at master 38 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* linux/net/ipv4/arp.c 3 * 4 * Copyright (C) 1994 by Florian La Roche 5 * 6 * This module implements the Address Resolution Protocol ARP (RFC 826), 7 * which is used to convert IP addresses (or in the future maybe other 8 * high-level addresses) into a low-level hardware address (like an Ethernet 9 * address). 10 * 11 * Fixes: 12 * Alan Cox : Removed the Ethernet assumptions in 13 * Florian's code 14 * Alan Cox : Fixed some small errors in the ARP 15 * logic 16 * Alan Cox : Allow >4K in /proc 17 * Alan Cox : Make ARP add its own protocol entry 18 * Ross Martin : Rewrote arp_rcv() and arp_get_info() 19 * Stephen Henson : Add AX25 support to arp_get_info() 20 * Alan Cox : Drop data when a device is downed. 21 * Alan Cox : Use init_timer(). 22 * Alan Cox : Double lock fixes. 23 * Martin Seine : Move the arphdr structure 24 * to if_arp.h for compatibility. 25 * with BSD based programs. 26 * Andrew Tridgell : Added ARP netmask code and 27 * re-arranged proxy handling. 28 * Alan Cox : Changed to use notifiers. 29 * Niibe Yutaka : Reply for this device or proxies only. 30 * Alan Cox : Don't proxy across hardware types! 31 * Jonathan Naylor : Added support for NET/ROM. 32 * Mike Shaver : RFC1122 checks. 33 * Jonathan Naylor : Only lookup the hardware address for 34 * the correct hardware type. 35 * Germano Caronni : Assorted subtle races. 36 * Craig Schlenter : Don't modify permanent entry 37 * during arp_rcv. 38 * Russ Nelson : Tidied up a few bits. 39 * Alexey Kuznetsov: Major changes to caching and behaviour, 40 * eg intelligent arp probing and 41 * generation 42 * of host down events. 43 * Alan Cox : Missing unlock in device events. 44 * Eckes : ARP ioctl control errors. 45 * Alexey Kuznetsov: Arp free fix. 46 * Manuel Rodriguez: Gratuitous ARP. 47 * Jonathan Layes : Added arpd support through kerneld 48 * message queue (960314) 49 * Mike Shaver : /proc/sys/net/ipv4/arp_* support 50 * Mike McLagan : Routing by source 51 * Stuart Cheshire : Metricom and grat arp fixes 52 * *** FOR 2.1 clean this up *** 53 * Lawrence V. Stefani: (08/12/96) Added FDDI support. 54 * Alan Cox : Took the AP1000 nasty FDDI hack and 55 * folded into the mainstream FDDI code. 56 * Ack spit, Linus how did you allow that 57 * one in... 58 * Jes Sorensen : Make FDDI work again in 2.1.x and 59 * clean up the APFDDI & gen. FDDI bits. 60 * Alexey Kuznetsov: new arp state machine; 61 * now it is in net/core/neighbour.c. 62 * Krzysztof Halasa: Added Frame Relay ARP support. 63 * Arnaldo C. Melo : convert /proc/net/arp to seq_file 64 * Shmulik Hen: Split arp_send to arp_create and 65 * arp_xmit so intermediate drivers like 66 * bonding can change the skb before 67 * sending (e.g. insert 8021q tag). 68 * Harald Welte : convert to make use of jenkins hash 69 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support. 70 */ 71 72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 73 74#include <linux/module.h> 75#include <linux/types.h> 76#include <linux/string.h> 77#include <linux/kernel.h> 78#include <linux/capability.h> 79#include <linux/socket.h> 80#include <linux/sockios.h> 81#include <linux/errno.h> 82#include <linux/in.h> 83#include <linux/mm.h> 84#include <linux/inet.h> 85#include <linux/inetdevice.h> 86#include <linux/netdevice.h> 87#include <linux/etherdevice.h> 88#include <linux/fddidevice.h> 89#include <linux/if_arp.h> 90#include <linux/skbuff.h> 91#include <linux/proc_fs.h> 92#include <linux/seq_file.h> 93#include <linux/stat.h> 94#include <linux/init.h> 95#include <linux/net.h> 96#include <linux/rcupdate.h> 97#include <linux/slab.h> 98#ifdef CONFIG_SYSCTL 99#include <linux/sysctl.h> 100#endif 101 102#include <net/net_namespace.h> 103#include <net/ip.h> 104#include <net/icmp.h> 105#include <net/route.h> 106#include <net/protocol.h> 107#include <net/tcp.h> 108#include <net/sock.h> 109#include <net/arp.h> 110#include <net/ax25.h> 111#include <net/netrom.h> 112#include <net/dst_metadata.h> 113#include <net/ip_tunnels.h> 114 115#include <linux/uaccess.h> 116 117#include <linux/netfilter_arp.h> 118 119/* 120 * Interface to generic neighbour cache. 121 */ 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); 123static bool arp_key_eq(const struct neighbour *n, const void *pkey); 124static int arp_constructor(struct neighbour *neigh); 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb); 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb); 127static void parp_redo(struct sk_buff *skb); 128static int arp_is_multicast(const void *pkey); 129 130static const struct neigh_ops arp_generic_ops = { 131 .family = AF_INET, 132 .solicit = arp_solicit, 133 .error_report = arp_error_report, 134 .output = neigh_resolve_output, 135 .connected_output = neigh_connected_output, 136}; 137 138static const struct neigh_ops arp_hh_ops = { 139 .family = AF_INET, 140 .solicit = arp_solicit, 141 .error_report = arp_error_report, 142 .output = neigh_resolve_output, 143 .connected_output = neigh_resolve_output, 144}; 145 146static const struct neigh_ops arp_direct_ops = { 147 .family = AF_INET, 148 .output = neigh_direct_output, 149 .connected_output = neigh_direct_output, 150}; 151 152struct neigh_table arp_tbl = { 153 .family = AF_INET, 154 .key_len = 4, 155 .protocol = cpu_to_be16(ETH_P_IP), 156 .hash = arp_hash, 157 .key_eq = arp_key_eq, 158 .constructor = arp_constructor, 159 .proxy_redo = parp_redo, 160 .is_multicast = arp_is_multicast, 161 .id = "arp_cache", 162 .parms = { 163 .tbl = &arp_tbl, 164 .reachable_time = 30 * HZ, 165 .data = { 166 [NEIGH_VAR_MCAST_PROBES] = 3, 167 [NEIGH_VAR_UCAST_PROBES] = 3, 168 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ, 169 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ, 170 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ, 171 [NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ, 172 [NEIGH_VAR_GC_STALETIME] = 60 * HZ, 173 [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_DEFAULT, 174 [NEIGH_VAR_PROXY_QLEN] = 64, 175 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ, 176 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10, 177 [NEIGH_VAR_LOCKTIME] = 1 * HZ, 178 }, 179 }, 180 .gc_interval = 30 * HZ, 181 .gc_thresh1 = 128, 182 .gc_thresh2 = 512, 183 .gc_thresh3 = 1024, 184}; 185EXPORT_SYMBOL(arp_tbl); 186 187int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir) 188{ 189 switch (dev->type) { 190 case ARPHRD_ETHER: 191 case ARPHRD_FDDI: 192 case ARPHRD_IEEE802: 193 ip_eth_mc_map(addr, haddr); 194 return 0; 195 case ARPHRD_INFINIBAND: 196 ip_ib_mc_map(addr, dev->broadcast, haddr); 197 return 0; 198 case ARPHRD_IPGRE: 199 ip_ipgre_mc_map(addr, dev->broadcast, haddr); 200 return 0; 201 default: 202 if (dir) { 203 memcpy(haddr, dev->broadcast, dev->addr_len); 204 return 0; 205 } 206 } 207 return -EINVAL; 208} 209 210 211static u32 arp_hash(const void *pkey, 212 const struct net_device *dev, 213 __u32 *hash_rnd) 214{ 215 return arp_hashfn(pkey, dev, hash_rnd); 216} 217 218static bool arp_key_eq(const struct neighbour *neigh, const void *pkey) 219{ 220 return neigh_key_eq32(neigh, pkey); 221} 222 223static int arp_constructor(struct neighbour *neigh) 224{ 225 __be32 addr; 226 struct net_device *dev = neigh->dev; 227 struct in_device *in_dev; 228 struct neigh_parms *parms; 229 u32 inaddr_any = INADDR_ANY; 230 231 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) 232 memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len); 233 234 addr = *(__be32 *)neigh->primary_key; 235 rcu_read_lock(); 236 in_dev = __in_dev_get_rcu(dev); 237 if (!in_dev) { 238 rcu_read_unlock(); 239 return -EINVAL; 240 } 241 242 neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr); 243 244 parms = in_dev->arp_parms; 245 __neigh_parms_put(neigh->parms); 246 neigh->parms = neigh_parms_clone(parms); 247 rcu_read_unlock(); 248 249 if (!dev->header_ops) { 250 neigh->nud_state = NUD_NOARP; 251 neigh->ops = &arp_direct_ops; 252 neigh->output = neigh_direct_output; 253 } else { 254 /* Good devices (checked by reading texts, but only Ethernet is 255 tested) 256 257 ARPHRD_ETHER: (ethernet, apfddi) 258 ARPHRD_FDDI: (fddi) 259 ARPHRD_IEEE802: (tr) 260 ARPHRD_METRICOM: (strip) 261 ARPHRD_ARCNET: 262 etc. etc. etc. 263 264 ARPHRD_IPDDP will also work, if author repairs it. 265 I did not it, because this driver does not work even 266 in old paradigm. 267 */ 268 269 if (neigh->type == RTN_MULTICAST) { 270 neigh->nud_state = NUD_NOARP; 271 arp_mc_map(addr, neigh->ha, dev, 1); 272 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) { 273 neigh->nud_state = NUD_NOARP; 274 memcpy(neigh->ha, dev->dev_addr, dev->addr_len); 275 } else if (neigh->type == RTN_BROADCAST || 276 (dev->flags & IFF_POINTOPOINT)) { 277 neigh->nud_state = NUD_NOARP; 278 memcpy(neigh->ha, dev->broadcast, dev->addr_len); 279 } 280 281 if (dev->header_ops->cache) 282 neigh->ops = &arp_hh_ops; 283 else 284 neigh->ops = &arp_generic_ops; 285 286 if (neigh->nud_state & NUD_VALID) 287 neigh->output = neigh->ops->connected_output; 288 else 289 neigh->output = neigh->ops->output; 290 } 291 return 0; 292} 293 294static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb) 295{ 296 dst_link_failure(skb); 297 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED); 298} 299 300/* Create and send an arp packet. */ 301static void arp_send_dst(int type, int ptype, __be32 dest_ip, 302 struct net_device *dev, __be32 src_ip, 303 const unsigned char *dest_hw, 304 const unsigned char *src_hw, 305 const unsigned char *target_hw, 306 struct dst_entry *dst) 307{ 308 struct sk_buff *skb; 309 310 /* arp on this interface. */ 311 if (dev->flags & IFF_NOARP) 312 return; 313 314 skb = arp_create(type, ptype, dest_ip, dev, src_ip, 315 dest_hw, src_hw, target_hw); 316 if (!skb) 317 return; 318 319 skb_dst_set(skb, dst_clone(dst)); 320 arp_xmit(skb); 321} 322 323void arp_send(int type, int ptype, __be32 dest_ip, 324 struct net_device *dev, __be32 src_ip, 325 const unsigned char *dest_hw, const unsigned char *src_hw, 326 const unsigned char *target_hw) 327{ 328 arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw, 329 target_hw, NULL); 330} 331EXPORT_SYMBOL(arp_send); 332 333static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb) 334{ 335 __be32 saddr = 0; 336 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL; 337 struct net_device *dev = neigh->dev; 338 __be32 target = *(__be32 *)neigh->primary_key; 339 int probes = atomic_read(&neigh->probes); 340 struct in_device *in_dev; 341 struct dst_entry *dst = NULL; 342 343 rcu_read_lock(); 344 in_dev = __in_dev_get_rcu(dev); 345 if (!in_dev) { 346 rcu_read_unlock(); 347 return; 348 } 349 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) { 350 default: 351 case 0: /* By default announce any local IP */ 352 if (skb && inet_addr_type_dev_table(dev_net(dev), dev, 353 ip_hdr(skb)->saddr) == RTN_LOCAL) 354 saddr = ip_hdr(skb)->saddr; 355 break; 356 case 1: /* Restrict announcements of saddr in same subnet */ 357 if (!skb) 358 break; 359 saddr = ip_hdr(skb)->saddr; 360 if (inet_addr_type_dev_table(dev_net(dev), dev, 361 saddr) == RTN_LOCAL) { 362 /* saddr should be known to target */ 363 if (inet_addr_onlink(in_dev, target, saddr)) 364 break; 365 } 366 saddr = 0; 367 break; 368 case 2: /* Avoid secondary IPs, get a primary/preferred one */ 369 break; 370 } 371 rcu_read_unlock(); 372 373 if (!saddr) 374 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK); 375 376 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES); 377 if (probes < 0) { 378 if (!(READ_ONCE(neigh->nud_state) & NUD_VALID)) 379 pr_debug("trying to ucast probe in NUD_INVALID\n"); 380 neigh_ha_snapshot(dst_ha, neigh, dev); 381 dst_hw = dst_ha; 382 } else { 383 probes -= NEIGH_VAR(neigh->parms, APP_PROBES); 384 if (probes < 0) { 385 neigh_app_ns(neigh); 386 return; 387 } 388 } 389 390 if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 391 dst = skb_dst(skb); 392 arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr, 393 dst_hw, dev->dev_addr, NULL, dst); 394} 395 396static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip) 397{ 398 struct net *net = dev_net(in_dev->dev); 399 int scope; 400 401 switch (IN_DEV_ARP_IGNORE(in_dev)) { 402 case 0: /* Reply, the tip is already validated */ 403 return 0; 404 case 1: /* Reply only if tip is configured on the incoming interface */ 405 sip = 0; 406 scope = RT_SCOPE_HOST; 407 break; 408 case 2: /* 409 * Reply only if tip is configured on the incoming interface 410 * and is in same subnet as sip 411 */ 412 scope = RT_SCOPE_HOST; 413 break; 414 case 3: /* Do not reply for scope host addresses */ 415 sip = 0; 416 scope = RT_SCOPE_LINK; 417 in_dev = NULL; 418 break; 419 case 4: /* Reserved */ 420 case 5: 421 case 6: 422 case 7: 423 return 0; 424 case 8: /* Do not reply */ 425 return 1; 426 default: 427 return 0; 428 } 429 return !inet_confirm_addr(net, in_dev, sip, tip, scope); 430} 431 432static int arp_accept(struct in_device *in_dev, __be32 sip) 433{ 434 struct net *net = dev_net(in_dev->dev); 435 int scope = RT_SCOPE_LINK; 436 437 switch (IN_DEV_ARP_ACCEPT(in_dev)) { 438 case 0: /* Don't create new entries from garp */ 439 return 0; 440 case 1: /* Create new entries from garp */ 441 return 1; 442 case 2: /* Create a neighbor in the arp table only if sip 443 * is in the same subnet as an address configured 444 * on the interface that received the garp message 445 */ 446 return !!inet_confirm_addr(net, in_dev, sip, 0, scope); 447 default: 448 return 0; 449 } 450} 451 452static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev) 453{ 454 struct rtable *rt; 455 int flag = 0; 456 /*unsigned long now; */ 457 struct net *net = dev_net(dev); 458 459 rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev), 460 RT_SCOPE_UNIVERSE); 461 if (IS_ERR(rt)) 462 return 1; 463 if (rt->dst.dev != dev) { 464 __NET_INC_STATS(net, LINUX_MIB_ARPFILTER); 465 flag = 1; 466 } 467 ip_rt_put(rt); 468 return flag; 469} 470 471/* 472 * Check if we can use proxy ARP for this path 473 */ 474static inline int arp_fwd_proxy(struct in_device *in_dev, 475 struct net_device *dev, struct rtable *rt) 476{ 477 struct in_device *out_dev; 478 int imi, omi = -1; 479 480 if (rt->dst.dev == dev) 481 return 0; 482 483 if (!IN_DEV_PROXY_ARP(in_dev)) 484 return 0; 485 imi = IN_DEV_MEDIUM_ID(in_dev); 486 if (imi == 0) 487 return 1; 488 if (imi == -1) 489 return 0; 490 491 /* place to check for proxy_arp for routes */ 492 493 out_dev = __in_dev_get_rcu(rt->dst.dev); 494 if (out_dev) 495 omi = IN_DEV_MEDIUM_ID(out_dev); 496 497 return omi != imi && omi != -1; 498} 499 500/* 501 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev) 502 * 503 * RFC3069 supports proxy arp replies back to the same interface. This 504 * is done to support (ethernet) switch features, like RFC 3069, where 505 * the individual ports are not allowed to communicate with each 506 * other, BUT they are allowed to talk to the upstream router. As 507 * described in RFC 3069, it is possible to allow these hosts to 508 * communicate through the upstream router, by proxy_arp'ing. 509 * 510 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation" 511 * 512 * This technology is known by different names: 513 * In RFC 3069 it is called VLAN Aggregation. 514 * Cisco and Allied Telesyn call it Private VLAN. 515 * Hewlett-Packard call it Source-Port filtering or port-isolation. 516 * Ericsson call it MAC-Forced Forwarding (RFC Draft). 517 * 518 */ 519static inline int arp_fwd_pvlan(struct in_device *in_dev, 520 struct net_device *dev, struct rtable *rt, 521 __be32 sip, __be32 tip) 522{ 523 /* Private VLAN is only concerned about the same ethernet segment */ 524 if (rt->dst.dev != dev) 525 return 0; 526 527 /* Don't reply on self probes (often done by windowz boxes)*/ 528 if (sip == tip) 529 return 0; 530 531 if (IN_DEV_PROXY_ARP_PVLAN(in_dev)) 532 return 1; 533 else 534 return 0; 535} 536 537/* 538 * Interface to link layer: send routine and receive handler. 539 */ 540 541/* 542 * Create an arp packet. If dest_hw is not set, we create a broadcast 543 * message. 544 */ 545struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip, 546 struct net_device *dev, __be32 src_ip, 547 const unsigned char *dest_hw, 548 const unsigned char *src_hw, 549 const unsigned char *target_hw) 550{ 551 struct sk_buff *skb; 552 struct arphdr *arp; 553 unsigned char *arp_ptr; 554 int hlen = LL_RESERVED_SPACE(dev); 555 int tlen = dev->needed_tailroom; 556 557 /* 558 * Allocate a buffer 559 */ 560 561 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC); 562 if (!skb) 563 return NULL; 564 565 skb_reserve(skb, hlen); 566 skb_reset_network_header(skb); 567 skb_put(skb, arp_hdr_len(dev)); 568 skb->dev = dev; 569 skb->protocol = htons(ETH_P_ARP); 570 if (!src_hw) 571 src_hw = dev->dev_addr; 572 if (!dest_hw) 573 dest_hw = dev->broadcast; 574 575 /* Fill the device header for the ARP frame. 576 * Note: skb->head can be changed. 577 */ 578 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0) 579 goto out; 580 581 arp = arp_hdr(skb); 582 /* 583 * Fill out the arp protocol part. 584 * 585 * The arp hardware type should match the device type, except for FDDI, 586 * which (according to RFC 1390) should always equal 1 (Ethernet). 587 */ 588 /* 589 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the 590 * DIX code for the protocol. Make these device structure fields. 591 */ 592 switch (dev->type) { 593 default: 594 arp->ar_hrd = htons(dev->type); 595 arp->ar_pro = htons(ETH_P_IP); 596 break; 597 598#if IS_ENABLED(CONFIG_AX25) 599 case ARPHRD_AX25: 600 arp->ar_hrd = htons(ARPHRD_AX25); 601 arp->ar_pro = htons(AX25_P_IP); 602 break; 603 604#if IS_ENABLED(CONFIG_NETROM) 605 case ARPHRD_NETROM: 606 arp->ar_hrd = htons(ARPHRD_NETROM); 607 arp->ar_pro = htons(AX25_P_IP); 608 break; 609#endif 610#endif 611 612#if IS_ENABLED(CONFIG_FDDI) 613 case ARPHRD_FDDI: 614 arp->ar_hrd = htons(ARPHRD_ETHER); 615 arp->ar_pro = htons(ETH_P_IP); 616 break; 617#endif 618 } 619 620 arp->ar_hln = dev->addr_len; 621 arp->ar_pln = 4; 622 arp->ar_op = htons(type); 623 624 arp_ptr = (unsigned char *)(arp + 1); 625 626 memcpy(arp_ptr, src_hw, dev->addr_len); 627 arp_ptr += dev->addr_len; 628 memcpy(arp_ptr, &src_ip, 4); 629 arp_ptr += 4; 630 631 switch (dev->type) { 632#if IS_ENABLED(CONFIG_FIREWIRE_NET) 633 case ARPHRD_IEEE1394: 634 break; 635#endif 636 default: 637 if (target_hw) 638 memcpy(arp_ptr, target_hw, dev->addr_len); 639 else 640 memset(arp_ptr, 0, dev->addr_len); 641 arp_ptr += dev->addr_len; 642 } 643 memcpy(arp_ptr, &dest_ip, 4); 644 645 return skb; 646 647out: 648 kfree_skb(skb); 649 return NULL; 650} 651EXPORT_SYMBOL(arp_create); 652 653static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 654{ 655 return dev_queue_xmit(skb); 656} 657 658/* 659 * Send an arp packet. 660 */ 661void arp_xmit(struct sk_buff *skb) 662{ 663 rcu_read_lock(); 664 /* Send it off, maybe filter it using firewalling first. */ 665 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, 666 dev_net_rcu(skb->dev), NULL, skb, NULL, skb->dev, 667 arp_xmit_finish); 668 rcu_read_unlock(); 669} 670EXPORT_SYMBOL(arp_xmit); 671 672static bool arp_is_garp(struct net *net, struct net_device *dev, 673 int *addr_type, __be16 ar_op, 674 __be32 sip, __be32 tip, 675 unsigned char *sha, unsigned char *tha) 676{ 677 bool is_garp = tip == sip; 678 679 /* Gratuitous ARP _replies_ also require target hwaddr to be 680 * the same as source. 681 */ 682 if (is_garp && ar_op == htons(ARPOP_REPLY)) 683 is_garp = 684 /* IPv4 over IEEE 1394 doesn't provide target 685 * hardware address field in its ARP payload. 686 */ 687 tha && 688 !memcmp(tha, sha, dev->addr_len); 689 690 if (is_garp) { 691 *addr_type = inet_addr_type_dev_table(net, dev, sip); 692 if (*addr_type != RTN_UNICAST) 693 is_garp = false; 694 } 695 return is_garp; 696} 697 698/* 699 * Process an arp request. 700 */ 701 702static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb) 703{ 704 struct net_device *dev = skb->dev; 705 struct in_device *in_dev = __in_dev_get_rcu(dev); 706 struct arphdr *arp; 707 unsigned char *arp_ptr; 708 struct rtable *rt; 709 unsigned char *sha; 710 unsigned char *tha = NULL; 711 __be32 sip, tip; 712 u16 dev_type = dev->type; 713 int addr_type; 714 struct neighbour *n; 715 struct dst_entry *reply_dst = NULL; 716 bool is_garp = false; 717 718 /* arp_rcv below verifies the ARP header and verifies the device 719 * is ARP'able. 720 */ 721 722 if (!in_dev) 723 goto out_free_skb; 724 725 arp = arp_hdr(skb); 726 727 switch (dev_type) { 728 default: 729 if (arp->ar_pro != htons(ETH_P_IP) || 730 htons(dev_type) != arp->ar_hrd) 731 goto out_free_skb; 732 break; 733 case ARPHRD_ETHER: 734 case ARPHRD_FDDI: 735 case ARPHRD_IEEE802: 736 /* 737 * ETHERNET, and Fibre Channel (which are IEEE 802 738 * devices, according to RFC 2625) devices will accept ARP 739 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2). 740 * This is the case also of FDDI, where the RFC 1390 says that 741 * FDDI devices should accept ARP hardware of (1) Ethernet, 742 * however, to be more robust, we'll accept both 1 (Ethernet) 743 * or 6 (IEEE 802.2) 744 */ 745 if ((arp->ar_hrd != htons(ARPHRD_ETHER) && 746 arp->ar_hrd != htons(ARPHRD_IEEE802)) || 747 arp->ar_pro != htons(ETH_P_IP)) 748 goto out_free_skb; 749 break; 750 case ARPHRD_AX25: 751 if (arp->ar_pro != htons(AX25_P_IP) || 752 arp->ar_hrd != htons(ARPHRD_AX25)) 753 goto out_free_skb; 754 break; 755 case ARPHRD_NETROM: 756 if (arp->ar_pro != htons(AX25_P_IP) || 757 arp->ar_hrd != htons(ARPHRD_NETROM)) 758 goto out_free_skb; 759 break; 760 } 761 762 /* Understand only these message types */ 763 764 if (arp->ar_op != htons(ARPOP_REPLY) && 765 arp->ar_op != htons(ARPOP_REQUEST)) 766 goto out_free_skb; 767 768/* 769 * Extract fields 770 */ 771 arp_ptr = (unsigned char *)(arp + 1); 772 sha = arp_ptr; 773 arp_ptr += dev->addr_len; 774 memcpy(&sip, arp_ptr, 4); 775 arp_ptr += 4; 776 switch (dev_type) { 777#if IS_ENABLED(CONFIG_FIREWIRE_NET) 778 case ARPHRD_IEEE1394: 779 break; 780#endif 781 default: 782 tha = arp_ptr; 783 arp_ptr += dev->addr_len; 784 } 785 memcpy(&tip, arp_ptr, 4); 786/* 787 * Check for bad requests for 127.x.x.x and requests for multicast 788 * addresses. If this is one such, delete it. 789 */ 790 if (ipv4_is_multicast(tip) || 791 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip))) 792 goto out_free_skb; 793 794 /* 795 * For some 802.11 wireless deployments (and possibly other networks), 796 * there will be an ARP proxy and gratuitous ARP frames are attacks 797 * and thus should not be accepted. 798 */ 799 if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP)) 800 goto out_free_skb; 801 802/* 803 * Special case: We must set Frame Relay source Q.922 address 804 */ 805 if (dev_type == ARPHRD_DLCI) 806 sha = dev->broadcast; 807 808/* 809 * Process entry. The idea here is we want to send a reply if it is a 810 * request for us or if it is a request for someone else that we hold 811 * a proxy for. We want to add an entry to our cache if it is a reply 812 * to us or if it is a request for our address. 813 * (The assumption for this last is that if someone is requesting our 814 * address, they are probably intending to talk to us, so it saves time 815 * if we cache their address. Their address is also probably not in 816 * our cache, since ours is not in their cache.) 817 * 818 * Putting this another way, we only care about replies if they are to 819 * us, in which case we add them to the cache. For requests, we care 820 * about those for us and those for our proxies. We reply to both, 821 * and in the case of requests for us we add the requester to the arp 822 * cache. 823 */ 824 825 if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb)) 826 reply_dst = (struct dst_entry *) 827 iptunnel_metadata_reply(skb_metadata_dst(skb), 828 GFP_ATOMIC); 829 830 /* Special case: IPv4 duplicate address detection packet (RFC2131) */ 831 if (sip == 0) { 832 if (arp->ar_op == htons(ARPOP_REQUEST) && 833 inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL && 834 !arp_ignore(in_dev, sip, tip)) 835 arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, 836 sha, dev->dev_addr, sha, reply_dst); 837 goto out_consume_skb; 838 } 839 840 if (arp->ar_op == htons(ARPOP_REQUEST) && 841 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) { 842 843 rt = skb_rtable(skb); 844 addr_type = rt->rt_type; 845 846 if (addr_type == RTN_LOCAL) { 847 int dont_send; 848 849 dont_send = arp_ignore(in_dev, sip, tip); 850 if (!dont_send && IN_DEV_ARPFILTER(in_dev)) 851 dont_send = arp_filter(sip, tip, dev); 852 if (!dont_send) { 853 n = neigh_event_ns(&arp_tbl, sha, &sip, dev); 854 if (n) { 855 arp_send_dst(ARPOP_REPLY, ETH_P_ARP, 856 sip, dev, tip, sha, 857 dev->dev_addr, sha, 858 reply_dst); 859 neigh_release(n); 860 } 861 } 862 goto out_consume_skb; 863 } else if (IN_DEV_FORWARD(in_dev)) { 864 if (addr_type == RTN_UNICAST && 865 (arp_fwd_proxy(in_dev, dev, rt) || 866 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) || 867 (rt->dst.dev != dev && 868 pneigh_lookup(&arp_tbl, net, &tip, dev)))) { 869 n = neigh_event_ns(&arp_tbl, sha, &sip, dev); 870 if (n) 871 neigh_release(n); 872 873 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED || 874 skb->pkt_type == PACKET_HOST || 875 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) { 876 arp_send_dst(ARPOP_REPLY, ETH_P_ARP, 877 sip, dev, tip, sha, 878 dev->dev_addr, sha, 879 reply_dst); 880 } else { 881 pneigh_enqueue(&arp_tbl, 882 in_dev->arp_parms, skb); 883 goto out_free_dst; 884 } 885 goto out_consume_skb; 886 } 887 } 888 } 889 890 /* Update our ARP tables */ 891 892 n = __neigh_lookup(&arp_tbl, &sip, dev, 0); 893 894 addr_type = -1; 895 if (n || arp_accept(in_dev, sip)) { 896 is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op, 897 sip, tip, sha, tha); 898 } 899 900 if (arp_accept(in_dev, sip)) { 901 /* Unsolicited ARP is not accepted by default. 902 It is possible, that this option should be enabled for some 903 devices (strip is candidate) 904 */ 905 if (!n && 906 (is_garp || 907 (arp->ar_op == htons(ARPOP_REPLY) && 908 (addr_type == RTN_UNICAST || 909 (addr_type < 0 && 910 /* postpone calculation to as late as possible */ 911 inet_addr_type_dev_table(net, dev, sip) == 912 RTN_UNICAST))))) 913 n = __neigh_lookup(&arp_tbl, &sip, dev, 1); 914 } 915 916 if (n) { 917 int state = NUD_REACHABLE; 918 int override; 919 920 /* If several different ARP replies follows back-to-back, 921 use the FIRST one. It is possible, if several proxy 922 agents are active. Taking the first reply prevents 923 arp trashing and chooses the fastest router. 924 */ 925 override = time_after(jiffies, 926 n->updated + 927 NEIGH_VAR(n->parms, LOCKTIME)) || 928 is_garp; 929 930 /* Broadcast replies and request packets 931 do not assert neighbour reachability. 932 */ 933 if (arp->ar_op != htons(ARPOP_REPLY) || 934 skb->pkt_type != PACKET_HOST) 935 state = NUD_STALE; 936 neigh_update(n, sha, state, 937 override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0); 938 neigh_release(n); 939 } 940 941out_consume_skb: 942 consume_skb(skb); 943 944out_free_dst: 945 dst_release(reply_dst); 946 return NET_RX_SUCCESS; 947 948out_free_skb: 949 kfree_skb(skb); 950 return NET_RX_DROP; 951} 952 953static void parp_redo(struct sk_buff *skb) 954{ 955 arp_process(dev_net(skb->dev), NULL, skb); 956} 957 958static int arp_is_multicast(const void *pkey) 959{ 960 return ipv4_is_multicast(*((__be32 *)pkey)); 961} 962 963/* 964 * Receive an arp request from the device layer. 965 */ 966 967static int arp_rcv(struct sk_buff *skb, struct net_device *dev, 968 struct packet_type *pt, struct net_device *orig_dev) 969{ 970 enum skb_drop_reason drop_reason; 971 const struct arphdr *arp; 972 973 /* do not tweak dropwatch on an ARP we will ignore */ 974 if (dev->flags & IFF_NOARP || 975 skb->pkt_type == PACKET_OTHERHOST || 976 skb->pkt_type == PACKET_LOOPBACK) 977 goto consumeskb; 978 979 skb = skb_share_check(skb, GFP_ATOMIC); 980 if (!skb) 981 goto out_of_mem; 982 983 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */ 984 drop_reason = pskb_may_pull_reason(skb, arp_hdr_len(dev)); 985 if (drop_reason != SKB_NOT_DROPPED_YET) 986 goto freeskb; 987 988 arp = arp_hdr(skb); 989 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4) { 990 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 991 goto freeskb; 992 } 993 994 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); 995 996 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, 997 dev_net(dev), NULL, skb, dev, NULL, 998 arp_process); 999 1000consumeskb: 1001 consume_skb(skb); 1002 return NET_RX_SUCCESS; 1003freeskb: 1004 kfree_skb_reason(skb, drop_reason); 1005out_of_mem: 1006 return NET_RX_DROP; 1007} 1008 1009/* 1010 * User level interface (ioctl) 1011 */ 1012 1013static struct net_device *arp_req_dev_by_name(struct net *net, struct arpreq *r, 1014 bool getarp) 1015{ 1016 struct net_device *dev; 1017 1018 if (getarp) 1019 dev = dev_get_by_name_rcu(net, r->arp_dev); 1020 else 1021 dev = __dev_get_by_name(net, r->arp_dev); 1022 if (!dev) 1023 return ERR_PTR(-ENODEV); 1024 1025 /* Mmmm... It is wrong... ARPHRD_NETROM == 0 */ 1026 if (!r->arp_ha.sa_family) 1027 r->arp_ha.sa_family = dev->type; 1028 1029 if ((r->arp_flags & ATF_COM) && r->arp_ha.sa_family != dev->type) 1030 return ERR_PTR(-EINVAL); 1031 1032 return dev; 1033} 1034 1035static struct net_device *arp_req_dev(struct net *net, struct arpreq *r) 1036{ 1037 struct net_device *dev; 1038 struct rtable *rt; 1039 __be32 ip; 1040 1041 if (r->arp_dev[0]) 1042 return arp_req_dev_by_name(net, r, false); 1043 1044 if (r->arp_flags & ATF_PUBL) 1045 return NULL; 1046 1047 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; 1048 1049 rt = ip_route_output(net, ip, 0, 0, 0, RT_SCOPE_LINK); 1050 if (IS_ERR(rt)) 1051 return ERR_CAST(rt); 1052 1053 dev = rt->dst.dev; 1054 ip_rt_put(rt); 1055 1056 if (!dev) 1057 return ERR_PTR(-EINVAL); 1058 1059 return dev; 1060} 1061 1062/* 1063 * Set (create) an ARP cache entry. 1064 */ 1065 1066static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on) 1067{ 1068 if (!dev) { 1069 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on; 1070 return 0; 1071 } 1072 if (__in_dev_get_rtnl_net(dev)) { 1073 IN_DEV_CONF_SET(__in_dev_get_rtnl_net(dev), PROXY_ARP, on); 1074 return 0; 1075 } 1076 return -ENXIO; 1077} 1078 1079static int arp_req_set_public(struct net *net, struct arpreq *r, 1080 struct net_device *dev) 1081{ 1082 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr; 1083 1084 if (!dev && (r->arp_flags & ATF_COM)) { 1085 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family, 1086 r->arp_ha.sa_data); 1087 if (!dev) 1088 return -ENODEV; 1089 } 1090 if (mask) { 1091 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; 1092 1093 return pneigh_create(&arp_tbl, net, &ip, dev, 0, 0, false); 1094 } 1095 1096 return arp_req_set_proxy(net, dev, 1); 1097} 1098 1099static int arp_req_set(struct net *net, struct arpreq *r) 1100{ 1101 struct neighbour *neigh; 1102 struct net_device *dev; 1103 __be32 ip; 1104 int err; 1105 1106 dev = arp_req_dev(net, r); 1107 if (IS_ERR(dev)) 1108 return PTR_ERR(dev); 1109 1110 if (r->arp_flags & ATF_PUBL) 1111 return arp_req_set_public(net, r, dev); 1112 1113 switch (dev->type) { 1114#if IS_ENABLED(CONFIG_FDDI) 1115 case ARPHRD_FDDI: 1116 /* 1117 * According to RFC 1390, FDDI devices should accept ARP 1118 * hardware types of 1 (Ethernet). However, to be more 1119 * robust, we'll accept hardware types of either 1 (Ethernet) 1120 * or 6 (IEEE 802.2). 1121 */ 1122 if (r->arp_ha.sa_family != ARPHRD_FDDI && 1123 r->arp_ha.sa_family != ARPHRD_ETHER && 1124 r->arp_ha.sa_family != ARPHRD_IEEE802) 1125 return -EINVAL; 1126 break; 1127#endif 1128 default: 1129 if (r->arp_ha.sa_family != dev->type) 1130 return -EINVAL; 1131 break; 1132 } 1133 1134 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; 1135 1136 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev); 1137 err = PTR_ERR(neigh); 1138 if (!IS_ERR(neigh)) { 1139 unsigned int state = NUD_STALE; 1140 1141 if (r->arp_flags & ATF_PERM) { 1142 r->arp_flags |= ATF_COM; 1143 state = NUD_PERMANENT; 1144 } 1145 1146 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ? 1147 r->arp_ha.sa_data : NULL, state, 1148 NEIGH_UPDATE_F_OVERRIDE | 1149 NEIGH_UPDATE_F_ADMIN, 0); 1150 neigh_release(neigh); 1151 } 1152 return err; 1153} 1154 1155static unsigned int arp_state_to_flags(struct neighbour *neigh) 1156{ 1157 if (neigh->nud_state&NUD_PERMANENT) 1158 return ATF_PERM | ATF_COM; 1159 else if (neigh->nud_state&NUD_VALID) 1160 return ATF_COM; 1161 else 1162 return 0; 1163} 1164 1165/* 1166 * Get an ARP cache entry. 1167 */ 1168 1169static int arp_req_get(struct net *net, struct arpreq *r) 1170{ 1171 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr; 1172 struct neighbour *neigh; 1173 struct net_device *dev; 1174 1175 if (!r->arp_dev[0]) 1176 return -ENODEV; 1177 1178 dev = arp_req_dev_by_name(net, r, true); 1179 if (IS_ERR(dev)) 1180 return PTR_ERR(dev); 1181 1182 neigh = neigh_lookup(&arp_tbl, &ip, dev); 1183 if (!neigh) 1184 return -ENXIO; 1185 1186 if (READ_ONCE(neigh->nud_state) & NUD_NOARP) { 1187 neigh_release(neigh); 1188 return -ENXIO; 1189 } 1190 1191 read_lock_bh(&neigh->lock); 1192 memcpy(r->arp_ha.sa_data, neigh->ha, 1193 min(dev->addr_len, sizeof(r->arp_ha.sa_data))); 1194 r->arp_flags = arp_state_to_flags(neigh); 1195 read_unlock_bh(&neigh->lock); 1196 1197 neigh_release(neigh); 1198 1199 r->arp_ha.sa_family = dev->type; 1200 netdev_copy_name(dev, r->arp_dev); 1201 1202 return 0; 1203} 1204 1205int arp_invalidate(struct net_device *dev, __be32 ip, bool force) 1206{ 1207 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev); 1208 int err = -ENXIO; 1209 struct neigh_table *tbl = &arp_tbl; 1210 1211 if (neigh) { 1212 if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) { 1213 neigh_release(neigh); 1214 return 0; 1215 } 1216 1217 if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP) 1218 err = neigh_update(neigh, NULL, NUD_FAILED, 1219 NEIGH_UPDATE_F_OVERRIDE| 1220 NEIGH_UPDATE_F_ADMIN, 0); 1221 spin_lock_bh(&tbl->lock); 1222 neigh_release(neigh); 1223 neigh_remove_one(neigh); 1224 spin_unlock_bh(&tbl->lock); 1225 } 1226 1227 return err; 1228} 1229 1230static int arp_req_delete_public(struct net *net, struct arpreq *r, 1231 struct net_device *dev) 1232{ 1233 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr; 1234 1235 if (mask) { 1236 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; 1237 1238 return pneigh_delete(&arp_tbl, net, &ip, dev); 1239 } 1240 1241 return arp_req_set_proxy(net, dev, 0); 1242} 1243 1244static int arp_req_delete(struct net *net, struct arpreq *r) 1245{ 1246 struct net_device *dev; 1247 __be32 ip; 1248 1249 dev = arp_req_dev(net, r); 1250 if (IS_ERR(dev)) 1251 return PTR_ERR(dev); 1252 1253 if (r->arp_flags & ATF_PUBL) 1254 return arp_req_delete_public(net, r, dev); 1255 1256 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; 1257 1258 return arp_invalidate(dev, ip, true); 1259} 1260 1261/* 1262 * Handle an ARP layer I/O control request. 1263 */ 1264 1265int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg) 1266{ 1267 struct arpreq r; 1268 __be32 *netmask; 1269 int err; 1270 1271 switch (cmd) { 1272 case SIOCDARP: 1273 case SIOCSARP: 1274 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1275 return -EPERM; 1276 fallthrough; 1277 case SIOCGARP: 1278 err = copy_from_user(&r, arg, sizeof(struct arpreq)); 1279 if (err) 1280 return -EFAULT; 1281 break; 1282 default: 1283 return -EINVAL; 1284 } 1285 1286 if (r.arp_pa.sa_family != AF_INET) 1287 return -EPFNOSUPPORT; 1288 1289 if (!(r.arp_flags & ATF_PUBL) && 1290 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB))) 1291 return -EINVAL; 1292 1293 netmask = &((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr; 1294 if (!(r.arp_flags & ATF_NETMASK)) 1295 *netmask = htonl(0xFFFFFFFFUL); 1296 else if (*netmask && *netmask != htonl(0xFFFFFFFFUL)) 1297 return -EINVAL; 1298 1299 switch (cmd) { 1300 case SIOCDARP: 1301 rtnl_net_lock(net); 1302 err = arp_req_delete(net, &r); 1303 rtnl_net_unlock(net); 1304 break; 1305 case SIOCSARP: 1306 rtnl_net_lock(net); 1307 err = arp_req_set(net, &r); 1308 rtnl_net_unlock(net); 1309 break; 1310 case SIOCGARP: 1311 rcu_read_lock(); 1312 err = arp_req_get(net, &r); 1313 rcu_read_unlock(); 1314 1315 if (!err && copy_to_user(arg, &r, sizeof(r))) 1316 err = -EFAULT; 1317 break; 1318 } 1319 1320 return err; 1321} 1322 1323static int arp_netdev_event(struct notifier_block *this, unsigned long event, 1324 void *ptr) 1325{ 1326 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1327 struct netdev_notifier_change_info *change_info; 1328 struct in_device *in_dev; 1329 bool evict_nocarrier; 1330 1331 switch (event) { 1332 case NETDEV_CHANGEADDR: 1333 neigh_changeaddr(&arp_tbl, dev); 1334 rt_cache_flush(dev_net(dev)); 1335 break; 1336 case NETDEV_CHANGE: 1337 change_info = ptr; 1338 if (change_info->flags_changed & IFF_NOARP) 1339 neigh_changeaddr(&arp_tbl, dev); 1340 1341 in_dev = __in_dev_get_rtnl(dev); 1342 if (!in_dev) 1343 evict_nocarrier = true; 1344 else 1345 evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev); 1346 1347 if (evict_nocarrier && !netif_carrier_ok(dev)) 1348 neigh_carrier_down(&arp_tbl, dev); 1349 break; 1350 default: 1351 break; 1352 } 1353 1354 return NOTIFY_DONE; 1355} 1356 1357static struct notifier_block arp_netdev_notifier = { 1358 .notifier_call = arp_netdev_event, 1359}; 1360 1361/* Note, that it is not on notifier chain. 1362 It is necessary, that this routine was called after route cache will be 1363 flushed. 1364 */ 1365void arp_ifdown(struct net_device *dev) 1366{ 1367 neigh_ifdown(&arp_tbl, dev); 1368} 1369 1370 1371/* 1372 * Called once on startup. 1373 */ 1374 1375static struct packet_type arp_packet_type __read_mostly = { 1376 .type = cpu_to_be16(ETH_P_ARP), 1377 .func = arp_rcv, 1378}; 1379 1380#ifdef CONFIG_PROC_FS 1381#if IS_ENABLED(CONFIG_AX25) 1382 1383/* 1384 * ax25 -> ASCII conversion 1385 */ 1386static void ax2asc2(ax25_address *a, char *buf) 1387{ 1388 char c, *s; 1389 int n; 1390 1391 for (n = 0, s = buf; n < 6; n++) { 1392 c = (a->ax25_call[n] >> 1) & 0x7F; 1393 1394 if (c != ' ') 1395 *s++ = c; 1396 } 1397 1398 *s++ = '-'; 1399 n = (a->ax25_call[6] >> 1) & 0x0F; 1400 if (n > 9) { 1401 *s++ = '1'; 1402 n -= 10; 1403 } 1404 1405 *s++ = n + '0'; 1406 *s++ = '\0'; 1407 1408 if (*buf == '\0' || *buf == '-') { 1409 buf[0] = '*'; 1410 buf[1] = '\0'; 1411 } 1412} 1413#endif /* CONFIG_AX25 */ 1414 1415#define HBUFFERLEN 30 1416 1417static void arp_format_neigh_entry(struct seq_file *seq, 1418 struct neighbour *n) 1419{ 1420 char hbuffer[HBUFFERLEN]; 1421 int k, j; 1422 char tbuf[16]; 1423 struct net_device *dev = n->dev; 1424 int hatype = dev->type; 1425 1426 read_lock(&n->lock); 1427 /* Convert hardware address to XX:XX:XX:XX ... form. */ 1428#if IS_ENABLED(CONFIG_AX25) 1429 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM) 1430 ax2asc2((ax25_address *)n->ha, hbuffer); 1431 else { 1432#endif 1433 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) { 1434 hbuffer[k++] = hex_asc_hi(n->ha[j]); 1435 hbuffer[k++] = hex_asc_lo(n->ha[j]); 1436 hbuffer[k++] = ':'; 1437 } 1438 if (k != 0) 1439 --k; 1440 hbuffer[k] = 0; 1441#if IS_ENABLED(CONFIG_AX25) 1442 } 1443#endif 1444 sprintf(tbuf, "%pI4", n->primary_key); 1445 seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s * %s\n", 1446 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name); 1447 read_unlock(&n->lock); 1448} 1449 1450static void arp_format_pneigh_entry(struct seq_file *seq, 1451 struct pneigh_entry *n) 1452{ 1453 struct net_device *dev = n->dev; 1454 int hatype = dev ? dev->type : 0; 1455 char tbuf[16]; 1456 1457 sprintf(tbuf, "%pI4", n->key); 1458 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n", 1459 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00", 1460 dev ? dev->name : "*"); 1461} 1462 1463static int arp_seq_show(struct seq_file *seq, void *v) 1464{ 1465 if (v == SEQ_START_TOKEN) { 1466 seq_puts(seq, "IP address HW type Flags " 1467 "HW address Mask Device\n"); 1468 } else { 1469 struct neigh_seq_state *state = seq->private; 1470 1471 if (state->flags & NEIGH_SEQ_IS_PNEIGH) 1472 arp_format_pneigh_entry(seq, v); 1473 else 1474 arp_format_neigh_entry(seq, v); 1475 } 1476 1477 return 0; 1478} 1479 1480static void *arp_seq_start(struct seq_file *seq, loff_t *pos) 1481{ 1482 /* Don't want to confuse "arp -a" w/ magic entries, 1483 * so we tell the generic iterator to skip NUD_NOARP. 1484 */ 1485 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP); 1486} 1487 1488static const struct seq_operations arp_seq_ops = { 1489 .start = arp_seq_start, 1490 .next = neigh_seq_next, 1491 .stop = neigh_seq_stop, 1492 .show = arp_seq_show, 1493}; 1494#endif /* CONFIG_PROC_FS */ 1495 1496static int __net_init arp_net_init(struct net *net) 1497{ 1498 if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops, 1499 sizeof(struct neigh_seq_state))) 1500 return -ENOMEM; 1501 return 0; 1502} 1503 1504static void __net_exit arp_net_exit(struct net *net) 1505{ 1506 remove_proc_entry("arp", net->proc_net); 1507} 1508 1509static struct pernet_operations arp_net_ops = { 1510 .init = arp_net_init, 1511 .exit = arp_net_exit, 1512}; 1513 1514void __init arp_init(void) 1515{ 1516 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl); 1517 1518 dev_add_pack(&arp_packet_type); 1519 register_pernet_subsys(&arp_net_ops); 1520#ifdef CONFIG_SYSCTL 1521 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL); 1522#endif 1523 register_netdevice_notifier(&arp_netdev_notifier); 1524}