Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0
2 *
3 * page_pool.c
4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5 * Copyright (C) 2016 Red Hat, Inc.
6 */
7
8#include <linux/error-injection.h>
9#include <linux/types.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/device.h>
13
14#include <net/netdev_lock.h>
15#include <net/netdev_rx_queue.h>
16#include <net/page_pool/helpers.h>
17#include <net/page_pool/memory_provider.h>
18#include <net/xdp.h>
19
20#include <linux/dma-direction.h>
21#include <linux/dma-mapping.h>
22#include <linux/page-flags.h>
23#include <linux/mm.h> /* for put_page() */
24#include <linux/poison.h>
25#include <linux/ethtool.h>
26#include <linux/netdevice.h>
27
28#include <trace/events/page_pool.h>
29
30#include "dev.h"
31#include "mp_dmabuf_devmem.h"
32#include "netmem_priv.h"
33#include "page_pool_priv.h"
34
35DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers);
36
37#define DEFER_TIME (msecs_to_jiffies(1000))
38#define DEFER_WARN_INTERVAL (60 * HZ)
39
40#define BIAS_MAX (LONG_MAX >> 1)
41
42#ifdef CONFIG_PAGE_POOL_STATS
43static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
44
45/* alloc_stat_inc is intended to be used in softirq context */
46#define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++)
47/* recycle_stat_inc is safe to use when preemption is possible. */
48#define recycle_stat_inc(pool, __stat) \
49 do { \
50 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
51 this_cpu_inc(s->__stat); \
52 } while (0)
53
54#define recycle_stat_add(pool, __stat, val) \
55 do { \
56 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
57 this_cpu_add(s->__stat, val); \
58 } while (0)
59
60static const char pp_stats[][ETH_GSTRING_LEN] = {
61 "rx_pp_alloc_fast",
62 "rx_pp_alloc_slow",
63 "rx_pp_alloc_slow_ho",
64 "rx_pp_alloc_empty",
65 "rx_pp_alloc_refill",
66 "rx_pp_alloc_waive",
67 "rx_pp_recycle_cached",
68 "rx_pp_recycle_cache_full",
69 "rx_pp_recycle_ring",
70 "rx_pp_recycle_ring_full",
71 "rx_pp_recycle_released_ref",
72};
73
74/**
75 * page_pool_get_stats() - fetch page pool stats
76 * @pool: pool from which page was allocated
77 * @stats: struct page_pool_stats to fill in
78 *
79 * Retrieve statistics about the page_pool. This API is only available
80 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
81 * A pointer to a caller allocated struct page_pool_stats structure
82 * is passed to this API which is filled in. The caller can then report
83 * those stats to the user (perhaps via ethtool, debugfs, etc.).
84 */
85bool page_pool_get_stats(const struct page_pool *pool,
86 struct page_pool_stats *stats)
87{
88 int cpu = 0;
89
90 if (!stats)
91 return false;
92
93 /* The caller is responsible to initialize stats. */
94 stats->alloc_stats.fast += pool->alloc_stats.fast;
95 stats->alloc_stats.slow += pool->alloc_stats.slow;
96 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
97 stats->alloc_stats.empty += pool->alloc_stats.empty;
98 stats->alloc_stats.refill += pool->alloc_stats.refill;
99 stats->alloc_stats.waive += pool->alloc_stats.waive;
100
101 for_each_possible_cpu(cpu) {
102 const struct page_pool_recycle_stats *pcpu =
103 per_cpu_ptr(pool->recycle_stats, cpu);
104
105 stats->recycle_stats.cached += pcpu->cached;
106 stats->recycle_stats.cache_full += pcpu->cache_full;
107 stats->recycle_stats.ring += pcpu->ring;
108 stats->recycle_stats.ring_full += pcpu->ring_full;
109 stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
110 }
111
112 return true;
113}
114EXPORT_SYMBOL(page_pool_get_stats);
115
116u8 *page_pool_ethtool_stats_get_strings(u8 *data)
117{
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
121 memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
122 data += ETH_GSTRING_LEN;
123 }
124
125 return data;
126}
127EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
128
129int page_pool_ethtool_stats_get_count(void)
130{
131 return ARRAY_SIZE(pp_stats);
132}
133EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
134
135u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
136{
137 const struct page_pool_stats *pool_stats = stats;
138
139 *data++ = pool_stats->alloc_stats.fast;
140 *data++ = pool_stats->alloc_stats.slow;
141 *data++ = pool_stats->alloc_stats.slow_high_order;
142 *data++ = pool_stats->alloc_stats.empty;
143 *data++ = pool_stats->alloc_stats.refill;
144 *data++ = pool_stats->alloc_stats.waive;
145 *data++ = pool_stats->recycle_stats.cached;
146 *data++ = pool_stats->recycle_stats.cache_full;
147 *data++ = pool_stats->recycle_stats.ring;
148 *data++ = pool_stats->recycle_stats.ring_full;
149 *data++ = pool_stats->recycle_stats.released_refcnt;
150
151 return data;
152}
153EXPORT_SYMBOL(page_pool_ethtool_stats_get);
154
155#else
156#define alloc_stat_inc(...) do { } while (0)
157#define recycle_stat_inc(...) do { } while (0)
158#define recycle_stat_add(...) do { } while (0)
159#endif
160
161static bool page_pool_producer_lock(struct page_pool *pool)
162 __acquires(&pool->ring.producer_lock)
163{
164 bool in_softirq = in_softirq();
165
166 if (in_softirq)
167 spin_lock(&pool->ring.producer_lock);
168 else
169 spin_lock_bh(&pool->ring.producer_lock);
170
171 return in_softirq;
172}
173
174static void page_pool_producer_unlock(struct page_pool *pool,
175 bool in_softirq)
176 __releases(&pool->ring.producer_lock)
177{
178 if (in_softirq)
179 spin_unlock(&pool->ring.producer_lock);
180 else
181 spin_unlock_bh(&pool->ring.producer_lock);
182}
183
184static void page_pool_struct_check(void)
185{
186 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
187 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
188 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
189 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag,
190 PAGE_POOL_FRAG_GROUP_ALIGN);
191}
192
193static int page_pool_init(struct page_pool *pool,
194 const struct page_pool_params *params,
195 int cpuid)
196{
197 unsigned int ring_qsize = 1024; /* Default */
198 struct netdev_rx_queue *rxq;
199 int err;
200
201 page_pool_struct_check();
202
203 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p));
204 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow));
205
206 pool->cpuid = cpuid;
207 pool->dma_sync_for_cpu = true;
208
209 /* Validate only known flags were used */
210 if (pool->slow.flags & ~PP_FLAG_ALL)
211 return -EINVAL;
212
213 if (pool->p.pool_size)
214 ring_qsize = min(pool->p.pool_size, 16384);
215
216 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
217 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
218 * which is the XDP_TX use-case.
219 */
220 if (pool->slow.flags & PP_FLAG_DMA_MAP) {
221 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
222 (pool->p.dma_dir != DMA_BIDIRECTIONAL))
223 return -EINVAL;
224
225 pool->dma_map = true;
226 }
227
228 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
229 /* In order to request DMA-sync-for-device the page
230 * needs to be mapped
231 */
232 if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
233 return -EINVAL;
234
235 if (!pool->p.max_len)
236 return -EINVAL;
237
238 pool->dma_sync = true;
239
240 /* pool->p.offset has to be set according to the address
241 * offset used by the DMA engine to start copying rx data
242 */
243 }
244
245 pool->has_init_callback = !!pool->slow.init_callback;
246
247#ifdef CONFIG_PAGE_POOL_STATS
248 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
249 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
250 if (!pool->recycle_stats)
251 return -ENOMEM;
252 } else {
253 /* For system page pool instance we use a singular stats object
254 * instead of allocating a separate percpu variable for each
255 * (also percpu) page pool instance.
256 */
257 pool->recycle_stats = &pp_system_recycle_stats;
258 pool->system = true;
259 }
260#endif
261
262 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
263#ifdef CONFIG_PAGE_POOL_STATS
264 if (!pool->system)
265 free_percpu(pool->recycle_stats);
266#endif
267 return -ENOMEM;
268 }
269
270 atomic_set(&pool->pages_state_release_cnt, 0);
271
272 /* Driver calling page_pool_create() also call page_pool_destroy() */
273 refcount_set(&pool->user_cnt, 1);
274
275 xa_init_flags(&pool->dma_mapped, XA_FLAGS_ALLOC1);
276
277 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) {
278 netdev_assert_locked(pool->slow.netdev);
279 rxq = __netif_get_rx_queue(pool->slow.netdev,
280 pool->slow.queue_idx);
281 pool->mp_priv = rxq->mp_params.mp_priv;
282 pool->mp_ops = rxq->mp_params.mp_ops;
283 }
284
285 if (pool->mp_ops) {
286 if (!pool->dma_map || !pool->dma_sync) {
287 err = -EOPNOTSUPP;
288 goto free_ptr_ring;
289 }
290
291 if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) {
292 err = -EFAULT;
293 goto free_ptr_ring;
294 }
295
296 err = pool->mp_ops->init(pool);
297 if (err) {
298 pr_warn("%s() mem-provider init failed %d\n", __func__,
299 err);
300 goto free_ptr_ring;
301 }
302
303 static_branch_inc(&page_pool_mem_providers);
304 } else if (pool->p.order > MAX_PAGE_ORDER) {
305 err = -EINVAL;
306 goto free_ptr_ring;
307 }
308
309 return 0;
310
311free_ptr_ring:
312 ptr_ring_cleanup(&pool->ring, NULL);
313 xa_destroy(&pool->dma_mapped);
314#ifdef CONFIG_PAGE_POOL_STATS
315 if (!pool->system)
316 free_percpu(pool->recycle_stats);
317#endif
318 return err;
319}
320
321static void page_pool_uninit(struct page_pool *pool)
322{
323 ptr_ring_cleanup(&pool->ring, NULL);
324 xa_destroy(&pool->dma_mapped);
325
326#ifdef CONFIG_PAGE_POOL_STATS
327 if (!pool->system)
328 free_percpu(pool->recycle_stats);
329#endif
330}
331
332/**
333 * page_pool_create_percpu() - create a page pool for a given cpu.
334 * @params: parameters, see struct page_pool_params
335 * @cpuid: cpu identifier
336 */
337struct page_pool *
338page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
339{
340 struct page_pool *pool;
341 int err;
342
343 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
344 if (!pool)
345 return ERR_PTR(-ENOMEM);
346
347 err = page_pool_init(pool, params, cpuid);
348 if (err < 0)
349 goto err_free;
350
351 err = page_pool_list(pool);
352 if (err)
353 goto err_uninit;
354
355 return pool;
356
357err_uninit:
358 page_pool_uninit(pool);
359err_free:
360 pr_warn("%s() gave up with errno %d\n", __func__, err);
361 kfree(pool);
362 return ERR_PTR(err);
363}
364EXPORT_SYMBOL(page_pool_create_percpu);
365
366/**
367 * page_pool_create() - create a page pool
368 * @params: parameters, see struct page_pool_params
369 */
370struct page_pool *page_pool_create(const struct page_pool_params *params)
371{
372 return page_pool_create_percpu(params, -1);
373}
374EXPORT_SYMBOL(page_pool_create);
375
376static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem);
377
378static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool)
379{
380 struct ptr_ring *r = &pool->ring;
381 netmem_ref netmem;
382 int pref_nid; /* preferred NUMA node */
383
384 /* Quicker fallback, avoid locks when ring is empty */
385 if (__ptr_ring_empty(r)) {
386 alloc_stat_inc(pool, empty);
387 return 0;
388 }
389
390 /* Softirq guarantee CPU and thus NUMA node is stable. This,
391 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
392 */
393#ifdef CONFIG_NUMA
394 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
395#else
396 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
397 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
398#endif
399
400 /* Refill alloc array, but only if NUMA match */
401 do {
402 netmem = (__force netmem_ref)__ptr_ring_consume(r);
403 if (unlikely(!netmem))
404 break;
405
406 if (likely(netmem_is_pref_nid(netmem, pref_nid))) {
407 pool->alloc.cache[pool->alloc.count++] = netmem;
408 } else {
409 /* NUMA mismatch;
410 * (1) release 1 page to page-allocator and
411 * (2) break out to fallthrough to alloc_pages_node.
412 * This limit stress on page buddy alloactor.
413 */
414 page_pool_return_netmem(pool, netmem);
415 alloc_stat_inc(pool, waive);
416 netmem = 0;
417 break;
418 }
419 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
420
421 /* Return last page */
422 if (likely(pool->alloc.count > 0)) {
423 netmem = pool->alloc.cache[--pool->alloc.count];
424 alloc_stat_inc(pool, refill);
425 }
426
427 return netmem;
428}
429
430/* fast path */
431static netmem_ref __page_pool_get_cached(struct page_pool *pool)
432{
433 netmem_ref netmem;
434
435 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
436 if (likely(pool->alloc.count)) {
437 /* Fast-path */
438 netmem = pool->alloc.cache[--pool->alloc.count];
439 alloc_stat_inc(pool, fast);
440 } else {
441 netmem = page_pool_refill_alloc_cache(pool);
442 }
443
444 return netmem;
445}
446
447static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
448 netmem_ref netmem,
449 u32 dma_sync_size)
450{
451#if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
452 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem);
453
454 dma_sync_size = min(dma_sync_size, pool->p.max_len);
455 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
456 dma_sync_size, pool->p.dma_dir);
457#endif
458}
459
460static __always_inline void
461page_pool_dma_sync_for_device(const struct page_pool *pool,
462 netmem_ref netmem,
463 u32 dma_sync_size)
464{
465 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) {
466 rcu_read_lock();
467 /* re-check under rcu_read_lock() to sync with page_pool_scrub() */
468 if (pool->dma_sync)
469 __page_pool_dma_sync_for_device(pool, netmem,
470 dma_sync_size);
471 rcu_read_unlock();
472 }
473}
474
475static int page_pool_register_dma_index(struct page_pool *pool,
476 netmem_ref netmem, gfp_t gfp)
477{
478 int err = 0;
479 u32 id;
480
481 if (unlikely(!PP_DMA_INDEX_BITS))
482 goto out;
483
484 if (in_softirq())
485 err = xa_alloc(&pool->dma_mapped, &id, netmem_to_page(netmem),
486 PP_DMA_INDEX_LIMIT, gfp);
487 else
488 err = xa_alloc_bh(&pool->dma_mapped, &id, netmem_to_page(netmem),
489 PP_DMA_INDEX_LIMIT, gfp);
490 if (err) {
491 WARN_ONCE(err != -ENOMEM, "couldn't track DMA mapping, please report to netdev@");
492 goto out;
493 }
494
495 netmem_set_dma_index(netmem, id);
496out:
497 return err;
498}
499
500static int page_pool_release_dma_index(struct page_pool *pool,
501 netmem_ref netmem)
502{
503 struct page *old, *page = netmem_to_page(netmem);
504 unsigned long id;
505
506 if (unlikely(!PP_DMA_INDEX_BITS))
507 return 0;
508
509 id = netmem_get_dma_index(netmem);
510 if (!id)
511 return -1;
512
513 if (in_softirq())
514 old = xa_cmpxchg(&pool->dma_mapped, id, page, NULL, 0);
515 else
516 old = xa_cmpxchg_bh(&pool->dma_mapped, id, page, NULL, 0);
517 if (old != page)
518 return -1;
519
520 netmem_set_dma_index(netmem, 0);
521
522 return 0;
523}
524
525static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem, gfp_t gfp)
526{
527 dma_addr_t dma;
528 int err;
529
530 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
531 * since dma_addr_t can be either 32 or 64 bits and does not always fit
532 * into page private data (i.e 32bit cpu with 64bit DMA caps)
533 * This mapping is kept for lifetime of page, until leaving pool.
534 */
535 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0,
536 (PAGE_SIZE << pool->p.order), pool->p.dma_dir,
537 DMA_ATTR_SKIP_CPU_SYNC |
538 DMA_ATTR_WEAK_ORDERING);
539 if (dma_mapping_error(pool->p.dev, dma))
540 return false;
541
542 if (page_pool_set_dma_addr_netmem(netmem, dma)) {
543 WARN_ONCE(1, "unexpected DMA address, please report to netdev@");
544 goto unmap_failed;
545 }
546
547 err = page_pool_register_dma_index(pool, netmem, gfp);
548 if (err)
549 goto unset_failed;
550
551 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len);
552
553 return true;
554
555unset_failed:
556 page_pool_set_dma_addr_netmem(netmem, 0);
557unmap_failed:
558 dma_unmap_page_attrs(pool->p.dev, dma,
559 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
560 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
561 return false;
562}
563
564static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
565 gfp_t gfp)
566{
567 struct page *page;
568
569 gfp |= __GFP_COMP;
570 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
571 if (unlikely(!page))
572 return NULL;
573
574 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page), gfp))) {
575 put_page(page);
576 return NULL;
577 }
578
579 alloc_stat_inc(pool, slow_high_order);
580 page_pool_set_pp_info(pool, page_to_netmem(page));
581
582 /* Track how many pages are held 'in-flight' */
583 pool->pages_state_hold_cnt++;
584 trace_page_pool_state_hold(pool, page_to_netmem(page),
585 pool->pages_state_hold_cnt);
586 return page;
587}
588
589/* slow path */
590static noinline netmem_ref __page_pool_alloc_netmems_slow(struct page_pool *pool,
591 gfp_t gfp)
592{
593 const int bulk = PP_ALLOC_CACHE_REFILL;
594 unsigned int pp_order = pool->p.order;
595 bool dma_map = pool->dma_map;
596 netmem_ref netmem;
597 int i, nr_pages;
598
599 /* Unconditionally set NOWARN if allocating from NAPI.
600 * Drivers forget to set it, and OOM reports on packet Rx are useless.
601 */
602 if ((gfp & GFP_ATOMIC) == GFP_ATOMIC)
603 gfp |= __GFP_NOWARN;
604
605 /* Don't support bulk alloc for high-order pages */
606 if (unlikely(pp_order))
607 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp));
608
609 /* Unnecessary as alloc cache is empty, but guarantees zero count */
610 if (unlikely(pool->alloc.count > 0))
611 return pool->alloc.cache[--pool->alloc.count];
612
613 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */
614 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
615
616 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk,
617 (struct page **)pool->alloc.cache);
618 if (unlikely(!nr_pages))
619 return 0;
620
621 /* Pages have been filled into alloc.cache array, but count is zero and
622 * page element have not been (possibly) DMA mapped.
623 */
624 for (i = 0; i < nr_pages; i++) {
625 netmem = pool->alloc.cache[i];
626 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem, gfp))) {
627 put_page(netmem_to_page(netmem));
628 continue;
629 }
630
631 page_pool_set_pp_info(pool, netmem);
632 pool->alloc.cache[pool->alloc.count++] = netmem;
633 /* Track how many pages are held 'in-flight' */
634 pool->pages_state_hold_cnt++;
635 trace_page_pool_state_hold(pool, netmem,
636 pool->pages_state_hold_cnt);
637 }
638
639 /* Return last page */
640 if (likely(pool->alloc.count > 0)) {
641 netmem = pool->alloc.cache[--pool->alloc.count];
642 alloc_stat_inc(pool, slow);
643 } else {
644 netmem = 0;
645 }
646
647 /* When page just alloc'ed is should/must have refcnt 1. */
648 return netmem;
649}
650
651/* For using page_pool replace: alloc_pages() API calls, but provide
652 * synchronization guarantee for allocation side.
653 */
654netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp)
655{
656 netmem_ref netmem;
657
658 /* Fast-path: Get a page from cache */
659 netmem = __page_pool_get_cached(pool);
660 if (netmem)
661 return netmem;
662
663 /* Slow-path: cache empty, do real allocation */
664 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
665 netmem = pool->mp_ops->alloc_netmems(pool, gfp);
666 else
667 netmem = __page_pool_alloc_netmems_slow(pool, gfp);
668 return netmem;
669}
670EXPORT_SYMBOL(page_pool_alloc_netmems);
671ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL);
672
673struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
674{
675 return netmem_to_page(page_pool_alloc_netmems(pool, gfp));
676}
677EXPORT_SYMBOL(page_pool_alloc_pages);
678
679/* Calculate distance between two u32 values, valid if distance is below 2^(31)
680 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
681 */
682#define _distance(a, b) (s32)((a) - (b))
683
684s32 page_pool_inflight(const struct page_pool *pool, bool strict)
685{
686 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
687 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
688 s32 inflight;
689
690 inflight = _distance(hold_cnt, release_cnt);
691
692 if (strict) {
693 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
694 WARN(inflight < 0, "Negative(%d) inflight packet-pages",
695 inflight);
696 } else {
697 inflight = max(0, inflight);
698 }
699
700 return inflight;
701}
702
703void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem)
704{
705 netmem_set_pp(netmem, pool);
706 netmem_or_pp_magic(netmem, PP_SIGNATURE);
707
708 /* Ensuring all pages have been split into one fragment initially:
709 * page_pool_set_pp_info() is only called once for every page when it
710 * is allocated from the page allocator and page_pool_fragment_page()
711 * is dirtying the same cache line as the page->pp_magic above, so
712 * the overhead is negligible.
713 */
714 page_pool_fragment_netmem(netmem, 1);
715 if (pool->has_init_callback)
716 pool->slow.init_callback(netmem, pool->slow.init_arg);
717}
718
719void page_pool_clear_pp_info(netmem_ref netmem)
720{
721 netmem_clear_pp_magic(netmem);
722 netmem_set_pp(netmem, NULL);
723}
724
725static __always_inline void __page_pool_release_netmem_dma(struct page_pool *pool,
726 netmem_ref netmem)
727{
728 dma_addr_t dma;
729
730 if (!pool->dma_map)
731 /* Always account for inflight pages, even if we didn't
732 * map them
733 */
734 return;
735
736 if (page_pool_release_dma_index(pool, netmem))
737 return;
738
739 dma = page_pool_get_dma_addr_netmem(netmem);
740
741 /* When page is unmapped, it cannot be returned to our pool */
742 dma_unmap_page_attrs(pool->p.dev, dma,
743 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
744 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
745 page_pool_set_dma_addr_netmem(netmem, 0);
746}
747
748/* Disconnects a page (from a page_pool). API users can have a need
749 * to disconnect a page (from a page_pool), to allow it to be used as
750 * a regular page (that will eventually be returned to the normal
751 * page-allocator via put_page).
752 */
753static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem)
754{
755 int count;
756 bool put;
757
758 put = true;
759 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
760 put = pool->mp_ops->release_netmem(pool, netmem);
761 else
762 __page_pool_release_netmem_dma(pool, netmem);
763
764 /* This may be the last page returned, releasing the pool, so
765 * it is not safe to reference pool afterwards.
766 */
767 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
768 trace_page_pool_state_release(pool, netmem, count);
769
770 if (put) {
771 page_pool_clear_pp_info(netmem);
772 put_page(netmem_to_page(netmem));
773 }
774 /* An optimization would be to call __free_pages(page, pool->p.order)
775 * knowing page is not part of page-cache (thus avoiding a
776 * __page_cache_release() call).
777 */
778}
779
780static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem)
781{
782 bool in_softirq, ret;
783
784 /* BH protection not needed if current is softirq */
785 in_softirq = page_pool_producer_lock(pool);
786 ret = !__ptr_ring_produce(&pool->ring, (__force void *)netmem);
787 if (ret)
788 recycle_stat_inc(pool, ring);
789 page_pool_producer_unlock(pool, in_softirq);
790
791 return ret;
792}
793
794/* Only allow direct recycling in special circumstances, into the
795 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
796 *
797 * Caller must provide appropriate safe context.
798 */
799static bool page_pool_recycle_in_cache(netmem_ref netmem,
800 struct page_pool *pool)
801{
802 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
803 recycle_stat_inc(pool, cache_full);
804 return false;
805 }
806
807 /* Caller MUST have verified/know (page_ref_count(page) == 1) */
808 pool->alloc.cache[pool->alloc.count++] = netmem;
809 recycle_stat_inc(pool, cached);
810 return true;
811}
812
813static bool __page_pool_page_can_be_recycled(netmem_ref netmem)
814{
815 return netmem_is_net_iov(netmem) ||
816 (page_ref_count(netmem_to_page(netmem)) == 1 &&
817 !page_is_pfmemalloc(netmem_to_page(netmem)));
818}
819
820/* If the page refcnt == 1, this will try to recycle the page.
821 * If pool->dma_sync is set, we'll try to sync the DMA area for
822 * the configured size min(dma_sync_size, pool->max_len).
823 * If the page refcnt != 1, then the page will be returned to memory
824 * subsystem.
825 */
826static __always_inline netmem_ref
827__page_pool_put_page(struct page_pool *pool, netmem_ref netmem,
828 unsigned int dma_sync_size, bool allow_direct)
829{
830 lockdep_assert_no_hardirq();
831
832 /* This allocator is optimized for the XDP mode that uses
833 * one-frame-per-page, but have fallbacks that act like the
834 * regular page allocator APIs.
835 *
836 * refcnt == 1 means page_pool owns page, and can recycle it.
837 *
838 * page is NOT reusable when allocated when system is under
839 * some pressure. (page_is_pfmemalloc)
840 */
841 if (likely(__page_pool_page_can_be_recycled(netmem))) {
842 /* Read barrier done in page_ref_count / READ_ONCE */
843
844 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
845
846 if (allow_direct && page_pool_recycle_in_cache(netmem, pool))
847 return 0;
848
849 /* Page found as candidate for recycling */
850 return netmem;
851 }
852
853 /* Fallback/non-XDP mode: API user have elevated refcnt.
854 *
855 * Many drivers split up the page into fragments, and some
856 * want to keep doing this to save memory and do refcnt based
857 * recycling. Support this use case too, to ease drivers
858 * switching between XDP/non-XDP.
859 *
860 * In-case page_pool maintains the DMA mapping, API user must
861 * call page_pool_put_page once. In this elevated refcnt
862 * case, the DMA is unmapped/released, as driver is likely
863 * doing refcnt based recycle tricks, meaning another process
864 * will be invoking put_page.
865 */
866 recycle_stat_inc(pool, released_refcnt);
867 page_pool_return_netmem(pool, netmem);
868
869 return 0;
870}
871
872static bool page_pool_napi_local(const struct page_pool *pool)
873{
874 const struct napi_struct *napi;
875 u32 cpuid;
876
877 /* On PREEMPT_RT the softirq can be preempted by the consumer */
878 if (IS_ENABLED(CONFIG_PREEMPT_RT))
879 return false;
880
881 if (unlikely(!in_softirq()))
882 return false;
883
884 /* Allow direct recycle if we have reasons to believe that we are
885 * in the same context as the consumer would run, so there's
886 * no possible race.
887 * __page_pool_put_page() makes sure we're not in hardirq context
888 * and interrupts are enabled prior to accessing the cache.
889 */
890 cpuid = smp_processor_id();
891 if (READ_ONCE(pool->cpuid) == cpuid)
892 return true;
893
894 napi = READ_ONCE(pool->p.napi);
895
896 return napi && READ_ONCE(napi->list_owner) == cpuid;
897}
898
899void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem,
900 unsigned int dma_sync_size, bool allow_direct)
901{
902 if (!allow_direct)
903 allow_direct = page_pool_napi_local(pool);
904
905 netmem = __page_pool_put_page(pool, netmem, dma_sync_size,
906 allow_direct);
907 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) {
908 /* Cache full, fallback to free pages */
909 recycle_stat_inc(pool, ring_full);
910 page_pool_return_netmem(pool, netmem);
911 }
912}
913EXPORT_SYMBOL(page_pool_put_unrefed_netmem);
914
915void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
916 unsigned int dma_sync_size, bool allow_direct)
917{
918 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size,
919 allow_direct);
920}
921EXPORT_SYMBOL(page_pool_put_unrefed_page);
922
923static void page_pool_recycle_ring_bulk(struct page_pool *pool,
924 netmem_ref *bulk,
925 u32 bulk_len)
926{
927 bool in_softirq;
928 u32 i;
929
930 /* Bulk produce into ptr_ring page_pool cache */
931 in_softirq = page_pool_producer_lock(pool);
932
933 for (i = 0; i < bulk_len; i++) {
934 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) {
935 /* ring full */
936 recycle_stat_inc(pool, ring_full);
937 break;
938 }
939 }
940
941 page_pool_producer_unlock(pool, in_softirq);
942 recycle_stat_add(pool, ring, i);
943
944 /* Hopefully all pages were returned into ptr_ring */
945 if (likely(i == bulk_len))
946 return;
947
948 /*
949 * ptr_ring cache is full, free remaining pages outside producer lock
950 * since put_page() with refcnt == 1 can be an expensive operation.
951 */
952 for (; i < bulk_len; i++)
953 page_pool_return_netmem(pool, bulk[i]);
954}
955
956/**
957 * page_pool_put_netmem_bulk() - release references on multiple netmems
958 * @data: array holding netmem references
959 * @count: number of entries in @data
960 *
961 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring
962 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk()
963 * will release leftover netmems to the memory provider.
964 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx
965 * completion loop for the XDP_REDIRECT use case.
966 *
967 * Please note the caller must not use data area after running
968 * page_pool_put_netmem_bulk(), as this function overwrites it.
969 */
970void page_pool_put_netmem_bulk(netmem_ref *data, u32 count)
971{
972 u32 bulk_len = 0;
973
974 for (u32 i = 0; i < count; i++) {
975 netmem_ref netmem = netmem_compound_head(data[i]);
976
977 if (page_pool_unref_and_test(netmem))
978 data[bulk_len++] = netmem;
979 }
980
981 count = bulk_len;
982 while (count) {
983 netmem_ref bulk[XDP_BULK_QUEUE_SIZE];
984 struct page_pool *pool = NULL;
985 bool allow_direct;
986 u32 foreign = 0;
987
988 bulk_len = 0;
989
990 for (u32 i = 0; i < count; i++) {
991 struct page_pool *netmem_pp;
992 netmem_ref netmem = data[i];
993
994 netmem_pp = netmem_get_pp(netmem);
995 if (unlikely(!pool)) {
996 pool = netmem_pp;
997 allow_direct = page_pool_napi_local(pool);
998 } else if (netmem_pp != pool) {
999 /*
1000 * If the netmem belongs to a different
1001 * page_pool, save it for another round.
1002 */
1003 data[foreign++] = netmem;
1004 continue;
1005 }
1006
1007 netmem = __page_pool_put_page(pool, netmem, -1,
1008 allow_direct);
1009 /* Approved for bulk recycling in ptr_ring cache */
1010 if (netmem)
1011 bulk[bulk_len++] = netmem;
1012 }
1013
1014 if (bulk_len)
1015 page_pool_recycle_ring_bulk(pool, bulk, bulk_len);
1016
1017 count = foreign;
1018 }
1019}
1020EXPORT_SYMBOL(page_pool_put_netmem_bulk);
1021
1022static netmem_ref page_pool_drain_frag(struct page_pool *pool,
1023 netmem_ref netmem)
1024{
1025 long drain_count = BIAS_MAX - pool->frag_users;
1026
1027 /* Some user is still using the page frag */
1028 if (likely(page_pool_unref_netmem(netmem, drain_count)))
1029 return 0;
1030
1031 if (__page_pool_page_can_be_recycled(netmem)) {
1032 page_pool_dma_sync_for_device(pool, netmem, -1);
1033 return netmem;
1034 }
1035
1036 page_pool_return_netmem(pool, netmem);
1037 return 0;
1038}
1039
1040static void page_pool_free_frag(struct page_pool *pool)
1041{
1042 long drain_count = BIAS_MAX - pool->frag_users;
1043 netmem_ref netmem = pool->frag_page;
1044
1045 pool->frag_page = 0;
1046
1047 if (!netmem || page_pool_unref_netmem(netmem, drain_count))
1048 return;
1049
1050 page_pool_return_netmem(pool, netmem);
1051}
1052
1053netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool,
1054 unsigned int *offset, unsigned int size,
1055 gfp_t gfp)
1056{
1057 unsigned int max_size = PAGE_SIZE << pool->p.order;
1058 netmem_ref netmem = pool->frag_page;
1059
1060 if (WARN_ON(size > max_size))
1061 return 0;
1062
1063 size = ALIGN(size, dma_get_cache_alignment());
1064 *offset = pool->frag_offset;
1065
1066 if (netmem && *offset + size > max_size) {
1067 netmem = page_pool_drain_frag(pool, netmem);
1068 if (netmem) {
1069 recycle_stat_inc(pool, cached);
1070 alloc_stat_inc(pool, fast);
1071 goto frag_reset;
1072 }
1073 }
1074
1075 if (!netmem) {
1076 netmem = page_pool_alloc_netmems(pool, gfp);
1077 if (unlikely(!netmem)) {
1078 pool->frag_page = 0;
1079 return 0;
1080 }
1081
1082 pool->frag_page = netmem;
1083
1084frag_reset:
1085 pool->frag_users = 1;
1086 *offset = 0;
1087 pool->frag_offset = size;
1088 page_pool_fragment_netmem(netmem, BIAS_MAX);
1089 return netmem;
1090 }
1091
1092 pool->frag_users++;
1093 pool->frag_offset = *offset + size;
1094 return netmem;
1095}
1096EXPORT_SYMBOL(page_pool_alloc_frag_netmem);
1097
1098struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
1099 unsigned int size, gfp_t gfp)
1100{
1101 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size,
1102 gfp));
1103}
1104EXPORT_SYMBOL(page_pool_alloc_frag);
1105
1106static void page_pool_empty_ring(struct page_pool *pool)
1107{
1108 netmem_ref netmem;
1109
1110 /* Empty recycle ring */
1111 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) {
1112 /* Verify the refcnt invariant of cached pages */
1113 if (!(netmem_ref_count(netmem) == 1))
1114 pr_crit("%s() page_pool refcnt %d violation\n",
1115 __func__, netmem_ref_count(netmem));
1116
1117 page_pool_return_netmem(pool, netmem);
1118 }
1119}
1120
1121static void __page_pool_destroy(struct page_pool *pool)
1122{
1123 if (pool->disconnect)
1124 pool->disconnect(pool);
1125
1126 page_pool_unlist(pool);
1127 page_pool_uninit(pool);
1128
1129 if (pool->mp_ops) {
1130 pool->mp_ops->destroy(pool);
1131 static_branch_dec(&page_pool_mem_providers);
1132 }
1133
1134 kfree(pool);
1135}
1136
1137static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
1138{
1139 netmem_ref netmem;
1140
1141 if (pool->destroy_cnt)
1142 return;
1143
1144 /* Empty alloc cache, assume caller made sure this is
1145 * no-longer in use, and page_pool_alloc_pages() cannot be
1146 * call concurrently.
1147 */
1148 while (pool->alloc.count) {
1149 netmem = pool->alloc.cache[--pool->alloc.count];
1150 page_pool_return_netmem(pool, netmem);
1151 }
1152}
1153
1154static void page_pool_scrub(struct page_pool *pool)
1155{
1156 unsigned long id;
1157 void *ptr;
1158
1159 page_pool_empty_alloc_cache_once(pool);
1160 if (!pool->destroy_cnt++ && pool->dma_map) {
1161 if (pool->dma_sync) {
1162 /* Disable page_pool_dma_sync_for_device() */
1163 pool->dma_sync = false;
1164
1165 /* Make sure all concurrent returns that may see the old
1166 * value of dma_sync (and thus perform a sync) have
1167 * finished before doing the unmapping below. Skip the
1168 * wait if the device doesn't actually need syncing, or
1169 * if there are no outstanding mapped pages.
1170 */
1171 if (dma_dev_need_sync(pool->p.dev) &&
1172 !xa_empty(&pool->dma_mapped))
1173 synchronize_net();
1174 }
1175
1176 xa_for_each(&pool->dma_mapped, id, ptr)
1177 __page_pool_release_netmem_dma(pool, page_to_netmem((struct page *)ptr));
1178 }
1179
1180 /* No more consumers should exist, but producers could still
1181 * be in-flight.
1182 */
1183 page_pool_empty_ring(pool);
1184}
1185
1186static int page_pool_release(struct page_pool *pool)
1187{
1188 bool in_softirq;
1189 int inflight;
1190
1191 page_pool_scrub(pool);
1192 inflight = page_pool_inflight(pool, true);
1193 /* Acquire producer lock to make sure producers have exited. */
1194 in_softirq = page_pool_producer_lock(pool);
1195 page_pool_producer_unlock(pool, in_softirq);
1196 if (!inflight)
1197 __page_pool_destroy(pool);
1198
1199 return inflight;
1200}
1201
1202static void page_pool_release_retry(struct work_struct *wq)
1203{
1204 struct delayed_work *dwq = to_delayed_work(wq);
1205 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
1206 void *netdev;
1207 int inflight;
1208
1209 inflight = page_pool_release(pool);
1210 /* In rare cases, a driver bug may cause inflight to go negative.
1211 * Don't reschedule release if inflight is 0 or negative.
1212 * - If 0, the page_pool has been destroyed
1213 * - if negative, we will never recover
1214 * in both cases no reschedule is necessary.
1215 */
1216 if (inflight <= 0)
1217 return;
1218
1219 /* Periodic warning for page pools the user can't see */
1220 netdev = READ_ONCE(pool->slow.netdev);
1221 if (time_after_eq(jiffies, pool->defer_warn) &&
1222 (!netdev || netdev == NET_PTR_POISON)) {
1223 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
1224
1225 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
1226 __func__, pool->user.id, inflight, sec);
1227 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1228 }
1229
1230 /* Still not ready to be disconnected, retry later */
1231 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1232}
1233
1234void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
1235 const struct xdp_mem_info *mem)
1236{
1237 refcount_inc(&pool->user_cnt);
1238 pool->disconnect = disconnect;
1239 pool->xdp_mem_id = mem->id;
1240}
1241
1242/**
1243 * page_pool_enable_direct_recycling() - mark page pool as owned by NAPI
1244 * @pool: page pool to modify
1245 * @napi: NAPI instance to associate the page pool with
1246 *
1247 * Associate a page pool with a NAPI instance for lockless page recycling.
1248 * This is useful when a new page pool has to be added to a NAPI instance
1249 * without disabling that NAPI instance, to mark the point at which control
1250 * path "hands over" the page pool to the NAPI instance. In most cases driver
1251 * can simply set the @napi field in struct page_pool_params, and does not
1252 * have to call this helper.
1253 *
1254 * The function is idempotent, but does not implement any refcounting.
1255 * Single page_pool_disable_direct_recycling() will disable recycling,
1256 * no matter how many times enable was called.
1257 */
1258void page_pool_enable_direct_recycling(struct page_pool *pool,
1259 struct napi_struct *napi)
1260{
1261 if (READ_ONCE(pool->p.napi) == napi)
1262 return;
1263 WARN_ON(!napi || pool->p.napi);
1264
1265 mutex_lock(&page_pools_lock);
1266 WRITE_ONCE(pool->p.napi, napi);
1267 mutex_unlock(&page_pools_lock);
1268}
1269EXPORT_SYMBOL(page_pool_enable_direct_recycling);
1270
1271void page_pool_disable_direct_recycling(struct page_pool *pool)
1272{
1273 /* Disable direct recycling based on pool->cpuid.
1274 * Paired with READ_ONCE() in page_pool_napi_local().
1275 */
1276 WRITE_ONCE(pool->cpuid, -1);
1277
1278 if (!pool->p.napi)
1279 return;
1280
1281 napi_assert_will_not_race(pool->p.napi);
1282
1283 mutex_lock(&page_pools_lock);
1284 WRITE_ONCE(pool->p.napi, NULL);
1285 mutex_unlock(&page_pools_lock);
1286}
1287EXPORT_SYMBOL(page_pool_disable_direct_recycling);
1288
1289void page_pool_destroy(struct page_pool *pool)
1290{
1291 if (!pool)
1292 return;
1293
1294 if (!page_pool_put(pool))
1295 return;
1296
1297 page_pool_disable_direct_recycling(pool);
1298 page_pool_free_frag(pool);
1299
1300 if (!page_pool_release(pool))
1301 return;
1302
1303 page_pool_detached(pool);
1304 pool->defer_start = jiffies;
1305 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1306
1307 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
1308 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1309}
1310EXPORT_SYMBOL(page_pool_destroy);
1311
1312/* Caller must provide appropriate safe context, e.g. NAPI. */
1313void page_pool_update_nid(struct page_pool *pool, int new_nid)
1314{
1315 netmem_ref netmem;
1316
1317 trace_page_pool_update_nid(pool, new_nid);
1318 pool->p.nid = new_nid;
1319
1320 /* Flush pool alloc cache, as refill will check NUMA node */
1321 while (pool->alloc.count) {
1322 netmem = pool->alloc.cache[--pool->alloc.count];
1323 page_pool_return_netmem(pool, netmem);
1324 }
1325}
1326EXPORT_SYMBOL(page_pool_update_nid);
1327
1328bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr)
1329{
1330 return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr);
1331}
1332
1333/* Associate a niov with a page pool. Should follow with a matching
1334 * net_mp_niov_clear_page_pool()
1335 */
1336void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov)
1337{
1338 netmem_ref netmem = net_iov_to_netmem(niov);
1339
1340 page_pool_set_pp_info(pool, netmem);
1341
1342 pool->pages_state_hold_cnt++;
1343 trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt);
1344}
1345
1346/* Disassociate a niov from a page pool. Should only be used in the
1347 * ->release_netmem() path.
1348 */
1349void net_mp_niov_clear_page_pool(struct net_iov *niov)
1350{
1351 netmem_ref netmem = net_iov_to_netmem(niov);
1352
1353 page_pool_clear_pp_info(netmem);
1354}