This gets called for each TCP segment that has TCP-MD5 option.
4889 * We have 2 drop cases:
4890 * o An MD5 signature is present, but we're not expecting one.
4891 * o The MD5 signature is wrong.
4892 */
4893 const struct tcp_sock *tp = tcp_sk(sk);
4894 struct tcp_md5sig_key *key;
4895 u8 newhash[16];
4896
4897 key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4898 if (!key) {
4899 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4900 trace_tcp_hash_md5_unexpected(sk, skb);
4901 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4902 }
4903
4904 /* Check the signature.
4905 * To support dual stack listeners, we need to handle
4906 * IPv4-mapped case.
4907 */
4908 if (family == AF_INET)
4909 tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4910 else
4911 tp->af_specific->calc_md5_hash(newhash, key, NULL, skb);
4912 if (memcmp(hash_location, newhash, 16) != 0) {
4913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4914 trace_tcp_hash_md5_mismatch(sk, skb);
4915 return SKB_DROP_REASON_TCP_MD5FAILURE;
4916 }
4917 return SKB_NOT_DROPPED_YET;
4918}
4919#else
4920static inline enum skb_drop_reason
4921tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4922 const void *saddr, const void *daddr,
4923 int family, int l3index, const __u8 *hash_location)
4924{
4925 return SKB_NOT_DROPPED_YET;
4926}
4927
4928#endif
4929
4930/* Called with rcu_read_lock() */
4931enum skb_drop_reason
4932tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4933 const struct sk_buff *skb,
4934 const void *saddr, const void *daddr,
4935 int family, int dif, int sdif)
4936{
4937 const struct tcphdr *th = tcp_hdr(skb);
4938 const struct tcp_ao_hdr *aoh;
4939 const __u8 *md5_location;
4940 int l3index;
4941
4942 /* Invalid option or two times meet any of auth options */
4943 if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4944 trace_tcp_hash_bad_header(sk, skb);
4945 return SKB_DROP_REASON_TCP_AUTH_HDR;
4946 }
4947
4948 if (req) {
4949 if (tcp_rsk_used_ao(req) != !!aoh) {
4950 u8 keyid, rnext, maclen;
4951
4952 if (aoh) {
4953 keyid = aoh->keyid;
4954 rnext = aoh->rnext_keyid;
4955 maclen = tcp_ao_hdr_maclen(aoh);
4956 } else {
4957 keyid = rnext = maclen = 0;
4958 }
4959
4960 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4961 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4962 return SKB_DROP_REASON_TCP_AOFAILURE;
4963 }
4964 }
4965
4966 /* sdif set, means packet ingressed via a device
4967 * in an L3 domain and dif is set to the l3mdev
4968 */
4969 l3index = sdif ? dif : 0;
4970
4971 /* Fast path: unsigned segments */
4972 if (likely(!md5_location && !aoh)) {
4973 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4974 * for the remote peer. On TCP-AO established connection
4975 * the last key is impossible to remove, so there's
4976 * always at least one current_key.
4977 */
4978 if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4979 trace_tcp_hash_ao_required(sk, skb);
4980 return SKB_DROP_REASON_TCP_AONOTFOUND;
4981 }
4982 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4983 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4984 trace_tcp_hash_md5_required(sk, skb);
4985 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4986 }
4987 return SKB_NOT_DROPPED_YET;
4988 }
4989
4990 if (aoh)
4991 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4992
4993 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4994 l3index, md5_location);
4995}
4996EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4997
4998void tcp_done(struct sock *sk)
4999{
5000 struct request_sock *req;
5001
5002 /* We might be called with a new socket, after
5003 * inet_csk_prepare_forced_close() has been called
5004 * so we can not use lockdep_sock_is_held(sk)
5005 */
5006 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
5007
5008 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
5009 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
5010
5011 tcp_set_state(sk, TCP_CLOSE);
5012 tcp_clear_xmit_timers(sk);
5013 if (req)
5014 reqsk_fastopen_remove(sk, req, false);
5015
5016 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
5017
5018 if (!sock_flag(sk, SOCK_DEAD))
5019 sk->sk_state_change(sk);
5020 else
5021 inet_csk_destroy_sock(sk);
5022}
5023EXPORT_SYMBOL_GPL(tcp_done);
5024
5025int tcp_abort(struct sock *sk, int err)
5026{
5027 int state = inet_sk_state_load(sk);
5028
5029 if (state == TCP_NEW_SYN_RECV) {
5030 struct request_sock *req = inet_reqsk(sk);
5031
5032 local_bh_disable();
5033 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
5034 local_bh_enable();
5035 return 0;
5036 }
5037 if (state == TCP_TIME_WAIT) {
5038 struct inet_timewait_sock *tw = inet_twsk(sk);
5039
5040 refcount_inc(&tw->tw_refcnt);
5041 local_bh_disable();
5042 inet_twsk_deschedule_put(tw);
5043 local_bh_enable();
5044 return 0;
5045 }
5046
5047 /* BPF context ensures sock locking. */
5048 if (!has_current_bpf_ctx())
5049 /* Don't race with userspace socket closes such as tcp_close. */
5050 lock_sock(sk);
5051
5052 /* Avoid closing the same socket twice. */
5053 if (sk->sk_state == TCP_CLOSE) {
5054 if (!has_current_bpf_ctx())
5055 release_sock(sk);
5056 return -ENOENT;
5057 }
5058
5059 if (sk->sk_state == TCP_LISTEN) {
5060 tcp_set_state(sk, TCP_CLOSE);
5061 inet_csk_listen_stop(sk);
5062 }
5063
5064 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
5065 local_bh_disable();
5066 bh_lock_sock(sk);
5067
5068 if (tcp_need_reset(sk->sk_state))
5069 tcp_send_active_reset(sk, GFP_ATOMIC,
5070 SK_RST_REASON_TCP_STATE);
5071 tcp_done_with_error(sk, err);
5072
5073 bh_unlock_sock(sk);
5074 local_bh_enable();
5075 if (!has_current_bpf_ctx())
5076 release_sock(sk);
5077 return 0;
5078}
5079EXPORT_SYMBOL_GPL(tcp_abort);
5080
5081extern struct tcp_congestion_ops tcp_reno;
5082
5083static __initdata unsigned long thash_entries;
5084static int __init set_thash_entries(char *str)
5085{
5086 ssize_t ret;
5087
5088 if (!str)
5089 return 0;
5090
5091 ret = kstrtoul(str, 0, &thash_entries);
5092 if (ret)
5093 return 0;
5094
5095 return 1;
5096}
5097__setup("thash_entries=", set_thash_entries);
5098
5099static void __init tcp_init_mem(void)
5100{
5101 unsigned long limit = nr_free_buffer_pages() / 16;
5102
5103 limit = max(limit, 128UL);
5104 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
5105 sysctl_tcp_mem[1] = limit; /* 6.25 % */
5106 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
5107}
5108
5109static void __init tcp_struct_check(void)
5110{
5111 /* TX read-mostly hotpath cache lines */
5112 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5118#if IS_ENABLED(CONFIG_TLS_DEVICE)
5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, tcp_clean_acked);
5120#endif
5121
5122 /* TXRX read-mostly hotpath cache lines */
5123 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5124 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5125 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5126 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5127 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5128 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5129 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5130 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5131
5132 /* RX read-mostly hotpath cache lines */
5133 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5134 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5135 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5136 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5137 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5138 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5139 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5140 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5141 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5142 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5143 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5144
5145 /* TX read-write hotpath cache lines */
5146 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5147 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5148 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5149 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5150 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5151 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5152 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5153 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5154 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5155 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5156 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5157 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, accecn_opt_tstamp);
5158 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5159 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5160 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5161 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5162
5163 /* TXRX read-write hotpath cache lines */
5164 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5165 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5166 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5167 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5168 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5169 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5170 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5171 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5172 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5173 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5174 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5175 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5176 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ce);
5177 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ecn_bytes);
5178 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5179 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5180 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_tstamp);
5181 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5182
5183 /* RX read-write hotpath cache lines */
5184 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5185 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5186 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5187 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5188 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5189 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5190 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5191 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5192 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5193 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_ecn_bytes);
5194 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5195 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5196 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5197 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5198 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5199}
5200
5201void __init tcp_init(void)
5202{
5203 int max_rshare, max_wshare, cnt;
5204 unsigned long limit;
5205 unsigned int i;
5206
5207 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5208 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5209 sizeof_field(struct sk_buff, cb));
5210
5211 tcp_struct_check();
5212
5213 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5214
5215 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5216 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5217
5218 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5219 thash_entries, 21, /* one slot per 2 MB*/
5220 0, 64 * 1024);
5221 tcp_hashinfo.bind_bucket_cachep =
5222 kmem_cache_create("tcp_bind_bucket",
5223 sizeof(struct inet_bind_bucket), 0,
5224 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5225 SLAB_ACCOUNT,
5226 NULL);
5227 tcp_hashinfo.bind2_bucket_cachep =
5228 kmem_cache_create("tcp_bind2_bucket",
5229 sizeof(struct inet_bind2_bucket), 0,
5230 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5231 SLAB_ACCOUNT,
5232 NULL);
5233
5234 /* Size and allocate the main established and bind bucket
5235 * hash tables.
5236 *
5237 * The methodology is similar to that of the buffer cache.
5238 */
5239 tcp_hashinfo.ehash =
5240 alloc_large_system_hash("TCP established",
5241 sizeof(struct inet_ehash_bucket),
5242 thash_entries,
5243 17, /* one slot per 128 KB of memory */
5244 0,
5245 NULL,
5246 &tcp_hashinfo.ehash_mask,
5247 0,
5248 thash_entries ? 0 : 512 * 1024);
5249 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5250 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5251
5252 if (inet_ehash_locks_alloc(&tcp_hashinfo))
5253 panic("TCP: failed to alloc ehash_locks");
5254 tcp_hashinfo.bhash =
5255 alloc_large_system_hash("TCP bind",
5256 2 * sizeof(struct inet_bind_hashbucket),
5257 tcp_hashinfo.ehash_mask + 1,
5258 17, /* one slot per 128 KB of memory */
5259 0,
5260 &tcp_hashinfo.bhash_size,
5261 NULL,
5262 0,
5263 64 * 1024);
5264 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5265 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5266 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5267 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5268 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5269 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5270 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5271 }
5272
5273 tcp_hashinfo.pernet = false;
5274
5275 cnt = tcp_hashinfo.ehash_mask + 1;
5276 sysctl_tcp_max_orphans = cnt / 2;
5277
5278 tcp_init_mem();
5279 /* Set per-socket limits to no more than 1/128 the pressure threshold */
5280 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5281 max_wshare = min(4UL*1024*1024, limit);
5282 max_rshare = min(32UL*1024*1024, limit);
5283
5284 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5285 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5286 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5287
5288 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5289 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5290 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5291
5292 pr_info("Hash tables configured (established %u bind %u)\n",
5293 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5294
5295 tcp_v4_init();
5296 tcp_metrics_init();
5297 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5298 tcp_tsq_work_init();
5299 mptcp_init();
5300}