Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * inet fragments management
4 *
5 * Authors: Pavel Emelyanov <xemul@openvz.org>
6 * Started as consolidation of ipv4/ip_fragment.c,
7 * ipv6/reassembly. and ipv6 nf conntrack reassembly
8 */
9
10#include <linux/list.h>
11#include <linux/spinlock.h>
12#include <linux/module.h>
13#include <linux/timer.h>
14#include <linux/mm.h>
15#include <linux/random.h>
16#include <linux/skbuff.h>
17#include <linux/rtnetlink.h>
18#include <linux/slab.h>
19#include <linux/rhashtable.h>
20
21#include <net/sock.h>
22#include <net/inet_frag.h>
23#include <net/inet_ecn.h>
24#include <net/ip.h>
25#include <net/ipv6.h>
26
27#include "../core/sock_destructor.h"
28
29/* Use skb->cb to track consecutive/adjacent fragments coming at
30 * the end of the queue. Nodes in the rb-tree queue will
31 * contain "runs" of one or more adjacent fragments.
32 *
33 * Invariants:
34 * - next_frag is NULL at the tail of a "run";
35 * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
36 */
37struct ipfrag_skb_cb {
38 union {
39 struct inet_skb_parm h4;
40 struct inet6_skb_parm h6;
41 };
42 struct sk_buff *next_frag;
43 int frag_run_len;
44 int ip_defrag_offset;
45};
46
47#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
48
49static void fragcb_clear(struct sk_buff *skb)
50{
51 RB_CLEAR_NODE(&skb->rbnode);
52 FRAG_CB(skb)->next_frag = NULL;
53 FRAG_CB(skb)->frag_run_len = skb->len;
54}
55
56/* Append skb to the last "run". */
57static void fragrun_append_to_last(struct inet_frag_queue *q,
58 struct sk_buff *skb)
59{
60 fragcb_clear(skb);
61
62 FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
63 FRAG_CB(q->fragments_tail)->next_frag = skb;
64 q->fragments_tail = skb;
65}
66
67/* Create a new "run" with the skb. */
68static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
69{
70 BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
71 fragcb_clear(skb);
72
73 if (q->last_run_head)
74 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
75 &q->last_run_head->rbnode.rb_right);
76 else
77 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
78 rb_insert_color(&skb->rbnode, &q->rb_fragments);
79
80 q->fragments_tail = skb;
81 q->last_run_head = skb;
82}
83
84/* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
85 * Value : 0xff if frame should be dropped.
86 * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field
87 */
88const u8 ip_frag_ecn_table[16] = {
89 /* at least one fragment had CE, and others ECT_0 or ECT_1 */
90 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE,
91 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
92 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
93
94 /* invalid combinations : drop frame */
95 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
96 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
97 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
98 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
99 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
100 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
101 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
102};
103EXPORT_SYMBOL(ip_frag_ecn_table);
104
105int inet_frags_init(struct inet_frags *f)
106{
107 f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
108 NULL);
109 if (!f->frags_cachep)
110 return -ENOMEM;
111
112 refcount_set(&f->refcnt, 1);
113 init_completion(&f->completion);
114 return 0;
115}
116EXPORT_SYMBOL(inet_frags_init);
117
118void inet_frags_fini(struct inet_frags *f)
119{
120 if (refcount_dec_and_test(&f->refcnt))
121 complete(&f->completion);
122
123 wait_for_completion(&f->completion);
124
125 kmem_cache_destroy(f->frags_cachep);
126 f->frags_cachep = NULL;
127}
128EXPORT_SYMBOL(inet_frags_fini);
129
130/* called from rhashtable_free_and_destroy() at netns_frags dismantle */
131static void inet_frags_free_cb(void *ptr, void *arg)
132{
133 struct inet_frag_queue *fq = ptr;
134 int count;
135
136 count = timer_delete_sync(&fq->timer) ? 1 : 0;
137
138 spin_lock_bh(&fq->lock);
139 fq->flags |= INET_FRAG_DROP;
140 if (!(fq->flags & INET_FRAG_COMPLETE)) {
141 fq->flags |= INET_FRAG_COMPLETE;
142 count++;
143 } else if (fq->flags & INET_FRAG_HASH_DEAD) {
144 count++;
145 }
146 spin_unlock_bh(&fq->lock);
147
148 inet_frag_putn(fq, count);
149}
150
151static LLIST_HEAD(fqdir_free_list);
152
153static void fqdir_free_fn(struct work_struct *work)
154{
155 struct llist_node *kill_list;
156 struct fqdir *fqdir, *tmp;
157 struct inet_frags *f;
158
159 /* Atomically snapshot the list of fqdirs to free */
160 kill_list = llist_del_all(&fqdir_free_list);
161
162 /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
163 * have completed, since they need to dereference fqdir.
164 * Would it not be nice to have kfree_rcu_barrier() ? :)
165 */
166 rcu_barrier();
167
168 llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) {
169 f = fqdir->f;
170 if (refcount_dec_and_test(&f->refcnt))
171 complete(&f->completion);
172
173 kfree(fqdir);
174 }
175}
176
177static DECLARE_DELAYED_WORK(fqdir_free_work, fqdir_free_fn);
178
179static void fqdir_work_fn(struct work_struct *work)
180{
181 struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
182
183 rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
184
185 if (llist_add(&fqdir->free_list, &fqdir_free_list))
186 queue_delayed_work(system_percpu_wq, &fqdir_free_work, HZ);
187}
188
189int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
190{
191 struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
192 int res;
193
194 if (!fqdir)
195 return -ENOMEM;
196 fqdir->f = f;
197 fqdir->net = net;
198 res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
199 if (res < 0) {
200 kfree(fqdir);
201 return res;
202 }
203 refcount_inc(&f->refcnt);
204 *fqdirp = fqdir;
205 return 0;
206}
207EXPORT_SYMBOL(fqdir_init);
208
209static struct workqueue_struct *inet_frag_wq;
210
211static int __init inet_frag_wq_init(void)
212{
213 inet_frag_wq = create_workqueue("inet_frag_wq");
214 if (!inet_frag_wq)
215 panic("Could not create inet frag workq");
216 return 0;
217}
218
219pure_initcall(inet_frag_wq_init);
220
221void fqdir_pre_exit(struct fqdir *fqdir)
222{
223 struct inet_frag_queue *fq;
224 struct rhashtable_iter hti;
225
226 /* Prevent creation of new frags.
227 * Pairs with READ_ONCE() in inet_frag_find().
228 */
229 WRITE_ONCE(fqdir->high_thresh, 0);
230
231 /* Pairs with READ_ONCE() in inet_frag_kill(), ip_expire()
232 * and ip6frag_expire_frag_queue().
233 */
234 WRITE_ONCE(fqdir->dead, true);
235
236 rhashtable_walk_enter(&fqdir->rhashtable, &hti);
237 rhashtable_walk_start(&hti);
238
239 while ((fq = rhashtable_walk_next(&hti))) {
240 if (IS_ERR(fq)) {
241 if (PTR_ERR(fq) != -EAGAIN)
242 break;
243 continue;
244 }
245 spin_lock_bh(&fq->lock);
246 if (!(fq->flags & INET_FRAG_COMPLETE))
247 inet_frag_queue_flush(fq, 0);
248 spin_unlock_bh(&fq->lock);
249 }
250
251 rhashtable_walk_stop(&hti);
252 rhashtable_walk_exit(&hti);
253}
254EXPORT_SYMBOL(fqdir_pre_exit);
255
256void fqdir_exit(struct fqdir *fqdir)
257{
258 INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
259 queue_work(inet_frag_wq, &fqdir->destroy_work);
260}
261EXPORT_SYMBOL(fqdir_exit);
262
263void inet_frag_kill(struct inet_frag_queue *fq, int *refs)
264{
265 if (timer_delete(&fq->timer))
266 (*refs)++;
267
268 if (!(fq->flags & INET_FRAG_COMPLETE)) {
269 struct fqdir *fqdir = fq->fqdir;
270
271 fq->flags |= INET_FRAG_COMPLETE;
272 rcu_read_lock();
273 /* The RCU read lock provides a memory barrier
274 * guaranteeing that if fqdir->dead is false then
275 * the hash table destruction will not start until
276 * after we unlock. Paired with fqdir_pre_exit().
277 */
278 if (!READ_ONCE(fqdir->dead)) {
279 rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
280 fqdir->f->rhash_params);
281 (*refs)++;
282 } else {
283 fq->flags |= INET_FRAG_HASH_DEAD;
284 }
285 rcu_read_unlock();
286 }
287}
288EXPORT_SYMBOL(inet_frag_kill);
289
290static void inet_frag_destroy_rcu(struct rcu_head *head)
291{
292 struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
293 rcu);
294 struct inet_frags *f = q->fqdir->f;
295
296 if (f->destructor)
297 f->destructor(q);
298 kmem_cache_free(f->frags_cachep, q);
299}
300
301static unsigned int
302inet_frag_rbtree_purge(struct rb_root *root, enum skb_drop_reason reason)
303{
304 struct rb_node *p = rb_first(root);
305 unsigned int sum = 0;
306
307 while (p) {
308 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
309
310 p = rb_next(p);
311 rb_erase(&skb->rbnode, root);
312 while (skb) {
313 struct sk_buff *next = FRAG_CB(skb)->next_frag;
314
315 sum += skb->truesize;
316 kfree_skb_reason(skb, reason);
317 skb = next;
318 }
319 }
320 return sum;
321}
322
323void inet_frag_queue_flush(struct inet_frag_queue *q,
324 enum skb_drop_reason reason)
325{
326 unsigned int sum;
327
328 reason = reason ?: SKB_DROP_REASON_FRAG_REASM_TIMEOUT;
329 sum = inet_frag_rbtree_purge(&q->rb_fragments, reason);
330 sub_frag_mem_limit(q->fqdir, sum);
331}
332EXPORT_SYMBOL(inet_frag_queue_flush);
333
334void inet_frag_destroy(struct inet_frag_queue *q)
335{
336 unsigned int sum, sum_truesize = 0;
337 enum skb_drop_reason reason;
338 struct inet_frags *f;
339 struct fqdir *fqdir;
340
341 WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
342 reason = (q->flags & INET_FRAG_DROP) ?
343 SKB_DROP_REASON_FRAG_REASM_TIMEOUT :
344 SKB_CONSUMED;
345 WARN_ON(timer_delete(&q->timer) != 0);
346
347 /* Release all fragment data. */
348 fqdir = q->fqdir;
349 f = fqdir->f;
350 sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments, reason);
351 sum = sum_truesize + f->qsize;
352
353 call_rcu(&q->rcu, inet_frag_destroy_rcu);
354
355 sub_frag_mem_limit(fqdir, sum);
356}
357EXPORT_SYMBOL(inet_frag_destroy);
358
359static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
360 struct inet_frags *f,
361 void *arg)
362{
363 struct inet_frag_queue *q;
364
365 q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
366 if (!q)
367 return NULL;
368
369 q->fqdir = fqdir;
370 f->constructor(q, arg);
371 add_frag_mem_limit(fqdir, f->qsize);
372
373 timer_setup(&q->timer, f->frag_expire, 0);
374 spin_lock_init(&q->lock);
375 /* One reference for the timer, one for the hash table.
376 * We never take any extra references, only decrement this field.
377 */
378 refcount_set(&q->refcnt, 2);
379
380 return q;
381}
382
383static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
384 void *arg,
385 struct inet_frag_queue **prev)
386{
387 struct inet_frags *f = fqdir->f;
388 struct inet_frag_queue *q;
389
390 q = inet_frag_alloc(fqdir, f, arg);
391 if (!q) {
392 *prev = ERR_PTR(-ENOMEM);
393 return NULL;
394 }
395 mod_timer(&q->timer, jiffies + fqdir->timeout);
396
397 *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
398 &q->node, f->rhash_params);
399 if (*prev) {
400 /* We could not insert in the hash table,
401 * we need to cancel what inet_frag_alloc()
402 * anticipated.
403 */
404 int refs = 1;
405
406 q->flags |= INET_FRAG_COMPLETE;
407 inet_frag_kill(q, &refs);
408 inet_frag_putn(q, refs);
409 return NULL;
410 }
411 return q;
412}
413
414struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
415{
416 /* This pairs with WRITE_ONCE() in fqdir_pre_exit(). */
417 long high_thresh = READ_ONCE(fqdir->high_thresh);
418 struct inet_frag_queue *fq = NULL, *prev;
419
420 if (!high_thresh || frag_mem_limit(fqdir) > high_thresh)
421 return NULL;
422
423 prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
424 if (!prev)
425 fq = inet_frag_create(fqdir, key, &prev);
426 if (!IS_ERR_OR_NULL(prev))
427 fq = prev;
428 return fq;
429}
430EXPORT_SYMBOL(inet_frag_find);
431
432int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
433 int offset, int end)
434{
435 struct sk_buff *last = q->fragments_tail;
436
437 /* RFC5722, Section 4, amended by Errata ID : 3089
438 * When reassembling an IPv6 datagram, if
439 * one or more its constituent fragments is determined to be an
440 * overlapping fragment, the entire datagram (and any constituent
441 * fragments) MUST be silently discarded.
442 *
443 * Duplicates, however, should be ignored (i.e. skb dropped, but the
444 * queue/fragments kept for later reassembly).
445 */
446 if (!last)
447 fragrun_create(q, skb); /* First fragment. */
448 else if (FRAG_CB(last)->ip_defrag_offset + last->len < end) {
449 /* This is the common case: skb goes to the end. */
450 /* Detect and discard overlaps. */
451 if (offset < FRAG_CB(last)->ip_defrag_offset + last->len)
452 return IPFRAG_OVERLAP;
453 if (offset == FRAG_CB(last)->ip_defrag_offset + last->len)
454 fragrun_append_to_last(q, skb);
455 else
456 fragrun_create(q, skb);
457 } else {
458 /* Binary search. Note that skb can become the first fragment,
459 * but not the last (covered above).
460 */
461 struct rb_node **rbn, *parent;
462
463 rbn = &q->rb_fragments.rb_node;
464 do {
465 struct sk_buff *curr;
466 int curr_run_end;
467
468 parent = *rbn;
469 curr = rb_to_skb(parent);
470 curr_run_end = FRAG_CB(curr)->ip_defrag_offset +
471 FRAG_CB(curr)->frag_run_len;
472 if (end <= FRAG_CB(curr)->ip_defrag_offset)
473 rbn = &parent->rb_left;
474 else if (offset >= curr_run_end)
475 rbn = &parent->rb_right;
476 else if (offset >= FRAG_CB(curr)->ip_defrag_offset &&
477 end <= curr_run_end)
478 return IPFRAG_DUP;
479 else
480 return IPFRAG_OVERLAP;
481 } while (*rbn);
482 /* Here we have parent properly set, and rbn pointing to
483 * one of its NULL left/right children. Insert skb.
484 */
485 fragcb_clear(skb);
486 rb_link_node(&skb->rbnode, parent, rbn);
487 rb_insert_color(&skb->rbnode, &q->rb_fragments);
488 }
489
490 FRAG_CB(skb)->ip_defrag_offset = offset;
491 if (offset)
492 nf_reset_ct(skb);
493
494 return IPFRAG_OK;
495}
496EXPORT_SYMBOL(inet_frag_queue_insert);
497
498void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
499 struct sk_buff *parent)
500{
501 struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
502 void (*destructor)(struct sk_buff *);
503 unsigned int orig_truesize = 0;
504 struct sk_buff **nextp = NULL;
505 struct sock *sk = skb->sk;
506 int delta;
507
508 if (sk && is_skb_wmem(skb)) {
509 /* TX: skb->sk might have been passed as argument to
510 * dst->output and must remain valid until tx completes.
511 *
512 * Move sk to reassembled skb and fix up wmem accounting.
513 */
514 orig_truesize = skb->truesize;
515 destructor = skb->destructor;
516 }
517
518 if (head != skb) {
519 fp = skb_clone(skb, GFP_ATOMIC);
520 if (!fp) {
521 head = skb;
522 goto out_restore_sk;
523 }
524 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
525 if (RB_EMPTY_NODE(&skb->rbnode))
526 FRAG_CB(parent)->next_frag = fp;
527 else
528 rb_replace_node(&skb->rbnode, &fp->rbnode,
529 &q->rb_fragments);
530 if (q->fragments_tail == skb)
531 q->fragments_tail = fp;
532
533 if (orig_truesize) {
534 /* prevent skb_morph from releasing sk */
535 skb->sk = NULL;
536 skb->destructor = NULL;
537 }
538 skb_morph(skb, head);
539 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
540 rb_replace_node(&head->rbnode, &skb->rbnode,
541 &q->rb_fragments);
542 consume_skb(head);
543 head = skb;
544 }
545 WARN_ON(FRAG_CB(head)->ip_defrag_offset != 0);
546
547 delta = -head->truesize;
548
549 /* Head of list must not be cloned. */
550 if (skb_unclone(head, GFP_ATOMIC))
551 goto out_restore_sk;
552
553 delta += head->truesize;
554 if (delta)
555 add_frag_mem_limit(q->fqdir, delta);
556
557 /* If the first fragment is fragmented itself, we split
558 * it to two chunks: the first with data and paged part
559 * and the second, holding only fragments.
560 */
561 if (skb_has_frag_list(head)) {
562 struct sk_buff *clone;
563 int i, plen = 0;
564
565 clone = alloc_skb(0, GFP_ATOMIC);
566 if (!clone)
567 goto out_restore_sk;
568 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
569 skb_frag_list_init(head);
570 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
571 plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
572 clone->data_len = head->data_len - plen;
573 clone->len = clone->data_len;
574 head->truesize += clone->truesize;
575 clone->csum = 0;
576 clone->ip_summed = head->ip_summed;
577 add_frag_mem_limit(q->fqdir, clone->truesize);
578 skb_shinfo(head)->frag_list = clone;
579 nextp = &clone->next;
580 } else {
581 nextp = &skb_shinfo(head)->frag_list;
582 }
583
584out_restore_sk:
585 if (orig_truesize) {
586 int ts_delta = head->truesize - orig_truesize;
587
588 /* if this reassembled skb is fragmented later,
589 * fraglist skbs will get skb->sk assigned from head->sk,
590 * and each frag skb will be released via sock_wfree.
591 *
592 * Update sk_wmem_alloc.
593 */
594 head->sk = sk;
595 head->destructor = destructor;
596 refcount_add(ts_delta, &sk->sk_wmem_alloc);
597 }
598
599 return nextp;
600}
601EXPORT_SYMBOL(inet_frag_reasm_prepare);
602
603void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
604 void *reasm_data, bool try_coalesce)
605{
606 struct sock *sk = is_skb_wmem(head) ? head->sk : NULL;
607 const unsigned int head_truesize = head->truesize;
608 struct sk_buff **nextp = reasm_data;
609 struct rb_node *rbn;
610 struct sk_buff *fp;
611 int sum_truesize;
612
613 skb_push(head, head->data - skb_network_header(head));
614
615 /* Traverse the tree in order, to build frag_list. */
616 fp = FRAG_CB(head)->next_frag;
617 rbn = rb_next(&head->rbnode);
618 rb_erase(&head->rbnode, &q->rb_fragments);
619
620 sum_truesize = head->truesize;
621 while (rbn || fp) {
622 /* fp points to the next sk_buff in the current run;
623 * rbn points to the next run.
624 */
625 /* Go through the current run. */
626 while (fp) {
627 struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
628 bool stolen;
629 int delta;
630
631 sum_truesize += fp->truesize;
632 if (head->ip_summed != fp->ip_summed)
633 head->ip_summed = CHECKSUM_NONE;
634 else if (head->ip_summed == CHECKSUM_COMPLETE)
635 head->csum = csum_add(head->csum, fp->csum);
636
637 if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
638 &delta)) {
639 kfree_skb_partial(fp, stolen);
640 } else {
641 fp->prev = NULL;
642 memset(&fp->rbnode, 0, sizeof(fp->rbnode));
643 fp->sk = NULL;
644
645 head->data_len += fp->len;
646 head->len += fp->len;
647 head->truesize += fp->truesize;
648
649 *nextp = fp;
650 nextp = &fp->next;
651 }
652
653 fp = next_frag;
654 }
655 /* Move to the next run. */
656 if (rbn) {
657 struct rb_node *rbnext = rb_next(rbn);
658
659 fp = rb_to_skb(rbn);
660 rb_erase(rbn, &q->rb_fragments);
661 rbn = rbnext;
662 }
663 }
664 sub_frag_mem_limit(q->fqdir, sum_truesize);
665
666 *nextp = NULL;
667 skb_mark_not_on_list(head);
668 head->prev = NULL;
669 head->tstamp = q->stamp;
670 head->tstamp_type = q->tstamp_type;
671
672 if (sk)
673 refcount_add(sum_truesize - head_truesize, &sk->sk_wmem_alloc);
674}
675EXPORT_SYMBOL(inet_frag_reasm_finish);
676
677struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
678{
679 struct sk_buff *head, *skb;
680
681 head = skb_rb_first(&q->rb_fragments);
682 if (!head)
683 return NULL;
684 skb = FRAG_CB(head)->next_frag;
685 if (skb)
686 rb_replace_node(&head->rbnode, &skb->rbnode,
687 &q->rb_fragments);
688 else
689 rb_erase(&head->rbnode, &q->rb_fragments);
690 memset(&head->rbnode, 0, sizeof(head->rbnode));
691 barrier();
692
693 if (head == q->fragments_tail)
694 q->fragments_tail = NULL;
695
696 sub_frag_mem_limit(q->fqdir, head->truesize);
697
698 return head;
699}
700EXPORT_SYMBOL(inet_frag_pull_head);