Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic TIME_WAIT sockets functions
8 *
9 * From code orinally in TCP
10 */
11
12#include <linux/kernel.h>
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <net/inet_hashtables.h>
16#include <net/inet_timewait_sock.h>
17#include <net/ip.h>
18#include <net/tcp.h>
19#include <net/psp.h>
20
21/**
22 * inet_twsk_bind_unhash - unhash a timewait socket from bind hash
23 * @tw: timewait socket
24 * @hashinfo: hashinfo pointer
25 *
26 * unhash a timewait socket from bind hash, if hashed.
27 * bind hash lock must be held by caller.
28 * Returns 1 if caller should call inet_twsk_put() after lock release.
29 */
30void inet_twsk_bind_unhash(struct inet_timewait_sock *tw,
31 struct inet_hashinfo *hashinfo)
32{
33 struct inet_bind2_bucket *tb2 = tw->tw_tb2;
34 struct inet_bind_bucket *tb = tw->tw_tb;
35
36 if (!tb)
37 return;
38
39 __sk_del_bind_node((struct sock *)tw);
40 tw->tw_tb = NULL;
41 tw->tw_tb2 = NULL;
42 inet_bind2_bucket_destroy(hashinfo->bind2_bucket_cachep, tb2);
43 inet_bind_bucket_destroy(tb);
44
45 __sock_put((struct sock *)tw);
46}
47
48/* Must be called with locally disabled BHs. */
49static void inet_twsk_kill(struct inet_timewait_sock *tw)
50{
51 struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo;
52 spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash);
53 struct inet_bind_hashbucket *bhead, *bhead2;
54
55 spin_lock(lock);
56 sk_nulls_del_node_init_rcu((struct sock *)tw);
57 spin_unlock(lock);
58
59 /* Disassociate with bind bucket. */
60 bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), tw->tw_num,
61 hashinfo->bhash_size)];
62 bhead2 = inet_bhashfn_portaddr(hashinfo, (struct sock *)tw,
63 twsk_net(tw), tw->tw_num);
64
65 spin_lock(&bhead->lock);
66 spin_lock(&bhead2->lock);
67 inet_twsk_bind_unhash(tw, hashinfo);
68 spin_unlock(&bhead2->lock);
69 spin_unlock(&bhead->lock);
70
71 refcount_dec(&tw->tw_dr->tw_refcount);
72 inet_twsk_put(tw);
73}
74
75void inet_twsk_free(struct inet_timewait_sock *tw)
76{
77 struct module *owner = tw->tw_prot->owner;
78
79 tcp_twsk_destructor((struct sock *)tw);
80 kmem_cache_free(tw->tw_prot->twsk_prot->twsk_slab, tw);
81 module_put(owner);
82}
83
84void inet_twsk_put(struct inet_timewait_sock *tw)
85{
86 if (refcount_dec_and_test(&tw->tw_refcnt))
87 inet_twsk_free(tw);
88}
89EXPORT_SYMBOL_GPL(inet_twsk_put);
90
91static void inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo)
92{
93 __inet_twsk_schedule(tw, timeo, false);
94}
95
96/*
97 * Enter the time wait state.
98 * Essentially we whip up a timewait bucket, copy the relevant info into it
99 * from the SK, and mess with hash chains and list linkage.
100 *
101 * The caller must not access @tw anymore after this function returns.
102 */
103void inet_twsk_hashdance_schedule(struct inet_timewait_sock *tw,
104 struct sock *sk,
105 struct inet_hashinfo *hashinfo,
106 int timeo)
107{
108 const struct inet_sock *inet = inet_sk(sk);
109 const struct inet_connection_sock *icsk = inet_csk(sk);
110 spinlock_t *lock = inet_ehash_lockp(hashinfo, sk->sk_hash);
111 struct inet_bind_hashbucket *bhead, *bhead2;
112
113 /* Put TW into bind hash. Original socket stays there too.
114 * Note, that any socket with inet->num != 0 MUST be bound in
115 * binding cache, even if it is closed.
116 */
117 bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), inet->inet_num,
118 hashinfo->bhash_size)];
119 bhead2 = inet_bhashfn_portaddr(hashinfo, sk, twsk_net(tw), inet->inet_num);
120
121 local_bh_disable();
122 spin_lock(&bhead->lock);
123 spin_lock(&bhead2->lock);
124
125 tw->tw_tb = icsk->icsk_bind_hash;
126 WARN_ON(!icsk->icsk_bind_hash);
127
128 tw->tw_tb2 = icsk->icsk_bind2_hash;
129 WARN_ON(!icsk->icsk_bind2_hash);
130 sk_add_bind_node((struct sock *)tw, &tw->tw_tb2->owners);
131
132 spin_unlock(&bhead2->lock);
133 spin_unlock(&bhead->lock);
134
135 spin_lock(lock);
136
137 /* tw_refcnt is set to 3 because we have :
138 * - one reference for bhash chain.
139 * - one reference for ehash chain.
140 * - one reference for timer.
141 * Also note that after this point, we lost our implicit reference
142 * so we are not allowed to use tw anymore.
143 */
144 refcount_set(&tw->tw_refcnt, 3);
145
146 /* Ensure tw_refcnt has been set before tw is published.
147 * smp_wmb() provides the necessary memory barrier to enforce this
148 * ordering.
149 */
150 smp_wmb();
151
152 hlist_nulls_replace_init_rcu(&sk->sk_nulls_node, &tw->tw_node);
153 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
154
155 inet_twsk_schedule(tw, timeo);
156
157 spin_unlock(lock);
158 local_bh_enable();
159}
160
161static void tw_timer_handler(struct timer_list *t)
162{
163 struct inet_timewait_sock *tw = timer_container_of(tw, t, tw_timer);
164
165 inet_twsk_kill(tw);
166}
167
168struct inet_timewait_sock *inet_twsk_alloc(const struct sock *sk,
169 struct inet_timewait_death_row *dr,
170 const int state)
171{
172 struct inet_timewait_sock *tw;
173
174 if (refcount_read(&dr->tw_refcount) - 1 >=
175 READ_ONCE(dr->sysctl_max_tw_buckets))
176 return NULL;
177
178 tw = kmem_cache_alloc(sk->sk_prot_creator->twsk_prot->twsk_slab,
179 GFP_ATOMIC);
180 if (tw) {
181 const struct inet_sock *inet = inet_sk(sk);
182
183 tw->tw_dr = dr;
184 /* Give us an identity. */
185 tw->tw_daddr = inet->inet_daddr;
186 tw->tw_rcv_saddr = inet->inet_rcv_saddr;
187 tw->tw_bound_dev_if = sk->sk_bound_dev_if;
188 tw->tw_tos = inet->tos;
189 tw->tw_num = inet->inet_num;
190 tw->tw_state = TCP_TIME_WAIT;
191 tw->tw_substate = state;
192 tw->tw_sport = inet->inet_sport;
193 tw->tw_dport = inet->inet_dport;
194 tw->tw_family = sk->sk_family;
195 tw->tw_reuse = sk->sk_reuse;
196 tw->tw_reuseport = sk->sk_reuseport;
197 tw->tw_hash = sk->sk_hash;
198 tw->tw_ipv6only = 0;
199 tw->tw_transparent = inet_test_bit(TRANSPARENT, sk);
200 tw->tw_connect_bind = !!(sk->sk_userlocks & SOCK_CONNECT_BIND);
201 tw->tw_prot = sk->sk_prot_creator;
202 atomic64_set(&tw->tw_cookie, atomic64_read(&sk->sk_cookie));
203 twsk_net_set(tw, sock_net(sk));
204 timer_setup(&tw->tw_timer, tw_timer_handler, 0);
205#ifdef CONFIG_SOCK_VALIDATE_XMIT
206 tw->tw_validate_xmit_skb = NULL;
207#endif
208 /*
209 * Because we use RCU lookups, we should not set tw_refcnt
210 * to a non null value before everything is setup for this
211 * timewait socket.
212 */
213 refcount_set(&tw->tw_refcnt, 0);
214
215 __module_get(tw->tw_prot->owner);
216 psp_twsk_init(tw, sk);
217 }
218
219 return tw;
220}
221
222/* These are always called from BH context. See callers in
223 * tcp_input.c to verify this.
224 */
225
226/* This is for handling early-kills of TIME_WAIT sockets.
227 * Warning : consume reference.
228 * Caller should not access tw anymore.
229 */
230void inet_twsk_deschedule_put(struct inet_timewait_sock *tw)
231{
232 struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo;
233 spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash);
234
235 /* inet_twsk_purge() walks over all sockets, including tw ones,
236 * and removes them via inet_twsk_deschedule_put() after a
237 * refcount_inc_not_zero().
238 *
239 * inet_twsk_hashdance_schedule() must (re)init the refcount before
240 * arming the timer, i.e. inet_twsk_purge can obtain a reference to
241 * a twsk that did not yet schedule the timer.
242 *
243 * The ehash lock synchronizes these two:
244 * After acquiring the lock, the timer is always scheduled (else
245 * timer_shutdown returns false), because hashdance_schedule releases
246 * the ehash lock only after completing the timer initialization.
247 *
248 * Without grabbing the ehash lock, we get:
249 * 1) cpu x sets twsk refcount to 3
250 * 2) cpu y bumps refcount to 4
251 * 3) cpu y calls inet_twsk_deschedule_put() and shuts timer down
252 * 4) cpu x tries to start timer, but mod_timer is a noop post-shutdown
253 * -> timer refcount is never decremented.
254 */
255 spin_lock(lock);
256 /* Makes sure hashdance_schedule() has completed */
257 spin_unlock(lock);
258
259 if (timer_shutdown_sync(&tw->tw_timer))
260 inet_twsk_kill(tw);
261 inet_twsk_put(tw);
262}
263EXPORT_SYMBOL(inet_twsk_deschedule_put);
264
265void __inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo, bool rearm)
266{
267 /* timeout := RTO * 3.5
268 *
269 * 3.5 = 1+2+0.5 to wait for two retransmits.
270 *
271 * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
272 * our ACK acking that FIN can be lost. If N subsequent retransmitted
273 * FINs (or previous seqments) are lost (probability of such event
274 * is p^(N+1), where p is probability to lose single packet and
275 * time to detect the loss is about RTO*(2^N - 1) with exponential
276 * backoff). Normal timewait length is calculated so, that we
277 * waited at least for one retransmitted FIN (maximal RTO is 120sec).
278 * [ BTW Linux. following BSD, violates this requirement waiting
279 * only for 60sec, we should wait at least for 240 secs.
280 * Well, 240 consumes too much of resources 8)
281 * ]
282 * This interval is not reduced to catch old duplicate and
283 * responces to our wandering segments living for two MSLs.
284 * However, if we use PAWS to detect
285 * old duplicates, we can reduce the interval to bounds required
286 * by RTO, rather than MSL. So, if peer understands PAWS, we
287 * kill tw bucket after 3.5*RTO (it is important that this number
288 * is greater than TS tick!) and detect old duplicates with help
289 * of PAWS.
290 */
291
292 if (!rearm) {
293 bool kill = timeo <= 4*HZ;
294
295 __NET_INC_STATS(twsk_net(tw), kill ? LINUX_MIB_TIMEWAITKILLED :
296 LINUX_MIB_TIMEWAITED);
297 BUG_ON(mod_timer(&tw->tw_timer, jiffies + timeo));
298 refcount_inc(&tw->tw_dr->tw_refcount);
299 } else {
300 mod_timer_pending(&tw->tw_timer, jiffies + timeo);
301 }
302}
303
304/* Remove all non full sockets (TIME_WAIT and NEW_SYN_RECV) for dead netns */
305void inet_twsk_purge(struct inet_hashinfo *hashinfo)
306{
307 struct inet_ehash_bucket *head = &hashinfo->ehash[0];
308 unsigned int ehash_mask = hashinfo->ehash_mask;
309 struct hlist_nulls_node *node;
310 unsigned int slot;
311 struct sock *sk;
312
313 for (slot = 0; slot <= ehash_mask; slot++, head++) {
314 if (hlist_nulls_empty(&head->chain))
315 continue;
316
317restart_rcu:
318 cond_resched();
319 rcu_read_lock();
320restart:
321 sk_nulls_for_each_rcu(sk, node, &head->chain) {
322 int state = inet_sk_state_load(sk);
323
324 if ((1 << state) & ~(TCPF_TIME_WAIT |
325 TCPF_NEW_SYN_RECV))
326 continue;
327
328 if (check_net(sock_net(sk)))
329 continue;
330
331 if (unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
332 continue;
333
334 if (check_net(sock_net(sk))) {
335 sock_gen_put(sk);
336 goto restart;
337 }
338
339 rcu_read_unlock();
340 local_bh_disable();
341 if (state == TCP_TIME_WAIT) {
342 inet_twsk_deschedule_put(inet_twsk(sk));
343 } else {
344 struct request_sock *req = inet_reqsk(sk);
345
346 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
347 req);
348 }
349 local_bh_enable();
350 goto restart_rcu;
351 }
352 /* If the nulls value we got at the end of this lookup is
353 * not the expected one, we must restart lookup.
354 * We probably met an item that was moved to another chain.
355 */
356 if (get_nulls_value(node) != slot)
357 goto restart;
358 rcu_read_unlock();
359 }
360}