at master 345 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71#include <linux/uaccess.h> 72#include <linux/bitmap.h> 73#include <linux/capability.h> 74#include <linux/cpu.h> 75#include <linux/types.h> 76#include <linux/kernel.h> 77#include <linux/hash.h> 78#include <linux/slab.h> 79#include <linux/sched.h> 80#include <linux/sched/isolation.h> 81#include <linux/sched/mm.h> 82#include <linux/smpboot.h> 83#include <linux/mutex.h> 84#include <linux/rwsem.h> 85#include <linux/string.h> 86#include <linux/mm.h> 87#include <linux/socket.h> 88#include <linux/sockios.h> 89#include <linux/errno.h> 90#include <linux/interrupt.h> 91#include <linux/if_ether.h> 92#include <linux/netdevice.h> 93#include <linux/etherdevice.h> 94#include <linux/ethtool.h> 95#include <linux/ethtool_netlink.h> 96#include <linux/skbuff.h> 97#include <linux/kthread.h> 98#include <linux/bpf.h> 99#include <linux/bpf_trace.h> 100#include <net/net_namespace.h> 101#include <net/sock.h> 102#include <net/busy_poll.h> 103#include <linux/rtnetlink.h> 104#include <linux/stat.h> 105#include <net/dsa.h> 106#include <net/dst.h> 107#include <net/dst_metadata.h> 108#include <net/gro.h> 109#include <net/netdev_queues.h> 110#include <net/pkt_sched.h> 111#include <net/pkt_cls.h> 112#include <net/checksum.h> 113#include <net/xfrm.h> 114#include <net/tcx.h> 115#include <linux/highmem.h> 116#include <linux/init.h> 117#include <linux/module.h> 118#include <linux/netpoll.h> 119#include <linux/rcupdate.h> 120#include <linux/delay.h> 121#include <net/iw_handler.h> 122#include <asm/current.h> 123#include <linux/audit.h> 124#include <linux/dmaengine.h> 125#include <linux/err.h> 126#include <linux/ctype.h> 127#include <linux/if_arp.h> 128#include <linux/if_vlan.h> 129#include <linux/ip.h> 130#include <net/ip.h> 131#include <net/mpls.h> 132#include <linux/ipv6.h> 133#include <linux/in.h> 134#include <linux/jhash.h> 135#include <linux/random.h> 136#include <trace/events/napi.h> 137#include <trace/events/net.h> 138#include <trace/events/skb.h> 139#include <trace/events/qdisc.h> 140#include <trace/events/xdp.h> 141#include <linux/inetdevice.h> 142#include <linux/cpu_rmap.h> 143#include <linux/static_key.h> 144#include <linux/hashtable.h> 145#include <linux/vmalloc.h> 146#include <linux/if_macvlan.h> 147#include <linux/errqueue.h> 148#include <linux/hrtimer.h> 149#include <linux/netfilter_netdev.h> 150#include <linux/crash_dump.h> 151#include <linux/sctp.h> 152#include <net/udp_tunnel.h> 153#include <linux/net_namespace.h> 154#include <linux/indirect_call_wrapper.h> 155#include <net/devlink.h> 156#include <linux/pm_runtime.h> 157#include <linux/prandom.h> 158#include <linux/once_lite.h> 159#include <net/netdev_lock.h> 160#include <net/netdev_rx_queue.h> 161#include <net/page_pool/types.h> 162#include <net/page_pool/helpers.h> 163#include <net/page_pool/memory_provider.h> 164#include <net/rps.h> 165#include <linux/phy_link_topology.h> 166 167#include "dev.h" 168#include "devmem.h" 169#include "net-sysfs.h" 170 171static DEFINE_SPINLOCK(ptype_lock); 172struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174static int netif_rx_internal(struct sk_buff *skb); 175static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179static DEFINE_MUTEX(ifalias_mutex); 180 181/* protects napi_hash addition/deletion and napi_gen_id */ 182static DEFINE_SPINLOCK(napi_hash_lock); 183 184static unsigned int napi_gen_id = NR_CPUS; 185static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187static inline void dev_base_seq_inc(struct net *net) 188{ 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192} 193 194static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195{ 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199} 200 201static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202{ 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204} 205 206#ifndef CONFIG_PREEMPT_RT 207 208static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210static int __init setup_backlog_napi_threads(char *arg) 211{ 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214} 215early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217static bool use_backlog_threads(void) 218{ 219 return static_branch_unlikely(&use_backlog_threads_key); 220} 221 222#else 223 224static bool use_backlog_threads(void) 225{ 226 return true; 227} 228 229#endif 230 231static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233{ 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238} 239 240static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241{ 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246} 247 248static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250{ 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255} 256 257static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258{ 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263} 264 265static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267{ 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277} 278 279static struct netdev_name_node * 280netdev_name_node_head_alloc(struct net_device *dev) 281{ 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289} 290 291static void netdev_name_node_free(struct netdev_name_node *name_node) 292{ 293 kfree(name_node); 294} 295 296static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298{ 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301} 302 303static void netdev_name_node_del(struct netdev_name_node *name_node) 304{ 305 hlist_del_rcu(&name_node->hlist); 306} 307 308static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310{ 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318} 319 320static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322{ 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330} 331 332bool netdev_name_in_use(struct net *net, const char *name) 333{ 334 return netdev_name_node_lookup(net, name); 335} 336EXPORT_SYMBOL(netdev_name_in_use); 337 338int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339{ 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354} 355 356static void netdev_name_node_alt_free(struct rcu_head *head) 357{ 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363} 364 365static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366{ 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370} 371 372int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373{ 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388} 389 390static void netdev_name_node_alt_flush(struct net_device *dev) 391{ 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398} 399 400/* Device list insertion */ 401static void list_netdevice(struct net_device *dev) 402{ 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420} 421 422/* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425static void unlist_netdevice(struct net_device *dev) 426{ 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443} 444 445/* 446 * Our notifier list 447 */ 448 449static RAW_NOTIFIER_HEAD(netdev_chain); 450 451/* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458}; 459EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461/* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467}; 468 469#ifdef CONFIG_LOCKDEP 470/* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512{ 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520} 521 522static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524{ 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530} 531 532static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533{ 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540} 541#else 542static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544{ 545} 546 547static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548{ 549} 550#endif 551 552/******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559/* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575static inline struct list_head *ptype_head(const struct packet_type *pt) 576{ 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590} 591 592/** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605void dev_add_pack(struct packet_type *pt) 606{ 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615} 616EXPORT_SYMBOL(dev_add_pack); 617 618/** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631void __dev_remove_pack(struct packet_type *pt) 632{ 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649out: 650 spin_unlock(&ptype_lock); 651} 652EXPORT_SYMBOL(__dev_remove_pack); 653 654/** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666void dev_remove_pack(struct packet_type *pt) 667{ 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671} 672EXPORT_SYMBOL(dev_remove_pack); 673 674 675/******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681/** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689int dev_get_iflink(const struct net_device *dev) 690{ 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695} 696EXPORT_SYMBOL(dev_get_iflink); 697 698/** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708{ 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721} 722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725{ 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732} 733 734int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736{ 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771} 772EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774/* must be called under rcu_read_lock(), as we dont take a reference */ 775static struct napi_struct *napi_by_id(unsigned int napi_id) 776{ 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785} 786 787/* must be called under rcu_read_lock(), as we dont take a reference */ 788static struct napi_struct * 789netdev_napi_by_id(struct net *net, unsigned int napi_id) 790{ 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803} 804 805/** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816struct napi_struct * 817netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818{ 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846} 847 848/** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860struct net_device *__dev_get_by_name(struct net *net, const char *name) 861{ 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866} 867EXPORT_SYMBOL(__dev_get_by_name); 868 869/** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882{ 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887} 888EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890/* Deprecated for new users, call netdev_get_by_name() instead */ 891struct net_device *dev_get_by_name(struct net *net, const char *name) 892{ 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900} 901EXPORT_SYMBOL(dev_get_by_name); 902 903/** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918{ 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925} 926EXPORT_SYMBOL(netdev_get_by_name); 927 928/** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940{ 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949} 950EXPORT_SYMBOL(__dev_get_by_index); 951 952/** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964{ 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973} 974EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976/* Deprecated for new users, call netdev_get_by_index() instead */ 977struct net_device *dev_get_by_index(struct net *net, int ifindex) 978{ 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986} 987EXPORT_SYMBOL(dev_get_by_index); 988 989/** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003{ 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010} 1011EXPORT_SYMBOL(netdev_get_by_index); 1012 1013/** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023{ 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034} 1035 1036/* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045{ 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055} 1056 1057static struct net_device * 1058__netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059{ 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069} 1070 1071/** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083{ 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091} 1092 1093struct net_device * 1094netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095{ 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103} 1104 1105struct net_device * 1106netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108{ 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128} 1129 1130struct net_device * 1131netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133{ 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153} 1154 1155static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157void netdev_copy_name(struct net_device *dev, char *name) 1158{ 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165} 1166EXPORT_IPV6_MOD_GPL(netdev_copy_name); 1167 1168/** 1169 * netdev_get_name - get a netdevice name, knowing its ifindex. 1170 * @net: network namespace 1171 * @name: a pointer to the buffer where the name will be stored. 1172 * @ifindex: the ifindex of the interface to get the name from. 1173 */ 1174int netdev_get_name(struct net *net, char *name, int ifindex) 1175{ 1176 struct net_device *dev; 1177 int ret; 1178 1179 rcu_read_lock(); 1180 1181 dev = dev_get_by_index_rcu(net, ifindex); 1182 if (!dev) { 1183 ret = -ENODEV; 1184 goto out; 1185 } 1186 1187 netdev_copy_name(dev, name); 1188 1189 ret = 0; 1190out: 1191 rcu_read_unlock(); 1192 return ret; 1193} 1194 1195static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1196 const char *ha) 1197{ 1198 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1199} 1200 1201/** 1202 * dev_getbyhwaddr_rcu - find a device by its hardware address 1203 * @net: the applicable net namespace 1204 * @type: media type of device 1205 * @ha: hardware address 1206 * 1207 * Search for an interface by MAC address. Returns NULL if the device 1208 * is not found or a pointer to the device. 1209 * The caller must hold RCU. 1210 * The returned device has not had its ref count increased 1211 * and the caller must therefore be careful about locking 1212 * 1213 */ 1214 1215struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1216 const char *ha) 1217{ 1218 struct net_device *dev; 1219 1220 for_each_netdev_rcu(net, dev) 1221 if (dev_addr_cmp(dev, type, ha)) 1222 return dev; 1223 1224 return NULL; 1225} 1226EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1227 1228/** 1229 * dev_getbyhwaddr() - find a device by its hardware address 1230 * @net: the applicable net namespace 1231 * @type: media type of device 1232 * @ha: hardware address 1233 * 1234 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1235 * rtnl_lock. 1236 * 1237 * Context: rtnl_lock() must be held. 1238 * Return: pointer to the net_device, or NULL if not found 1239 */ 1240struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1241 const char *ha) 1242{ 1243 struct net_device *dev; 1244 1245 ASSERT_RTNL(); 1246 for_each_netdev(net, dev) 1247 if (dev_addr_cmp(dev, type, ha)) 1248 return dev; 1249 1250 return NULL; 1251} 1252EXPORT_SYMBOL(dev_getbyhwaddr); 1253 1254struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1255{ 1256 struct net_device *dev, *ret = NULL; 1257 1258 rcu_read_lock(); 1259 for_each_netdev_rcu(net, dev) 1260 if (dev->type == type) { 1261 dev_hold(dev); 1262 ret = dev; 1263 break; 1264 } 1265 rcu_read_unlock(); 1266 return ret; 1267} 1268EXPORT_SYMBOL(dev_getfirstbyhwtype); 1269 1270/** 1271 * netdev_get_by_flags_rcu - find any device with given flags 1272 * @net: the applicable net namespace 1273 * @tracker: tracking object for the acquired reference 1274 * @if_flags: IFF_* values 1275 * @mask: bitmask of bits in if_flags to check 1276 * 1277 * Search for any interface with the given flags. 1278 * 1279 * Context: rcu_read_lock() must be held. 1280 * Returns: NULL if a device is not found or a pointer to the device. 1281 */ 1282struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1283 unsigned short if_flags, unsigned short mask) 1284{ 1285 struct net_device *dev; 1286 1287 for_each_netdev_rcu(net, dev) { 1288 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1289 netdev_hold(dev, tracker, GFP_ATOMIC); 1290 return dev; 1291 } 1292 } 1293 1294 return NULL; 1295} 1296EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1297 1298/** 1299 * dev_valid_name - check if name is okay for network device 1300 * @name: name string 1301 * 1302 * Network device names need to be valid file names to 1303 * allow sysfs to work. We also disallow any kind of 1304 * whitespace. 1305 */ 1306bool dev_valid_name(const char *name) 1307{ 1308 if (*name == '\0') 1309 return false; 1310 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1311 return false; 1312 if (!strcmp(name, ".") || !strcmp(name, "..")) 1313 return false; 1314 1315 while (*name) { 1316 if (*name == '/' || *name == ':' || isspace(*name)) 1317 return false; 1318 name++; 1319 } 1320 return true; 1321} 1322EXPORT_SYMBOL(dev_valid_name); 1323 1324/** 1325 * __dev_alloc_name - allocate a name for a device 1326 * @net: network namespace to allocate the device name in 1327 * @name: name format string 1328 * @res: result name string 1329 * 1330 * Passed a format string - eg "lt%d" it will try and find a suitable 1331 * id. It scans list of devices to build up a free map, then chooses 1332 * the first empty slot. The caller must hold the dev_base or rtnl lock 1333 * while allocating the name and adding the device in order to avoid 1334 * duplicates. 1335 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1336 * Returns the number of the unit assigned or a negative errno code. 1337 */ 1338 1339static int __dev_alloc_name(struct net *net, const char *name, char *res) 1340{ 1341 int i = 0; 1342 const char *p; 1343 const int max_netdevices = 8*PAGE_SIZE; 1344 unsigned long *inuse; 1345 struct net_device *d; 1346 char buf[IFNAMSIZ]; 1347 1348 /* Verify the string as this thing may have come from the user. 1349 * There must be one "%d" and no other "%" characters. 1350 */ 1351 p = strchr(name, '%'); 1352 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1353 return -EINVAL; 1354 1355 /* Use one page as a bit array of possible slots */ 1356 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1357 if (!inuse) 1358 return -ENOMEM; 1359 1360 for_each_netdev(net, d) { 1361 struct netdev_name_node *name_node; 1362 1363 netdev_for_each_altname(d, name_node) { 1364 if (!sscanf(name_node->name, name, &i)) 1365 continue; 1366 if (i < 0 || i >= max_netdevices) 1367 continue; 1368 1369 /* avoid cases where sscanf is not exact inverse of printf */ 1370 snprintf(buf, IFNAMSIZ, name, i); 1371 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1372 __set_bit(i, inuse); 1373 } 1374 if (!sscanf(d->name, name, &i)) 1375 continue; 1376 if (i < 0 || i >= max_netdevices) 1377 continue; 1378 1379 /* avoid cases where sscanf is not exact inverse of printf */ 1380 snprintf(buf, IFNAMSIZ, name, i); 1381 if (!strncmp(buf, d->name, IFNAMSIZ)) 1382 __set_bit(i, inuse); 1383 } 1384 1385 i = find_first_zero_bit(inuse, max_netdevices); 1386 bitmap_free(inuse); 1387 if (i == max_netdevices) 1388 return -ENFILE; 1389 1390 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1391 strscpy(buf, name, IFNAMSIZ); 1392 snprintf(res, IFNAMSIZ, buf, i); 1393 return i; 1394} 1395 1396/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1397static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1398 const char *want_name, char *out_name, 1399 int dup_errno) 1400{ 1401 if (!dev_valid_name(want_name)) 1402 return -EINVAL; 1403 1404 if (strchr(want_name, '%')) 1405 return __dev_alloc_name(net, want_name, out_name); 1406 1407 if (netdev_name_in_use(net, want_name)) 1408 return -dup_errno; 1409 if (out_name != want_name) 1410 strscpy(out_name, want_name, IFNAMSIZ); 1411 return 0; 1412} 1413 1414/** 1415 * dev_alloc_name - allocate a name for a device 1416 * @dev: device 1417 * @name: name format string 1418 * 1419 * Passed a format string - eg "lt%d" it will try and find a suitable 1420 * id. It scans list of devices to build up a free map, then chooses 1421 * the first empty slot. The caller must hold the dev_base or rtnl lock 1422 * while allocating the name and adding the device in order to avoid 1423 * duplicates. 1424 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1425 * Returns the number of the unit assigned or a negative errno code. 1426 */ 1427 1428int dev_alloc_name(struct net_device *dev, const char *name) 1429{ 1430 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1431} 1432EXPORT_SYMBOL(dev_alloc_name); 1433 1434static int dev_get_valid_name(struct net *net, struct net_device *dev, 1435 const char *name) 1436{ 1437 int ret; 1438 1439 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1440 return ret < 0 ? ret : 0; 1441} 1442 1443int netif_change_name(struct net_device *dev, const char *newname) 1444{ 1445 struct net *net = dev_net(dev); 1446 unsigned char old_assign_type; 1447 char oldname[IFNAMSIZ]; 1448 int err = 0; 1449 int ret; 1450 1451 ASSERT_RTNL_NET(net); 1452 1453 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1454 return 0; 1455 1456 memcpy(oldname, dev->name, IFNAMSIZ); 1457 1458 write_seqlock_bh(&netdev_rename_lock); 1459 err = dev_get_valid_name(net, dev, newname); 1460 write_sequnlock_bh(&netdev_rename_lock); 1461 1462 if (err < 0) 1463 return err; 1464 1465 if (oldname[0] && !strchr(oldname, '%')) 1466 netdev_info(dev, "renamed from %s%s\n", oldname, 1467 dev->flags & IFF_UP ? " (while UP)" : ""); 1468 1469 old_assign_type = dev->name_assign_type; 1470 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1471 1472rollback: 1473 ret = device_rename(&dev->dev, dev->name); 1474 if (ret) { 1475 write_seqlock_bh(&netdev_rename_lock); 1476 memcpy(dev->name, oldname, IFNAMSIZ); 1477 write_sequnlock_bh(&netdev_rename_lock); 1478 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1479 return ret; 1480 } 1481 1482 netdev_adjacent_rename_links(dev, oldname); 1483 1484 netdev_name_node_del(dev->name_node); 1485 1486 synchronize_net(); 1487 1488 netdev_name_node_add(net, dev->name_node); 1489 1490 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1491 ret = notifier_to_errno(ret); 1492 1493 if (ret) { 1494 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1495 if (err >= 0) { 1496 err = ret; 1497 write_seqlock_bh(&netdev_rename_lock); 1498 memcpy(dev->name, oldname, IFNAMSIZ); 1499 write_sequnlock_bh(&netdev_rename_lock); 1500 memcpy(oldname, newname, IFNAMSIZ); 1501 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1502 old_assign_type = NET_NAME_RENAMED; 1503 goto rollback; 1504 } else { 1505 netdev_err(dev, "name change rollback failed: %d\n", 1506 ret); 1507 } 1508 } 1509 1510 return err; 1511} 1512 1513int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1514{ 1515 struct dev_ifalias *new_alias = NULL; 1516 1517 if (len >= IFALIASZ) 1518 return -EINVAL; 1519 1520 if (len) { 1521 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1522 if (!new_alias) 1523 return -ENOMEM; 1524 1525 memcpy(new_alias->ifalias, alias, len); 1526 new_alias->ifalias[len] = 0; 1527 } 1528 1529 mutex_lock(&ifalias_mutex); 1530 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1531 mutex_is_locked(&ifalias_mutex)); 1532 mutex_unlock(&ifalias_mutex); 1533 1534 if (new_alias) 1535 kfree_rcu(new_alias, rcuhead); 1536 1537 return len; 1538} 1539 1540/** 1541 * dev_get_alias - get ifalias of a device 1542 * @dev: device 1543 * @name: buffer to store name of ifalias 1544 * @len: size of buffer 1545 * 1546 * get ifalias for a device. Caller must make sure dev cannot go 1547 * away, e.g. rcu read lock or own a reference count to device. 1548 */ 1549int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1550{ 1551 const struct dev_ifalias *alias; 1552 int ret = 0; 1553 1554 rcu_read_lock(); 1555 alias = rcu_dereference(dev->ifalias); 1556 if (alias) 1557 ret = snprintf(name, len, "%s", alias->ifalias); 1558 rcu_read_unlock(); 1559 1560 return ret; 1561} 1562 1563/** 1564 * netdev_features_change - device changes features 1565 * @dev: device to cause notification 1566 * 1567 * Called to indicate a device has changed features. 1568 */ 1569void netdev_features_change(struct net_device *dev) 1570{ 1571 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1572} 1573EXPORT_SYMBOL(netdev_features_change); 1574 1575void netif_state_change(struct net_device *dev) 1576{ 1577 netdev_ops_assert_locked_or_invisible(dev); 1578 1579 if (dev->flags & IFF_UP) { 1580 struct netdev_notifier_change_info change_info = { 1581 .info.dev = dev, 1582 }; 1583 1584 call_netdevice_notifiers_info(NETDEV_CHANGE, 1585 &change_info.info); 1586 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1587 } 1588} 1589 1590/** 1591 * __netdev_notify_peers - notify network peers about existence of @dev, 1592 * to be called when rtnl lock is already held. 1593 * @dev: network device 1594 * 1595 * Generate traffic such that interested network peers are aware of 1596 * @dev, such as by generating a gratuitous ARP. This may be used when 1597 * a device wants to inform the rest of the network about some sort of 1598 * reconfiguration such as a failover event or virtual machine 1599 * migration. 1600 */ 1601void __netdev_notify_peers(struct net_device *dev) 1602{ 1603 ASSERT_RTNL(); 1604 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1605 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1606} 1607EXPORT_SYMBOL(__netdev_notify_peers); 1608 1609/** 1610 * netdev_notify_peers - notify network peers about existence of @dev 1611 * @dev: network device 1612 * 1613 * Generate traffic such that interested network peers are aware of 1614 * @dev, such as by generating a gratuitous ARP. This may be used when 1615 * a device wants to inform the rest of the network about some sort of 1616 * reconfiguration such as a failover event or virtual machine 1617 * migration. 1618 */ 1619void netdev_notify_peers(struct net_device *dev) 1620{ 1621 rtnl_lock(); 1622 __netdev_notify_peers(dev); 1623 rtnl_unlock(); 1624} 1625EXPORT_SYMBOL(netdev_notify_peers); 1626 1627static int napi_threaded_poll(void *data); 1628 1629static int napi_kthread_create(struct napi_struct *n) 1630{ 1631 int err = 0; 1632 1633 /* Create and wake up the kthread once to put it in 1634 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1635 * warning and work with loadavg. 1636 */ 1637 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1638 n->dev->name, n->napi_id); 1639 if (IS_ERR(n->thread)) { 1640 err = PTR_ERR(n->thread); 1641 pr_err("kthread_run failed with err %d\n", err); 1642 n->thread = NULL; 1643 } 1644 1645 return err; 1646} 1647 1648static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1649{ 1650 const struct net_device_ops *ops = dev->netdev_ops; 1651 int ret; 1652 1653 ASSERT_RTNL(); 1654 dev_addr_check(dev); 1655 1656 if (!netif_device_present(dev)) { 1657 /* may be detached because parent is runtime-suspended */ 1658 if (dev->dev.parent) 1659 pm_runtime_resume(dev->dev.parent); 1660 if (!netif_device_present(dev)) 1661 return -ENODEV; 1662 } 1663 1664 /* Block netpoll from trying to do any rx path servicing. 1665 * If we don't do this there is a chance ndo_poll_controller 1666 * or ndo_poll may be running while we open the device 1667 */ 1668 netpoll_poll_disable(dev); 1669 1670 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1671 ret = notifier_to_errno(ret); 1672 if (ret) 1673 return ret; 1674 1675 set_bit(__LINK_STATE_START, &dev->state); 1676 1677 netdev_ops_assert_locked(dev); 1678 1679 if (ops->ndo_validate_addr) 1680 ret = ops->ndo_validate_addr(dev); 1681 1682 if (!ret && ops->ndo_open) 1683 ret = ops->ndo_open(dev); 1684 1685 netpoll_poll_enable(dev); 1686 1687 if (ret) 1688 clear_bit(__LINK_STATE_START, &dev->state); 1689 else { 1690 netif_set_up(dev, true); 1691 dev_set_rx_mode(dev); 1692 dev_activate(dev); 1693 add_device_randomness(dev->dev_addr, dev->addr_len); 1694 } 1695 1696 return ret; 1697} 1698 1699int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1700{ 1701 int ret; 1702 1703 if (dev->flags & IFF_UP) 1704 return 0; 1705 1706 ret = __dev_open(dev, extack); 1707 if (ret < 0) 1708 return ret; 1709 1710 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1711 call_netdevice_notifiers(NETDEV_UP, dev); 1712 1713 return ret; 1714} 1715 1716static void __dev_close_many(struct list_head *head) 1717{ 1718 struct net_device *dev; 1719 1720 ASSERT_RTNL(); 1721 might_sleep(); 1722 1723 list_for_each_entry(dev, head, close_list) { 1724 /* Temporarily disable netpoll until the interface is down */ 1725 netpoll_poll_disable(dev); 1726 1727 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1728 1729 clear_bit(__LINK_STATE_START, &dev->state); 1730 1731 /* Synchronize to scheduled poll. We cannot touch poll list, it 1732 * can be even on different cpu. So just clear netif_running(). 1733 * 1734 * dev->stop() will invoke napi_disable() on all of it's 1735 * napi_struct instances on this device. 1736 */ 1737 smp_mb__after_atomic(); /* Commit netif_running(). */ 1738 } 1739 1740 dev_deactivate_many(head); 1741 1742 list_for_each_entry(dev, head, close_list) { 1743 const struct net_device_ops *ops = dev->netdev_ops; 1744 1745 /* 1746 * Call the device specific close. This cannot fail. 1747 * Only if device is UP 1748 * 1749 * We allow it to be called even after a DETACH hot-plug 1750 * event. 1751 */ 1752 1753 netdev_ops_assert_locked(dev); 1754 1755 if (ops->ndo_stop) 1756 ops->ndo_stop(dev); 1757 1758 netif_set_up(dev, false); 1759 netpoll_poll_enable(dev); 1760 } 1761} 1762 1763static void __dev_close(struct net_device *dev) 1764{ 1765 LIST_HEAD(single); 1766 1767 list_add(&dev->close_list, &single); 1768 __dev_close_many(&single); 1769 list_del(&single); 1770} 1771 1772void netif_close_many(struct list_head *head, bool unlink) 1773{ 1774 struct net_device *dev, *tmp; 1775 1776 /* Remove the devices that don't need to be closed */ 1777 list_for_each_entry_safe(dev, tmp, head, close_list) 1778 if (!(dev->flags & IFF_UP)) 1779 list_del_init(&dev->close_list); 1780 1781 __dev_close_many(head); 1782 1783 list_for_each_entry_safe(dev, tmp, head, close_list) { 1784 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1785 call_netdevice_notifiers(NETDEV_DOWN, dev); 1786 if (unlink) 1787 list_del_init(&dev->close_list); 1788 } 1789} 1790EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1791 1792void netif_close(struct net_device *dev) 1793{ 1794 if (dev->flags & IFF_UP) { 1795 LIST_HEAD(single); 1796 1797 list_add(&dev->close_list, &single); 1798 netif_close_many(&single, true); 1799 list_del(&single); 1800 } 1801} 1802EXPORT_SYMBOL(netif_close); 1803 1804void netif_disable_lro(struct net_device *dev) 1805{ 1806 struct net_device *lower_dev; 1807 struct list_head *iter; 1808 1809 dev->wanted_features &= ~NETIF_F_LRO; 1810 netdev_update_features(dev); 1811 1812 if (unlikely(dev->features & NETIF_F_LRO)) 1813 netdev_WARN(dev, "failed to disable LRO!\n"); 1814 1815 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1816 netdev_lock_ops(lower_dev); 1817 netif_disable_lro(lower_dev); 1818 netdev_unlock_ops(lower_dev); 1819 } 1820} 1821EXPORT_IPV6_MOD(netif_disable_lro); 1822 1823/** 1824 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1825 * @dev: device 1826 * 1827 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1828 * called under RTNL. This is needed if Generic XDP is installed on 1829 * the device. 1830 */ 1831static void dev_disable_gro_hw(struct net_device *dev) 1832{ 1833 dev->wanted_features &= ~NETIF_F_GRO_HW; 1834 netdev_update_features(dev); 1835 1836 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1837 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1838} 1839 1840const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1841{ 1842#define N(val) \ 1843 case NETDEV_##val: \ 1844 return "NETDEV_" __stringify(val); 1845 switch (cmd) { 1846 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1847 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1848 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1849 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1850 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1851 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1852 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1853 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1854 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1855 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1856 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1857 N(XDP_FEAT_CHANGE) 1858 } 1859#undef N 1860 return "UNKNOWN_NETDEV_EVENT"; 1861} 1862EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1863 1864static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1865 struct net_device *dev) 1866{ 1867 struct netdev_notifier_info info = { 1868 .dev = dev, 1869 }; 1870 1871 return nb->notifier_call(nb, val, &info); 1872} 1873 1874static int call_netdevice_register_notifiers(struct notifier_block *nb, 1875 struct net_device *dev) 1876{ 1877 int err; 1878 1879 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1880 err = notifier_to_errno(err); 1881 if (err) 1882 return err; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return 0; 1886 1887 call_netdevice_notifier(nb, NETDEV_UP, dev); 1888 return 0; 1889} 1890 1891static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1892 struct net_device *dev) 1893{ 1894 if (dev->flags & IFF_UP) { 1895 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1896 dev); 1897 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1898 } 1899 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1900} 1901 1902static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1903 struct net *net) 1904{ 1905 struct net_device *dev; 1906 int err; 1907 1908 for_each_netdev(net, dev) { 1909 netdev_lock_ops(dev); 1910 err = call_netdevice_register_notifiers(nb, dev); 1911 netdev_unlock_ops(dev); 1912 if (err) 1913 goto rollback; 1914 } 1915 return 0; 1916 1917rollback: 1918 for_each_netdev_continue_reverse(net, dev) 1919 call_netdevice_unregister_notifiers(nb, dev); 1920 return err; 1921} 1922 1923static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1924 struct net *net) 1925{ 1926 struct net_device *dev; 1927 1928 for_each_netdev(net, dev) 1929 call_netdevice_unregister_notifiers(nb, dev); 1930} 1931 1932static int dev_boot_phase = 1; 1933 1934/** 1935 * register_netdevice_notifier - register a network notifier block 1936 * @nb: notifier 1937 * 1938 * Register a notifier to be called when network device events occur. 1939 * The notifier passed is linked into the kernel structures and must 1940 * not be reused until it has been unregistered. A negative errno code 1941 * is returned on a failure. 1942 * 1943 * When registered all registration and up events are replayed 1944 * to the new notifier to allow device to have a race free 1945 * view of the network device list. 1946 */ 1947 1948int register_netdevice_notifier(struct notifier_block *nb) 1949{ 1950 struct net *net; 1951 int err; 1952 1953 /* Close race with setup_net() and cleanup_net() */ 1954 down_write(&pernet_ops_rwsem); 1955 1956 /* When RTNL is removed, we need protection for netdev_chain. */ 1957 rtnl_lock(); 1958 1959 err = raw_notifier_chain_register(&netdev_chain, nb); 1960 if (err) 1961 goto unlock; 1962 if (dev_boot_phase) 1963 goto unlock; 1964 for_each_net(net) { 1965 __rtnl_net_lock(net); 1966 err = call_netdevice_register_net_notifiers(nb, net); 1967 __rtnl_net_unlock(net); 1968 if (err) 1969 goto rollback; 1970 } 1971 1972unlock: 1973 rtnl_unlock(); 1974 up_write(&pernet_ops_rwsem); 1975 return err; 1976 1977rollback: 1978 for_each_net_continue_reverse(net) { 1979 __rtnl_net_lock(net); 1980 call_netdevice_unregister_net_notifiers(nb, net); 1981 __rtnl_net_unlock(net); 1982 } 1983 1984 raw_notifier_chain_unregister(&netdev_chain, nb); 1985 goto unlock; 1986} 1987EXPORT_SYMBOL(register_netdevice_notifier); 1988 1989/** 1990 * unregister_netdevice_notifier - unregister a network notifier block 1991 * @nb: notifier 1992 * 1993 * Unregister a notifier previously registered by 1994 * register_netdevice_notifier(). The notifier is unlinked into the 1995 * kernel structures and may then be reused. A negative errno code 1996 * is returned on a failure. 1997 * 1998 * After unregistering unregister and down device events are synthesized 1999 * for all devices on the device list to the removed notifier to remove 2000 * the need for special case cleanup code. 2001 */ 2002 2003int unregister_netdevice_notifier(struct notifier_block *nb) 2004{ 2005 struct net *net; 2006 int err; 2007 2008 /* Close race with setup_net() and cleanup_net() */ 2009 down_write(&pernet_ops_rwsem); 2010 rtnl_lock(); 2011 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2012 if (err) 2013 goto unlock; 2014 2015 for_each_net(net) { 2016 __rtnl_net_lock(net); 2017 call_netdevice_unregister_net_notifiers(nb, net); 2018 __rtnl_net_unlock(net); 2019 } 2020 2021unlock: 2022 rtnl_unlock(); 2023 up_write(&pernet_ops_rwsem); 2024 return err; 2025} 2026EXPORT_SYMBOL(unregister_netdevice_notifier); 2027 2028static int __register_netdevice_notifier_net(struct net *net, 2029 struct notifier_block *nb, 2030 bool ignore_call_fail) 2031{ 2032 int err; 2033 2034 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2035 if (err) 2036 return err; 2037 if (dev_boot_phase) 2038 return 0; 2039 2040 err = call_netdevice_register_net_notifiers(nb, net); 2041 if (err && !ignore_call_fail) 2042 goto chain_unregister; 2043 2044 return 0; 2045 2046chain_unregister: 2047 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2048 return err; 2049} 2050 2051static int __unregister_netdevice_notifier_net(struct net *net, 2052 struct notifier_block *nb) 2053{ 2054 int err; 2055 2056 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2057 if (err) 2058 return err; 2059 2060 call_netdevice_unregister_net_notifiers(nb, net); 2061 return 0; 2062} 2063 2064/** 2065 * register_netdevice_notifier_net - register a per-netns network notifier block 2066 * @net: network namespace 2067 * @nb: notifier 2068 * 2069 * Register a notifier to be called when network device events occur. 2070 * The notifier passed is linked into the kernel structures and must 2071 * not be reused until it has been unregistered. A negative errno code 2072 * is returned on a failure. 2073 * 2074 * When registered all registration and up events are replayed 2075 * to the new notifier to allow device to have a race free 2076 * view of the network device list. 2077 */ 2078 2079int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2080{ 2081 int err; 2082 2083 rtnl_net_lock(net); 2084 err = __register_netdevice_notifier_net(net, nb, false); 2085 rtnl_net_unlock(net); 2086 2087 return err; 2088} 2089EXPORT_SYMBOL(register_netdevice_notifier_net); 2090 2091/** 2092 * unregister_netdevice_notifier_net - unregister a per-netns 2093 * network notifier block 2094 * @net: network namespace 2095 * @nb: notifier 2096 * 2097 * Unregister a notifier previously registered by 2098 * register_netdevice_notifier_net(). The notifier is unlinked from the 2099 * kernel structures and may then be reused. A negative errno code 2100 * is returned on a failure. 2101 * 2102 * After unregistering unregister and down device events are synthesized 2103 * for all devices on the device list to the removed notifier to remove 2104 * the need for special case cleanup code. 2105 */ 2106 2107int unregister_netdevice_notifier_net(struct net *net, 2108 struct notifier_block *nb) 2109{ 2110 int err; 2111 2112 rtnl_net_lock(net); 2113 err = __unregister_netdevice_notifier_net(net, nb); 2114 rtnl_net_unlock(net); 2115 2116 return err; 2117} 2118EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2119 2120static void __move_netdevice_notifier_net(struct net *src_net, 2121 struct net *dst_net, 2122 struct notifier_block *nb) 2123{ 2124 __unregister_netdevice_notifier_net(src_net, nb); 2125 __register_netdevice_notifier_net(dst_net, nb, true); 2126} 2127 2128static void rtnl_net_dev_lock(struct net_device *dev) 2129{ 2130 bool again; 2131 2132 do { 2133 struct net *net; 2134 2135 again = false; 2136 2137 /* netns might be being dismantled. */ 2138 rcu_read_lock(); 2139 net = dev_net_rcu(dev); 2140 net_passive_inc(net); 2141 rcu_read_unlock(); 2142 2143 rtnl_net_lock(net); 2144 2145#ifdef CONFIG_NET_NS 2146 /* dev might have been moved to another netns. */ 2147 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2148 rtnl_net_unlock(net); 2149 net_passive_dec(net); 2150 again = true; 2151 } 2152#endif 2153 } while (again); 2154} 2155 2156static void rtnl_net_dev_unlock(struct net_device *dev) 2157{ 2158 struct net *net = dev_net(dev); 2159 2160 rtnl_net_unlock(net); 2161 net_passive_dec(net); 2162} 2163 2164int register_netdevice_notifier_dev_net(struct net_device *dev, 2165 struct notifier_block *nb, 2166 struct netdev_net_notifier *nn) 2167{ 2168 int err; 2169 2170 rtnl_net_dev_lock(dev); 2171 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2172 if (!err) { 2173 nn->nb = nb; 2174 list_add(&nn->list, &dev->net_notifier_list); 2175 } 2176 rtnl_net_dev_unlock(dev); 2177 2178 return err; 2179} 2180EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2181 2182int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2183 struct notifier_block *nb, 2184 struct netdev_net_notifier *nn) 2185{ 2186 int err; 2187 2188 rtnl_net_dev_lock(dev); 2189 list_del(&nn->list); 2190 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2191 rtnl_net_dev_unlock(dev); 2192 2193 return err; 2194} 2195EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2196 2197static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2198 struct net *net) 2199{ 2200 struct netdev_net_notifier *nn; 2201 2202 list_for_each_entry(nn, &dev->net_notifier_list, list) 2203 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2204} 2205 2206/** 2207 * call_netdevice_notifiers_info - call all network notifier blocks 2208 * @val: value passed unmodified to notifier function 2209 * @info: notifier information data 2210 * 2211 * Call all network notifier blocks. Parameters and return value 2212 * are as for raw_notifier_call_chain(). 2213 */ 2214 2215int call_netdevice_notifiers_info(unsigned long val, 2216 struct netdev_notifier_info *info) 2217{ 2218 struct net *net = dev_net(info->dev); 2219 int ret; 2220 2221 ASSERT_RTNL(); 2222 2223 /* Run per-netns notifier block chain first, then run the global one. 2224 * Hopefully, one day, the global one is going to be removed after 2225 * all notifier block registrators get converted to be per-netns. 2226 */ 2227 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2228 if (ret & NOTIFY_STOP_MASK) 2229 return ret; 2230 return raw_notifier_call_chain(&netdev_chain, val, info); 2231} 2232 2233/** 2234 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2235 * for and rollback on error 2236 * @val_up: value passed unmodified to notifier function 2237 * @val_down: value passed unmodified to the notifier function when 2238 * recovering from an error on @val_up 2239 * @info: notifier information data 2240 * 2241 * Call all per-netns network notifier blocks, but not notifier blocks on 2242 * the global notifier chain. Parameters and return value are as for 2243 * raw_notifier_call_chain_robust(). 2244 */ 2245 2246static int 2247call_netdevice_notifiers_info_robust(unsigned long val_up, 2248 unsigned long val_down, 2249 struct netdev_notifier_info *info) 2250{ 2251 struct net *net = dev_net(info->dev); 2252 2253 ASSERT_RTNL(); 2254 2255 return raw_notifier_call_chain_robust(&net->netdev_chain, 2256 val_up, val_down, info); 2257} 2258 2259static int call_netdevice_notifiers_extack(unsigned long val, 2260 struct net_device *dev, 2261 struct netlink_ext_ack *extack) 2262{ 2263 struct netdev_notifier_info info = { 2264 .dev = dev, 2265 .extack = extack, 2266 }; 2267 2268 return call_netdevice_notifiers_info(val, &info); 2269} 2270 2271/** 2272 * call_netdevice_notifiers - call all network notifier blocks 2273 * @val: value passed unmodified to notifier function 2274 * @dev: net_device pointer passed unmodified to notifier function 2275 * 2276 * Call all network notifier blocks. Parameters and return value 2277 * are as for raw_notifier_call_chain(). 2278 */ 2279 2280int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2281{ 2282 return call_netdevice_notifiers_extack(val, dev, NULL); 2283} 2284EXPORT_SYMBOL(call_netdevice_notifiers); 2285 2286/** 2287 * call_netdevice_notifiers_mtu - call all network notifier blocks 2288 * @val: value passed unmodified to notifier function 2289 * @dev: net_device pointer passed unmodified to notifier function 2290 * @arg: additional u32 argument passed to the notifier function 2291 * 2292 * Call all network notifier blocks. Parameters and return value 2293 * are as for raw_notifier_call_chain(). 2294 */ 2295static int call_netdevice_notifiers_mtu(unsigned long val, 2296 struct net_device *dev, u32 arg) 2297{ 2298 struct netdev_notifier_info_ext info = { 2299 .info.dev = dev, 2300 .ext.mtu = arg, 2301 }; 2302 2303 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2304 2305 return call_netdevice_notifiers_info(val, &info.info); 2306} 2307 2308#ifdef CONFIG_NET_INGRESS 2309static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2310 2311void net_inc_ingress_queue(void) 2312{ 2313 static_branch_inc(&ingress_needed_key); 2314} 2315EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2316 2317void net_dec_ingress_queue(void) 2318{ 2319 static_branch_dec(&ingress_needed_key); 2320} 2321EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2322#endif 2323 2324#ifdef CONFIG_NET_EGRESS 2325static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2326 2327void net_inc_egress_queue(void) 2328{ 2329 static_branch_inc(&egress_needed_key); 2330} 2331EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2332 2333void net_dec_egress_queue(void) 2334{ 2335 static_branch_dec(&egress_needed_key); 2336} 2337EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2338#endif 2339 2340#ifdef CONFIG_NET_CLS_ACT 2341DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2342EXPORT_SYMBOL(tcf_sw_enabled_key); 2343#endif 2344 2345DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2346EXPORT_SYMBOL(netstamp_needed_key); 2347#ifdef CONFIG_JUMP_LABEL 2348static atomic_t netstamp_needed_deferred; 2349static atomic_t netstamp_wanted; 2350static void netstamp_clear(struct work_struct *work) 2351{ 2352 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2353 int wanted; 2354 2355 wanted = atomic_add_return(deferred, &netstamp_wanted); 2356 if (wanted > 0) 2357 static_branch_enable(&netstamp_needed_key); 2358 else 2359 static_branch_disable(&netstamp_needed_key); 2360} 2361static DECLARE_WORK(netstamp_work, netstamp_clear); 2362#endif 2363 2364void net_enable_timestamp(void) 2365{ 2366#ifdef CONFIG_JUMP_LABEL 2367 int wanted = atomic_read(&netstamp_wanted); 2368 2369 while (wanted > 0) { 2370 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2371 return; 2372 } 2373 atomic_inc(&netstamp_needed_deferred); 2374 schedule_work(&netstamp_work); 2375#else 2376 static_branch_inc(&netstamp_needed_key); 2377#endif 2378} 2379EXPORT_SYMBOL(net_enable_timestamp); 2380 2381void net_disable_timestamp(void) 2382{ 2383#ifdef CONFIG_JUMP_LABEL 2384 int wanted = atomic_read(&netstamp_wanted); 2385 2386 while (wanted > 1) { 2387 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2388 return; 2389 } 2390 atomic_dec(&netstamp_needed_deferred); 2391 schedule_work(&netstamp_work); 2392#else 2393 static_branch_dec(&netstamp_needed_key); 2394#endif 2395} 2396EXPORT_SYMBOL(net_disable_timestamp); 2397 2398static inline void net_timestamp_set(struct sk_buff *skb) 2399{ 2400 skb->tstamp = 0; 2401 skb->tstamp_type = SKB_CLOCK_REALTIME; 2402 if (static_branch_unlikely(&netstamp_needed_key)) 2403 skb->tstamp = ktime_get_real(); 2404} 2405 2406#define net_timestamp_check(COND, SKB) \ 2407 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2408 if ((COND) && !(SKB)->tstamp) \ 2409 (SKB)->tstamp = ktime_get_real(); \ 2410 } \ 2411 2412bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2413{ 2414 return __is_skb_forwardable(dev, skb, true); 2415} 2416EXPORT_SYMBOL_GPL(is_skb_forwardable); 2417 2418static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2419 bool check_mtu) 2420{ 2421 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2422 2423 if (likely(!ret)) { 2424 skb->protocol = eth_type_trans(skb, dev); 2425 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2426 } 2427 2428 return ret; 2429} 2430 2431int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2432{ 2433 return __dev_forward_skb2(dev, skb, true); 2434} 2435EXPORT_SYMBOL_GPL(__dev_forward_skb); 2436 2437/** 2438 * dev_forward_skb - loopback an skb to another netif 2439 * 2440 * @dev: destination network device 2441 * @skb: buffer to forward 2442 * 2443 * return values: 2444 * NET_RX_SUCCESS (no congestion) 2445 * NET_RX_DROP (packet was dropped, but freed) 2446 * 2447 * dev_forward_skb can be used for injecting an skb from the 2448 * start_xmit function of one device into the receive queue 2449 * of another device. 2450 * 2451 * The receiving device may be in another namespace, so 2452 * we have to clear all information in the skb that could 2453 * impact namespace isolation. 2454 */ 2455int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2456{ 2457 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2458} 2459EXPORT_SYMBOL_GPL(dev_forward_skb); 2460 2461int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2462{ 2463 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2464} 2465 2466static int deliver_skb(struct sk_buff *skb, 2467 struct packet_type *pt_prev, 2468 struct net_device *orig_dev) 2469{ 2470 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2471 return -ENOMEM; 2472 refcount_inc(&skb->users); 2473 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2474} 2475 2476static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2477 struct packet_type **pt, 2478 struct net_device *orig_dev, 2479 __be16 type, 2480 struct list_head *ptype_list) 2481{ 2482 struct packet_type *ptype, *pt_prev = *pt; 2483 2484 list_for_each_entry_rcu(ptype, ptype_list, list) { 2485 if (ptype->type != type) 2486 continue; 2487 if (unlikely(pt_prev)) 2488 deliver_skb(skb, pt_prev, orig_dev); 2489 pt_prev = ptype; 2490 } 2491 *pt = pt_prev; 2492} 2493 2494static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2495{ 2496 if (!ptype->af_packet_priv || !skb->sk) 2497 return false; 2498 2499 if (ptype->id_match) 2500 return ptype->id_match(ptype, skb->sk); 2501 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2502 return true; 2503 2504 return false; 2505} 2506 2507/** 2508 * dev_nit_active_rcu - return true if any network interface taps are in use 2509 * 2510 * The caller must hold the RCU lock 2511 * 2512 * @dev: network device to check for the presence of taps 2513 */ 2514bool dev_nit_active_rcu(const struct net_device *dev) 2515{ 2516 /* Callers may hold either RCU or RCU BH lock */ 2517 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2518 2519 return !list_empty(&dev_net(dev)->ptype_all) || 2520 !list_empty(&dev->ptype_all); 2521} 2522EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2523 2524/* 2525 * Support routine. Sends outgoing frames to any network 2526 * taps currently in use. 2527 */ 2528 2529void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2530{ 2531 struct packet_type *ptype, *pt_prev = NULL; 2532 struct list_head *ptype_list; 2533 struct sk_buff *skb2 = NULL; 2534 2535 rcu_read_lock(); 2536 ptype_list = &dev_net_rcu(dev)->ptype_all; 2537again: 2538 list_for_each_entry_rcu(ptype, ptype_list, list) { 2539 if (READ_ONCE(ptype->ignore_outgoing)) 2540 continue; 2541 2542 /* Never send packets back to the socket 2543 * they originated from - MvS (miquels@drinkel.ow.org) 2544 */ 2545 if (skb_loop_sk(ptype, skb)) 2546 continue; 2547 2548 if (unlikely(pt_prev)) { 2549 deliver_skb(skb2, pt_prev, skb->dev); 2550 pt_prev = ptype; 2551 continue; 2552 } 2553 2554 /* need to clone skb, done only once */ 2555 skb2 = skb_clone(skb, GFP_ATOMIC); 2556 if (!skb2) 2557 goto out_unlock; 2558 2559 net_timestamp_set(skb2); 2560 2561 /* skb->nh should be correctly 2562 * set by sender, so that the second statement is 2563 * just protection against buggy protocols. 2564 */ 2565 skb_reset_mac_header(skb2); 2566 2567 if (skb_network_header(skb2) < skb2->data || 2568 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2569 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2570 ntohs(skb2->protocol), 2571 dev->name); 2572 skb_reset_network_header(skb2); 2573 } 2574 2575 skb2->transport_header = skb2->network_header; 2576 skb2->pkt_type = PACKET_OUTGOING; 2577 pt_prev = ptype; 2578 } 2579 2580 if (ptype_list != &dev->ptype_all) { 2581 ptype_list = &dev->ptype_all; 2582 goto again; 2583 } 2584out_unlock: 2585 if (pt_prev) { 2586 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2587 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2588 else 2589 kfree_skb(skb2); 2590 } 2591 rcu_read_unlock(); 2592} 2593EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2594 2595/** 2596 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2597 * @dev: Network device 2598 * @txq: number of queues available 2599 * 2600 * If real_num_tx_queues is changed the tc mappings may no longer be 2601 * valid. To resolve this verify the tc mapping remains valid and if 2602 * not NULL the mapping. With no priorities mapping to this 2603 * offset/count pair it will no longer be used. In the worst case TC0 2604 * is invalid nothing can be done so disable priority mappings. If is 2605 * expected that drivers will fix this mapping if they can before 2606 * calling netif_set_real_num_tx_queues. 2607 */ 2608static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2609{ 2610 int i; 2611 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2612 2613 /* If TC0 is invalidated disable TC mapping */ 2614 if (tc->offset + tc->count > txq) { 2615 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2616 dev->num_tc = 0; 2617 return; 2618 } 2619 2620 /* Invalidated prio to tc mappings set to TC0 */ 2621 for (i = 1; i < TC_BITMASK + 1; i++) { 2622 int q = netdev_get_prio_tc_map(dev, i); 2623 2624 tc = &dev->tc_to_txq[q]; 2625 if (tc->offset + tc->count > txq) { 2626 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2627 i, q); 2628 netdev_set_prio_tc_map(dev, i, 0); 2629 } 2630 } 2631} 2632 2633int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2634{ 2635 if (dev->num_tc) { 2636 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2637 int i; 2638 2639 /* walk through the TCs and see if it falls into any of them */ 2640 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2641 if ((txq - tc->offset) < tc->count) 2642 return i; 2643 } 2644 2645 /* didn't find it, just return -1 to indicate no match */ 2646 return -1; 2647 } 2648 2649 return 0; 2650} 2651EXPORT_SYMBOL(netdev_txq_to_tc); 2652 2653#ifdef CONFIG_XPS 2654static struct static_key xps_needed __read_mostly; 2655static struct static_key xps_rxqs_needed __read_mostly; 2656static DEFINE_MUTEX(xps_map_mutex); 2657#define xmap_dereference(P) \ 2658 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2659 2660static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2661 struct xps_dev_maps *old_maps, int tci, u16 index) 2662{ 2663 struct xps_map *map = NULL; 2664 int pos; 2665 2666 map = xmap_dereference(dev_maps->attr_map[tci]); 2667 if (!map) 2668 return false; 2669 2670 for (pos = map->len; pos--;) { 2671 if (map->queues[pos] != index) 2672 continue; 2673 2674 if (map->len > 1) { 2675 map->queues[pos] = map->queues[--map->len]; 2676 break; 2677 } 2678 2679 if (old_maps) 2680 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2681 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2682 kfree_rcu(map, rcu); 2683 return false; 2684 } 2685 2686 return true; 2687} 2688 2689static bool remove_xps_queue_cpu(struct net_device *dev, 2690 struct xps_dev_maps *dev_maps, 2691 int cpu, u16 offset, u16 count) 2692{ 2693 int num_tc = dev_maps->num_tc; 2694 bool active = false; 2695 int tci; 2696 2697 for (tci = cpu * num_tc; num_tc--; tci++) { 2698 int i, j; 2699 2700 for (i = count, j = offset; i--; j++) { 2701 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2702 break; 2703 } 2704 2705 active |= i < 0; 2706 } 2707 2708 return active; 2709} 2710 2711static void reset_xps_maps(struct net_device *dev, 2712 struct xps_dev_maps *dev_maps, 2713 enum xps_map_type type) 2714{ 2715 static_key_slow_dec_cpuslocked(&xps_needed); 2716 if (type == XPS_RXQS) 2717 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2718 2719 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2720 2721 kfree_rcu(dev_maps, rcu); 2722} 2723 2724static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2725 u16 offset, u16 count) 2726{ 2727 struct xps_dev_maps *dev_maps; 2728 bool active = false; 2729 int i, j; 2730 2731 dev_maps = xmap_dereference(dev->xps_maps[type]); 2732 if (!dev_maps) 2733 return; 2734 2735 for (j = 0; j < dev_maps->nr_ids; j++) 2736 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2737 if (!active) 2738 reset_xps_maps(dev, dev_maps, type); 2739 2740 if (type == XPS_CPUS) { 2741 for (i = offset + (count - 1); count--; i--) 2742 netdev_queue_numa_node_write( 2743 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2744 } 2745} 2746 2747static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2748 u16 count) 2749{ 2750 if (!static_key_false(&xps_needed)) 2751 return; 2752 2753 cpus_read_lock(); 2754 mutex_lock(&xps_map_mutex); 2755 2756 if (static_key_false(&xps_rxqs_needed)) 2757 clean_xps_maps(dev, XPS_RXQS, offset, count); 2758 2759 clean_xps_maps(dev, XPS_CPUS, offset, count); 2760 2761 mutex_unlock(&xps_map_mutex); 2762 cpus_read_unlock(); 2763} 2764 2765static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2766{ 2767 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2768} 2769 2770static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2771 u16 index, bool is_rxqs_map) 2772{ 2773 struct xps_map *new_map; 2774 int alloc_len = XPS_MIN_MAP_ALLOC; 2775 int i, pos; 2776 2777 for (pos = 0; map && pos < map->len; pos++) { 2778 if (map->queues[pos] != index) 2779 continue; 2780 return map; 2781 } 2782 2783 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2784 if (map) { 2785 if (pos < map->alloc_len) 2786 return map; 2787 2788 alloc_len = map->alloc_len * 2; 2789 } 2790 2791 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2792 * map 2793 */ 2794 if (is_rxqs_map) 2795 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2796 else 2797 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2798 cpu_to_node(attr_index)); 2799 if (!new_map) 2800 return NULL; 2801 2802 for (i = 0; i < pos; i++) 2803 new_map->queues[i] = map->queues[i]; 2804 new_map->alloc_len = alloc_len; 2805 new_map->len = pos; 2806 2807 return new_map; 2808} 2809 2810/* Copy xps maps at a given index */ 2811static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2812 struct xps_dev_maps *new_dev_maps, int index, 2813 int tc, bool skip_tc) 2814{ 2815 int i, tci = index * dev_maps->num_tc; 2816 struct xps_map *map; 2817 2818 /* copy maps belonging to foreign traffic classes */ 2819 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2820 if (i == tc && skip_tc) 2821 continue; 2822 2823 /* fill in the new device map from the old device map */ 2824 map = xmap_dereference(dev_maps->attr_map[tci]); 2825 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2826 } 2827} 2828 2829/* Must be called under cpus_read_lock */ 2830int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2831 u16 index, enum xps_map_type type) 2832{ 2833 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2834 const unsigned long *online_mask = NULL; 2835 bool active = false, copy = false; 2836 int i, j, tci, numa_node_id = -2; 2837 int maps_sz, num_tc = 1, tc = 0; 2838 struct xps_map *map, *new_map; 2839 unsigned int nr_ids; 2840 2841 WARN_ON_ONCE(index >= dev->num_tx_queues); 2842 2843 if (dev->num_tc) { 2844 /* Do not allow XPS on subordinate device directly */ 2845 num_tc = dev->num_tc; 2846 if (num_tc < 0) 2847 return -EINVAL; 2848 2849 /* If queue belongs to subordinate dev use its map */ 2850 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2851 2852 tc = netdev_txq_to_tc(dev, index); 2853 if (tc < 0) 2854 return -EINVAL; 2855 } 2856 2857 mutex_lock(&xps_map_mutex); 2858 2859 dev_maps = xmap_dereference(dev->xps_maps[type]); 2860 if (type == XPS_RXQS) { 2861 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2862 nr_ids = dev->num_rx_queues; 2863 } else { 2864 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2865 if (num_possible_cpus() > 1) 2866 online_mask = cpumask_bits(cpu_online_mask); 2867 nr_ids = nr_cpu_ids; 2868 } 2869 2870 if (maps_sz < L1_CACHE_BYTES) 2871 maps_sz = L1_CACHE_BYTES; 2872 2873 /* The old dev_maps could be larger or smaller than the one we're 2874 * setting up now, as dev->num_tc or nr_ids could have been updated in 2875 * between. We could try to be smart, but let's be safe instead and only 2876 * copy foreign traffic classes if the two map sizes match. 2877 */ 2878 if (dev_maps && 2879 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2880 copy = true; 2881 2882 /* allocate memory for queue storage */ 2883 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2884 j < nr_ids;) { 2885 if (!new_dev_maps) { 2886 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2887 if (!new_dev_maps) { 2888 mutex_unlock(&xps_map_mutex); 2889 return -ENOMEM; 2890 } 2891 2892 new_dev_maps->nr_ids = nr_ids; 2893 new_dev_maps->num_tc = num_tc; 2894 } 2895 2896 tci = j * num_tc + tc; 2897 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2898 2899 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2900 if (!map) 2901 goto error; 2902 2903 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2904 } 2905 2906 if (!new_dev_maps) 2907 goto out_no_new_maps; 2908 2909 if (!dev_maps) { 2910 /* Increment static keys at most once per type */ 2911 static_key_slow_inc_cpuslocked(&xps_needed); 2912 if (type == XPS_RXQS) 2913 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2914 } 2915 2916 for (j = 0; j < nr_ids; j++) { 2917 bool skip_tc = false; 2918 2919 tci = j * num_tc + tc; 2920 if (netif_attr_test_mask(j, mask, nr_ids) && 2921 netif_attr_test_online(j, online_mask, nr_ids)) { 2922 /* add tx-queue to CPU/rx-queue maps */ 2923 int pos = 0; 2924 2925 skip_tc = true; 2926 2927 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2928 while ((pos < map->len) && (map->queues[pos] != index)) 2929 pos++; 2930 2931 if (pos == map->len) 2932 map->queues[map->len++] = index; 2933#ifdef CONFIG_NUMA 2934 if (type == XPS_CPUS) { 2935 if (numa_node_id == -2) 2936 numa_node_id = cpu_to_node(j); 2937 else if (numa_node_id != cpu_to_node(j)) 2938 numa_node_id = -1; 2939 } 2940#endif 2941 } 2942 2943 if (copy) 2944 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2945 skip_tc); 2946 } 2947 2948 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2949 2950 /* Cleanup old maps */ 2951 if (!dev_maps) 2952 goto out_no_old_maps; 2953 2954 for (j = 0; j < dev_maps->nr_ids; j++) { 2955 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2956 map = xmap_dereference(dev_maps->attr_map[tci]); 2957 if (!map) 2958 continue; 2959 2960 if (copy) { 2961 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2962 if (map == new_map) 2963 continue; 2964 } 2965 2966 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2967 kfree_rcu(map, rcu); 2968 } 2969 } 2970 2971 old_dev_maps = dev_maps; 2972 2973out_no_old_maps: 2974 dev_maps = new_dev_maps; 2975 active = true; 2976 2977out_no_new_maps: 2978 if (type == XPS_CPUS) 2979 /* update Tx queue numa node */ 2980 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2981 (numa_node_id >= 0) ? 2982 numa_node_id : NUMA_NO_NODE); 2983 2984 if (!dev_maps) 2985 goto out_no_maps; 2986 2987 /* removes tx-queue from unused CPUs/rx-queues */ 2988 for (j = 0; j < dev_maps->nr_ids; j++) { 2989 tci = j * dev_maps->num_tc; 2990 2991 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2992 if (i == tc && 2993 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2994 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2995 continue; 2996 2997 active |= remove_xps_queue(dev_maps, 2998 copy ? old_dev_maps : NULL, 2999 tci, index); 3000 } 3001 } 3002 3003 if (old_dev_maps) 3004 kfree_rcu(old_dev_maps, rcu); 3005 3006 /* free map if not active */ 3007 if (!active) 3008 reset_xps_maps(dev, dev_maps, type); 3009 3010out_no_maps: 3011 mutex_unlock(&xps_map_mutex); 3012 3013 return 0; 3014error: 3015 /* remove any maps that we added */ 3016 for (j = 0; j < nr_ids; j++) { 3017 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3018 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3019 map = copy ? 3020 xmap_dereference(dev_maps->attr_map[tci]) : 3021 NULL; 3022 if (new_map && new_map != map) 3023 kfree(new_map); 3024 } 3025 } 3026 3027 mutex_unlock(&xps_map_mutex); 3028 3029 kfree(new_dev_maps); 3030 return -ENOMEM; 3031} 3032EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3033 3034int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3035 u16 index) 3036{ 3037 int ret; 3038 3039 cpus_read_lock(); 3040 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3041 cpus_read_unlock(); 3042 3043 return ret; 3044} 3045EXPORT_SYMBOL(netif_set_xps_queue); 3046 3047#endif 3048static void netdev_unbind_all_sb_channels(struct net_device *dev) 3049{ 3050 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3051 3052 /* Unbind any subordinate channels */ 3053 while (txq-- != &dev->_tx[0]) { 3054 if (txq->sb_dev) 3055 netdev_unbind_sb_channel(dev, txq->sb_dev); 3056 } 3057} 3058 3059void netdev_reset_tc(struct net_device *dev) 3060{ 3061#ifdef CONFIG_XPS 3062 netif_reset_xps_queues_gt(dev, 0); 3063#endif 3064 netdev_unbind_all_sb_channels(dev); 3065 3066 /* Reset TC configuration of device */ 3067 dev->num_tc = 0; 3068 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3069 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3070} 3071EXPORT_SYMBOL(netdev_reset_tc); 3072 3073int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3074{ 3075 if (tc >= dev->num_tc) 3076 return -EINVAL; 3077 3078#ifdef CONFIG_XPS 3079 netif_reset_xps_queues(dev, offset, count); 3080#endif 3081 dev->tc_to_txq[tc].count = count; 3082 dev->tc_to_txq[tc].offset = offset; 3083 return 0; 3084} 3085EXPORT_SYMBOL(netdev_set_tc_queue); 3086 3087int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3088{ 3089 if (num_tc > TC_MAX_QUEUE) 3090 return -EINVAL; 3091 3092#ifdef CONFIG_XPS 3093 netif_reset_xps_queues_gt(dev, 0); 3094#endif 3095 netdev_unbind_all_sb_channels(dev); 3096 3097 dev->num_tc = num_tc; 3098 return 0; 3099} 3100EXPORT_SYMBOL(netdev_set_num_tc); 3101 3102void netdev_unbind_sb_channel(struct net_device *dev, 3103 struct net_device *sb_dev) 3104{ 3105 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3106 3107#ifdef CONFIG_XPS 3108 netif_reset_xps_queues_gt(sb_dev, 0); 3109#endif 3110 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3111 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3112 3113 while (txq-- != &dev->_tx[0]) { 3114 if (txq->sb_dev == sb_dev) 3115 txq->sb_dev = NULL; 3116 } 3117} 3118EXPORT_SYMBOL(netdev_unbind_sb_channel); 3119 3120int netdev_bind_sb_channel_queue(struct net_device *dev, 3121 struct net_device *sb_dev, 3122 u8 tc, u16 count, u16 offset) 3123{ 3124 /* Make certain the sb_dev and dev are already configured */ 3125 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3126 return -EINVAL; 3127 3128 /* We cannot hand out queues we don't have */ 3129 if ((offset + count) > dev->real_num_tx_queues) 3130 return -EINVAL; 3131 3132 /* Record the mapping */ 3133 sb_dev->tc_to_txq[tc].count = count; 3134 sb_dev->tc_to_txq[tc].offset = offset; 3135 3136 /* Provide a way for Tx queue to find the tc_to_txq map or 3137 * XPS map for itself. 3138 */ 3139 while (count--) 3140 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3141 3142 return 0; 3143} 3144EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3145 3146int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3147{ 3148 /* Do not use a multiqueue device to represent a subordinate channel */ 3149 if (netif_is_multiqueue(dev)) 3150 return -ENODEV; 3151 3152 /* We allow channels 1 - 32767 to be used for subordinate channels. 3153 * Channel 0 is meant to be "native" mode and used only to represent 3154 * the main root device. We allow writing 0 to reset the device back 3155 * to normal mode after being used as a subordinate channel. 3156 */ 3157 if (channel > S16_MAX) 3158 return -EINVAL; 3159 3160 dev->num_tc = -channel; 3161 3162 return 0; 3163} 3164EXPORT_SYMBOL(netdev_set_sb_channel); 3165 3166/* 3167 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3168 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3169 */ 3170int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3171{ 3172 bool disabling; 3173 int rc; 3174 3175 disabling = txq < dev->real_num_tx_queues; 3176 3177 if (txq < 1 || txq > dev->num_tx_queues) 3178 return -EINVAL; 3179 3180 if (dev->reg_state == NETREG_REGISTERED || 3181 dev->reg_state == NETREG_UNREGISTERING) { 3182 netdev_ops_assert_locked(dev); 3183 3184 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3185 txq); 3186 if (rc) 3187 return rc; 3188 3189 if (dev->num_tc) 3190 netif_setup_tc(dev, txq); 3191 3192 net_shaper_set_real_num_tx_queues(dev, txq); 3193 3194 dev_qdisc_change_real_num_tx(dev, txq); 3195 3196 dev->real_num_tx_queues = txq; 3197 3198 if (disabling) { 3199 synchronize_net(); 3200 qdisc_reset_all_tx_gt(dev, txq); 3201#ifdef CONFIG_XPS 3202 netif_reset_xps_queues_gt(dev, txq); 3203#endif 3204 } 3205 } else { 3206 dev->real_num_tx_queues = txq; 3207 } 3208 3209 return 0; 3210} 3211EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3212 3213/** 3214 * netif_set_real_num_rx_queues - set actual number of RX queues used 3215 * @dev: Network device 3216 * @rxq: Actual number of RX queues 3217 * 3218 * This must be called either with the rtnl_lock held or before 3219 * registration of the net device. Returns 0 on success, or a 3220 * negative error code. If called before registration, it always 3221 * succeeds. 3222 */ 3223int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3224{ 3225 int rc; 3226 3227 if (rxq < 1 || rxq > dev->num_rx_queues) 3228 return -EINVAL; 3229 3230 if (dev->reg_state == NETREG_REGISTERED) { 3231 netdev_ops_assert_locked(dev); 3232 3233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3234 rxq); 3235 if (rc) 3236 return rc; 3237 } 3238 3239 dev->real_num_rx_queues = rxq; 3240 return 0; 3241} 3242EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3243 3244/** 3245 * netif_set_real_num_queues - set actual number of RX and TX queues used 3246 * @dev: Network device 3247 * @txq: Actual number of TX queues 3248 * @rxq: Actual number of RX queues 3249 * 3250 * Set the real number of both TX and RX queues. 3251 * Does nothing if the number of queues is already correct. 3252 */ 3253int netif_set_real_num_queues(struct net_device *dev, 3254 unsigned int txq, unsigned int rxq) 3255{ 3256 unsigned int old_rxq = dev->real_num_rx_queues; 3257 int err; 3258 3259 if (txq < 1 || txq > dev->num_tx_queues || 3260 rxq < 1 || rxq > dev->num_rx_queues) 3261 return -EINVAL; 3262 3263 /* Start from increases, so the error path only does decreases - 3264 * decreases can't fail. 3265 */ 3266 if (rxq > dev->real_num_rx_queues) { 3267 err = netif_set_real_num_rx_queues(dev, rxq); 3268 if (err) 3269 return err; 3270 } 3271 if (txq > dev->real_num_tx_queues) { 3272 err = netif_set_real_num_tx_queues(dev, txq); 3273 if (err) 3274 goto undo_rx; 3275 } 3276 if (rxq < dev->real_num_rx_queues) 3277 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3278 if (txq < dev->real_num_tx_queues) 3279 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3280 3281 return 0; 3282undo_rx: 3283 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3284 return err; 3285} 3286EXPORT_SYMBOL(netif_set_real_num_queues); 3287 3288/** 3289 * netif_set_tso_max_size() - set the max size of TSO frames supported 3290 * @dev: netdev to update 3291 * @size: max skb->len of a TSO frame 3292 * 3293 * Set the limit on the size of TSO super-frames the device can handle. 3294 * Unless explicitly set the stack will assume the value of 3295 * %GSO_LEGACY_MAX_SIZE. 3296 */ 3297void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3298{ 3299 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3300 if (size < READ_ONCE(dev->gso_max_size)) 3301 netif_set_gso_max_size(dev, size); 3302 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3303 netif_set_gso_ipv4_max_size(dev, size); 3304} 3305EXPORT_SYMBOL(netif_set_tso_max_size); 3306 3307/** 3308 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3309 * @dev: netdev to update 3310 * @segs: max number of TCP segments 3311 * 3312 * Set the limit on the number of TCP segments the device can generate from 3313 * a single TSO super-frame. 3314 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3315 */ 3316void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3317{ 3318 dev->tso_max_segs = segs; 3319 if (segs < READ_ONCE(dev->gso_max_segs)) 3320 netif_set_gso_max_segs(dev, segs); 3321} 3322EXPORT_SYMBOL(netif_set_tso_max_segs); 3323 3324/** 3325 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3326 * @to: netdev to update 3327 * @from: netdev from which to copy the limits 3328 */ 3329void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3330{ 3331 netif_set_tso_max_size(to, from->tso_max_size); 3332 netif_set_tso_max_segs(to, from->tso_max_segs); 3333} 3334EXPORT_SYMBOL(netif_inherit_tso_max); 3335 3336/** 3337 * netif_get_num_default_rss_queues - default number of RSS queues 3338 * 3339 * Default value is the number of physical cores if there are only 1 or 2, or 3340 * divided by 2 if there are more. 3341 */ 3342int netif_get_num_default_rss_queues(void) 3343{ 3344 cpumask_var_t cpus; 3345 int cpu, count = 0; 3346 3347 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3348 return 1; 3349 3350 cpumask_copy(cpus, cpu_online_mask); 3351 for_each_cpu(cpu, cpus) { 3352 ++count; 3353 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3354 } 3355 free_cpumask_var(cpus); 3356 3357 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3358} 3359EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3360 3361static void __netif_reschedule(struct Qdisc *q) 3362{ 3363 struct softnet_data *sd; 3364 unsigned long flags; 3365 3366 local_irq_save(flags); 3367 sd = this_cpu_ptr(&softnet_data); 3368 q->next_sched = NULL; 3369 *sd->output_queue_tailp = q; 3370 sd->output_queue_tailp = &q->next_sched; 3371 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3372 local_irq_restore(flags); 3373} 3374 3375void __netif_schedule(struct Qdisc *q) 3376{ 3377 /* If q->defer_list is not empty, at least one thread is 3378 * in __dev_xmit_skb() before llist_del_all(&q->defer_list). 3379 * This thread will attempt to run the queue. 3380 */ 3381 if (!llist_empty(&q->defer_list)) 3382 return; 3383 3384 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3385 __netif_reschedule(q); 3386} 3387EXPORT_SYMBOL(__netif_schedule); 3388 3389struct dev_kfree_skb_cb { 3390 enum skb_drop_reason reason; 3391}; 3392 3393static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3394{ 3395 return (struct dev_kfree_skb_cb *)skb->cb; 3396} 3397 3398void netif_schedule_queue(struct netdev_queue *txq) 3399{ 3400 rcu_read_lock(); 3401 if (!netif_xmit_stopped(txq)) { 3402 struct Qdisc *q = rcu_dereference(txq->qdisc); 3403 3404 __netif_schedule(q); 3405 } 3406 rcu_read_unlock(); 3407} 3408EXPORT_SYMBOL(netif_schedule_queue); 3409 3410void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3411{ 3412 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3413 struct Qdisc *q; 3414 3415 rcu_read_lock(); 3416 q = rcu_dereference(dev_queue->qdisc); 3417 __netif_schedule(q); 3418 rcu_read_unlock(); 3419 } 3420} 3421EXPORT_SYMBOL(netif_tx_wake_queue); 3422 3423void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3424{ 3425 unsigned long flags; 3426 3427 if (unlikely(!skb)) 3428 return; 3429 3430 if (likely(refcount_read(&skb->users) == 1)) { 3431 smp_rmb(); 3432 refcount_set(&skb->users, 0); 3433 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3434 return; 3435 } 3436 get_kfree_skb_cb(skb)->reason = reason; 3437 local_irq_save(flags); 3438 skb->next = __this_cpu_read(softnet_data.completion_queue); 3439 __this_cpu_write(softnet_data.completion_queue, skb); 3440 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3441 local_irq_restore(flags); 3442} 3443EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3444 3445void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3446{ 3447 if (in_hardirq() || irqs_disabled()) 3448 dev_kfree_skb_irq_reason(skb, reason); 3449 else 3450 kfree_skb_reason(skb, reason); 3451} 3452EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3453 3454 3455/** 3456 * netif_device_detach - mark device as removed 3457 * @dev: network device 3458 * 3459 * Mark device as removed from system and therefore no longer available. 3460 */ 3461void netif_device_detach(struct net_device *dev) 3462{ 3463 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3464 netif_running(dev)) { 3465 netif_tx_stop_all_queues(dev); 3466 } 3467} 3468EXPORT_SYMBOL(netif_device_detach); 3469 3470/** 3471 * netif_device_attach - mark device as attached 3472 * @dev: network device 3473 * 3474 * Mark device as attached from system and restart if needed. 3475 */ 3476void netif_device_attach(struct net_device *dev) 3477{ 3478 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3479 netif_running(dev)) { 3480 netif_tx_wake_all_queues(dev); 3481 netdev_watchdog_up(dev); 3482 } 3483} 3484EXPORT_SYMBOL(netif_device_attach); 3485 3486/* 3487 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3488 * to be used as a distribution range. 3489 */ 3490static u16 skb_tx_hash(const struct net_device *dev, 3491 const struct net_device *sb_dev, 3492 struct sk_buff *skb) 3493{ 3494 u32 hash; 3495 u16 qoffset = 0; 3496 u16 qcount = dev->real_num_tx_queues; 3497 3498 if (dev->num_tc) { 3499 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3500 3501 qoffset = sb_dev->tc_to_txq[tc].offset; 3502 qcount = sb_dev->tc_to_txq[tc].count; 3503 if (unlikely(!qcount)) { 3504 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3505 sb_dev->name, qoffset, tc); 3506 qoffset = 0; 3507 qcount = dev->real_num_tx_queues; 3508 } 3509 } 3510 3511 if (skb_rx_queue_recorded(skb)) { 3512 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3513 hash = skb_get_rx_queue(skb); 3514 if (hash >= qoffset) 3515 hash -= qoffset; 3516 while (unlikely(hash >= qcount)) 3517 hash -= qcount; 3518 return hash + qoffset; 3519 } 3520 3521 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3522} 3523 3524void skb_warn_bad_offload(const struct sk_buff *skb) 3525{ 3526 static const netdev_features_t null_features; 3527 struct net_device *dev = skb->dev; 3528 const char *name = ""; 3529 3530 if (!net_ratelimit()) 3531 return; 3532 3533 if (dev) { 3534 if (dev->dev.parent) 3535 name = dev_driver_string(dev->dev.parent); 3536 else 3537 name = netdev_name(dev); 3538 } 3539 skb_dump(KERN_WARNING, skb, false); 3540 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3541 name, dev ? &dev->features : &null_features, 3542 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3543} 3544 3545/* 3546 * Invalidate hardware checksum when packet is to be mangled, and 3547 * complete checksum manually on outgoing path. 3548 */ 3549int skb_checksum_help(struct sk_buff *skb) 3550{ 3551 __wsum csum; 3552 int ret = 0, offset; 3553 3554 if (skb->ip_summed == CHECKSUM_COMPLETE) 3555 goto out_set_summed; 3556 3557 if (unlikely(skb_is_gso(skb))) { 3558 skb_warn_bad_offload(skb); 3559 return -EINVAL; 3560 } 3561 3562 if (!skb_frags_readable(skb)) { 3563 return -EFAULT; 3564 } 3565 3566 /* Before computing a checksum, we should make sure no frag could 3567 * be modified by an external entity : checksum could be wrong. 3568 */ 3569 if (skb_has_shared_frag(skb)) { 3570 ret = __skb_linearize(skb); 3571 if (ret) 3572 goto out; 3573 } 3574 3575 offset = skb_checksum_start_offset(skb); 3576 ret = -EINVAL; 3577 if (unlikely(offset >= skb_headlen(skb))) { 3578 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3579 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3580 offset, skb_headlen(skb)); 3581 goto out; 3582 } 3583 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3584 3585 offset += skb->csum_offset; 3586 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3587 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3588 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3589 offset + sizeof(__sum16), skb_headlen(skb)); 3590 goto out; 3591 } 3592 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3593 if (ret) 3594 goto out; 3595 3596 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3597out_set_summed: 3598 skb->ip_summed = CHECKSUM_NONE; 3599out: 3600 return ret; 3601} 3602EXPORT_SYMBOL(skb_checksum_help); 3603 3604#ifdef CONFIG_NET_CRC32C 3605int skb_crc32c_csum_help(struct sk_buff *skb) 3606{ 3607 u32 crc; 3608 int ret = 0, offset, start; 3609 3610 if (skb->ip_summed != CHECKSUM_PARTIAL) 3611 goto out; 3612 3613 if (unlikely(skb_is_gso(skb))) 3614 goto out; 3615 3616 /* Before computing a checksum, we should make sure no frag could 3617 * be modified by an external entity : checksum could be wrong. 3618 */ 3619 if (unlikely(skb_has_shared_frag(skb))) { 3620 ret = __skb_linearize(skb); 3621 if (ret) 3622 goto out; 3623 } 3624 start = skb_checksum_start_offset(skb); 3625 offset = start + offsetof(struct sctphdr, checksum); 3626 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3627 ret = -EINVAL; 3628 goto out; 3629 } 3630 3631 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3632 if (ret) 3633 goto out; 3634 3635 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3636 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3637 skb_reset_csum_not_inet(skb); 3638out: 3639 return ret; 3640} 3641EXPORT_SYMBOL(skb_crc32c_csum_help); 3642#endif /* CONFIG_NET_CRC32C */ 3643 3644__be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3645{ 3646 __be16 type = skb->protocol; 3647 3648 /* Tunnel gso handlers can set protocol to ethernet. */ 3649 if (type == htons(ETH_P_TEB)) { 3650 struct ethhdr *eth; 3651 3652 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3653 return 0; 3654 3655 eth = (struct ethhdr *)skb->data; 3656 type = eth->h_proto; 3657 } 3658 3659 return vlan_get_protocol_and_depth(skb, type, depth); 3660} 3661 3662 3663/* Take action when hardware reception checksum errors are detected. */ 3664#ifdef CONFIG_BUG 3665static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3666{ 3667 netdev_err(dev, "hw csum failure\n"); 3668 skb_dump(KERN_ERR, skb, true); 3669 dump_stack(); 3670} 3671 3672void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3673{ 3674 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3675} 3676EXPORT_SYMBOL(netdev_rx_csum_fault); 3677#endif 3678 3679/* XXX: check that highmem exists at all on the given machine. */ 3680static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3681{ 3682#ifdef CONFIG_HIGHMEM 3683 int i; 3684 3685 if (!(dev->features & NETIF_F_HIGHDMA)) { 3686 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3687 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3688 struct page *page = skb_frag_page(frag); 3689 3690 if (page && PageHighMem(page)) 3691 return 1; 3692 } 3693 } 3694#endif 3695 return 0; 3696} 3697 3698/* If MPLS offload request, verify we are testing hardware MPLS features 3699 * instead of standard features for the netdev. 3700 */ 3701#if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3702static netdev_features_t net_mpls_features(struct sk_buff *skb, 3703 netdev_features_t features, 3704 __be16 type) 3705{ 3706 if (eth_p_mpls(type)) 3707 features &= skb->dev->mpls_features; 3708 3709 return features; 3710} 3711#else 3712static netdev_features_t net_mpls_features(struct sk_buff *skb, 3713 netdev_features_t features, 3714 __be16 type) 3715{ 3716 return features; 3717} 3718#endif 3719 3720static netdev_features_t harmonize_features(struct sk_buff *skb, 3721 netdev_features_t features) 3722{ 3723 __be16 type; 3724 3725 type = skb_network_protocol(skb, NULL); 3726 features = net_mpls_features(skb, features, type); 3727 3728 if (skb->ip_summed != CHECKSUM_NONE && 3729 !can_checksum_protocol(features, type)) { 3730 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3731 } 3732 if (illegal_highdma(skb->dev, skb)) 3733 features &= ~NETIF_F_SG; 3734 3735 return features; 3736} 3737 3738netdev_features_t passthru_features_check(struct sk_buff *skb, 3739 struct net_device *dev, 3740 netdev_features_t features) 3741{ 3742 return features; 3743} 3744EXPORT_SYMBOL(passthru_features_check); 3745 3746static netdev_features_t dflt_features_check(struct sk_buff *skb, 3747 struct net_device *dev, 3748 netdev_features_t features) 3749{ 3750 return vlan_features_check(skb, features); 3751} 3752 3753static netdev_features_t gso_features_check(const struct sk_buff *skb, 3754 struct net_device *dev, 3755 netdev_features_t features) 3756{ 3757 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3758 3759 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3760 return features & ~NETIF_F_GSO_MASK; 3761 3762 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3763 return features & ~NETIF_F_GSO_MASK; 3764 3765 if (!skb_shinfo(skb)->gso_type) { 3766 skb_warn_bad_offload(skb); 3767 return features & ~NETIF_F_GSO_MASK; 3768 } 3769 3770 /* Support for GSO partial features requires software 3771 * intervention before we can actually process the packets 3772 * so we need to strip support for any partial features now 3773 * and we can pull them back in after we have partially 3774 * segmented the frame. 3775 */ 3776 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3777 features &= ~dev->gso_partial_features; 3778 3779 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header 3780 * has the potential to be fragmented so that TSO does not generate 3781 * segments with the same ID. For encapsulated packets, the ID mangling 3782 * feature is guaranteed not to use the same ID for the outer IPv4 3783 * headers of the generated segments if the headers have the potential 3784 * to be fragmented, so there is no need to clear the IPv4 ID mangling 3785 * feature (see the section about NETIF_F_TSO_MANGLEID in 3786 * segmentation-offloads.rst). 3787 */ 3788 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3789 struct iphdr *iph = skb->encapsulation ? 3790 inner_ip_hdr(skb) : ip_hdr(skb); 3791 3792 if (!(iph->frag_off & htons(IP_DF))) 3793 features &= ~NETIF_F_TSO_MANGLEID; 3794 } 3795 3796 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers, 3797 * so neither does TSO that depends on it. 3798 */ 3799 if (features & NETIF_F_IPV6_CSUM && 3800 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 || 3801 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && 3802 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) && 3803 skb_transport_header_was_set(skb) && 3804 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3805 !ipv6_has_hopopt_jumbo(skb)) 3806 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); 3807 3808 return features; 3809} 3810 3811netdev_features_t netif_skb_features(struct sk_buff *skb) 3812{ 3813 struct net_device *dev = skb->dev; 3814 netdev_features_t features = dev->features; 3815 3816 if (skb_is_gso(skb)) 3817 features = gso_features_check(skb, dev, features); 3818 3819 /* If encapsulation offload request, verify we are testing 3820 * hardware encapsulation features instead of standard 3821 * features for the netdev 3822 */ 3823 if (skb->encapsulation) 3824 features &= dev->hw_enc_features; 3825 3826 if (skb_vlan_tagged(skb)) 3827 features = netdev_intersect_features(features, 3828 dev->vlan_features | 3829 NETIF_F_HW_VLAN_CTAG_TX | 3830 NETIF_F_HW_VLAN_STAG_TX); 3831 3832 if (dev->netdev_ops->ndo_features_check) 3833 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3834 features); 3835 else 3836 features &= dflt_features_check(skb, dev, features); 3837 3838 return harmonize_features(skb, features); 3839} 3840EXPORT_SYMBOL(netif_skb_features); 3841 3842static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3843 struct netdev_queue *txq, bool more) 3844{ 3845 unsigned int len; 3846 int rc; 3847 3848 if (dev_nit_active_rcu(dev)) 3849 dev_queue_xmit_nit(skb, dev); 3850 3851 len = skb->len; 3852 trace_net_dev_start_xmit(skb, dev); 3853 rc = netdev_start_xmit(skb, dev, txq, more); 3854 trace_net_dev_xmit(skb, rc, dev, len); 3855 3856 return rc; 3857} 3858 3859struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3860 struct netdev_queue *txq, int *ret) 3861{ 3862 struct sk_buff *skb = first; 3863 int rc = NETDEV_TX_OK; 3864 3865 while (skb) { 3866 struct sk_buff *next = skb->next; 3867 3868 skb_mark_not_on_list(skb); 3869 rc = xmit_one(skb, dev, txq, next != NULL); 3870 if (unlikely(!dev_xmit_complete(rc))) { 3871 skb->next = next; 3872 goto out; 3873 } 3874 3875 skb = next; 3876 if (netif_tx_queue_stopped(txq) && skb) { 3877 rc = NETDEV_TX_BUSY; 3878 break; 3879 } 3880 } 3881 3882out: 3883 *ret = rc; 3884 return skb; 3885} 3886 3887static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3888 netdev_features_t features) 3889{ 3890 if (skb_vlan_tag_present(skb) && 3891 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3892 skb = __vlan_hwaccel_push_inside(skb); 3893 return skb; 3894} 3895 3896int skb_csum_hwoffload_help(struct sk_buff *skb, 3897 const netdev_features_t features) 3898{ 3899 if (unlikely(skb_csum_is_sctp(skb))) 3900 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3901 skb_crc32c_csum_help(skb); 3902 3903 if (features & NETIF_F_HW_CSUM) 3904 return 0; 3905 3906 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3907 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3908 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3909 !ipv6_has_hopopt_jumbo(skb)) 3910 goto sw_checksum; 3911 3912 switch (skb->csum_offset) { 3913 case offsetof(struct tcphdr, check): 3914 case offsetof(struct udphdr, check): 3915 return 0; 3916 } 3917 } 3918 3919sw_checksum: 3920 return skb_checksum_help(skb); 3921} 3922EXPORT_SYMBOL(skb_csum_hwoffload_help); 3923 3924/* Checks if this SKB belongs to an HW offloaded socket 3925 * and whether any SW fallbacks are required based on dev. 3926 * Check decrypted mark in case skb_orphan() cleared socket. 3927 */ 3928static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 3929 struct net_device *dev) 3930{ 3931#ifdef CONFIG_SOCK_VALIDATE_XMIT 3932 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev, 3933 struct sk_buff *skb); 3934 struct sock *sk = skb->sk; 3935 3936 sk_validate = NULL; 3937 if (sk) { 3938 if (sk_fullsock(sk)) 3939 sk_validate = sk->sk_validate_xmit_skb; 3940 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT) 3941 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb; 3942 } 3943 3944 if (sk_validate) { 3945 skb = sk_validate(sk, dev, skb); 3946 } else if (unlikely(skb_is_decrypted(skb))) { 3947 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 3948 kfree_skb(skb); 3949 skb = NULL; 3950 } 3951#endif 3952 3953 return skb; 3954} 3955 3956static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3957 struct net_device *dev) 3958{ 3959 struct skb_shared_info *shinfo; 3960 struct net_iov *niov; 3961 3962 if (likely(skb_frags_readable(skb))) 3963 goto out; 3964 3965 if (!dev->netmem_tx) 3966 goto out_free; 3967 3968 shinfo = skb_shinfo(skb); 3969 3970 if (shinfo->nr_frags > 0) { 3971 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3972 if (net_is_devmem_iov(niov) && 3973 net_devmem_iov_binding(niov)->dev != dev) 3974 goto out_free; 3975 } 3976 3977out: 3978 return skb; 3979 3980out_free: 3981 kfree_skb(skb); 3982 return NULL; 3983} 3984 3985static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3986{ 3987 netdev_features_t features; 3988 3989 skb = validate_xmit_unreadable_skb(skb, dev); 3990 if (unlikely(!skb)) 3991 goto out_null; 3992 3993 features = netif_skb_features(skb); 3994 skb = validate_xmit_vlan(skb, features); 3995 if (unlikely(!skb)) 3996 goto out_null; 3997 3998 skb = sk_validate_xmit_skb(skb, dev); 3999 if (unlikely(!skb)) 4000 goto out_null; 4001 4002 if (netif_needs_gso(skb, features)) { 4003 struct sk_buff *segs; 4004 4005 segs = skb_gso_segment(skb, features); 4006 if (IS_ERR(segs)) { 4007 goto out_kfree_skb; 4008 } else if (segs) { 4009 consume_skb(skb); 4010 skb = segs; 4011 } 4012 } else { 4013 if (skb_needs_linearize(skb, features) && 4014 __skb_linearize(skb)) 4015 goto out_kfree_skb; 4016 4017 /* If packet is not checksummed and device does not 4018 * support checksumming for this protocol, complete 4019 * checksumming here. 4020 */ 4021 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4022 if (skb->encapsulation) 4023 skb_set_inner_transport_header(skb, 4024 skb_checksum_start_offset(skb)); 4025 else 4026 skb_set_transport_header(skb, 4027 skb_checksum_start_offset(skb)); 4028 if (skb_csum_hwoffload_help(skb, features)) 4029 goto out_kfree_skb; 4030 } 4031 } 4032 4033 skb = validate_xmit_xfrm(skb, features, again); 4034 4035 return skb; 4036 4037out_kfree_skb: 4038 kfree_skb(skb); 4039out_null: 4040 dev_core_stats_tx_dropped_inc(dev); 4041 return NULL; 4042} 4043 4044struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 4045{ 4046 struct sk_buff *next, *head = NULL, *tail; 4047 4048 for (; skb != NULL; skb = next) { 4049 next = skb->next; 4050 skb_mark_not_on_list(skb); 4051 4052 /* in case skb won't be segmented, point to itself */ 4053 skb->prev = skb; 4054 4055 skb = validate_xmit_skb(skb, dev, again); 4056 if (!skb) 4057 continue; 4058 4059 if (!head) 4060 head = skb; 4061 else 4062 tail->next = skb; 4063 /* If skb was segmented, skb->prev points to 4064 * the last segment. If not, it still contains skb. 4065 */ 4066 tail = skb->prev; 4067 } 4068 return head; 4069} 4070EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4071 4072static void qdisc_pkt_len_segs_init(struct sk_buff *skb) 4073{ 4074 struct skb_shared_info *shinfo = skb_shinfo(skb); 4075 u16 gso_segs; 4076 4077 qdisc_skb_cb(skb)->pkt_len = skb->len; 4078 if (!shinfo->gso_size) { 4079 qdisc_skb_cb(skb)->pkt_segs = 1; 4080 return; 4081 } 4082 4083 qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs; 4084 4085 /* To get more precise estimation of bytes sent on wire, 4086 * we add to pkt_len the headers size of all segments 4087 */ 4088 if (skb_transport_header_was_set(skb)) { 4089 unsigned int hdr_len; 4090 4091 /* mac layer + network layer */ 4092 if (!skb->encapsulation) 4093 hdr_len = skb_transport_offset(skb); 4094 else 4095 hdr_len = skb_inner_transport_offset(skb); 4096 4097 /* + transport layer */ 4098 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4099 const struct tcphdr *th; 4100 struct tcphdr _tcphdr; 4101 4102 th = skb_header_pointer(skb, hdr_len, 4103 sizeof(_tcphdr), &_tcphdr); 4104 if (likely(th)) 4105 hdr_len += __tcp_hdrlen(th); 4106 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4107 struct udphdr _udphdr; 4108 4109 if (skb_header_pointer(skb, hdr_len, 4110 sizeof(_udphdr), &_udphdr)) 4111 hdr_len += sizeof(struct udphdr); 4112 } 4113 4114 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4115 int payload = skb->len - hdr_len; 4116 4117 /* Malicious packet. */ 4118 if (payload <= 0) 4119 return; 4120 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4121 shinfo->gso_segs = gso_segs; 4122 qdisc_skb_cb(skb)->pkt_segs = gso_segs; 4123 } 4124 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4125 } 4126} 4127 4128static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4129 struct sk_buff **to_free, 4130 struct netdev_queue *txq) 4131{ 4132 int rc; 4133 4134 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4135 if (rc == NET_XMIT_SUCCESS) 4136 trace_qdisc_enqueue(q, txq, skb); 4137 return rc; 4138} 4139 4140static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4141 struct net_device *dev, 4142 struct netdev_queue *txq) 4143{ 4144 struct sk_buff *next, *to_free = NULL, *to_free2 = NULL; 4145 spinlock_t *root_lock = qdisc_lock(q); 4146 struct llist_node *ll_list, *first_n; 4147 unsigned long defer_count = 0; 4148 int rc; 4149 4150 qdisc_calculate_pkt_len(skb, q); 4151 4152 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4153 4154 if (q->flags & TCQ_F_NOLOCK) { 4155 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4156 qdisc_run_begin(q)) { 4157 /* Retest nolock_qdisc_is_empty() within the protection 4158 * of q->seqlock to protect from racing with requeuing. 4159 */ 4160 if (unlikely(!nolock_qdisc_is_empty(q))) { 4161 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4162 __qdisc_run(q); 4163 to_free2 = qdisc_run_end(q); 4164 4165 goto free_skbs; 4166 } 4167 4168 qdisc_bstats_cpu_update(q, skb); 4169 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4170 !nolock_qdisc_is_empty(q)) 4171 __qdisc_run(q); 4172 4173 to_free2 = qdisc_run_end(q); 4174 rc = NET_XMIT_SUCCESS; 4175 goto free_skbs; 4176 } 4177 4178 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4179 to_free2 = qdisc_run(q); 4180 goto free_skbs; 4181 } 4182 4183 /* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit. 4184 * In the try_cmpxchg() loop, we want to increment q->defer_count 4185 * at most once to limit the number of skbs in defer_list. 4186 * We perform the defer_count increment only if the list is not empty, 4187 * because some arches have slow atomic_long_inc_return(). 4188 */ 4189 first_n = READ_ONCE(q->defer_list.first); 4190 do { 4191 if (first_n && !defer_count) { 4192 defer_count = atomic_long_inc_return(&q->defer_count); 4193 if (unlikely(defer_count > READ_ONCE(q->limit))) { 4194 kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4195 return NET_XMIT_DROP; 4196 } 4197 } 4198 skb->ll_node.next = first_n; 4199 } while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node)); 4200 4201 /* If defer_list was not empty, we know the cpu which queued 4202 * the first skb will process the whole list for us. 4203 */ 4204 if (first_n) 4205 return NET_XMIT_SUCCESS; 4206 4207 spin_lock(root_lock); 4208 4209 ll_list = llist_del_all(&q->defer_list); 4210 /* There is a small race because we clear defer_count not atomically 4211 * with the prior llist_del_all(). This means defer_list could grow 4212 * over q->limit. 4213 */ 4214 atomic_long_set(&q->defer_count, 0); 4215 4216 ll_list = llist_reverse_order(ll_list); 4217 4218 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4219 llist_for_each_entry_safe(skb, next, ll_list, ll_node) 4220 __qdisc_drop(skb, &to_free); 4221 rc = NET_XMIT_DROP; 4222 goto unlock; 4223 } 4224 if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4225 !llist_next(ll_list) && qdisc_run_begin(q)) { 4226 /* 4227 * This is a work-conserving queue; there are no old skbs 4228 * waiting to be sent out; and the qdisc is not running - 4229 * xmit the skb directly. 4230 */ 4231 4232 DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list, 4233 struct sk_buff, 4234 ll_node)); 4235 qdisc_bstats_update(q, skb); 4236 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) 4237 __qdisc_run(q); 4238 to_free2 = qdisc_run_end(q); 4239 rc = NET_XMIT_SUCCESS; 4240 } else { 4241 int count = 0; 4242 4243 llist_for_each_entry_safe(skb, next, ll_list, ll_node) { 4244 if (next) { 4245 prefetch(next); 4246 prefetch(&next->priority); 4247 skb_mark_not_on_list(skb); 4248 } 4249 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4250 count++; 4251 } 4252 to_free2 = qdisc_run(q); 4253 if (count != 1) 4254 rc = NET_XMIT_SUCCESS; 4255 } 4256unlock: 4257 spin_unlock(root_lock); 4258 4259free_skbs: 4260 tcf_kfree_skb_list(to_free); 4261 tcf_kfree_skb_list(to_free2); 4262 return rc; 4263} 4264 4265#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4266static void skb_update_prio(struct sk_buff *skb) 4267{ 4268 const struct netprio_map *map; 4269 const struct sock *sk; 4270 unsigned int prioidx; 4271 4272 if (skb->priority) 4273 return; 4274 map = rcu_dereference_bh(skb->dev->priomap); 4275 if (!map) 4276 return; 4277 sk = skb_to_full_sk(skb); 4278 if (!sk) 4279 return; 4280 4281 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4282 4283 if (prioidx < map->priomap_len) 4284 skb->priority = map->priomap[prioidx]; 4285} 4286#else 4287#define skb_update_prio(skb) 4288#endif 4289 4290/** 4291 * dev_loopback_xmit - loop back @skb 4292 * @net: network namespace this loopback is happening in 4293 * @sk: sk needed to be a netfilter okfn 4294 * @skb: buffer to transmit 4295 */ 4296int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4297{ 4298 skb_reset_mac_header(skb); 4299 __skb_pull(skb, skb_network_offset(skb)); 4300 skb->pkt_type = PACKET_LOOPBACK; 4301 if (skb->ip_summed == CHECKSUM_NONE) 4302 skb->ip_summed = CHECKSUM_UNNECESSARY; 4303 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4304 skb_dst_force(skb); 4305 netif_rx(skb); 4306 return 0; 4307} 4308EXPORT_SYMBOL(dev_loopback_xmit); 4309 4310#ifdef CONFIG_NET_EGRESS 4311static struct netdev_queue * 4312netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4313{ 4314 int qm = skb_get_queue_mapping(skb); 4315 4316 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4317} 4318 4319#ifndef CONFIG_PREEMPT_RT 4320static bool netdev_xmit_txqueue_skipped(void) 4321{ 4322 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4323} 4324 4325void netdev_xmit_skip_txqueue(bool skip) 4326{ 4327 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4328} 4329EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4330 4331#else 4332static bool netdev_xmit_txqueue_skipped(void) 4333{ 4334 return current->net_xmit.skip_txqueue; 4335} 4336 4337void netdev_xmit_skip_txqueue(bool skip) 4338{ 4339 current->net_xmit.skip_txqueue = skip; 4340} 4341EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4342#endif 4343#endif /* CONFIG_NET_EGRESS */ 4344 4345#ifdef CONFIG_NET_XGRESS 4346static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4347 enum skb_drop_reason *drop_reason) 4348{ 4349 int ret = TC_ACT_UNSPEC; 4350#ifdef CONFIG_NET_CLS_ACT 4351 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4352 struct tcf_result res; 4353 4354 if (!miniq) 4355 return ret; 4356 4357 /* Global bypass */ 4358 if (!static_branch_likely(&tcf_sw_enabled_key)) 4359 return ret; 4360 4361 /* Block-wise bypass */ 4362 if (tcf_block_bypass_sw(miniq->block)) 4363 return ret; 4364 4365 tc_skb_cb(skb)->mru = 0; 4366 qdisc_skb_cb(skb)->post_ct = false; 4367 tcf_set_drop_reason(skb, *drop_reason); 4368 4369 mini_qdisc_bstats_cpu_update(miniq, skb); 4370 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4371 /* Only tcf related quirks below. */ 4372 switch (ret) { 4373 case TC_ACT_SHOT: 4374 *drop_reason = tcf_get_drop_reason(skb); 4375 mini_qdisc_qstats_cpu_drop(miniq); 4376 break; 4377 case TC_ACT_OK: 4378 case TC_ACT_RECLASSIFY: 4379 skb->tc_index = TC_H_MIN(res.classid); 4380 break; 4381 } 4382#endif /* CONFIG_NET_CLS_ACT */ 4383 return ret; 4384} 4385 4386static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4387 4388void tcx_inc(void) 4389{ 4390 static_branch_inc(&tcx_needed_key); 4391} 4392 4393void tcx_dec(void) 4394{ 4395 static_branch_dec(&tcx_needed_key); 4396} 4397 4398static __always_inline enum tcx_action_base 4399tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4400 const bool needs_mac) 4401{ 4402 const struct bpf_mprog_fp *fp; 4403 const struct bpf_prog *prog; 4404 int ret = TCX_NEXT; 4405 4406 if (needs_mac) 4407 __skb_push(skb, skb->mac_len); 4408 bpf_mprog_foreach_prog(entry, fp, prog) { 4409 bpf_compute_data_pointers(skb); 4410 ret = bpf_prog_run(prog, skb); 4411 if (ret != TCX_NEXT) 4412 break; 4413 } 4414 if (needs_mac) 4415 __skb_pull(skb, skb->mac_len); 4416 return tcx_action_code(skb, ret); 4417} 4418 4419static __always_inline struct sk_buff * 4420sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4421 struct net_device *orig_dev, bool *another) 4422{ 4423 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4424 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4425 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4426 int sch_ret; 4427 4428 if (!entry) 4429 return skb; 4430 4431 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4432 if (unlikely(*pt_prev)) { 4433 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4434 *pt_prev = NULL; 4435 } 4436 4437 qdisc_pkt_len_segs_init(skb); 4438 tcx_set_ingress(skb, true); 4439 4440 if (static_branch_unlikely(&tcx_needed_key)) { 4441 sch_ret = tcx_run(entry, skb, true); 4442 if (sch_ret != TC_ACT_UNSPEC) 4443 goto ingress_verdict; 4444 } 4445 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4446ingress_verdict: 4447 switch (sch_ret) { 4448 case TC_ACT_REDIRECT: 4449 /* skb_mac_header check was done by BPF, so we can safely 4450 * push the L2 header back before redirecting to another 4451 * netdev. 4452 */ 4453 __skb_push(skb, skb->mac_len); 4454 if (skb_do_redirect(skb) == -EAGAIN) { 4455 __skb_pull(skb, skb->mac_len); 4456 *another = true; 4457 break; 4458 } 4459 *ret = NET_RX_SUCCESS; 4460 bpf_net_ctx_clear(bpf_net_ctx); 4461 return NULL; 4462 case TC_ACT_SHOT: 4463 kfree_skb_reason(skb, drop_reason); 4464 *ret = NET_RX_DROP; 4465 bpf_net_ctx_clear(bpf_net_ctx); 4466 return NULL; 4467 /* used by tc_run */ 4468 case TC_ACT_STOLEN: 4469 case TC_ACT_QUEUED: 4470 case TC_ACT_TRAP: 4471 consume_skb(skb); 4472 fallthrough; 4473 case TC_ACT_CONSUMED: 4474 *ret = NET_RX_SUCCESS; 4475 bpf_net_ctx_clear(bpf_net_ctx); 4476 return NULL; 4477 } 4478 bpf_net_ctx_clear(bpf_net_ctx); 4479 4480 return skb; 4481} 4482 4483static __always_inline struct sk_buff * 4484sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4485{ 4486 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4487 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4488 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4489 int sch_ret; 4490 4491 if (!entry) 4492 return skb; 4493 4494 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4495 4496 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4497 * already set by the caller. 4498 */ 4499 if (static_branch_unlikely(&tcx_needed_key)) { 4500 sch_ret = tcx_run(entry, skb, false); 4501 if (sch_ret != TC_ACT_UNSPEC) 4502 goto egress_verdict; 4503 } 4504 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4505egress_verdict: 4506 switch (sch_ret) { 4507 case TC_ACT_REDIRECT: 4508 /* No need to push/pop skb's mac_header here on egress! */ 4509 skb_do_redirect(skb); 4510 *ret = NET_XMIT_SUCCESS; 4511 bpf_net_ctx_clear(bpf_net_ctx); 4512 return NULL; 4513 case TC_ACT_SHOT: 4514 kfree_skb_reason(skb, drop_reason); 4515 *ret = NET_XMIT_DROP; 4516 bpf_net_ctx_clear(bpf_net_ctx); 4517 return NULL; 4518 /* used by tc_run */ 4519 case TC_ACT_STOLEN: 4520 case TC_ACT_QUEUED: 4521 case TC_ACT_TRAP: 4522 consume_skb(skb); 4523 fallthrough; 4524 case TC_ACT_CONSUMED: 4525 *ret = NET_XMIT_SUCCESS; 4526 bpf_net_ctx_clear(bpf_net_ctx); 4527 return NULL; 4528 } 4529 bpf_net_ctx_clear(bpf_net_ctx); 4530 4531 return skb; 4532} 4533#else 4534static __always_inline struct sk_buff * 4535sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4536 struct net_device *orig_dev, bool *another) 4537{ 4538 return skb; 4539} 4540 4541static __always_inline struct sk_buff * 4542sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4543{ 4544 return skb; 4545} 4546#endif /* CONFIG_NET_XGRESS */ 4547 4548#ifdef CONFIG_XPS 4549static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4550 struct xps_dev_maps *dev_maps, unsigned int tci) 4551{ 4552 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4553 struct xps_map *map; 4554 int queue_index = -1; 4555 4556 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4557 return queue_index; 4558 4559 tci *= dev_maps->num_tc; 4560 tci += tc; 4561 4562 map = rcu_dereference(dev_maps->attr_map[tci]); 4563 if (map) { 4564 if (map->len == 1) 4565 queue_index = map->queues[0]; 4566 else 4567 queue_index = map->queues[reciprocal_scale( 4568 skb_get_hash(skb), map->len)]; 4569 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4570 queue_index = -1; 4571 } 4572 return queue_index; 4573} 4574#endif 4575 4576static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4577 struct sk_buff *skb) 4578{ 4579#ifdef CONFIG_XPS 4580 struct xps_dev_maps *dev_maps; 4581 struct sock *sk = skb->sk; 4582 int queue_index = -1; 4583 4584 if (!static_key_false(&xps_needed)) 4585 return -1; 4586 4587 rcu_read_lock(); 4588 if (!static_key_false(&xps_rxqs_needed)) 4589 goto get_cpus_map; 4590 4591 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4592 if (dev_maps) { 4593 int tci = sk_rx_queue_get(sk); 4594 4595 if (tci >= 0) 4596 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4597 tci); 4598 } 4599 4600get_cpus_map: 4601 if (queue_index < 0) { 4602 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4603 if (dev_maps) { 4604 unsigned int tci = skb->sender_cpu - 1; 4605 4606 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4607 tci); 4608 } 4609 } 4610 rcu_read_unlock(); 4611 4612 return queue_index; 4613#else 4614 return -1; 4615#endif 4616} 4617 4618u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4619 struct net_device *sb_dev) 4620{ 4621 return 0; 4622} 4623EXPORT_SYMBOL(dev_pick_tx_zero); 4624 4625int sk_tx_queue_get(const struct sock *sk) 4626{ 4627 int resel, val; 4628 4629 if (!sk) 4630 return -1; 4631 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 4632 * and sk_tx_queue_set(). 4633 */ 4634 val = READ_ONCE(sk->sk_tx_queue_mapping); 4635 4636 if (val == NO_QUEUE_MAPPING) 4637 return -1; 4638 4639 if (!sk_fullsock(sk)) 4640 return val; 4641 4642 resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection); 4643 if (resel && time_is_before_jiffies( 4644 READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel)) 4645 return -1; 4646 4647 return val; 4648} 4649EXPORT_SYMBOL(sk_tx_queue_get); 4650 4651u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4652 struct net_device *sb_dev) 4653{ 4654 struct sock *sk = skb->sk; 4655 int queue_index = sk_tx_queue_get(sk); 4656 4657 sb_dev = sb_dev ? : dev; 4658 4659 if (queue_index < 0 || skb->ooo_okay || 4660 queue_index >= dev->real_num_tx_queues) { 4661 int new_index = get_xps_queue(dev, sb_dev, skb); 4662 4663 if (new_index < 0) 4664 new_index = skb_tx_hash(dev, sb_dev, skb); 4665 4666 if (sk && sk_fullsock(sk) && 4667 rcu_access_pointer(sk->sk_dst_cache)) 4668 sk_tx_queue_set(sk, new_index); 4669 4670 queue_index = new_index; 4671 } 4672 4673 return queue_index; 4674} 4675EXPORT_SYMBOL(netdev_pick_tx); 4676 4677struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4678 struct sk_buff *skb, 4679 struct net_device *sb_dev) 4680{ 4681 int queue_index = 0; 4682 4683#ifdef CONFIG_XPS 4684 u32 sender_cpu = skb->sender_cpu - 1; 4685 4686 if (sender_cpu >= (u32)NR_CPUS) 4687 skb->sender_cpu = raw_smp_processor_id() + 1; 4688#endif 4689 4690 if (dev->real_num_tx_queues != 1) { 4691 const struct net_device_ops *ops = dev->netdev_ops; 4692 4693 if (ops->ndo_select_queue) 4694 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4695 else 4696 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4697 4698 queue_index = netdev_cap_txqueue(dev, queue_index); 4699 } 4700 4701 skb_set_queue_mapping(skb, queue_index); 4702 return netdev_get_tx_queue(dev, queue_index); 4703} 4704 4705/** 4706 * __dev_queue_xmit() - transmit a buffer 4707 * @skb: buffer to transmit 4708 * @sb_dev: suboordinate device used for L2 forwarding offload 4709 * 4710 * Queue a buffer for transmission to a network device. The caller must 4711 * have set the device and priority and built the buffer before calling 4712 * this function. The function can be called from an interrupt. 4713 * 4714 * When calling this method, interrupts MUST be enabled. This is because 4715 * the BH enable code must have IRQs enabled so that it will not deadlock. 4716 * 4717 * Regardless of the return value, the skb is consumed, so it is currently 4718 * difficult to retry a send to this method. (You can bump the ref count 4719 * before sending to hold a reference for retry if you are careful.) 4720 * 4721 * Return: 4722 * * 0 - buffer successfully transmitted 4723 * * positive qdisc return code - NET_XMIT_DROP etc. 4724 * * negative errno - other errors 4725 */ 4726int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4727{ 4728 struct net_device *dev = skb->dev; 4729 struct netdev_queue *txq = NULL; 4730 struct Qdisc *q; 4731 int rc = -ENOMEM; 4732 bool again = false; 4733 4734 skb_reset_mac_header(skb); 4735 skb_assert_len(skb); 4736 4737 if (unlikely(skb_shinfo(skb)->tx_flags & 4738 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4739 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4740 4741 /* Disable soft irqs for various locks below. Also 4742 * stops preemption for RCU. 4743 */ 4744 rcu_read_lock_bh(); 4745 4746 skb_update_prio(skb); 4747 4748 qdisc_pkt_len_segs_init(skb); 4749 tcx_set_ingress(skb, false); 4750#ifdef CONFIG_NET_EGRESS 4751 if (static_branch_unlikely(&egress_needed_key)) { 4752 if (nf_hook_egress_active()) { 4753 skb = nf_hook_egress(skb, &rc, dev); 4754 if (!skb) 4755 goto out; 4756 } 4757 4758 netdev_xmit_skip_txqueue(false); 4759 4760 nf_skip_egress(skb, true); 4761 skb = sch_handle_egress(skb, &rc, dev); 4762 if (!skb) 4763 goto out; 4764 nf_skip_egress(skb, false); 4765 4766 if (netdev_xmit_txqueue_skipped()) 4767 txq = netdev_tx_queue_mapping(dev, skb); 4768 } 4769#endif 4770 /* If device/qdisc don't need skb->dst, release it right now while 4771 * its hot in this cpu cache. 4772 */ 4773 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4774 skb_dst_drop(skb); 4775 else 4776 skb_dst_force(skb); 4777 4778 if (!txq) 4779 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4780 4781 q = rcu_dereference_bh(txq->qdisc); 4782 4783 trace_net_dev_queue(skb); 4784 if (q->enqueue) { 4785 rc = __dev_xmit_skb(skb, q, dev, txq); 4786 goto out; 4787 } 4788 4789 /* The device has no queue. Common case for software devices: 4790 * loopback, all the sorts of tunnels... 4791 4792 * Really, it is unlikely that netif_tx_lock protection is necessary 4793 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4794 * counters.) 4795 * However, it is possible, that they rely on protection 4796 * made by us here. 4797 4798 * Check this and shot the lock. It is not prone from deadlocks. 4799 *Either shot noqueue qdisc, it is even simpler 8) 4800 */ 4801 if (dev->flags & IFF_UP) { 4802 int cpu = smp_processor_id(); /* ok because BHs are off */ 4803 4804 /* Other cpus might concurrently change txq->xmit_lock_owner 4805 * to -1 or to their cpu id, but not to our id. 4806 */ 4807 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4808 if (dev_xmit_recursion()) 4809 goto recursion_alert; 4810 4811 skb = validate_xmit_skb(skb, dev, &again); 4812 if (!skb) 4813 goto out; 4814 4815 HARD_TX_LOCK(dev, txq, cpu); 4816 4817 if (!netif_xmit_stopped(txq)) { 4818 dev_xmit_recursion_inc(); 4819 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4820 dev_xmit_recursion_dec(); 4821 if (dev_xmit_complete(rc)) { 4822 HARD_TX_UNLOCK(dev, txq); 4823 goto out; 4824 } 4825 } 4826 HARD_TX_UNLOCK(dev, txq); 4827 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4828 dev->name); 4829 } else { 4830 /* Recursion is detected! It is possible, 4831 * unfortunately 4832 */ 4833recursion_alert: 4834 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4835 dev->name); 4836 } 4837 } 4838 4839 rc = -ENETDOWN; 4840 rcu_read_unlock_bh(); 4841 4842 dev_core_stats_tx_dropped_inc(dev); 4843 kfree_skb_list(skb); 4844 return rc; 4845out: 4846 rcu_read_unlock_bh(); 4847 return rc; 4848} 4849EXPORT_SYMBOL(__dev_queue_xmit); 4850 4851int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4852{ 4853 struct net_device *dev = skb->dev; 4854 struct sk_buff *orig_skb = skb; 4855 struct netdev_queue *txq; 4856 int ret = NETDEV_TX_BUSY; 4857 bool again = false; 4858 4859 if (unlikely(!netif_running(dev) || 4860 !netif_carrier_ok(dev))) 4861 goto drop; 4862 4863 skb = validate_xmit_skb_list(skb, dev, &again); 4864 if (skb != orig_skb) 4865 goto drop; 4866 4867 skb_set_queue_mapping(skb, queue_id); 4868 txq = skb_get_tx_queue(dev, skb); 4869 4870 local_bh_disable(); 4871 4872 dev_xmit_recursion_inc(); 4873 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4874 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4875 ret = netdev_start_xmit(skb, dev, txq, false); 4876 HARD_TX_UNLOCK(dev, txq); 4877 dev_xmit_recursion_dec(); 4878 4879 local_bh_enable(); 4880 return ret; 4881drop: 4882 dev_core_stats_tx_dropped_inc(dev); 4883 kfree_skb_list(skb); 4884 return NET_XMIT_DROP; 4885} 4886EXPORT_SYMBOL(__dev_direct_xmit); 4887 4888/************************************************************************* 4889 * Receiver routines 4890 *************************************************************************/ 4891static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4892 4893int weight_p __read_mostly = 64; /* old backlog weight */ 4894int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4895int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4896 4897/* Called with irq disabled */ 4898static inline void ____napi_schedule(struct softnet_data *sd, 4899 struct napi_struct *napi) 4900{ 4901 struct task_struct *thread; 4902 4903 lockdep_assert_irqs_disabled(); 4904 4905 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4906 /* Paired with smp_mb__before_atomic() in 4907 * napi_enable()/netif_set_threaded(). 4908 * Use READ_ONCE() to guarantee a complete 4909 * read on napi->thread. Only call 4910 * wake_up_process() when it's not NULL. 4911 */ 4912 thread = READ_ONCE(napi->thread); 4913 if (thread) { 4914 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4915 goto use_local_napi; 4916 4917 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4918 wake_up_process(thread); 4919 return; 4920 } 4921 } 4922 4923use_local_napi: 4924 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4925 list_add_tail(&napi->poll_list, &sd->poll_list); 4926 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4927 /* If not called from net_rx_action() 4928 * we have to raise NET_RX_SOFTIRQ. 4929 */ 4930 if (!sd->in_net_rx_action) 4931 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4932} 4933 4934#ifdef CONFIG_RPS 4935 4936struct static_key_false rps_needed __read_mostly; 4937EXPORT_SYMBOL(rps_needed); 4938struct static_key_false rfs_needed __read_mostly; 4939EXPORT_SYMBOL(rfs_needed); 4940 4941static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4942{ 4943 return hash_32(hash, flow_table->log); 4944} 4945 4946#ifdef CONFIG_RFS_ACCEL 4947/** 4948 * rps_flow_is_active - check whether the flow is recently active. 4949 * @rflow: Specific flow to check activity. 4950 * @flow_table: per-queue flowtable that @rflow belongs to. 4951 * @cpu: CPU saved in @rflow. 4952 * 4953 * If the CPU has processed many packets since the flow's last activity 4954 * (beyond 10 times the table size), the flow is considered stale. 4955 * 4956 * Return: true if flow was recently active. 4957 */ 4958static bool rps_flow_is_active(struct rps_dev_flow *rflow, 4959 struct rps_dev_flow_table *flow_table, 4960 unsigned int cpu) 4961{ 4962 unsigned int flow_last_active; 4963 unsigned int sd_input_head; 4964 4965 if (cpu >= nr_cpu_ids) 4966 return false; 4967 4968 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head); 4969 flow_last_active = READ_ONCE(rflow->last_qtail); 4970 4971 return (int)(sd_input_head - flow_last_active) < 4972 (int)(10 << flow_table->log); 4973} 4974#endif 4975 4976static struct rps_dev_flow * 4977set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4978 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash, 4979 u32 flow_id) 4980{ 4981 if (next_cpu < nr_cpu_ids) { 4982 u32 head; 4983#ifdef CONFIG_RFS_ACCEL 4984 struct netdev_rx_queue *rxqueue; 4985 struct rps_dev_flow_table *flow_table; 4986 struct rps_dev_flow *old_rflow; 4987 struct rps_dev_flow *tmp_rflow; 4988 unsigned int tmp_cpu; 4989 u16 rxq_index; 4990 int rc; 4991 4992 /* Should we steer this flow to a different hardware queue? */ 4993 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4994 !(dev->features & NETIF_F_NTUPLE)) 4995 goto out; 4996 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4997 if (rxq_index == skb_get_rx_queue(skb)) 4998 goto out; 4999 5000 rxqueue = dev->_rx + rxq_index; 5001 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5002 if (!flow_table) 5003 goto out; 5004 5005 tmp_rflow = &flow_table->flows[flow_id]; 5006 tmp_cpu = READ_ONCE(tmp_rflow->cpu); 5007 5008 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) { 5009 if (rps_flow_is_active(tmp_rflow, flow_table, 5010 tmp_cpu)) { 5011 if (hash != READ_ONCE(tmp_rflow->hash) || 5012 next_cpu == tmp_cpu) 5013 goto out; 5014 } 5015 } 5016 5017 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 5018 rxq_index, flow_id); 5019 if (rc < 0) 5020 goto out; 5021 5022 old_rflow = rflow; 5023 rflow = tmp_rflow; 5024 WRITE_ONCE(rflow->filter, rc); 5025 WRITE_ONCE(rflow->hash, hash); 5026 5027 if (old_rflow->filter == rc) 5028 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 5029 out: 5030#endif 5031 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 5032 rps_input_queue_tail_save(&rflow->last_qtail, head); 5033 } 5034 5035 WRITE_ONCE(rflow->cpu, next_cpu); 5036 return rflow; 5037} 5038 5039/* 5040 * get_rps_cpu is called from netif_receive_skb and returns the target 5041 * CPU from the RPS map of the receiving queue for a given skb. 5042 * rcu_read_lock must be held on entry. 5043 */ 5044static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 5045 struct rps_dev_flow **rflowp) 5046{ 5047 const struct rps_sock_flow_table *sock_flow_table; 5048 struct netdev_rx_queue *rxqueue = dev->_rx; 5049 struct rps_dev_flow_table *flow_table; 5050 struct rps_map *map; 5051 int cpu = -1; 5052 u32 flow_id; 5053 u32 tcpu; 5054 u32 hash; 5055 5056 if (skb_rx_queue_recorded(skb)) { 5057 u16 index = skb_get_rx_queue(skb); 5058 5059 if (unlikely(index >= dev->real_num_rx_queues)) { 5060 WARN_ONCE(dev->real_num_rx_queues > 1, 5061 "%s received packet on queue %u, but number " 5062 "of RX queues is %u\n", 5063 dev->name, index, dev->real_num_rx_queues); 5064 goto done; 5065 } 5066 rxqueue += index; 5067 } 5068 5069 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 5070 5071 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5072 map = rcu_dereference(rxqueue->rps_map); 5073 if (!flow_table && !map) 5074 goto done; 5075 5076 skb_reset_network_header(skb); 5077 hash = skb_get_hash(skb); 5078 if (!hash) 5079 goto done; 5080 5081 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 5082 if (flow_table && sock_flow_table) { 5083 struct rps_dev_flow *rflow; 5084 u32 next_cpu; 5085 u32 ident; 5086 5087 /* First check into global flow table if there is a match. 5088 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 5089 */ 5090 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 5091 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 5092 goto try_rps; 5093 5094 next_cpu = ident & net_hotdata.rps_cpu_mask; 5095 5096 /* OK, now we know there is a match, 5097 * we can look at the local (per receive queue) flow table 5098 */ 5099 flow_id = rfs_slot(hash, flow_table); 5100 rflow = &flow_table->flows[flow_id]; 5101 tcpu = rflow->cpu; 5102 5103 /* 5104 * If the desired CPU (where last recvmsg was done) is 5105 * different from current CPU (one in the rx-queue flow 5106 * table entry), switch if one of the following holds: 5107 * - Current CPU is unset (>= nr_cpu_ids). 5108 * - Current CPU is offline. 5109 * - The current CPU's queue tail has advanced beyond the 5110 * last packet that was enqueued using this table entry. 5111 * This guarantees that all previous packets for the flow 5112 * have been dequeued, thus preserving in order delivery. 5113 */ 5114 if (unlikely(tcpu != next_cpu) && 5115 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 5116 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 5117 rflow->last_qtail)) >= 0)) { 5118 tcpu = next_cpu; 5119 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash, 5120 flow_id); 5121 } 5122 5123 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 5124 *rflowp = rflow; 5125 cpu = tcpu; 5126 goto done; 5127 } 5128 } 5129 5130try_rps: 5131 5132 if (map) { 5133 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 5134 if (cpu_online(tcpu)) { 5135 cpu = tcpu; 5136 goto done; 5137 } 5138 } 5139 5140done: 5141 return cpu; 5142} 5143 5144#ifdef CONFIG_RFS_ACCEL 5145 5146/** 5147 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 5148 * @dev: Device on which the filter was set 5149 * @rxq_index: RX queue index 5150 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 5151 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 5152 * 5153 * Drivers that implement ndo_rx_flow_steer() should periodically call 5154 * this function for each installed filter and remove the filters for 5155 * which it returns %true. 5156 */ 5157bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5158 u32 flow_id, u16 filter_id) 5159{ 5160 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5161 struct rps_dev_flow_table *flow_table; 5162 struct rps_dev_flow *rflow; 5163 bool expire = true; 5164 5165 rcu_read_lock(); 5166 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5167 if (flow_table && flow_id < (1UL << flow_table->log)) { 5168 unsigned int cpu; 5169 5170 rflow = &flow_table->flows[flow_id]; 5171 cpu = READ_ONCE(rflow->cpu); 5172 if (READ_ONCE(rflow->filter) == filter_id && 5173 rps_flow_is_active(rflow, flow_table, cpu)) 5174 expire = false; 5175 } 5176 rcu_read_unlock(); 5177 return expire; 5178} 5179EXPORT_SYMBOL(rps_may_expire_flow); 5180 5181#endif /* CONFIG_RFS_ACCEL */ 5182 5183/* Called from hardirq (IPI) context */ 5184static void rps_trigger_softirq(void *data) 5185{ 5186 struct softnet_data *sd = data; 5187 5188 ____napi_schedule(sd, &sd->backlog); 5189 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5190 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5191} 5192 5193#endif /* CONFIG_RPS */ 5194 5195/* Called from hardirq (IPI) context */ 5196static void trigger_rx_softirq(void *data) 5197{ 5198 struct softnet_data *sd = data; 5199 5200 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5201 smp_store_release(&sd->defer_ipi_scheduled, 0); 5202} 5203 5204/* 5205 * After we queued a packet into sd->input_pkt_queue, 5206 * we need to make sure this queue is serviced soon. 5207 * 5208 * - If this is another cpu queue, link it to our rps_ipi_list, 5209 * and make sure we will process rps_ipi_list from net_rx_action(). 5210 * 5211 * - If this is our own queue, NAPI schedule our backlog. 5212 * Note that this also raises NET_RX_SOFTIRQ. 5213 */ 5214static void napi_schedule_rps(struct softnet_data *sd) 5215{ 5216 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5217 5218#ifdef CONFIG_RPS 5219 if (sd != mysd) { 5220 if (use_backlog_threads()) { 5221 __napi_schedule_irqoff(&sd->backlog); 5222 return; 5223 } 5224 5225 sd->rps_ipi_next = mysd->rps_ipi_list; 5226 mysd->rps_ipi_list = sd; 5227 5228 /* If not called from net_rx_action() or napi_threaded_poll() 5229 * we have to raise NET_RX_SOFTIRQ. 5230 */ 5231 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5232 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5233 return; 5234 } 5235#endif /* CONFIG_RPS */ 5236 __napi_schedule_irqoff(&mysd->backlog); 5237} 5238 5239void kick_defer_list_purge(unsigned int cpu) 5240{ 5241 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5242 unsigned long flags; 5243 5244 if (use_backlog_threads()) { 5245 backlog_lock_irq_save(sd, &flags); 5246 5247 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5248 __napi_schedule_irqoff(&sd->backlog); 5249 5250 backlog_unlock_irq_restore(sd, &flags); 5251 5252 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5253 smp_call_function_single_async(cpu, &sd->defer_csd); 5254 } 5255} 5256 5257#ifdef CONFIG_NET_FLOW_LIMIT 5258int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5259#endif 5260 5261static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen, 5262 int max_backlog) 5263{ 5264#ifdef CONFIG_NET_FLOW_LIMIT 5265 unsigned int old_flow, new_flow; 5266 const struct softnet_data *sd; 5267 struct sd_flow_limit *fl; 5268 5269 if (likely(qlen < (max_backlog >> 1))) 5270 return false; 5271 5272 sd = this_cpu_ptr(&softnet_data); 5273 5274 rcu_read_lock(); 5275 fl = rcu_dereference(sd->flow_limit); 5276 if (fl) { 5277 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5278 old_flow = fl->history[fl->history_head]; 5279 fl->history[fl->history_head] = new_flow; 5280 5281 fl->history_head++; 5282 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5283 5284 if (likely(fl->buckets[old_flow])) 5285 fl->buckets[old_flow]--; 5286 5287 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5288 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5289 WRITE_ONCE(fl->count, fl->count + 1); 5290 rcu_read_unlock(); 5291 return true; 5292 } 5293 } 5294 rcu_read_unlock(); 5295#endif 5296 return false; 5297} 5298 5299/* 5300 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5301 * queue (may be a remote CPU queue). 5302 */ 5303static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5304 unsigned int *qtail) 5305{ 5306 enum skb_drop_reason reason; 5307 struct softnet_data *sd; 5308 unsigned long flags; 5309 unsigned int qlen; 5310 int max_backlog; 5311 u32 tail; 5312 5313 reason = SKB_DROP_REASON_DEV_READY; 5314 if (unlikely(!netif_running(skb->dev))) 5315 goto bad_dev; 5316 5317 sd = &per_cpu(softnet_data, cpu); 5318 5319 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5320 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5321 if (unlikely(qlen > max_backlog) || 5322 skb_flow_limit(skb, qlen, max_backlog)) 5323 goto cpu_backlog_drop; 5324 backlog_lock_irq_save(sd, &flags); 5325 qlen = skb_queue_len(&sd->input_pkt_queue); 5326 if (likely(qlen <= max_backlog)) { 5327 if (!qlen) { 5328 /* Schedule NAPI for backlog device. We can use 5329 * non atomic operation as we own the queue lock. 5330 */ 5331 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5332 &sd->backlog.state)) 5333 napi_schedule_rps(sd); 5334 } 5335 __skb_queue_tail(&sd->input_pkt_queue, skb); 5336 tail = rps_input_queue_tail_incr(sd); 5337 backlog_unlock_irq_restore(sd, &flags); 5338 5339 /* save the tail outside of the critical section */ 5340 rps_input_queue_tail_save(qtail, tail); 5341 return NET_RX_SUCCESS; 5342 } 5343 5344 backlog_unlock_irq_restore(sd, &flags); 5345 5346cpu_backlog_drop: 5347 reason = SKB_DROP_REASON_CPU_BACKLOG; 5348 numa_drop_add(&sd->drop_counters, 1); 5349bad_dev: 5350 dev_core_stats_rx_dropped_inc(skb->dev); 5351 kfree_skb_reason(skb, reason); 5352 return NET_RX_DROP; 5353} 5354 5355static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5356{ 5357 struct net_device *dev = skb->dev; 5358 struct netdev_rx_queue *rxqueue; 5359 5360 rxqueue = dev->_rx; 5361 5362 if (skb_rx_queue_recorded(skb)) { 5363 u16 index = skb_get_rx_queue(skb); 5364 5365 if (unlikely(index >= dev->real_num_rx_queues)) { 5366 WARN_ONCE(dev->real_num_rx_queues > 1, 5367 "%s received packet on queue %u, but number " 5368 "of RX queues is %u\n", 5369 dev->name, index, dev->real_num_rx_queues); 5370 5371 return rxqueue; /* Return first rxqueue */ 5372 } 5373 rxqueue += index; 5374 } 5375 return rxqueue; 5376} 5377 5378u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5379 const struct bpf_prog *xdp_prog) 5380{ 5381 void *orig_data, *orig_data_end, *hard_start; 5382 struct netdev_rx_queue *rxqueue; 5383 bool orig_bcast, orig_host; 5384 u32 mac_len, frame_sz; 5385 __be16 orig_eth_type; 5386 struct ethhdr *eth; 5387 u32 metalen, act; 5388 int off; 5389 5390 /* The XDP program wants to see the packet starting at the MAC 5391 * header. 5392 */ 5393 mac_len = skb->data - skb_mac_header(skb); 5394 hard_start = skb->data - skb_headroom(skb); 5395 5396 /* SKB "head" area always have tailroom for skb_shared_info */ 5397 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5398 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5399 5400 rxqueue = netif_get_rxqueue(skb); 5401 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5402 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5403 skb_headlen(skb) + mac_len, true); 5404 if (skb_is_nonlinear(skb)) { 5405 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5406 xdp_buff_set_frags_flag(xdp); 5407 } else { 5408 xdp_buff_clear_frags_flag(xdp); 5409 } 5410 5411 orig_data_end = xdp->data_end; 5412 orig_data = xdp->data; 5413 eth = (struct ethhdr *)xdp->data; 5414 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5415 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5416 orig_eth_type = eth->h_proto; 5417 5418 act = bpf_prog_run_xdp(xdp_prog, xdp); 5419 5420 /* check if bpf_xdp_adjust_head was used */ 5421 off = xdp->data - orig_data; 5422 if (off) { 5423 if (off > 0) 5424 __skb_pull(skb, off); 5425 else if (off < 0) 5426 __skb_push(skb, -off); 5427 5428 skb->mac_header += off; 5429 skb_reset_network_header(skb); 5430 } 5431 5432 /* check if bpf_xdp_adjust_tail was used */ 5433 off = xdp->data_end - orig_data_end; 5434 if (off != 0) { 5435 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5436 skb->len += off; /* positive on grow, negative on shrink */ 5437 } 5438 5439 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5440 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5441 */ 5442 if (xdp_buff_has_frags(xdp)) 5443 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5444 else 5445 skb->data_len = 0; 5446 5447 /* check if XDP changed eth hdr such SKB needs update */ 5448 eth = (struct ethhdr *)xdp->data; 5449 if ((orig_eth_type != eth->h_proto) || 5450 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5451 skb->dev->dev_addr)) || 5452 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5453 __skb_push(skb, ETH_HLEN); 5454 skb->pkt_type = PACKET_HOST; 5455 skb->protocol = eth_type_trans(skb, skb->dev); 5456 } 5457 5458 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5459 * before calling us again on redirect path. We do not call do_redirect 5460 * as we leave that up to the caller. 5461 * 5462 * Caller is responsible for managing lifetime of skb (i.e. calling 5463 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5464 */ 5465 switch (act) { 5466 case XDP_REDIRECT: 5467 case XDP_TX: 5468 __skb_push(skb, mac_len); 5469 break; 5470 case XDP_PASS: 5471 metalen = xdp->data - xdp->data_meta; 5472 if (metalen) 5473 skb_metadata_set(skb, metalen); 5474 break; 5475 } 5476 5477 return act; 5478} 5479 5480static int 5481netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5482{ 5483 struct sk_buff *skb = *pskb; 5484 int err, hroom, troom; 5485 5486 local_lock_nested_bh(&system_page_pool.bh_lock); 5487 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5488 local_unlock_nested_bh(&system_page_pool.bh_lock); 5489 if (!err) 5490 return 0; 5491 5492 /* In case we have to go down the path and also linearize, 5493 * then lets do the pskb_expand_head() work just once here. 5494 */ 5495 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5496 troom = skb->tail + skb->data_len - skb->end; 5497 err = pskb_expand_head(skb, 5498 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5499 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5500 if (err) 5501 return err; 5502 5503 return skb_linearize(skb); 5504} 5505 5506static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5507 struct xdp_buff *xdp, 5508 const struct bpf_prog *xdp_prog) 5509{ 5510 struct sk_buff *skb = *pskb; 5511 u32 mac_len, act = XDP_DROP; 5512 5513 /* Reinjected packets coming from act_mirred or similar should 5514 * not get XDP generic processing. 5515 */ 5516 if (skb_is_redirected(skb)) 5517 return XDP_PASS; 5518 5519 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5520 * bytes. This is the guarantee that also native XDP provides, 5521 * thus we need to do it here as well. 5522 */ 5523 mac_len = skb->data - skb_mac_header(skb); 5524 __skb_push(skb, mac_len); 5525 5526 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5527 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5528 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5529 goto do_drop; 5530 } 5531 5532 __skb_pull(*pskb, mac_len); 5533 5534 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5535 switch (act) { 5536 case XDP_REDIRECT: 5537 case XDP_TX: 5538 case XDP_PASS: 5539 break; 5540 default: 5541 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5542 fallthrough; 5543 case XDP_ABORTED: 5544 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5545 fallthrough; 5546 case XDP_DROP: 5547 do_drop: 5548 kfree_skb(*pskb); 5549 break; 5550 } 5551 5552 return act; 5553} 5554 5555/* When doing generic XDP we have to bypass the qdisc layer and the 5556 * network taps in order to match in-driver-XDP behavior. This also means 5557 * that XDP packets are able to starve other packets going through a qdisc, 5558 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5559 * queues, so they do not have this starvation issue. 5560 */ 5561void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5562{ 5563 struct net_device *dev = skb->dev; 5564 struct netdev_queue *txq; 5565 bool free_skb = true; 5566 int cpu, rc; 5567 5568 txq = netdev_core_pick_tx(dev, skb, NULL); 5569 cpu = smp_processor_id(); 5570 HARD_TX_LOCK(dev, txq, cpu); 5571 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5572 rc = netdev_start_xmit(skb, dev, txq, 0); 5573 if (dev_xmit_complete(rc)) 5574 free_skb = false; 5575 } 5576 HARD_TX_UNLOCK(dev, txq); 5577 if (free_skb) { 5578 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5579 dev_core_stats_tx_dropped_inc(dev); 5580 kfree_skb(skb); 5581 } 5582} 5583 5584static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5585 5586int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5587{ 5588 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5589 5590 if (xdp_prog) { 5591 struct xdp_buff xdp; 5592 u32 act; 5593 int err; 5594 5595 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5596 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5597 if (act != XDP_PASS) { 5598 switch (act) { 5599 case XDP_REDIRECT: 5600 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5601 &xdp, xdp_prog); 5602 if (err) 5603 goto out_redir; 5604 break; 5605 case XDP_TX: 5606 generic_xdp_tx(*pskb, xdp_prog); 5607 break; 5608 } 5609 bpf_net_ctx_clear(bpf_net_ctx); 5610 return XDP_DROP; 5611 } 5612 bpf_net_ctx_clear(bpf_net_ctx); 5613 } 5614 return XDP_PASS; 5615out_redir: 5616 bpf_net_ctx_clear(bpf_net_ctx); 5617 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5618 return XDP_DROP; 5619} 5620EXPORT_SYMBOL_GPL(do_xdp_generic); 5621 5622static int netif_rx_internal(struct sk_buff *skb) 5623{ 5624 int ret; 5625 5626 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5627 5628 trace_netif_rx(skb); 5629 5630#ifdef CONFIG_RPS 5631 if (static_branch_unlikely(&rps_needed)) { 5632 struct rps_dev_flow voidflow, *rflow = &voidflow; 5633 int cpu; 5634 5635 rcu_read_lock(); 5636 5637 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5638 if (cpu < 0) 5639 cpu = smp_processor_id(); 5640 5641 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5642 5643 rcu_read_unlock(); 5644 } else 5645#endif 5646 { 5647 unsigned int qtail; 5648 5649 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5650 } 5651 return ret; 5652} 5653 5654/** 5655 * __netif_rx - Slightly optimized version of netif_rx 5656 * @skb: buffer to post 5657 * 5658 * This behaves as netif_rx except that it does not disable bottom halves. 5659 * As a result this function may only be invoked from the interrupt context 5660 * (either hard or soft interrupt). 5661 */ 5662int __netif_rx(struct sk_buff *skb) 5663{ 5664 int ret; 5665 5666 lockdep_assert_once(hardirq_count() | softirq_count()); 5667 5668 trace_netif_rx_entry(skb); 5669 ret = netif_rx_internal(skb); 5670 trace_netif_rx_exit(ret); 5671 return ret; 5672} 5673EXPORT_SYMBOL(__netif_rx); 5674 5675/** 5676 * netif_rx - post buffer to the network code 5677 * @skb: buffer to post 5678 * 5679 * This function receives a packet from a device driver and queues it for 5680 * the upper (protocol) levels to process via the backlog NAPI device. It 5681 * always succeeds. The buffer may be dropped during processing for 5682 * congestion control or by the protocol layers. 5683 * The network buffer is passed via the backlog NAPI device. Modern NIC 5684 * driver should use NAPI and GRO. 5685 * This function can used from interrupt and from process context. The 5686 * caller from process context must not disable interrupts before invoking 5687 * this function. 5688 * 5689 * return values: 5690 * NET_RX_SUCCESS (no congestion) 5691 * NET_RX_DROP (packet was dropped) 5692 * 5693 */ 5694int netif_rx(struct sk_buff *skb) 5695{ 5696 bool need_bh_off = !(hardirq_count() | softirq_count()); 5697 int ret; 5698 5699 if (need_bh_off) 5700 local_bh_disable(); 5701 trace_netif_rx_entry(skb); 5702 ret = netif_rx_internal(skb); 5703 trace_netif_rx_exit(ret); 5704 if (need_bh_off) 5705 local_bh_enable(); 5706 return ret; 5707} 5708EXPORT_SYMBOL(netif_rx); 5709 5710static __latent_entropy void net_tx_action(void) 5711{ 5712 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5713 5714 if (sd->completion_queue) { 5715 struct sk_buff *clist; 5716 5717 local_irq_disable(); 5718 clist = sd->completion_queue; 5719 sd->completion_queue = NULL; 5720 local_irq_enable(); 5721 5722 while (clist) { 5723 struct sk_buff *skb = clist; 5724 5725 clist = clist->next; 5726 5727 WARN_ON(refcount_read(&skb->users)); 5728 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5729 trace_consume_skb(skb, net_tx_action); 5730 else 5731 trace_kfree_skb(skb, net_tx_action, 5732 get_kfree_skb_cb(skb)->reason, NULL); 5733 5734 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5735 __kfree_skb(skb); 5736 else 5737 __napi_kfree_skb(skb, 5738 get_kfree_skb_cb(skb)->reason); 5739 } 5740 } 5741 5742 if (sd->output_queue) { 5743 struct Qdisc *head; 5744 5745 local_irq_disable(); 5746 head = sd->output_queue; 5747 sd->output_queue = NULL; 5748 sd->output_queue_tailp = &sd->output_queue; 5749 local_irq_enable(); 5750 5751 rcu_read_lock(); 5752 5753 while (head) { 5754 spinlock_t *root_lock = NULL; 5755 struct sk_buff *to_free; 5756 struct Qdisc *q = head; 5757 5758 head = head->next_sched; 5759 5760 /* We need to make sure head->next_sched is read 5761 * before clearing __QDISC_STATE_SCHED 5762 */ 5763 smp_mb__before_atomic(); 5764 5765 if (!(q->flags & TCQ_F_NOLOCK)) { 5766 root_lock = qdisc_lock(q); 5767 spin_lock(root_lock); 5768 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5769 &q->state))) { 5770 /* There is a synchronize_net() between 5771 * STATE_DEACTIVATED flag being set and 5772 * qdisc_reset()/some_qdisc_is_busy() in 5773 * dev_deactivate(), so we can safely bail out 5774 * early here to avoid data race between 5775 * qdisc_deactivate() and some_qdisc_is_busy() 5776 * for lockless qdisc. 5777 */ 5778 clear_bit(__QDISC_STATE_SCHED, &q->state); 5779 continue; 5780 } 5781 5782 clear_bit(__QDISC_STATE_SCHED, &q->state); 5783 to_free = qdisc_run(q); 5784 if (root_lock) 5785 spin_unlock(root_lock); 5786 tcf_kfree_skb_list(to_free); 5787 } 5788 5789 rcu_read_unlock(); 5790 } 5791 5792 xfrm_dev_backlog(sd); 5793} 5794 5795#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5796/* This hook is defined here for ATM LANE */ 5797int (*br_fdb_test_addr_hook)(struct net_device *dev, 5798 unsigned char *addr) __read_mostly; 5799EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5800#endif 5801 5802/** 5803 * netdev_is_rx_handler_busy - check if receive handler is registered 5804 * @dev: device to check 5805 * 5806 * Check if a receive handler is already registered for a given device. 5807 * Return true if there one. 5808 * 5809 * The caller must hold the rtnl_mutex. 5810 */ 5811bool netdev_is_rx_handler_busy(struct net_device *dev) 5812{ 5813 ASSERT_RTNL(); 5814 return dev && rtnl_dereference(dev->rx_handler); 5815} 5816EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5817 5818/** 5819 * netdev_rx_handler_register - register receive handler 5820 * @dev: device to register a handler for 5821 * @rx_handler: receive handler to register 5822 * @rx_handler_data: data pointer that is used by rx handler 5823 * 5824 * Register a receive handler for a device. This handler will then be 5825 * called from __netif_receive_skb. A negative errno code is returned 5826 * on a failure. 5827 * 5828 * The caller must hold the rtnl_mutex. 5829 * 5830 * For a general description of rx_handler, see enum rx_handler_result. 5831 */ 5832int netdev_rx_handler_register(struct net_device *dev, 5833 rx_handler_func_t *rx_handler, 5834 void *rx_handler_data) 5835{ 5836 if (netdev_is_rx_handler_busy(dev)) 5837 return -EBUSY; 5838 5839 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5840 return -EINVAL; 5841 5842 /* Note: rx_handler_data must be set before rx_handler */ 5843 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5844 rcu_assign_pointer(dev->rx_handler, rx_handler); 5845 5846 return 0; 5847} 5848EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5849 5850/** 5851 * netdev_rx_handler_unregister - unregister receive handler 5852 * @dev: device to unregister a handler from 5853 * 5854 * Unregister a receive handler from a device. 5855 * 5856 * The caller must hold the rtnl_mutex. 5857 */ 5858void netdev_rx_handler_unregister(struct net_device *dev) 5859{ 5860 5861 ASSERT_RTNL(); 5862 RCU_INIT_POINTER(dev->rx_handler, NULL); 5863 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5864 * section has a guarantee to see a non NULL rx_handler_data 5865 * as well. 5866 */ 5867 synchronize_net(); 5868 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5869} 5870EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5871 5872/* 5873 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5874 * the special handling of PFMEMALLOC skbs. 5875 */ 5876static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5877{ 5878 switch (skb->protocol) { 5879 case htons(ETH_P_ARP): 5880 case htons(ETH_P_IP): 5881 case htons(ETH_P_IPV6): 5882 case htons(ETH_P_8021Q): 5883 case htons(ETH_P_8021AD): 5884 return true; 5885 default: 5886 return false; 5887 } 5888} 5889 5890static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5891 int *ret, struct net_device *orig_dev) 5892{ 5893 if (nf_hook_ingress_active(skb)) { 5894 int ingress_retval; 5895 5896 if (unlikely(*pt_prev)) { 5897 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5898 *pt_prev = NULL; 5899 } 5900 5901 rcu_read_lock(); 5902 ingress_retval = nf_hook_ingress(skb); 5903 rcu_read_unlock(); 5904 return ingress_retval; 5905 } 5906 return 0; 5907} 5908 5909static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5910 struct packet_type **ppt_prev) 5911{ 5912 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5913 struct packet_type *ptype, *pt_prev; 5914 rx_handler_func_t *rx_handler; 5915 struct sk_buff *skb = *pskb; 5916 struct net_device *orig_dev; 5917 bool deliver_exact = false; 5918 int ret = NET_RX_DROP; 5919 __be16 type; 5920 5921 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5922 5923 trace_netif_receive_skb(skb); 5924 5925 orig_dev = skb->dev; 5926 5927 skb_reset_network_header(skb); 5928#if !defined(CONFIG_DEBUG_NET) 5929 /* We plan to no longer reset the transport header here. 5930 * Give some time to fuzzers and dev build to catch bugs 5931 * in network stacks. 5932 */ 5933 if (!skb_transport_header_was_set(skb)) 5934 skb_reset_transport_header(skb); 5935#endif 5936 skb_reset_mac_len(skb); 5937 5938 pt_prev = NULL; 5939 5940another_round: 5941 skb->skb_iif = skb->dev->ifindex; 5942 5943 __this_cpu_inc(softnet_data.processed); 5944 5945 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5946 int ret2; 5947 5948 migrate_disable(); 5949 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5950 &skb); 5951 migrate_enable(); 5952 5953 if (ret2 != XDP_PASS) { 5954 ret = NET_RX_DROP; 5955 goto out; 5956 } 5957 } 5958 5959 if (eth_type_vlan(skb->protocol)) { 5960 skb = skb_vlan_untag(skb); 5961 if (unlikely(!skb)) 5962 goto out; 5963 } 5964 5965 if (skb_skip_tc_classify(skb)) 5966 goto skip_classify; 5967 5968 if (pfmemalloc) 5969 goto skip_taps; 5970 5971 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5972 list) { 5973 if (unlikely(pt_prev)) 5974 ret = deliver_skb(skb, pt_prev, orig_dev); 5975 pt_prev = ptype; 5976 } 5977 5978 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5979 if (unlikely(pt_prev)) 5980 ret = deliver_skb(skb, pt_prev, orig_dev); 5981 pt_prev = ptype; 5982 } 5983 5984skip_taps: 5985#ifdef CONFIG_NET_INGRESS 5986 if (static_branch_unlikely(&ingress_needed_key)) { 5987 bool another = false; 5988 5989 nf_skip_egress(skb, true); 5990 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5991 &another); 5992 if (another) 5993 goto another_round; 5994 if (!skb) 5995 goto out; 5996 5997 nf_skip_egress(skb, false); 5998 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5999 goto out; 6000 } 6001#endif 6002 skb_reset_redirect(skb); 6003skip_classify: 6004 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 6005 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 6006 goto drop; 6007 } 6008 6009 if (skb_vlan_tag_present(skb)) { 6010 if (unlikely(pt_prev)) { 6011 ret = deliver_skb(skb, pt_prev, orig_dev); 6012 pt_prev = NULL; 6013 } 6014 if (vlan_do_receive(&skb)) 6015 goto another_round; 6016 else if (unlikely(!skb)) 6017 goto out; 6018 } 6019 6020 rx_handler = rcu_dereference(skb->dev->rx_handler); 6021 if (rx_handler) { 6022 if (unlikely(pt_prev)) { 6023 ret = deliver_skb(skb, pt_prev, orig_dev); 6024 pt_prev = NULL; 6025 } 6026 switch (rx_handler(&skb)) { 6027 case RX_HANDLER_CONSUMED: 6028 ret = NET_RX_SUCCESS; 6029 goto out; 6030 case RX_HANDLER_ANOTHER: 6031 goto another_round; 6032 case RX_HANDLER_EXACT: 6033 deliver_exact = true; 6034 break; 6035 case RX_HANDLER_PASS: 6036 break; 6037 default: 6038 BUG(); 6039 } 6040 } 6041 6042 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 6043check_vlan_id: 6044 if (skb_vlan_tag_get_id(skb)) { 6045 /* Vlan id is non 0 and vlan_do_receive() above couldn't 6046 * find vlan device. 6047 */ 6048 skb->pkt_type = PACKET_OTHERHOST; 6049 } else if (eth_type_vlan(skb->protocol)) { 6050 /* Outer header is 802.1P with vlan 0, inner header is 6051 * 802.1Q or 802.1AD and vlan_do_receive() above could 6052 * not find vlan dev for vlan id 0. 6053 */ 6054 __vlan_hwaccel_clear_tag(skb); 6055 skb = skb_vlan_untag(skb); 6056 if (unlikely(!skb)) 6057 goto out; 6058 if (vlan_do_receive(&skb)) 6059 /* After stripping off 802.1P header with vlan 0 6060 * vlan dev is found for inner header. 6061 */ 6062 goto another_round; 6063 else if (unlikely(!skb)) 6064 goto out; 6065 else 6066 /* We have stripped outer 802.1P vlan 0 header. 6067 * But could not find vlan dev. 6068 * check again for vlan id to set OTHERHOST. 6069 */ 6070 goto check_vlan_id; 6071 } 6072 /* Note: we might in the future use prio bits 6073 * and set skb->priority like in vlan_do_receive() 6074 * For the time being, just ignore Priority Code Point 6075 */ 6076 __vlan_hwaccel_clear_tag(skb); 6077 } 6078 6079 type = skb->protocol; 6080 6081 /* deliver only exact match when indicated */ 6082 if (likely(!deliver_exact)) { 6083 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6084 &ptype_base[ntohs(type) & 6085 PTYPE_HASH_MASK]); 6086 6087 /* orig_dev and skb->dev could belong to different netns; 6088 * Even in such case we need to traverse only the list 6089 * coming from skb->dev, as the ptype owner (packet socket) 6090 * will use dev_net(skb->dev) to do namespace filtering. 6091 */ 6092 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6093 &dev_net_rcu(skb->dev)->ptype_specific); 6094 } 6095 6096 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6097 &orig_dev->ptype_specific); 6098 6099 if (unlikely(skb->dev != orig_dev)) { 6100 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6101 &skb->dev->ptype_specific); 6102 } 6103 6104 if (pt_prev) { 6105 *ppt_prev = pt_prev; 6106 } else { 6107drop: 6108 if (!deliver_exact) 6109 dev_core_stats_rx_dropped_inc(skb->dev); 6110 else 6111 dev_core_stats_rx_nohandler_inc(skb->dev); 6112 6113 kfree_skb_reason(skb, drop_reason); 6114 /* Jamal, now you will not able to escape explaining 6115 * me how you were going to use this. :-) 6116 */ 6117 ret = NET_RX_DROP; 6118 } 6119 6120out: 6121 /* The invariant here is that if *ppt_prev is not NULL 6122 * then skb should also be non-NULL. 6123 * 6124 * Apparently *ppt_prev assignment above holds this invariant due to 6125 * skb dereferencing near it. 6126 */ 6127 *pskb = skb; 6128 return ret; 6129} 6130 6131static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 6132{ 6133 struct net_device *orig_dev = skb->dev; 6134 struct packet_type *pt_prev = NULL; 6135 int ret; 6136 6137 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6138 if (pt_prev) 6139 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 6140 skb->dev, pt_prev, orig_dev); 6141 return ret; 6142} 6143 6144/** 6145 * netif_receive_skb_core - special purpose version of netif_receive_skb 6146 * @skb: buffer to process 6147 * 6148 * More direct receive version of netif_receive_skb(). It should 6149 * only be used by callers that have a need to skip RPS and Generic XDP. 6150 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 6151 * 6152 * This function may only be called from softirq context and interrupts 6153 * should be enabled. 6154 * 6155 * Return values (usually ignored): 6156 * NET_RX_SUCCESS: no congestion 6157 * NET_RX_DROP: packet was dropped 6158 */ 6159int netif_receive_skb_core(struct sk_buff *skb) 6160{ 6161 int ret; 6162 6163 rcu_read_lock(); 6164 ret = __netif_receive_skb_one_core(skb, false); 6165 rcu_read_unlock(); 6166 6167 return ret; 6168} 6169EXPORT_SYMBOL(netif_receive_skb_core); 6170 6171static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6172 struct packet_type *pt_prev, 6173 struct net_device *orig_dev) 6174{ 6175 struct sk_buff *skb, *next; 6176 6177 if (!pt_prev) 6178 return; 6179 if (list_empty(head)) 6180 return; 6181 if (pt_prev->list_func != NULL) 6182 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6183 ip_list_rcv, head, pt_prev, orig_dev); 6184 else 6185 list_for_each_entry_safe(skb, next, head, list) { 6186 skb_list_del_init(skb); 6187 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6188 } 6189} 6190 6191static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6192{ 6193 /* Fast-path assumptions: 6194 * - There is no RX handler. 6195 * - Only one packet_type matches. 6196 * If either of these fails, we will end up doing some per-packet 6197 * processing in-line, then handling the 'last ptype' for the whole 6198 * sublist. This can't cause out-of-order delivery to any single ptype, 6199 * because the 'last ptype' must be constant across the sublist, and all 6200 * other ptypes are handled per-packet. 6201 */ 6202 /* Current (common) ptype of sublist */ 6203 struct packet_type *pt_curr = NULL; 6204 /* Current (common) orig_dev of sublist */ 6205 struct net_device *od_curr = NULL; 6206 struct sk_buff *skb, *next; 6207 LIST_HEAD(sublist); 6208 6209 list_for_each_entry_safe(skb, next, head, list) { 6210 struct net_device *orig_dev = skb->dev; 6211 struct packet_type *pt_prev = NULL; 6212 6213 skb_list_del_init(skb); 6214 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6215 if (!pt_prev) 6216 continue; 6217 if (pt_curr != pt_prev || od_curr != orig_dev) { 6218 /* dispatch old sublist */ 6219 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6220 /* start new sublist */ 6221 INIT_LIST_HEAD(&sublist); 6222 pt_curr = pt_prev; 6223 od_curr = orig_dev; 6224 } 6225 list_add_tail(&skb->list, &sublist); 6226 } 6227 6228 /* dispatch final sublist */ 6229 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6230} 6231 6232static int __netif_receive_skb(struct sk_buff *skb) 6233{ 6234 int ret; 6235 6236 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6237 unsigned int noreclaim_flag; 6238 6239 /* 6240 * PFMEMALLOC skbs are special, they should 6241 * - be delivered to SOCK_MEMALLOC sockets only 6242 * - stay away from userspace 6243 * - have bounded memory usage 6244 * 6245 * Use PF_MEMALLOC as this saves us from propagating the allocation 6246 * context down to all allocation sites. 6247 */ 6248 noreclaim_flag = memalloc_noreclaim_save(); 6249 ret = __netif_receive_skb_one_core(skb, true); 6250 memalloc_noreclaim_restore(noreclaim_flag); 6251 } else 6252 ret = __netif_receive_skb_one_core(skb, false); 6253 6254 return ret; 6255} 6256 6257static void __netif_receive_skb_list(struct list_head *head) 6258{ 6259 unsigned long noreclaim_flag = 0; 6260 struct sk_buff *skb, *next; 6261 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6262 6263 list_for_each_entry_safe(skb, next, head, list) { 6264 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6265 struct list_head sublist; 6266 6267 /* Handle the previous sublist */ 6268 list_cut_before(&sublist, head, &skb->list); 6269 if (!list_empty(&sublist)) 6270 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6271 pfmemalloc = !pfmemalloc; 6272 /* See comments in __netif_receive_skb */ 6273 if (pfmemalloc) 6274 noreclaim_flag = memalloc_noreclaim_save(); 6275 else 6276 memalloc_noreclaim_restore(noreclaim_flag); 6277 } 6278 } 6279 /* Handle the remaining sublist */ 6280 if (!list_empty(head)) 6281 __netif_receive_skb_list_core(head, pfmemalloc); 6282 /* Restore pflags */ 6283 if (pfmemalloc) 6284 memalloc_noreclaim_restore(noreclaim_flag); 6285} 6286 6287static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6288{ 6289 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6290 struct bpf_prog *new = xdp->prog; 6291 int ret = 0; 6292 6293 switch (xdp->command) { 6294 case XDP_SETUP_PROG: 6295 rcu_assign_pointer(dev->xdp_prog, new); 6296 if (old) 6297 bpf_prog_put(old); 6298 6299 if (old && !new) { 6300 static_branch_dec(&generic_xdp_needed_key); 6301 } else if (new && !old) { 6302 static_branch_inc(&generic_xdp_needed_key); 6303 netif_disable_lro(dev); 6304 dev_disable_gro_hw(dev); 6305 } 6306 break; 6307 6308 default: 6309 ret = -EINVAL; 6310 break; 6311 } 6312 6313 return ret; 6314} 6315 6316static int netif_receive_skb_internal(struct sk_buff *skb) 6317{ 6318 int ret; 6319 6320 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6321 6322 if (skb_defer_rx_timestamp(skb)) 6323 return NET_RX_SUCCESS; 6324 6325 rcu_read_lock(); 6326#ifdef CONFIG_RPS 6327 if (static_branch_unlikely(&rps_needed)) { 6328 struct rps_dev_flow voidflow, *rflow = &voidflow; 6329 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6330 6331 if (cpu >= 0) { 6332 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6333 rcu_read_unlock(); 6334 return ret; 6335 } 6336 } 6337#endif 6338 ret = __netif_receive_skb(skb); 6339 rcu_read_unlock(); 6340 return ret; 6341} 6342 6343void netif_receive_skb_list_internal(struct list_head *head) 6344{ 6345 struct sk_buff *skb, *next; 6346 LIST_HEAD(sublist); 6347 6348 list_for_each_entry_safe(skb, next, head, list) { 6349 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6350 skb); 6351 skb_list_del_init(skb); 6352 if (!skb_defer_rx_timestamp(skb)) 6353 list_add_tail(&skb->list, &sublist); 6354 } 6355 list_splice_init(&sublist, head); 6356 6357 rcu_read_lock(); 6358#ifdef CONFIG_RPS 6359 if (static_branch_unlikely(&rps_needed)) { 6360 list_for_each_entry_safe(skb, next, head, list) { 6361 struct rps_dev_flow voidflow, *rflow = &voidflow; 6362 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6363 6364 if (cpu >= 0) { 6365 /* Will be handled, remove from list */ 6366 skb_list_del_init(skb); 6367 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6368 } 6369 } 6370 } 6371#endif 6372 __netif_receive_skb_list(head); 6373 rcu_read_unlock(); 6374} 6375 6376/** 6377 * netif_receive_skb - process receive buffer from network 6378 * @skb: buffer to process 6379 * 6380 * netif_receive_skb() is the main receive data processing function. 6381 * It always succeeds. The buffer may be dropped during processing 6382 * for congestion control or by the protocol layers. 6383 * 6384 * This function may only be called from softirq context and interrupts 6385 * should be enabled. 6386 * 6387 * Return values (usually ignored): 6388 * NET_RX_SUCCESS: no congestion 6389 * NET_RX_DROP: packet was dropped 6390 */ 6391int netif_receive_skb(struct sk_buff *skb) 6392{ 6393 int ret; 6394 6395 trace_netif_receive_skb_entry(skb); 6396 6397 ret = netif_receive_skb_internal(skb); 6398 trace_netif_receive_skb_exit(ret); 6399 6400 return ret; 6401} 6402EXPORT_SYMBOL(netif_receive_skb); 6403 6404/** 6405 * netif_receive_skb_list - process many receive buffers from network 6406 * @head: list of skbs to process. 6407 * 6408 * Since return value of netif_receive_skb() is normally ignored, and 6409 * wouldn't be meaningful for a list, this function returns void. 6410 * 6411 * This function may only be called from softirq context and interrupts 6412 * should be enabled. 6413 */ 6414void netif_receive_skb_list(struct list_head *head) 6415{ 6416 struct sk_buff *skb; 6417 6418 if (list_empty(head)) 6419 return; 6420 if (trace_netif_receive_skb_list_entry_enabled()) { 6421 list_for_each_entry(skb, head, list) 6422 trace_netif_receive_skb_list_entry(skb); 6423 } 6424 netif_receive_skb_list_internal(head); 6425 trace_netif_receive_skb_list_exit(0); 6426} 6427EXPORT_SYMBOL(netif_receive_skb_list); 6428 6429/* Network device is going away, flush any packets still pending */ 6430static void flush_backlog(struct work_struct *work) 6431{ 6432 struct sk_buff *skb, *tmp; 6433 struct sk_buff_head list; 6434 struct softnet_data *sd; 6435 6436 __skb_queue_head_init(&list); 6437 local_bh_disable(); 6438 sd = this_cpu_ptr(&softnet_data); 6439 6440 backlog_lock_irq_disable(sd); 6441 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6442 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6443 __skb_unlink(skb, &sd->input_pkt_queue); 6444 __skb_queue_tail(&list, skb); 6445 rps_input_queue_head_incr(sd); 6446 } 6447 } 6448 backlog_unlock_irq_enable(sd); 6449 6450 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6451 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6452 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6453 __skb_unlink(skb, &sd->process_queue); 6454 __skb_queue_tail(&list, skb); 6455 rps_input_queue_head_incr(sd); 6456 } 6457 } 6458 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6459 local_bh_enable(); 6460 6461 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6462} 6463 6464static bool flush_required(int cpu) 6465{ 6466#if IS_ENABLED(CONFIG_RPS) 6467 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6468 bool do_flush; 6469 6470 backlog_lock_irq_disable(sd); 6471 6472 /* as insertion into process_queue happens with the rps lock held, 6473 * process_queue access may race only with dequeue 6474 */ 6475 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6476 !skb_queue_empty_lockless(&sd->process_queue); 6477 backlog_unlock_irq_enable(sd); 6478 6479 return do_flush; 6480#endif 6481 /* without RPS we can't safely check input_pkt_queue: during a 6482 * concurrent remote skb_queue_splice() we can detect as empty both 6483 * input_pkt_queue and process_queue even if the latter could end-up 6484 * containing a lot of packets. 6485 */ 6486 return true; 6487} 6488 6489struct flush_backlogs { 6490 cpumask_t flush_cpus; 6491 struct work_struct w[]; 6492}; 6493 6494static struct flush_backlogs *flush_backlogs_alloc(void) 6495{ 6496 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6497 GFP_KERNEL); 6498} 6499 6500static struct flush_backlogs *flush_backlogs_fallback; 6501static DEFINE_MUTEX(flush_backlogs_mutex); 6502 6503static void flush_all_backlogs(void) 6504{ 6505 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6506 unsigned int cpu; 6507 6508 if (!ptr) { 6509 mutex_lock(&flush_backlogs_mutex); 6510 ptr = flush_backlogs_fallback; 6511 } 6512 cpumask_clear(&ptr->flush_cpus); 6513 6514 cpus_read_lock(); 6515 6516 for_each_online_cpu(cpu) { 6517 if (flush_required(cpu)) { 6518 INIT_WORK(&ptr->w[cpu], flush_backlog); 6519 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6520 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6521 } 6522 } 6523 6524 /* we can have in flight packet[s] on the cpus we are not flushing, 6525 * synchronize_net() in unregister_netdevice_many() will take care of 6526 * them. 6527 */ 6528 for_each_cpu(cpu, &ptr->flush_cpus) 6529 flush_work(&ptr->w[cpu]); 6530 6531 cpus_read_unlock(); 6532 6533 if (ptr != flush_backlogs_fallback) 6534 kfree(ptr); 6535 else 6536 mutex_unlock(&flush_backlogs_mutex); 6537} 6538 6539static void net_rps_send_ipi(struct softnet_data *remsd) 6540{ 6541#ifdef CONFIG_RPS 6542 while (remsd) { 6543 struct softnet_data *next = remsd->rps_ipi_next; 6544 6545 if (cpu_online(remsd->cpu)) 6546 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6547 remsd = next; 6548 } 6549#endif 6550} 6551 6552/* 6553 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6554 * Note: called with local irq disabled, but exits with local irq enabled. 6555 */ 6556static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6557{ 6558#ifdef CONFIG_RPS 6559 struct softnet_data *remsd = sd->rps_ipi_list; 6560 6561 if (!use_backlog_threads() && remsd) { 6562 sd->rps_ipi_list = NULL; 6563 6564 local_irq_enable(); 6565 6566 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6567 net_rps_send_ipi(remsd); 6568 } else 6569#endif 6570 local_irq_enable(); 6571} 6572 6573static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6574{ 6575#ifdef CONFIG_RPS 6576 return !use_backlog_threads() && sd->rps_ipi_list; 6577#else 6578 return false; 6579#endif 6580} 6581 6582static int process_backlog(struct napi_struct *napi, int quota) 6583{ 6584 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6585 bool again = true; 6586 int work = 0; 6587 6588 /* Check if we have pending ipi, its better to send them now, 6589 * not waiting net_rx_action() end. 6590 */ 6591 if (sd_has_rps_ipi_waiting(sd)) { 6592 local_irq_disable(); 6593 net_rps_action_and_irq_enable(sd); 6594 } 6595 6596 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6597 while (again) { 6598 struct sk_buff *skb; 6599 6600 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6601 while ((skb = __skb_dequeue(&sd->process_queue))) { 6602 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6603 rcu_read_lock(); 6604 __netif_receive_skb(skb); 6605 rcu_read_unlock(); 6606 if (++work >= quota) { 6607 rps_input_queue_head_add(sd, work); 6608 return work; 6609 } 6610 6611 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6612 } 6613 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6614 6615 backlog_lock_irq_disable(sd); 6616 if (skb_queue_empty(&sd->input_pkt_queue)) { 6617 /* 6618 * Inline a custom version of __napi_complete(). 6619 * only current cpu owns and manipulates this napi, 6620 * and NAPI_STATE_SCHED is the only possible flag set 6621 * on backlog. 6622 * We can use a plain write instead of clear_bit(), 6623 * and we dont need an smp_mb() memory barrier. 6624 */ 6625 napi->state &= NAPIF_STATE_THREADED; 6626 again = false; 6627 } else { 6628 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6629 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6630 &sd->process_queue); 6631 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6632 } 6633 backlog_unlock_irq_enable(sd); 6634 } 6635 6636 if (work) 6637 rps_input_queue_head_add(sd, work); 6638 return work; 6639} 6640 6641/** 6642 * __napi_schedule - schedule for receive 6643 * @n: entry to schedule 6644 * 6645 * The entry's receive function will be scheduled to run. 6646 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6647 */ 6648void __napi_schedule(struct napi_struct *n) 6649{ 6650 unsigned long flags; 6651 6652 local_irq_save(flags); 6653 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6654 local_irq_restore(flags); 6655} 6656EXPORT_SYMBOL(__napi_schedule); 6657 6658/** 6659 * napi_schedule_prep - check if napi can be scheduled 6660 * @n: napi context 6661 * 6662 * Test if NAPI routine is already running, and if not mark 6663 * it as running. This is used as a condition variable to 6664 * insure only one NAPI poll instance runs. We also make 6665 * sure there is no pending NAPI disable. 6666 */ 6667bool napi_schedule_prep(struct napi_struct *n) 6668{ 6669 unsigned long new, val = READ_ONCE(n->state); 6670 6671 do { 6672 if (unlikely(val & NAPIF_STATE_DISABLE)) 6673 return false; 6674 new = val | NAPIF_STATE_SCHED; 6675 6676 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6677 * This was suggested by Alexander Duyck, as compiler 6678 * emits better code than : 6679 * if (val & NAPIF_STATE_SCHED) 6680 * new |= NAPIF_STATE_MISSED; 6681 */ 6682 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6683 NAPIF_STATE_MISSED; 6684 } while (!try_cmpxchg(&n->state, &val, new)); 6685 6686 return !(val & NAPIF_STATE_SCHED); 6687} 6688EXPORT_SYMBOL(napi_schedule_prep); 6689 6690/** 6691 * __napi_schedule_irqoff - schedule for receive 6692 * @n: entry to schedule 6693 * 6694 * Variant of __napi_schedule() assuming hard irqs are masked. 6695 * 6696 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6697 * because the interrupt disabled assumption might not be true 6698 * due to force-threaded interrupts and spinlock substitution. 6699 */ 6700void __napi_schedule_irqoff(struct napi_struct *n) 6701{ 6702 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6703 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6704 else 6705 __napi_schedule(n); 6706} 6707EXPORT_SYMBOL(__napi_schedule_irqoff); 6708 6709bool napi_complete_done(struct napi_struct *n, int work_done) 6710{ 6711 unsigned long flags, val, new, timeout = 0; 6712 bool ret = true; 6713 6714 /* 6715 * 1) Don't let napi dequeue from the cpu poll list 6716 * just in case its running on a different cpu. 6717 * 2) If we are busy polling, do nothing here, we have 6718 * the guarantee we will be called later. 6719 */ 6720 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6721 NAPIF_STATE_IN_BUSY_POLL))) 6722 return false; 6723 6724 if (work_done) { 6725 if (n->gro.bitmask) 6726 timeout = napi_get_gro_flush_timeout(n); 6727 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6728 } 6729 if (n->defer_hard_irqs_count > 0) { 6730 n->defer_hard_irqs_count--; 6731 timeout = napi_get_gro_flush_timeout(n); 6732 if (timeout) 6733 ret = false; 6734 } 6735 6736 /* 6737 * When the NAPI instance uses a timeout and keeps postponing 6738 * it, we need to bound somehow the time packets are kept in 6739 * the GRO layer. 6740 */ 6741 gro_flush_normal(&n->gro, !!timeout); 6742 6743 if (unlikely(!list_empty(&n->poll_list))) { 6744 /* If n->poll_list is not empty, we need to mask irqs */ 6745 local_irq_save(flags); 6746 list_del_init(&n->poll_list); 6747 local_irq_restore(flags); 6748 } 6749 WRITE_ONCE(n->list_owner, -1); 6750 6751 val = READ_ONCE(n->state); 6752 do { 6753 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6754 6755 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6756 NAPIF_STATE_SCHED_THREADED | 6757 NAPIF_STATE_PREFER_BUSY_POLL); 6758 6759 /* If STATE_MISSED was set, leave STATE_SCHED set, 6760 * because we will call napi->poll() one more time. 6761 * This C code was suggested by Alexander Duyck to help gcc. 6762 */ 6763 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6764 NAPIF_STATE_SCHED; 6765 } while (!try_cmpxchg(&n->state, &val, new)); 6766 6767 if (unlikely(val & NAPIF_STATE_MISSED)) { 6768 __napi_schedule(n); 6769 return false; 6770 } 6771 6772 if (timeout) 6773 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6774 HRTIMER_MODE_REL_PINNED); 6775 return ret; 6776} 6777EXPORT_SYMBOL(napi_complete_done); 6778 6779static void skb_defer_free_flush(void) 6780{ 6781 struct llist_node *free_list; 6782 struct sk_buff *skb, *next; 6783 struct skb_defer_node *sdn; 6784 int node; 6785 6786 for_each_node(node) { 6787 sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node; 6788 6789 if (llist_empty(&sdn->defer_list)) 6790 continue; 6791 atomic_long_set(&sdn->defer_count, 0); 6792 free_list = llist_del_all(&sdn->defer_list); 6793 6794 llist_for_each_entry_safe(skb, next, free_list, ll_node) { 6795 prefetch(next); 6796 napi_consume_skb(skb, 1); 6797 } 6798 } 6799} 6800 6801#if defined(CONFIG_NET_RX_BUSY_POLL) 6802 6803static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6804{ 6805 if (!skip_schedule) { 6806 gro_normal_list(&napi->gro); 6807 __napi_schedule(napi); 6808 return; 6809 } 6810 6811 /* Flush too old packets. If HZ < 1000, flush all packets */ 6812 gro_flush_normal(&napi->gro, HZ >= 1000); 6813 6814 clear_bit(NAPI_STATE_SCHED, &napi->state); 6815} 6816 6817enum { 6818 NAPI_F_PREFER_BUSY_POLL = 1, 6819 NAPI_F_END_ON_RESCHED = 2, 6820}; 6821 6822static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6823 unsigned flags, u16 budget) 6824{ 6825 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6826 bool skip_schedule = false; 6827 unsigned long timeout; 6828 int rc; 6829 6830 /* Busy polling means there is a high chance device driver hard irq 6831 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6832 * set in napi_schedule_prep(). 6833 * Since we are about to call napi->poll() once more, we can safely 6834 * clear NAPI_STATE_MISSED. 6835 * 6836 * Note: x86 could use a single "lock and ..." instruction 6837 * to perform these two clear_bit() 6838 */ 6839 clear_bit(NAPI_STATE_MISSED, &napi->state); 6840 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6841 6842 local_bh_disable(); 6843 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6844 6845 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6846 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6847 timeout = napi_get_gro_flush_timeout(napi); 6848 if (napi->defer_hard_irqs_count && timeout) { 6849 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6850 skip_schedule = true; 6851 } 6852 } 6853 6854 /* All we really want here is to re-enable device interrupts. 6855 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6856 */ 6857 rc = napi->poll(napi, budget); 6858 /* We can't gro_normal_list() here, because napi->poll() might have 6859 * rearmed the napi (napi_complete_done()) in which case it could 6860 * already be running on another CPU. 6861 */ 6862 trace_napi_poll(napi, rc, budget); 6863 netpoll_poll_unlock(have_poll_lock); 6864 if (rc == budget) 6865 __busy_poll_stop(napi, skip_schedule); 6866 bpf_net_ctx_clear(bpf_net_ctx); 6867 local_bh_enable(); 6868} 6869 6870static void __napi_busy_loop(unsigned int napi_id, 6871 bool (*loop_end)(void *, unsigned long), 6872 void *loop_end_arg, unsigned flags, u16 budget) 6873{ 6874 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6875 int (*napi_poll)(struct napi_struct *napi, int budget); 6876 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6877 void *have_poll_lock = NULL; 6878 struct napi_struct *napi; 6879 6880 WARN_ON_ONCE(!rcu_read_lock_held()); 6881 6882restart: 6883 napi_poll = NULL; 6884 6885 napi = napi_by_id(napi_id); 6886 if (!napi) 6887 return; 6888 6889 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6890 preempt_disable(); 6891 for (;;) { 6892 int work = 0; 6893 6894 local_bh_disable(); 6895 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6896 if (!napi_poll) { 6897 unsigned long val = READ_ONCE(napi->state); 6898 6899 /* If multiple threads are competing for this napi, 6900 * we avoid dirtying napi->state as much as we can. 6901 */ 6902 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6903 NAPIF_STATE_IN_BUSY_POLL)) { 6904 if (flags & NAPI_F_PREFER_BUSY_POLL) 6905 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6906 goto count; 6907 } 6908 if (cmpxchg(&napi->state, val, 6909 val | NAPIF_STATE_IN_BUSY_POLL | 6910 NAPIF_STATE_SCHED) != val) { 6911 if (flags & NAPI_F_PREFER_BUSY_POLL) 6912 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6913 goto count; 6914 } 6915 have_poll_lock = netpoll_poll_lock(napi); 6916 napi_poll = napi->poll; 6917 } 6918 work = napi_poll(napi, budget); 6919 trace_napi_poll(napi, work, budget); 6920 gro_normal_list(&napi->gro); 6921count: 6922 if (work > 0) 6923 __NET_ADD_STATS(dev_net(napi->dev), 6924 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6925 skb_defer_free_flush(); 6926 bpf_net_ctx_clear(bpf_net_ctx); 6927 local_bh_enable(); 6928 6929 if (!loop_end || loop_end(loop_end_arg, start_time)) 6930 break; 6931 6932 if (unlikely(need_resched())) { 6933 if (flags & NAPI_F_END_ON_RESCHED) 6934 break; 6935 if (napi_poll) 6936 busy_poll_stop(napi, have_poll_lock, flags, budget); 6937 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6938 preempt_enable(); 6939 rcu_read_unlock(); 6940 cond_resched(); 6941 rcu_read_lock(); 6942 if (loop_end(loop_end_arg, start_time)) 6943 return; 6944 goto restart; 6945 } 6946 cpu_relax(); 6947 } 6948 if (napi_poll) 6949 busy_poll_stop(napi, have_poll_lock, flags, budget); 6950 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6951 preempt_enable(); 6952} 6953 6954void napi_busy_loop_rcu(unsigned int napi_id, 6955 bool (*loop_end)(void *, unsigned long), 6956 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6957{ 6958 unsigned flags = NAPI_F_END_ON_RESCHED; 6959 6960 if (prefer_busy_poll) 6961 flags |= NAPI_F_PREFER_BUSY_POLL; 6962 6963 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6964} 6965 6966void napi_busy_loop(unsigned int napi_id, 6967 bool (*loop_end)(void *, unsigned long), 6968 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6969{ 6970 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6971 6972 rcu_read_lock(); 6973 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6974 rcu_read_unlock(); 6975} 6976EXPORT_SYMBOL(napi_busy_loop); 6977 6978void napi_suspend_irqs(unsigned int napi_id) 6979{ 6980 struct napi_struct *napi; 6981 6982 rcu_read_lock(); 6983 napi = napi_by_id(napi_id); 6984 if (napi) { 6985 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6986 6987 if (timeout) 6988 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6989 HRTIMER_MODE_REL_PINNED); 6990 } 6991 rcu_read_unlock(); 6992} 6993 6994void napi_resume_irqs(unsigned int napi_id) 6995{ 6996 struct napi_struct *napi; 6997 6998 rcu_read_lock(); 6999 napi = napi_by_id(napi_id); 7000 if (napi) { 7001 /* If irq_suspend_timeout is set to 0 between the call to 7002 * napi_suspend_irqs and now, the original value still 7003 * determines the safety timeout as intended and napi_watchdog 7004 * will resume irq processing. 7005 */ 7006 if (napi_get_irq_suspend_timeout(napi)) { 7007 local_bh_disable(); 7008 napi_schedule(napi); 7009 local_bh_enable(); 7010 } 7011 } 7012 rcu_read_unlock(); 7013} 7014 7015#endif /* CONFIG_NET_RX_BUSY_POLL */ 7016 7017static void __napi_hash_add_with_id(struct napi_struct *napi, 7018 unsigned int napi_id) 7019{ 7020 napi->gro.cached_napi_id = napi_id; 7021 7022 WRITE_ONCE(napi->napi_id, napi_id); 7023 hlist_add_head_rcu(&napi->napi_hash_node, 7024 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 7025} 7026 7027static void napi_hash_add_with_id(struct napi_struct *napi, 7028 unsigned int napi_id) 7029{ 7030 unsigned long flags; 7031 7032 spin_lock_irqsave(&napi_hash_lock, flags); 7033 WARN_ON_ONCE(napi_by_id(napi_id)); 7034 __napi_hash_add_with_id(napi, napi_id); 7035 spin_unlock_irqrestore(&napi_hash_lock, flags); 7036} 7037 7038static void napi_hash_add(struct napi_struct *napi) 7039{ 7040 unsigned long flags; 7041 7042 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 7043 return; 7044 7045 spin_lock_irqsave(&napi_hash_lock, flags); 7046 7047 /* 0..NR_CPUS range is reserved for sender_cpu use */ 7048 do { 7049 if (unlikely(!napi_id_valid(++napi_gen_id))) 7050 napi_gen_id = MIN_NAPI_ID; 7051 } while (napi_by_id(napi_gen_id)); 7052 7053 __napi_hash_add_with_id(napi, napi_gen_id); 7054 7055 spin_unlock_irqrestore(&napi_hash_lock, flags); 7056} 7057 7058/* Warning : caller is responsible to make sure rcu grace period 7059 * is respected before freeing memory containing @napi 7060 */ 7061static void napi_hash_del(struct napi_struct *napi) 7062{ 7063 unsigned long flags; 7064 7065 spin_lock_irqsave(&napi_hash_lock, flags); 7066 7067 hlist_del_init_rcu(&napi->napi_hash_node); 7068 7069 spin_unlock_irqrestore(&napi_hash_lock, flags); 7070} 7071 7072static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 7073{ 7074 struct napi_struct *napi; 7075 7076 napi = container_of(timer, struct napi_struct, timer); 7077 7078 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 7079 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 7080 */ 7081 if (!napi_disable_pending(napi) && 7082 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 7083 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 7084 __napi_schedule_irqoff(napi); 7085 } 7086 7087 return HRTIMER_NORESTART; 7088} 7089 7090static void napi_stop_kthread(struct napi_struct *napi) 7091{ 7092 unsigned long val, new; 7093 7094 /* Wait until the napi STATE_THREADED is unset. */ 7095 while (true) { 7096 val = READ_ONCE(napi->state); 7097 7098 /* If napi kthread own this napi or the napi is idle, 7099 * STATE_THREADED can be unset here. 7100 */ 7101 if ((val & NAPIF_STATE_SCHED_THREADED) || 7102 !(val & NAPIF_STATE_SCHED)) { 7103 new = val & (~(NAPIF_STATE_THREADED | 7104 NAPIF_STATE_THREADED_BUSY_POLL)); 7105 } else { 7106 msleep(20); 7107 continue; 7108 } 7109 7110 if (try_cmpxchg(&napi->state, &val, new)) 7111 break; 7112 } 7113 7114 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 7115 * the kthread. 7116 */ 7117 while (true) { 7118 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) 7119 break; 7120 7121 msleep(20); 7122 } 7123 7124 kthread_stop(napi->thread); 7125 napi->thread = NULL; 7126} 7127 7128static void napi_set_threaded_state(struct napi_struct *napi, 7129 enum netdev_napi_threaded threaded_mode) 7130{ 7131 bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED; 7132 bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL; 7133 7134 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7135 assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll); 7136} 7137 7138int napi_set_threaded(struct napi_struct *napi, 7139 enum netdev_napi_threaded threaded) 7140{ 7141 if (threaded) { 7142 if (!napi->thread) { 7143 int err = napi_kthread_create(napi); 7144 7145 if (err) 7146 return err; 7147 } 7148 } 7149 7150 if (napi->config) 7151 napi->config->threaded = threaded; 7152 7153 /* Setting/unsetting threaded mode on a napi might not immediately 7154 * take effect, if the current napi instance is actively being 7155 * polled. In this case, the switch between threaded mode and 7156 * softirq mode will happen in the next round of napi_schedule(). 7157 * This should not cause hiccups/stalls to the live traffic. 7158 */ 7159 if (!threaded && napi->thread) { 7160 napi_stop_kthread(napi); 7161 } else { 7162 /* Make sure kthread is created before THREADED bit is set. */ 7163 smp_mb__before_atomic(); 7164 napi_set_threaded_state(napi, threaded); 7165 } 7166 7167 return 0; 7168} 7169 7170int netif_set_threaded(struct net_device *dev, 7171 enum netdev_napi_threaded threaded) 7172{ 7173 struct napi_struct *napi; 7174 int i, err = 0; 7175 7176 netdev_assert_locked_or_invisible(dev); 7177 7178 if (threaded) { 7179 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7180 if (!napi->thread) { 7181 err = napi_kthread_create(napi); 7182 if (err) { 7183 threaded = NETDEV_NAPI_THREADED_DISABLED; 7184 break; 7185 } 7186 } 7187 } 7188 } 7189 7190 WRITE_ONCE(dev->threaded, threaded); 7191 7192 /* The error should not occur as the kthreads are already created. */ 7193 list_for_each_entry(napi, &dev->napi_list, dev_list) 7194 WARN_ON_ONCE(napi_set_threaded(napi, threaded)); 7195 7196 /* Override the config for all NAPIs even if currently not listed */ 7197 for (i = 0; i < dev->num_napi_configs; i++) 7198 dev->napi_config[i].threaded = threaded; 7199 7200 return err; 7201} 7202 7203/** 7204 * netif_threaded_enable() - enable threaded NAPIs 7205 * @dev: net_device instance 7206 * 7207 * Enable threaded mode for the NAPI instances of the device. This may be useful 7208 * for devices where multiple NAPI instances get scheduled by a single 7209 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other 7210 * than the core where IRQ is mapped. 7211 * 7212 * This function should be called before @dev is registered. 7213 */ 7214void netif_threaded_enable(struct net_device *dev) 7215{ 7216 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); 7217} 7218EXPORT_SYMBOL(netif_threaded_enable); 7219 7220/** 7221 * netif_queue_set_napi - Associate queue with the napi 7222 * @dev: device to which NAPI and queue belong 7223 * @queue_index: Index of queue 7224 * @type: queue type as RX or TX 7225 * @napi: NAPI context, pass NULL to clear previously set NAPI 7226 * 7227 * Set queue with its corresponding napi context. This should be done after 7228 * registering the NAPI handler for the queue-vector and the queues have been 7229 * mapped to the corresponding interrupt vector. 7230 */ 7231void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7232 enum netdev_queue_type type, struct napi_struct *napi) 7233{ 7234 struct netdev_rx_queue *rxq; 7235 struct netdev_queue *txq; 7236 7237 if (WARN_ON_ONCE(napi && !napi->dev)) 7238 return; 7239 netdev_ops_assert_locked_or_invisible(dev); 7240 7241 switch (type) { 7242 case NETDEV_QUEUE_TYPE_RX: 7243 rxq = __netif_get_rx_queue(dev, queue_index); 7244 rxq->napi = napi; 7245 return; 7246 case NETDEV_QUEUE_TYPE_TX: 7247 txq = netdev_get_tx_queue(dev, queue_index); 7248 txq->napi = napi; 7249 return; 7250 default: 7251 return; 7252 } 7253} 7254EXPORT_SYMBOL(netif_queue_set_napi); 7255 7256static void 7257netif_napi_irq_notify(struct irq_affinity_notify *notify, 7258 const cpumask_t *mask) 7259{ 7260 struct napi_struct *napi = 7261 container_of(notify, struct napi_struct, notify); 7262#ifdef CONFIG_RFS_ACCEL 7263 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7264 int err; 7265#endif 7266 7267 if (napi->config && napi->dev->irq_affinity_auto) 7268 cpumask_copy(&napi->config->affinity_mask, mask); 7269 7270#ifdef CONFIG_RFS_ACCEL 7271 if (napi->dev->rx_cpu_rmap_auto) { 7272 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7273 if (err) 7274 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7275 err); 7276 } 7277#endif 7278} 7279 7280#ifdef CONFIG_RFS_ACCEL 7281static void netif_napi_affinity_release(struct kref *ref) 7282{ 7283 struct napi_struct *napi = 7284 container_of(ref, struct napi_struct, notify.kref); 7285 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7286 7287 netdev_assert_locked(napi->dev); 7288 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7289 &napi->state)); 7290 7291 if (!napi->dev->rx_cpu_rmap_auto) 7292 return; 7293 rmap->obj[napi->napi_rmap_idx] = NULL; 7294 napi->napi_rmap_idx = -1; 7295 cpu_rmap_put(rmap); 7296} 7297 7298int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7299{ 7300 if (dev->rx_cpu_rmap_auto) 7301 return 0; 7302 7303 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7304 if (!dev->rx_cpu_rmap) 7305 return -ENOMEM; 7306 7307 dev->rx_cpu_rmap_auto = true; 7308 return 0; 7309} 7310EXPORT_SYMBOL(netif_enable_cpu_rmap); 7311 7312static void netif_del_cpu_rmap(struct net_device *dev) 7313{ 7314 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7315 7316 if (!dev->rx_cpu_rmap_auto) 7317 return; 7318 7319 /* Free the rmap */ 7320 cpu_rmap_put(rmap); 7321 dev->rx_cpu_rmap = NULL; 7322 dev->rx_cpu_rmap_auto = false; 7323} 7324 7325#else 7326static void netif_napi_affinity_release(struct kref *ref) 7327{ 7328} 7329 7330int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7331{ 7332 return 0; 7333} 7334EXPORT_SYMBOL(netif_enable_cpu_rmap); 7335 7336static void netif_del_cpu_rmap(struct net_device *dev) 7337{ 7338} 7339#endif 7340 7341void netif_set_affinity_auto(struct net_device *dev) 7342{ 7343 unsigned int i, maxqs, numa; 7344 7345 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7346 numa = dev_to_node(&dev->dev); 7347 7348 for (i = 0; i < maxqs; i++) 7349 cpumask_set_cpu(cpumask_local_spread(i, numa), 7350 &dev->napi_config[i].affinity_mask); 7351 7352 dev->irq_affinity_auto = true; 7353} 7354EXPORT_SYMBOL(netif_set_affinity_auto); 7355 7356void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7357{ 7358 int rc; 7359 7360 netdev_assert_locked_or_invisible(napi->dev); 7361 7362 if (napi->irq == irq) 7363 return; 7364 7365 /* Remove existing resources */ 7366 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7367 irq_set_affinity_notifier(napi->irq, NULL); 7368 7369 napi->irq = irq; 7370 if (irq < 0 || 7371 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7372 return; 7373 7374 /* Abort for buggy drivers */ 7375 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7376 return; 7377 7378#ifdef CONFIG_RFS_ACCEL 7379 if (napi->dev->rx_cpu_rmap_auto) { 7380 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7381 if (rc < 0) 7382 return; 7383 7384 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7385 napi->napi_rmap_idx = rc; 7386 } 7387#endif 7388 7389 /* Use core IRQ notifier */ 7390 napi->notify.notify = netif_napi_irq_notify; 7391 napi->notify.release = netif_napi_affinity_release; 7392 rc = irq_set_affinity_notifier(irq, &napi->notify); 7393 if (rc) { 7394 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7395 rc); 7396 goto put_rmap; 7397 } 7398 7399 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7400 return; 7401 7402put_rmap: 7403#ifdef CONFIG_RFS_ACCEL 7404 if (napi->dev->rx_cpu_rmap_auto) { 7405 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7406 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7407 napi->napi_rmap_idx = -1; 7408 } 7409#endif 7410 napi->notify.notify = NULL; 7411 napi->notify.release = NULL; 7412} 7413EXPORT_SYMBOL(netif_napi_set_irq_locked); 7414 7415static void napi_restore_config(struct napi_struct *n) 7416{ 7417 n->defer_hard_irqs = n->config->defer_hard_irqs; 7418 n->gro_flush_timeout = n->config->gro_flush_timeout; 7419 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7420 7421 if (n->dev->irq_affinity_auto && 7422 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7423 irq_set_affinity(n->irq, &n->config->affinity_mask); 7424 7425 /* a NAPI ID might be stored in the config, if so use it. if not, use 7426 * napi_hash_add to generate one for us. 7427 */ 7428 if (n->config->napi_id) { 7429 napi_hash_add_with_id(n, n->config->napi_id); 7430 } else { 7431 napi_hash_add(n); 7432 n->config->napi_id = n->napi_id; 7433 } 7434 7435 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7436} 7437 7438static void napi_save_config(struct napi_struct *n) 7439{ 7440 n->config->defer_hard_irqs = n->defer_hard_irqs; 7441 n->config->gro_flush_timeout = n->gro_flush_timeout; 7442 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7443 napi_hash_del(n); 7444} 7445 7446/* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7447 * inherit an existing ID try to insert it at the right position. 7448 */ 7449static void 7450netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7451{ 7452 unsigned int new_id, pos_id; 7453 struct list_head *higher; 7454 struct napi_struct *pos; 7455 7456 new_id = UINT_MAX; 7457 if (napi->config && napi->config->napi_id) 7458 new_id = napi->config->napi_id; 7459 7460 higher = &dev->napi_list; 7461 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7462 if (napi_id_valid(pos->napi_id)) 7463 pos_id = pos->napi_id; 7464 else if (pos->config) 7465 pos_id = pos->config->napi_id; 7466 else 7467 pos_id = UINT_MAX; 7468 7469 if (pos_id <= new_id) 7470 break; 7471 higher = &pos->dev_list; 7472 } 7473 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7474} 7475 7476/* Double check that napi_get_frags() allocates skbs with 7477 * skb->head being backed by slab, not a page fragment. 7478 * This is to make sure bug fixed in 3226b158e67c 7479 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7480 * does not accidentally come back. 7481 */ 7482static void napi_get_frags_check(struct napi_struct *napi) 7483{ 7484 struct sk_buff *skb; 7485 7486 local_bh_disable(); 7487 skb = napi_get_frags(napi); 7488 WARN_ON_ONCE(skb && skb->head_frag); 7489 napi_free_frags(napi); 7490 local_bh_enable(); 7491} 7492 7493void netif_napi_add_weight_locked(struct net_device *dev, 7494 struct napi_struct *napi, 7495 int (*poll)(struct napi_struct *, int), 7496 int weight) 7497{ 7498 netdev_assert_locked(dev); 7499 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7500 return; 7501 7502 INIT_LIST_HEAD(&napi->poll_list); 7503 INIT_HLIST_NODE(&napi->napi_hash_node); 7504 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7505 gro_init(&napi->gro); 7506 napi->skb = NULL; 7507 napi->poll = poll; 7508 if (weight > NAPI_POLL_WEIGHT) 7509 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7510 weight); 7511 napi->weight = weight; 7512 napi->dev = dev; 7513#ifdef CONFIG_NETPOLL 7514 napi->poll_owner = -1; 7515#endif 7516 napi->list_owner = -1; 7517 set_bit(NAPI_STATE_SCHED, &napi->state); 7518 set_bit(NAPI_STATE_NPSVC, &napi->state); 7519 netif_napi_dev_list_add(dev, napi); 7520 7521 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7522 * configuration will be loaded in napi_enable 7523 */ 7524 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7525 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7526 7527 napi_get_frags_check(napi); 7528 /* Create kthread for this napi if dev->threaded is set. 7529 * Clear dev->threaded if kthread creation failed so that 7530 * threaded mode will not be enabled in napi_enable(). 7531 */ 7532 if (napi_get_threaded_config(dev, napi)) 7533 if (napi_kthread_create(napi)) 7534 dev->threaded = NETDEV_NAPI_THREADED_DISABLED; 7535 netif_napi_set_irq_locked(napi, -1); 7536} 7537EXPORT_SYMBOL(netif_napi_add_weight_locked); 7538 7539void napi_disable_locked(struct napi_struct *n) 7540{ 7541 unsigned long val, new; 7542 7543 might_sleep(); 7544 netdev_assert_locked(n->dev); 7545 7546 set_bit(NAPI_STATE_DISABLE, &n->state); 7547 7548 val = READ_ONCE(n->state); 7549 do { 7550 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7551 usleep_range(20, 200); 7552 val = READ_ONCE(n->state); 7553 } 7554 7555 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7556 new &= ~(NAPIF_STATE_THREADED | 7557 NAPIF_STATE_THREADED_BUSY_POLL | 7558 NAPIF_STATE_PREFER_BUSY_POLL); 7559 } while (!try_cmpxchg(&n->state, &val, new)); 7560 7561 hrtimer_cancel(&n->timer); 7562 7563 if (n->config) 7564 napi_save_config(n); 7565 else 7566 napi_hash_del(n); 7567 7568 clear_bit(NAPI_STATE_DISABLE, &n->state); 7569} 7570EXPORT_SYMBOL(napi_disable_locked); 7571 7572/** 7573 * napi_disable() - prevent NAPI from scheduling 7574 * @n: NAPI context 7575 * 7576 * Stop NAPI from being scheduled on this context. 7577 * Waits till any outstanding processing completes. 7578 * Takes netdev_lock() for associated net_device. 7579 */ 7580void napi_disable(struct napi_struct *n) 7581{ 7582 netdev_lock(n->dev); 7583 napi_disable_locked(n); 7584 netdev_unlock(n->dev); 7585} 7586EXPORT_SYMBOL(napi_disable); 7587 7588void napi_enable_locked(struct napi_struct *n) 7589{ 7590 unsigned long new, val = READ_ONCE(n->state); 7591 7592 if (n->config) 7593 napi_restore_config(n); 7594 else 7595 napi_hash_add(n); 7596 7597 do { 7598 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7599 7600 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7601 if (n->dev->threaded && n->thread) 7602 new |= NAPIF_STATE_THREADED; 7603 } while (!try_cmpxchg(&n->state, &val, new)); 7604} 7605EXPORT_SYMBOL(napi_enable_locked); 7606 7607/** 7608 * napi_enable() - enable NAPI scheduling 7609 * @n: NAPI context 7610 * 7611 * Enable scheduling of a NAPI instance. 7612 * Must be paired with napi_disable(). 7613 * Takes netdev_lock() for associated net_device. 7614 */ 7615void napi_enable(struct napi_struct *n) 7616{ 7617 netdev_lock(n->dev); 7618 napi_enable_locked(n); 7619 netdev_unlock(n->dev); 7620} 7621EXPORT_SYMBOL(napi_enable); 7622 7623/* Must be called in process context */ 7624void __netif_napi_del_locked(struct napi_struct *napi) 7625{ 7626 netdev_assert_locked(napi->dev); 7627 7628 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7629 return; 7630 7631 /* Make sure NAPI is disabled (or was never enabled). */ 7632 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7633 7634 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7635 irq_set_affinity_notifier(napi->irq, NULL); 7636 7637 if (napi->config) { 7638 napi->index = -1; 7639 napi->config = NULL; 7640 } 7641 7642 list_del_rcu(&napi->dev_list); 7643 napi_free_frags(napi); 7644 7645 gro_cleanup(&napi->gro); 7646 7647 if (napi->thread) { 7648 kthread_stop(napi->thread); 7649 napi->thread = NULL; 7650 } 7651} 7652EXPORT_SYMBOL(__netif_napi_del_locked); 7653 7654static int __napi_poll(struct napi_struct *n, bool *repoll) 7655{ 7656 int work, weight; 7657 7658 weight = n->weight; 7659 7660 /* This NAPI_STATE_SCHED test is for avoiding a race 7661 * with netpoll's poll_napi(). Only the entity which 7662 * obtains the lock and sees NAPI_STATE_SCHED set will 7663 * actually make the ->poll() call. Therefore we avoid 7664 * accidentally calling ->poll() when NAPI is not scheduled. 7665 */ 7666 work = 0; 7667 if (napi_is_scheduled(n)) { 7668 work = n->poll(n, weight); 7669 trace_napi_poll(n, work, weight); 7670 7671 xdp_do_check_flushed(n); 7672 } 7673 7674 if (unlikely(work > weight)) 7675 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7676 n->poll, work, weight); 7677 7678 if (likely(work < weight)) 7679 return work; 7680 7681 /* Drivers must not modify the NAPI state if they 7682 * consume the entire weight. In such cases this code 7683 * still "owns" the NAPI instance and therefore can 7684 * move the instance around on the list at-will. 7685 */ 7686 if (unlikely(napi_disable_pending(n))) { 7687 napi_complete(n); 7688 return work; 7689 } 7690 7691 /* The NAPI context has more processing work, but busy-polling 7692 * is preferred. Exit early. 7693 */ 7694 if (napi_prefer_busy_poll(n)) { 7695 if (napi_complete_done(n, work)) { 7696 /* If timeout is not set, we need to make sure 7697 * that the NAPI is re-scheduled. 7698 */ 7699 napi_schedule(n); 7700 } 7701 return work; 7702 } 7703 7704 /* Flush too old packets. If HZ < 1000, flush all packets */ 7705 gro_flush_normal(&n->gro, HZ >= 1000); 7706 7707 /* Some drivers may have called napi_schedule 7708 * prior to exhausting their budget. 7709 */ 7710 if (unlikely(!list_empty(&n->poll_list))) { 7711 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7712 n->dev ? n->dev->name : "backlog"); 7713 return work; 7714 } 7715 7716 *repoll = true; 7717 7718 return work; 7719} 7720 7721static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7722{ 7723 bool do_repoll = false; 7724 void *have; 7725 int work; 7726 7727 list_del_init(&n->poll_list); 7728 7729 have = netpoll_poll_lock(n); 7730 7731 work = __napi_poll(n, &do_repoll); 7732 7733 if (do_repoll) { 7734#if defined(CONFIG_DEBUG_NET) 7735 if (unlikely(!napi_is_scheduled(n))) 7736 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7737 n->dev->name, n->poll); 7738#endif 7739 list_add_tail(&n->poll_list, repoll); 7740 } 7741 netpoll_poll_unlock(have); 7742 7743 return work; 7744} 7745 7746static int napi_thread_wait(struct napi_struct *napi) 7747{ 7748 set_current_state(TASK_INTERRUPTIBLE); 7749 7750 while (!kthread_should_stop()) { 7751 /* Testing SCHED_THREADED bit here to make sure the current 7752 * kthread owns this napi and could poll on this napi. 7753 * Testing SCHED bit is not enough because SCHED bit might be 7754 * set by some other busy poll thread or by napi_disable(). 7755 */ 7756 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7757 WARN_ON(!list_empty(&napi->poll_list)); 7758 __set_current_state(TASK_RUNNING); 7759 return 0; 7760 } 7761 7762 schedule(); 7763 set_current_state(TASK_INTERRUPTIBLE); 7764 } 7765 __set_current_state(TASK_RUNNING); 7766 7767 return -1; 7768} 7769 7770static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll) 7771{ 7772 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7773 struct softnet_data *sd; 7774 unsigned long last_qs = jiffies; 7775 7776 for (;;) { 7777 bool repoll = false; 7778 void *have; 7779 7780 local_bh_disable(); 7781 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7782 7783 sd = this_cpu_ptr(&softnet_data); 7784 sd->in_napi_threaded_poll = true; 7785 7786 have = netpoll_poll_lock(napi); 7787 __napi_poll(napi, &repoll); 7788 netpoll_poll_unlock(have); 7789 7790 sd->in_napi_threaded_poll = false; 7791 barrier(); 7792 7793 if (sd_has_rps_ipi_waiting(sd)) { 7794 local_irq_disable(); 7795 net_rps_action_and_irq_enable(sd); 7796 } 7797 skb_defer_free_flush(); 7798 bpf_net_ctx_clear(bpf_net_ctx); 7799 7800 /* When busy poll is enabled, the old packets are not flushed in 7801 * napi_complete_done. So flush them here. 7802 */ 7803 if (busy_poll) 7804 gro_flush_normal(&napi->gro, HZ >= 1000); 7805 local_bh_enable(); 7806 7807 /* Call cond_resched here to avoid watchdog warnings. */ 7808 if (repoll || busy_poll) { 7809 rcu_softirq_qs_periodic(last_qs); 7810 cond_resched(); 7811 } 7812 7813 if (!repoll) 7814 break; 7815 } 7816} 7817 7818static int napi_threaded_poll(void *data) 7819{ 7820 struct napi_struct *napi = data; 7821 bool want_busy_poll; 7822 bool in_busy_poll; 7823 unsigned long val; 7824 7825 while (!napi_thread_wait(napi)) { 7826 val = READ_ONCE(napi->state); 7827 7828 want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL; 7829 in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL; 7830 7831 if (unlikely(val & NAPIF_STATE_DISABLE)) 7832 want_busy_poll = false; 7833 7834 if (want_busy_poll != in_busy_poll) 7835 assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state, 7836 want_busy_poll); 7837 7838 napi_threaded_poll_loop(napi, want_busy_poll); 7839 } 7840 7841 return 0; 7842} 7843 7844static __latent_entropy void net_rx_action(void) 7845{ 7846 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7847 unsigned long time_limit = jiffies + 7848 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7849 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7850 int budget = READ_ONCE(net_hotdata.netdev_budget); 7851 LIST_HEAD(list); 7852 LIST_HEAD(repoll); 7853 7854 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7855start: 7856 sd->in_net_rx_action = true; 7857 local_irq_disable(); 7858 list_splice_init(&sd->poll_list, &list); 7859 local_irq_enable(); 7860 7861 for (;;) { 7862 struct napi_struct *n; 7863 7864 skb_defer_free_flush(); 7865 7866 if (list_empty(&list)) { 7867 if (list_empty(&repoll)) { 7868 sd->in_net_rx_action = false; 7869 barrier(); 7870 /* We need to check if ____napi_schedule() 7871 * had refilled poll_list while 7872 * sd->in_net_rx_action was true. 7873 */ 7874 if (!list_empty(&sd->poll_list)) 7875 goto start; 7876 if (!sd_has_rps_ipi_waiting(sd)) 7877 goto end; 7878 } 7879 break; 7880 } 7881 7882 n = list_first_entry(&list, struct napi_struct, poll_list); 7883 budget -= napi_poll(n, &repoll); 7884 7885 /* If softirq window is exhausted then punt. 7886 * Allow this to run for 2 jiffies since which will allow 7887 * an average latency of 1.5/HZ. 7888 */ 7889 if (unlikely(budget <= 0 || 7890 time_after_eq(jiffies, time_limit))) { 7891 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7892 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7893 break; 7894 } 7895 } 7896 7897 local_irq_disable(); 7898 7899 list_splice_tail_init(&sd->poll_list, &list); 7900 list_splice_tail(&repoll, &list); 7901 list_splice(&list, &sd->poll_list); 7902 if (!list_empty(&sd->poll_list)) 7903 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7904 else 7905 sd->in_net_rx_action = false; 7906 7907 net_rps_action_and_irq_enable(sd); 7908end: 7909 bpf_net_ctx_clear(bpf_net_ctx); 7910} 7911 7912struct netdev_adjacent { 7913 struct net_device *dev; 7914 netdevice_tracker dev_tracker; 7915 7916 /* upper master flag, there can only be one master device per list */ 7917 bool master; 7918 7919 /* lookup ignore flag */ 7920 bool ignore; 7921 7922 /* counter for the number of times this device was added to us */ 7923 u16 ref_nr; 7924 7925 /* private field for the users */ 7926 void *private; 7927 7928 struct list_head list; 7929 struct rcu_head rcu; 7930}; 7931 7932static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7933 struct list_head *adj_list) 7934{ 7935 struct netdev_adjacent *adj; 7936 7937 list_for_each_entry(adj, adj_list, list) { 7938 if (adj->dev == adj_dev) 7939 return adj; 7940 } 7941 return NULL; 7942} 7943 7944static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7945 struct netdev_nested_priv *priv) 7946{ 7947 struct net_device *dev = (struct net_device *)priv->data; 7948 7949 return upper_dev == dev; 7950} 7951 7952/** 7953 * netdev_has_upper_dev - Check if device is linked to an upper device 7954 * @dev: device 7955 * @upper_dev: upper device to check 7956 * 7957 * Find out if a device is linked to specified upper device and return true 7958 * in case it is. Note that this checks only immediate upper device, 7959 * not through a complete stack of devices. The caller must hold the RTNL lock. 7960 */ 7961bool netdev_has_upper_dev(struct net_device *dev, 7962 struct net_device *upper_dev) 7963{ 7964 struct netdev_nested_priv priv = { 7965 .data = (void *)upper_dev, 7966 }; 7967 7968 ASSERT_RTNL(); 7969 7970 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7971 &priv); 7972} 7973EXPORT_SYMBOL(netdev_has_upper_dev); 7974 7975/** 7976 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7977 * @dev: device 7978 * @upper_dev: upper device to check 7979 * 7980 * Find out if a device is linked to specified upper device and return true 7981 * in case it is. Note that this checks the entire upper device chain. 7982 * The caller must hold rcu lock. 7983 */ 7984 7985bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7986 struct net_device *upper_dev) 7987{ 7988 struct netdev_nested_priv priv = { 7989 .data = (void *)upper_dev, 7990 }; 7991 7992 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7993 &priv); 7994} 7995EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7996 7997/** 7998 * netdev_has_any_upper_dev - Check if device is linked to some device 7999 * @dev: device 8000 * 8001 * Find out if a device is linked to an upper device and return true in case 8002 * it is. The caller must hold the RTNL lock. 8003 */ 8004bool netdev_has_any_upper_dev(struct net_device *dev) 8005{ 8006 ASSERT_RTNL(); 8007 8008 return !list_empty(&dev->adj_list.upper); 8009} 8010EXPORT_SYMBOL(netdev_has_any_upper_dev); 8011 8012/** 8013 * netdev_master_upper_dev_get - Get master upper device 8014 * @dev: device 8015 * 8016 * Find a master upper device and return pointer to it or NULL in case 8017 * it's not there. The caller must hold the RTNL lock. 8018 */ 8019struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 8020{ 8021 struct netdev_adjacent *upper; 8022 8023 ASSERT_RTNL(); 8024 8025 if (list_empty(&dev->adj_list.upper)) 8026 return NULL; 8027 8028 upper = list_first_entry(&dev->adj_list.upper, 8029 struct netdev_adjacent, list); 8030 if (likely(upper->master)) 8031 return upper->dev; 8032 return NULL; 8033} 8034EXPORT_SYMBOL(netdev_master_upper_dev_get); 8035 8036static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 8037{ 8038 struct netdev_adjacent *upper; 8039 8040 ASSERT_RTNL(); 8041 8042 if (list_empty(&dev->adj_list.upper)) 8043 return NULL; 8044 8045 upper = list_first_entry(&dev->adj_list.upper, 8046 struct netdev_adjacent, list); 8047 if (likely(upper->master) && !upper->ignore) 8048 return upper->dev; 8049 return NULL; 8050} 8051 8052/** 8053 * netdev_has_any_lower_dev - Check if device is linked to some device 8054 * @dev: device 8055 * 8056 * Find out if a device is linked to a lower device and return true in case 8057 * it is. The caller must hold the RTNL lock. 8058 */ 8059static bool netdev_has_any_lower_dev(struct net_device *dev) 8060{ 8061 ASSERT_RTNL(); 8062 8063 return !list_empty(&dev->adj_list.lower); 8064} 8065 8066void *netdev_adjacent_get_private(struct list_head *adj_list) 8067{ 8068 struct netdev_adjacent *adj; 8069 8070 adj = list_entry(adj_list, struct netdev_adjacent, list); 8071 8072 return adj->private; 8073} 8074EXPORT_SYMBOL(netdev_adjacent_get_private); 8075 8076/** 8077 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 8078 * @dev: device 8079 * @iter: list_head ** of the current position 8080 * 8081 * Gets the next device from the dev's upper list, starting from iter 8082 * position. The caller must hold RCU read lock. 8083 */ 8084struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 8085 struct list_head **iter) 8086{ 8087 struct netdev_adjacent *upper; 8088 8089 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8090 8091 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8092 8093 if (&upper->list == &dev->adj_list.upper) 8094 return NULL; 8095 8096 *iter = &upper->list; 8097 8098 return upper->dev; 8099} 8100EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 8101 8102static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 8103 struct list_head **iter, 8104 bool *ignore) 8105{ 8106 struct netdev_adjacent *upper; 8107 8108 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 8109 8110 if (&upper->list == &dev->adj_list.upper) 8111 return NULL; 8112 8113 *iter = &upper->list; 8114 *ignore = upper->ignore; 8115 8116 return upper->dev; 8117} 8118 8119static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 8120 struct list_head **iter) 8121{ 8122 struct netdev_adjacent *upper; 8123 8124 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8125 8126 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8127 8128 if (&upper->list == &dev->adj_list.upper) 8129 return NULL; 8130 8131 *iter = &upper->list; 8132 8133 return upper->dev; 8134} 8135 8136static int __netdev_walk_all_upper_dev(struct net_device *dev, 8137 int (*fn)(struct net_device *dev, 8138 struct netdev_nested_priv *priv), 8139 struct netdev_nested_priv *priv) 8140{ 8141 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8142 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8143 int ret, cur = 0; 8144 bool ignore; 8145 8146 now = dev; 8147 iter = &dev->adj_list.upper; 8148 8149 while (1) { 8150 if (now != dev) { 8151 ret = fn(now, priv); 8152 if (ret) 8153 return ret; 8154 } 8155 8156 next = NULL; 8157 while (1) { 8158 udev = __netdev_next_upper_dev(now, &iter, &ignore); 8159 if (!udev) 8160 break; 8161 if (ignore) 8162 continue; 8163 8164 next = udev; 8165 niter = &udev->adj_list.upper; 8166 dev_stack[cur] = now; 8167 iter_stack[cur++] = iter; 8168 break; 8169 } 8170 8171 if (!next) { 8172 if (!cur) 8173 return 0; 8174 next = dev_stack[--cur]; 8175 niter = iter_stack[cur]; 8176 } 8177 8178 now = next; 8179 iter = niter; 8180 } 8181 8182 return 0; 8183} 8184 8185int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 8186 int (*fn)(struct net_device *dev, 8187 struct netdev_nested_priv *priv), 8188 struct netdev_nested_priv *priv) 8189{ 8190 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8191 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8192 int ret, cur = 0; 8193 8194 now = dev; 8195 iter = &dev->adj_list.upper; 8196 8197 while (1) { 8198 if (now != dev) { 8199 ret = fn(now, priv); 8200 if (ret) 8201 return ret; 8202 } 8203 8204 next = NULL; 8205 while (1) { 8206 udev = netdev_next_upper_dev_rcu(now, &iter); 8207 if (!udev) 8208 break; 8209 8210 next = udev; 8211 niter = &udev->adj_list.upper; 8212 dev_stack[cur] = now; 8213 iter_stack[cur++] = iter; 8214 break; 8215 } 8216 8217 if (!next) { 8218 if (!cur) 8219 return 0; 8220 next = dev_stack[--cur]; 8221 niter = iter_stack[cur]; 8222 } 8223 8224 now = next; 8225 iter = niter; 8226 } 8227 8228 return 0; 8229} 8230EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8231 8232static bool __netdev_has_upper_dev(struct net_device *dev, 8233 struct net_device *upper_dev) 8234{ 8235 struct netdev_nested_priv priv = { 8236 .flags = 0, 8237 .data = (void *)upper_dev, 8238 }; 8239 8240 ASSERT_RTNL(); 8241 8242 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8243 &priv); 8244} 8245 8246/** 8247 * netdev_lower_get_next_private - Get the next ->private from the 8248 * lower neighbour list 8249 * @dev: device 8250 * @iter: list_head ** of the current position 8251 * 8252 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8253 * list, starting from iter position. The caller must hold either hold the 8254 * RTNL lock or its own locking that guarantees that the neighbour lower 8255 * list will remain unchanged. 8256 */ 8257void *netdev_lower_get_next_private(struct net_device *dev, 8258 struct list_head **iter) 8259{ 8260 struct netdev_adjacent *lower; 8261 8262 lower = list_entry(*iter, struct netdev_adjacent, list); 8263 8264 if (&lower->list == &dev->adj_list.lower) 8265 return NULL; 8266 8267 *iter = lower->list.next; 8268 8269 return lower->private; 8270} 8271EXPORT_SYMBOL(netdev_lower_get_next_private); 8272 8273/** 8274 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8275 * lower neighbour list, RCU 8276 * variant 8277 * @dev: device 8278 * @iter: list_head ** of the current position 8279 * 8280 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8281 * list, starting from iter position. The caller must hold RCU read lock. 8282 */ 8283void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8284 struct list_head **iter) 8285{ 8286 struct netdev_adjacent *lower; 8287 8288 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8289 8290 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8291 8292 if (&lower->list == &dev->adj_list.lower) 8293 return NULL; 8294 8295 *iter = &lower->list; 8296 8297 return lower->private; 8298} 8299EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8300 8301/** 8302 * netdev_lower_get_next - Get the next device from the lower neighbour 8303 * list 8304 * @dev: device 8305 * @iter: list_head ** of the current position 8306 * 8307 * Gets the next netdev_adjacent from the dev's lower neighbour 8308 * list, starting from iter position. The caller must hold RTNL lock or 8309 * its own locking that guarantees that the neighbour lower 8310 * list will remain unchanged. 8311 */ 8312void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8313{ 8314 struct netdev_adjacent *lower; 8315 8316 lower = list_entry(*iter, struct netdev_adjacent, list); 8317 8318 if (&lower->list == &dev->adj_list.lower) 8319 return NULL; 8320 8321 *iter = lower->list.next; 8322 8323 return lower->dev; 8324} 8325EXPORT_SYMBOL(netdev_lower_get_next); 8326 8327static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8328 struct list_head **iter) 8329{ 8330 struct netdev_adjacent *lower; 8331 8332 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8333 8334 if (&lower->list == &dev->adj_list.lower) 8335 return NULL; 8336 8337 *iter = &lower->list; 8338 8339 return lower->dev; 8340} 8341 8342static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8343 struct list_head **iter, 8344 bool *ignore) 8345{ 8346 struct netdev_adjacent *lower; 8347 8348 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8349 8350 if (&lower->list == &dev->adj_list.lower) 8351 return NULL; 8352 8353 *iter = &lower->list; 8354 *ignore = lower->ignore; 8355 8356 return lower->dev; 8357} 8358 8359int netdev_walk_all_lower_dev(struct net_device *dev, 8360 int (*fn)(struct net_device *dev, 8361 struct netdev_nested_priv *priv), 8362 struct netdev_nested_priv *priv) 8363{ 8364 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8365 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8366 int ret, cur = 0; 8367 8368 now = dev; 8369 iter = &dev->adj_list.lower; 8370 8371 while (1) { 8372 if (now != dev) { 8373 ret = fn(now, priv); 8374 if (ret) 8375 return ret; 8376 } 8377 8378 next = NULL; 8379 while (1) { 8380 ldev = netdev_next_lower_dev(now, &iter); 8381 if (!ldev) 8382 break; 8383 8384 next = ldev; 8385 niter = &ldev->adj_list.lower; 8386 dev_stack[cur] = now; 8387 iter_stack[cur++] = iter; 8388 break; 8389 } 8390 8391 if (!next) { 8392 if (!cur) 8393 return 0; 8394 next = dev_stack[--cur]; 8395 niter = iter_stack[cur]; 8396 } 8397 8398 now = next; 8399 iter = niter; 8400 } 8401 8402 return 0; 8403} 8404EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8405 8406static int __netdev_walk_all_lower_dev(struct net_device *dev, 8407 int (*fn)(struct net_device *dev, 8408 struct netdev_nested_priv *priv), 8409 struct netdev_nested_priv *priv) 8410{ 8411 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8412 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8413 int ret, cur = 0; 8414 bool ignore; 8415 8416 now = dev; 8417 iter = &dev->adj_list.lower; 8418 8419 while (1) { 8420 if (now != dev) { 8421 ret = fn(now, priv); 8422 if (ret) 8423 return ret; 8424 } 8425 8426 next = NULL; 8427 while (1) { 8428 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8429 if (!ldev) 8430 break; 8431 if (ignore) 8432 continue; 8433 8434 next = ldev; 8435 niter = &ldev->adj_list.lower; 8436 dev_stack[cur] = now; 8437 iter_stack[cur++] = iter; 8438 break; 8439 } 8440 8441 if (!next) { 8442 if (!cur) 8443 return 0; 8444 next = dev_stack[--cur]; 8445 niter = iter_stack[cur]; 8446 } 8447 8448 now = next; 8449 iter = niter; 8450 } 8451 8452 return 0; 8453} 8454 8455struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8456 struct list_head **iter) 8457{ 8458 struct netdev_adjacent *lower; 8459 8460 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8461 if (&lower->list == &dev->adj_list.lower) 8462 return NULL; 8463 8464 *iter = &lower->list; 8465 8466 return lower->dev; 8467} 8468EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8469 8470static u8 __netdev_upper_depth(struct net_device *dev) 8471{ 8472 struct net_device *udev; 8473 struct list_head *iter; 8474 u8 max_depth = 0; 8475 bool ignore; 8476 8477 for (iter = &dev->adj_list.upper, 8478 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8479 udev; 8480 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8481 if (ignore) 8482 continue; 8483 if (max_depth < udev->upper_level) 8484 max_depth = udev->upper_level; 8485 } 8486 8487 return max_depth; 8488} 8489 8490static u8 __netdev_lower_depth(struct net_device *dev) 8491{ 8492 struct net_device *ldev; 8493 struct list_head *iter; 8494 u8 max_depth = 0; 8495 bool ignore; 8496 8497 for (iter = &dev->adj_list.lower, 8498 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8499 ldev; 8500 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8501 if (ignore) 8502 continue; 8503 if (max_depth < ldev->lower_level) 8504 max_depth = ldev->lower_level; 8505 } 8506 8507 return max_depth; 8508} 8509 8510static int __netdev_update_upper_level(struct net_device *dev, 8511 struct netdev_nested_priv *__unused) 8512{ 8513 dev->upper_level = __netdev_upper_depth(dev) + 1; 8514 return 0; 8515} 8516 8517#ifdef CONFIG_LOCKDEP 8518static LIST_HEAD(net_unlink_list); 8519 8520static void net_unlink_todo(struct net_device *dev) 8521{ 8522 if (list_empty(&dev->unlink_list)) 8523 list_add_tail(&dev->unlink_list, &net_unlink_list); 8524} 8525#endif 8526 8527static int __netdev_update_lower_level(struct net_device *dev, 8528 struct netdev_nested_priv *priv) 8529{ 8530 dev->lower_level = __netdev_lower_depth(dev) + 1; 8531 8532#ifdef CONFIG_LOCKDEP 8533 if (!priv) 8534 return 0; 8535 8536 if (priv->flags & NESTED_SYNC_IMM) 8537 dev->nested_level = dev->lower_level - 1; 8538 if (priv->flags & NESTED_SYNC_TODO) 8539 net_unlink_todo(dev); 8540#endif 8541 return 0; 8542} 8543 8544int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8545 int (*fn)(struct net_device *dev, 8546 struct netdev_nested_priv *priv), 8547 struct netdev_nested_priv *priv) 8548{ 8549 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8550 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8551 int ret, cur = 0; 8552 8553 now = dev; 8554 iter = &dev->adj_list.lower; 8555 8556 while (1) { 8557 if (now != dev) { 8558 ret = fn(now, priv); 8559 if (ret) 8560 return ret; 8561 } 8562 8563 next = NULL; 8564 while (1) { 8565 ldev = netdev_next_lower_dev_rcu(now, &iter); 8566 if (!ldev) 8567 break; 8568 8569 next = ldev; 8570 niter = &ldev->adj_list.lower; 8571 dev_stack[cur] = now; 8572 iter_stack[cur++] = iter; 8573 break; 8574 } 8575 8576 if (!next) { 8577 if (!cur) 8578 return 0; 8579 next = dev_stack[--cur]; 8580 niter = iter_stack[cur]; 8581 } 8582 8583 now = next; 8584 iter = niter; 8585 } 8586 8587 return 0; 8588} 8589EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8590 8591/** 8592 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8593 * lower neighbour list, RCU 8594 * variant 8595 * @dev: device 8596 * 8597 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8598 * list. The caller must hold RCU read lock. 8599 */ 8600void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8601{ 8602 struct netdev_adjacent *lower; 8603 8604 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8605 struct netdev_adjacent, list); 8606 if (lower) 8607 return lower->private; 8608 return NULL; 8609} 8610EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8611 8612/** 8613 * netdev_master_upper_dev_get_rcu - Get master upper device 8614 * @dev: device 8615 * 8616 * Find a master upper device and return pointer to it or NULL in case 8617 * it's not there. The caller must hold the RCU read lock. 8618 */ 8619struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8620{ 8621 struct netdev_adjacent *upper; 8622 8623 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8624 struct netdev_adjacent, list); 8625 if (upper && likely(upper->master)) 8626 return upper->dev; 8627 return NULL; 8628} 8629EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8630 8631static int netdev_adjacent_sysfs_add(struct net_device *dev, 8632 struct net_device *adj_dev, 8633 struct list_head *dev_list) 8634{ 8635 char linkname[IFNAMSIZ+7]; 8636 8637 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8638 "upper_%s" : "lower_%s", adj_dev->name); 8639 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8640 linkname); 8641} 8642static void netdev_adjacent_sysfs_del(struct net_device *dev, 8643 char *name, 8644 struct list_head *dev_list) 8645{ 8646 char linkname[IFNAMSIZ+7]; 8647 8648 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8649 "upper_%s" : "lower_%s", name); 8650 sysfs_remove_link(&(dev->dev.kobj), linkname); 8651} 8652 8653static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8654 struct net_device *adj_dev, 8655 struct list_head *dev_list) 8656{ 8657 return (dev_list == &dev->adj_list.upper || 8658 dev_list == &dev->adj_list.lower) && 8659 net_eq(dev_net(dev), dev_net(adj_dev)); 8660} 8661 8662static int __netdev_adjacent_dev_insert(struct net_device *dev, 8663 struct net_device *adj_dev, 8664 struct list_head *dev_list, 8665 void *private, bool master) 8666{ 8667 struct netdev_adjacent *adj; 8668 int ret; 8669 8670 adj = __netdev_find_adj(adj_dev, dev_list); 8671 8672 if (adj) { 8673 adj->ref_nr += 1; 8674 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8675 dev->name, adj_dev->name, adj->ref_nr); 8676 8677 return 0; 8678 } 8679 8680 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8681 if (!adj) 8682 return -ENOMEM; 8683 8684 adj->dev = adj_dev; 8685 adj->master = master; 8686 adj->ref_nr = 1; 8687 adj->private = private; 8688 adj->ignore = false; 8689 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8690 8691 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8692 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8693 8694 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8695 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8696 if (ret) 8697 goto free_adj; 8698 } 8699 8700 /* Ensure that master link is always the first item in list. */ 8701 if (master) { 8702 ret = sysfs_create_link(&(dev->dev.kobj), 8703 &(adj_dev->dev.kobj), "master"); 8704 if (ret) 8705 goto remove_symlinks; 8706 8707 list_add_rcu(&adj->list, dev_list); 8708 } else { 8709 list_add_tail_rcu(&adj->list, dev_list); 8710 } 8711 8712 return 0; 8713 8714remove_symlinks: 8715 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8716 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8717free_adj: 8718 netdev_put(adj_dev, &adj->dev_tracker); 8719 kfree(adj); 8720 8721 return ret; 8722} 8723 8724static void __netdev_adjacent_dev_remove(struct net_device *dev, 8725 struct net_device *adj_dev, 8726 u16 ref_nr, 8727 struct list_head *dev_list) 8728{ 8729 struct netdev_adjacent *adj; 8730 8731 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8732 dev->name, adj_dev->name, ref_nr); 8733 8734 adj = __netdev_find_adj(adj_dev, dev_list); 8735 8736 if (!adj) { 8737 pr_err("Adjacency does not exist for device %s from %s\n", 8738 dev->name, adj_dev->name); 8739 WARN_ON(1); 8740 return; 8741 } 8742 8743 if (adj->ref_nr > ref_nr) { 8744 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8745 dev->name, adj_dev->name, ref_nr, 8746 adj->ref_nr - ref_nr); 8747 adj->ref_nr -= ref_nr; 8748 return; 8749 } 8750 8751 if (adj->master) 8752 sysfs_remove_link(&(dev->dev.kobj), "master"); 8753 8754 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8755 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8756 8757 list_del_rcu(&adj->list); 8758 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8759 adj_dev->name, dev->name, adj_dev->name); 8760 netdev_put(adj_dev, &adj->dev_tracker); 8761 kfree_rcu(adj, rcu); 8762} 8763 8764static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8765 struct net_device *upper_dev, 8766 struct list_head *up_list, 8767 struct list_head *down_list, 8768 void *private, bool master) 8769{ 8770 int ret; 8771 8772 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8773 private, master); 8774 if (ret) 8775 return ret; 8776 8777 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8778 private, false); 8779 if (ret) { 8780 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8781 return ret; 8782 } 8783 8784 return 0; 8785} 8786 8787static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8788 struct net_device *upper_dev, 8789 u16 ref_nr, 8790 struct list_head *up_list, 8791 struct list_head *down_list) 8792{ 8793 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8794 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8795} 8796 8797static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8798 struct net_device *upper_dev, 8799 void *private, bool master) 8800{ 8801 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8802 &dev->adj_list.upper, 8803 &upper_dev->adj_list.lower, 8804 private, master); 8805} 8806 8807static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8808 struct net_device *upper_dev) 8809{ 8810 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8811 &dev->adj_list.upper, 8812 &upper_dev->adj_list.lower); 8813} 8814 8815static int __netdev_upper_dev_link(struct net_device *dev, 8816 struct net_device *upper_dev, bool master, 8817 void *upper_priv, void *upper_info, 8818 struct netdev_nested_priv *priv, 8819 struct netlink_ext_ack *extack) 8820{ 8821 struct netdev_notifier_changeupper_info changeupper_info = { 8822 .info = { 8823 .dev = dev, 8824 .extack = extack, 8825 }, 8826 .upper_dev = upper_dev, 8827 .master = master, 8828 .linking = true, 8829 .upper_info = upper_info, 8830 }; 8831 struct net_device *master_dev; 8832 int ret = 0; 8833 8834 ASSERT_RTNL(); 8835 8836 if (dev == upper_dev) 8837 return -EBUSY; 8838 8839 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8840 if (__netdev_has_upper_dev(upper_dev, dev)) 8841 return -EBUSY; 8842 8843 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8844 return -EMLINK; 8845 8846 if (!master) { 8847 if (__netdev_has_upper_dev(dev, upper_dev)) 8848 return -EEXIST; 8849 } else { 8850 master_dev = __netdev_master_upper_dev_get(dev); 8851 if (master_dev) 8852 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8853 } 8854 8855 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8856 &changeupper_info.info); 8857 ret = notifier_to_errno(ret); 8858 if (ret) 8859 return ret; 8860 8861 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8862 master); 8863 if (ret) 8864 return ret; 8865 8866 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8867 &changeupper_info.info); 8868 ret = notifier_to_errno(ret); 8869 if (ret) 8870 goto rollback; 8871 8872 __netdev_update_upper_level(dev, NULL); 8873 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8874 8875 __netdev_update_lower_level(upper_dev, priv); 8876 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8877 priv); 8878 8879 return 0; 8880 8881rollback: 8882 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8883 8884 return ret; 8885} 8886 8887/** 8888 * netdev_upper_dev_link - Add a link to the upper device 8889 * @dev: device 8890 * @upper_dev: new upper device 8891 * @extack: netlink extended ack 8892 * 8893 * Adds a link to device which is upper to this one. The caller must hold 8894 * the RTNL lock. On a failure a negative errno code is returned. 8895 * On success the reference counts are adjusted and the function 8896 * returns zero. 8897 */ 8898int netdev_upper_dev_link(struct net_device *dev, 8899 struct net_device *upper_dev, 8900 struct netlink_ext_ack *extack) 8901{ 8902 struct netdev_nested_priv priv = { 8903 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8904 .data = NULL, 8905 }; 8906 8907 return __netdev_upper_dev_link(dev, upper_dev, false, 8908 NULL, NULL, &priv, extack); 8909} 8910EXPORT_SYMBOL(netdev_upper_dev_link); 8911 8912/** 8913 * netdev_master_upper_dev_link - Add a master link to the upper device 8914 * @dev: device 8915 * @upper_dev: new upper device 8916 * @upper_priv: upper device private 8917 * @upper_info: upper info to be passed down via notifier 8918 * @extack: netlink extended ack 8919 * 8920 * Adds a link to device which is upper to this one. In this case, only 8921 * one master upper device can be linked, although other non-master devices 8922 * might be linked as well. The caller must hold the RTNL lock. 8923 * On a failure a negative errno code is returned. On success the reference 8924 * counts are adjusted and the function returns zero. 8925 */ 8926int netdev_master_upper_dev_link(struct net_device *dev, 8927 struct net_device *upper_dev, 8928 void *upper_priv, void *upper_info, 8929 struct netlink_ext_ack *extack) 8930{ 8931 struct netdev_nested_priv priv = { 8932 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8933 .data = NULL, 8934 }; 8935 8936 return __netdev_upper_dev_link(dev, upper_dev, true, 8937 upper_priv, upper_info, &priv, extack); 8938} 8939EXPORT_SYMBOL(netdev_master_upper_dev_link); 8940 8941static void __netdev_upper_dev_unlink(struct net_device *dev, 8942 struct net_device *upper_dev, 8943 struct netdev_nested_priv *priv) 8944{ 8945 struct netdev_notifier_changeupper_info changeupper_info = { 8946 .info = { 8947 .dev = dev, 8948 }, 8949 .upper_dev = upper_dev, 8950 .linking = false, 8951 }; 8952 8953 ASSERT_RTNL(); 8954 8955 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8956 8957 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8958 &changeupper_info.info); 8959 8960 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8961 8962 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8963 &changeupper_info.info); 8964 8965 __netdev_update_upper_level(dev, NULL); 8966 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8967 8968 __netdev_update_lower_level(upper_dev, priv); 8969 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8970 priv); 8971} 8972 8973/** 8974 * netdev_upper_dev_unlink - Removes a link to upper device 8975 * @dev: device 8976 * @upper_dev: new upper device 8977 * 8978 * Removes a link to device which is upper to this one. The caller must hold 8979 * the RTNL lock. 8980 */ 8981void netdev_upper_dev_unlink(struct net_device *dev, 8982 struct net_device *upper_dev) 8983{ 8984 struct netdev_nested_priv priv = { 8985 .flags = NESTED_SYNC_TODO, 8986 .data = NULL, 8987 }; 8988 8989 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8990} 8991EXPORT_SYMBOL(netdev_upper_dev_unlink); 8992 8993static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8994 struct net_device *lower_dev, 8995 bool val) 8996{ 8997 struct netdev_adjacent *adj; 8998 8999 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 9000 if (adj) 9001 adj->ignore = val; 9002 9003 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 9004 if (adj) 9005 adj->ignore = val; 9006} 9007 9008static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 9009 struct net_device *lower_dev) 9010{ 9011 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 9012} 9013 9014static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 9015 struct net_device *lower_dev) 9016{ 9017 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 9018} 9019 9020int netdev_adjacent_change_prepare(struct net_device *old_dev, 9021 struct net_device *new_dev, 9022 struct net_device *dev, 9023 struct netlink_ext_ack *extack) 9024{ 9025 struct netdev_nested_priv priv = { 9026 .flags = 0, 9027 .data = NULL, 9028 }; 9029 int err; 9030 9031 if (!new_dev) 9032 return 0; 9033 9034 if (old_dev && new_dev != old_dev) 9035 netdev_adjacent_dev_disable(dev, old_dev); 9036 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 9037 extack); 9038 if (err) { 9039 if (old_dev && new_dev != old_dev) 9040 netdev_adjacent_dev_enable(dev, old_dev); 9041 return err; 9042 } 9043 9044 return 0; 9045} 9046EXPORT_SYMBOL(netdev_adjacent_change_prepare); 9047 9048void netdev_adjacent_change_commit(struct net_device *old_dev, 9049 struct net_device *new_dev, 9050 struct net_device *dev) 9051{ 9052 struct netdev_nested_priv priv = { 9053 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 9054 .data = NULL, 9055 }; 9056 9057 if (!new_dev || !old_dev) 9058 return; 9059 9060 if (new_dev == old_dev) 9061 return; 9062 9063 netdev_adjacent_dev_enable(dev, old_dev); 9064 __netdev_upper_dev_unlink(old_dev, dev, &priv); 9065} 9066EXPORT_SYMBOL(netdev_adjacent_change_commit); 9067 9068void netdev_adjacent_change_abort(struct net_device *old_dev, 9069 struct net_device *new_dev, 9070 struct net_device *dev) 9071{ 9072 struct netdev_nested_priv priv = { 9073 .flags = 0, 9074 .data = NULL, 9075 }; 9076 9077 if (!new_dev) 9078 return; 9079 9080 if (old_dev && new_dev != old_dev) 9081 netdev_adjacent_dev_enable(dev, old_dev); 9082 9083 __netdev_upper_dev_unlink(new_dev, dev, &priv); 9084} 9085EXPORT_SYMBOL(netdev_adjacent_change_abort); 9086 9087/** 9088 * netdev_bonding_info_change - Dispatch event about slave change 9089 * @dev: device 9090 * @bonding_info: info to dispatch 9091 * 9092 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 9093 * The caller must hold the RTNL lock. 9094 */ 9095void netdev_bonding_info_change(struct net_device *dev, 9096 struct netdev_bonding_info *bonding_info) 9097{ 9098 struct netdev_notifier_bonding_info info = { 9099 .info.dev = dev, 9100 }; 9101 9102 memcpy(&info.bonding_info, bonding_info, 9103 sizeof(struct netdev_bonding_info)); 9104 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 9105 &info.info); 9106} 9107EXPORT_SYMBOL(netdev_bonding_info_change); 9108 9109static int netdev_offload_xstats_enable_l3(struct net_device *dev, 9110 struct netlink_ext_ack *extack) 9111{ 9112 struct netdev_notifier_offload_xstats_info info = { 9113 .info.dev = dev, 9114 .info.extack = extack, 9115 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9116 }; 9117 int err; 9118 int rc; 9119 9120 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 9121 GFP_KERNEL); 9122 if (!dev->offload_xstats_l3) 9123 return -ENOMEM; 9124 9125 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 9126 NETDEV_OFFLOAD_XSTATS_DISABLE, 9127 &info.info); 9128 err = notifier_to_errno(rc); 9129 if (err) 9130 goto free_stats; 9131 9132 return 0; 9133 9134free_stats: 9135 kfree(dev->offload_xstats_l3); 9136 dev->offload_xstats_l3 = NULL; 9137 return err; 9138} 9139 9140int netdev_offload_xstats_enable(struct net_device *dev, 9141 enum netdev_offload_xstats_type type, 9142 struct netlink_ext_ack *extack) 9143{ 9144 ASSERT_RTNL(); 9145 9146 if (netdev_offload_xstats_enabled(dev, type)) 9147 return -EALREADY; 9148 9149 switch (type) { 9150 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9151 return netdev_offload_xstats_enable_l3(dev, extack); 9152 } 9153 9154 WARN_ON(1); 9155 return -EINVAL; 9156} 9157EXPORT_SYMBOL(netdev_offload_xstats_enable); 9158 9159static void netdev_offload_xstats_disable_l3(struct net_device *dev) 9160{ 9161 struct netdev_notifier_offload_xstats_info info = { 9162 .info.dev = dev, 9163 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9164 }; 9165 9166 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 9167 &info.info); 9168 kfree(dev->offload_xstats_l3); 9169 dev->offload_xstats_l3 = NULL; 9170} 9171 9172int netdev_offload_xstats_disable(struct net_device *dev, 9173 enum netdev_offload_xstats_type type) 9174{ 9175 ASSERT_RTNL(); 9176 9177 if (!netdev_offload_xstats_enabled(dev, type)) 9178 return -EALREADY; 9179 9180 switch (type) { 9181 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9182 netdev_offload_xstats_disable_l3(dev); 9183 return 0; 9184 } 9185 9186 WARN_ON(1); 9187 return -EINVAL; 9188} 9189EXPORT_SYMBOL(netdev_offload_xstats_disable); 9190 9191static void netdev_offload_xstats_disable_all(struct net_device *dev) 9192{ 9193 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 9194} 9195 9196static struct rtnl_hw_stats64 * 9197netdev_offload_xstats_get_ptr(const struct net_device *dev, 9198 enum netdev_offload_xstats_type type) 9199{ 9200 switch (type) { 9201 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9202 return dev->offload_xstats_l3; 9203 } 9204 9205 WARN_ON(1); 9206 return NULL; 9207} 9208 9209bool netdev_offload_xstats_enabled(const struct net_device *dev, 9210 enum netdev_offload_xstats_type type) 9211{ 9212 ASSERT_RTNL(); 9213 9214 return netdev_offload_xstats_get_ptr(dev, type); 9215} 9216EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9217 9218struct netdev_notifier_offload_xstats_ru { 9219 bool used; 9220}; 9221 9222struct netdev_notifier_offload_xstats_rd { 9223 struct rtnl_hw_stats64 stats; 9224 bool used; 9225}; 9226 9227static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9228 const struct rtnl_hw_stats64 *src) 9229{ 9230 dest->rx_packets += src->rx_packets; 9231 dest->tx_packets += src->tx_packets; 9232 dest->rx_bytes += src->rx_bytes; 9233 dest->tx_bytes += src->tx_bytes; 9234 dest->rx_errors += src->rx_errors; 9235 dest->tx_errors += src->tx_errors; 9236 dest->rx_dropped += src->rx_dropped; 9237 dest->tx_dropped += src->tx_dropped; 9238 dest->multicast += src->multicast; 9239} 9240 9241static int netdev_offload_xstats_get_used(struct net_device *dev, 9242 enum netdev_offload_xstats_type type, 9243 bool *p_used, 9244 struct netlink_ext_ack *extack) 9245{ 9246 struct netdev_notifier_offload_xstats_ru report_used = {}; 9247 struct netdev_notifier_offload_xstats_info info = { 9248 .info.dev = dev, 9249 .info.extack = extack, 9250 .type = type, 9251 .report_used = &report_used, 9252 }; 9253 int rc; 9254 9255 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9256 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9257 &info.info); 9258 *p_used = report_used.used; 9259 return notifier_to_errno(rc); 9260} 9261 9262static int netdev_offload_xstats_get_stats(struct net_device *dev, 9263 enum netdev_offload_xstats_type type, 9264 struct rtnl_hw_stats64 *p_stats, 9265 bool *p_used, 9266 struct netlink_ext_ack *extack) 9267{ 9268 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9269 struct netdev_notifier_offload_xstats_info info = { 9270 .info.dev = dev, 9271 .info.extack = extack, 9272 .type = type, 9273 .report_delta = &report_delta, 9274 }; 9275 struct rtnl_hw_stats64 *stats; 9276 int rc; 9277 9278 stats = netdev_offload_xstats_get_ptr(dev, type); 9279 if (WARN_ON(!stats)) 9280 return -EINVAL; 9281 9282 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9283 &info.info); 9284 9285 /* Cache whatever we got, even if there was an error, otherwise the 9286 * successful stats retrievals would get lost. 9287 */ 9288 netdev_hw_stats64_add(stats, &report_delta.stats); 9289 9290 if (p_stats) 9291 *p_stats = *stats; 9292 *p_used = report_delta.used; 9293 9294 return notifier_to_errno(rc); 9295} 9296 9297int netdev_offload_xstats_get(struct net_device *dev, 9298 enum netdev_offload_xstats_type type, 9299 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9300 struct netlink_ext_ack *extack) 9301{ 9302 ASSERT_RTNL(); 9303 9304 if (p_stats) 9305 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9306 p_used, extack); 9307 else 9308 return netdev_offload_xstats_get_used(dev, type, p_used, 9309 extack); 9310} 9311EXPORT_SYMBOL(netdev_offload_xstats_get); 9312 9313void 9314netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9315 const struct rtnl_hw_stats64 *stats) 9316{ 9317 report_delta->used = true; 9318 netdev_hw_stats64_add(&report_delta->stats, stats); 9319} 9320EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9321 9322void 9323netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9324{ 9325 report_used->used = true; 9326} 9327EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9328 9329void netdev_offload_xstats_push_delta(struct net_device *dev, 9330 enum netdev_offload_xstats_type type, 9331 const struct rtnl_hw_stats64 *p_stats) 9332{ 9333 struct rtnl_hw_stats64 *stats; 9334 9335 ASSERT_RTNL(); 9336 9337 stats = netdev_offload_xstats_get_ptr(dev, type); 9338 if (WARN_ON(!stats)) 9339 return; 9340 9341 netdev_hw_stats64_add(stats, p_stats); 9342} 9343EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9344 9345/** 9346 * netdev_get_xmit_slave - Get the xmit slave of master device 9347 * @dev: device 9348 * @skb: The packet 9349 * @all_slaves: assume all the slaves are active 9350 * 9351 * The reference counters are not incremented so the caller must be 9352 * careful with locks. The caller must hold RCU lock. 9353 * %NULL is returned if no slave is found. 9354 */ 9355 9356struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9357 struct sk_buff *skb, 9358 bool all_slaves) 9359{ 9360 const struct net_device_ops *ops = dev->netdev_ops; 9361 9362 if (!ops->ndo_get_xmit_slave) 9363 return NULL; 9364 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9365} 9366EXPORT_SYMBOL(netdev_get_xmit_slave); 9367 9368static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9369 struct sock *sk) 9370{ 9371 const struct net_device_ops *ops = dev->netdev_ops; 9372 9373 if (!ops->ndo_sk_get_lower_dev) 9374 return NULL; 9375 return ops->ndo_sk_get_lower_dev(dev, sk); 9376} 9377 9378/** 9379 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9380 * @dev: device 9381 * @sk: the socket 9382 * 9383 * %NULL is returned if no lower device is found. 9384 */ 9385 9386struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9387 struct sock *sk) 9388{ 9389 struct net_device *lower; 9390 9391 lower = netdev_sk_get_lower_dev(dev, sk); 9392 while (lower) { 9393 dev = lower; 9394 lower = netdev_sk_get_lower_dev(dev, sk); 9395 } 9396 9397 return dev; 9398} 9399EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9400 9401static void netdev_adjacent_add_links(struct net_device *dev) 9402{ 9403 struct netdev_adjacent *iter; 9404 9405 struct net *net = dev_net(dev); 9406 9407 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9408 if (!net_eq(net, dev_net(iter->dev))) 9409 continue; 9410 netdev_adjacent_sysfs_add(iter->dev, dev, 9411 &iter->dev->adj_list.lower); 9412 netdev_adjacent_sysfs_add(dev, iter->dev, 9413 &dev->adj_list.upper); 9414 } 9415 9416 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9417 if (!net_eq(net, dev_net(iter->dev))) 9418 continue; 9419 netdev_adjacent_sysfs_add(iter->dev, dev, 9420 &iter->dev->adj_list.upper); 9421 netdev_adjacent_sysfs_add(dev, iter->dev, 9422 &dev->adj_list.lower); 9423 } 9424} 9425 9426static void netdev_adjacent_del_links(struct net_device *dev) 9427{ 9428 struct netdev_adjacent *iter; 9429 9430 struct net *net = dev_net(dev); 9431 9432 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9433 if (!net_eq(net, dev_net(iter->dev))) 9434 continue; 9435 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9436 &iter->dev->adj_list.lower); 9437 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9438 &dev->adj_list.upper); 9439 } 9440 9441 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9442 if (!net_eq(net, dev_net(iter->dev))) 9443 continue; 9444 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9445 &iter->dev->adj_list.upper); 9446 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9447 &dev->adj_list.lower); 9448 } 9449} 9450 9451void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9452{ 9453 struct netdev_adjacent *iter; 9454 9455 struct net *net = dev_net(dev); 9456 9457 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9458 if (!net_eq(net, dev_net(iter->dev))) 9459 continue; 9460 netdev_adjacent_sysfs_del(iter->dev, oldname, 9461 &iter->dev->adj_list.lower); 9462 netdev_adjacent_sysfs_add(iter->dev, dev, 9463 &iter->dev->adj_list.lower); 9464 } 9465 9466 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9467 if (!net_eq(net, dev_net(iter->dev))) 9468 continue; 9469 netdev_adjacent_sysfs_del(iter->dev, oldname, 9470 &iter->dev->adj_list.upper); 9471 netdev_adjacent_sysfs_add(iter->dev, dev, 9472 &iter->dev->adj_list.upper); 9473 } 9474} 9475 9476void *netdev_lower_dev_get_private(struct net_device *dev, 9477 struct net_device *lower_dev) 9478{ 9479 struct netdev_adjacent *lower; 9480 9481 if (!lower_dev) 9482 return NULL; 9483 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9484 if (!lower) 9485 return NULL; 9486 9487 return lower->private; 9488} 9489EXPORT_SYMBOL(netdev_lower_dev_get_private); 9490 9491 9492/** 9493 * netdev_lower_state_changed - Dispatch event about lower device state change 9494 * @lower_dev: device 9495 * @lower_state_info: state to dispatch 9496 * 9497 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9498 * The caller must hold the RTNL lock. 9499 */ 9500void netdev_lower_state_changed(struct net_device *lower_dev, 9501 void *lower_state_info) 9502{ 9503 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9504 .info.dev = lower_dev, 9505 }; 9506 9507 ASSERT_RTNL(); 9508 changelowerstate_info.lower_state_info = lower_state_info; 9509 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9510 &changelowerstate_info.info); 9511} 9512EXPORT_SYMBOL(netdev_lower_state_changed); 9513 9514static void dev_change_rx_flags(struct net_device *dev, int flags) 9515{ 9516 const struct net_device_ops *ops = dev->netdev_ops; 9517 9518 if (ops->ndo_change_rx_flags) 9519 ops->ndo_change_rx_flags(dev, flags); 9520} 9521 9522static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9523{ 9524 unsigned int old_flags = dev->flags; 9525 unsigned int promiscuity, flags; 9526 kuid_t uid; 9527 kgid_t gid; 9528 9529 ASSERT_RTNL(); 9530 9531 promiscuity = dev->promiscuity + inc; 9532 if (promiscuity == 0) { 9533 /* 9534 * Avoid overflow. 9535 * If inc causes overflow, untouch promisc and return error. 9536 */ 9537 if (unlikely(inc > 0)) { 9538 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9539 return -EOVERFLOW; 9540 } 9541 flags = old_flags & ~IFF_PROMISC; 9542 } else { 9543 flags = old_flags | IFF_PROMISC; 9544 } 9545 WRITE_ONCE(dev->promiscuity, promiscuity); 9546 if (flags != old_flags) { 9547 WRITE_ONCE(dev->flags, flags); 9548 netdev_info(dev, "%s promiscuous mode\n", 9549 dev->flags & IFF_PROMISC ? "entered" : "left"); 9550 if (audit_enabled) { 9551 current_uid_gid(&uid, &gid); 9552 audit_log(audit_context(), GFP_ATOMIC, 9553 AUDIT_ANOM_PROMISCUOUS, 9554 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9555 dev->name, (dev->flags & IFF_PROMISC), 9556 (old_flags & IFF_PROMISC), 9557 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9558 from_kuid(&init_user_ns, uid), 9559 from_kgid(&init_user_ns, gid), 9560 audit_get_sessionid(current)); 9561 } 9562 9563 dev_change_rx_flags(dev, IFF_PROMISC); 9564 } 9565 if (notify) { 9566 /* The ops lock is only required to ensure consistent locking 9567 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9568 * called without the lock, even for devices that are ops 9569 * locked, such as in `dev_uc_sync_multiple` when using 9570 * bonding or teaming. 9571 */ 9572 netdev_ops_assert_locked(dev); 9573 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9574 } 9575 return 0; 9576} 9577 9578int netif_set_promiscuity(struct net_device *dev, int inc) 9579{ 9580 unsigned int old_flags = dev->flags; 9581 int err; 9582 9583 err = __dev_set_promiscuity(dev, inc, true); 9584 if (err < 0) 9585 return err; 9586 if (dev->flags != old_flags) 9587 dev_set_rx_mode(dev); 9588 return err; 9589} 9590 9591int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9592{ 9593 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9594 unsigned int allmulti, flags; 9595 9596 ASSERT_RTNL(); 9597 9598 allmulti = dev->allmulti + inc; 9599 if (allmulti == 0) { 9600 /* 9601 * Avoid overflow. 9602 * If inc causes overflow, untouch allmulti and return error. 9603 */ 9604 if (unlikely(inc > 0)) { 9605 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9606 return -EOVERFLOW; 9607 } 9608 flags = old_flags & ~IFF_ALLMULTI; 9609 } else { 9610 flags = old_flags | IFF_ALLMULTI; 9611 } 9612 WRITE_ONCE(dev->allmulti, allmulti); 9613 if (flags != old_flags) { 9614 WRITE_ONCE(dev->flags, flags); 9615 netdev_info(dev, "%s allmulticast mode\n", 9616 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9617 dev_change_rx_flags(dev, IFF_ALLMULTI); 9618 dev_set_rx_mode(dev); 9619 if (notify) 9620 __dev_notify_flags(dev, old_flags, 9621 dev->gflags ^ old_gflags, 0, NULL); 9622 } 9623 return 0; 9624} 9625 9626/* 9627 * Upload unicast and multicast address lists to device and 9628 * configure RX filtering. When the device doesn't support unicast 9629 * filtering it is put in promiscuous mode while unicast addresses 9630 * are present. 9631 */ 9632void __dev_set_rx_mode(struct net_device *dev) 9633{ 9634 const struct net_device_ops *ops = dev->netdev_ops; 9635 9636 /* dev_open will call this function so the list will stay sane. */ 9637 if (!(dev->flags&IFF_UP)) 9638 return; 9639 9640 if (!netif_device_present(dev)) 9641 return; 9642 9643 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9644 /* Unicast addresses changes may only happen under the rtnl, 9645 * therefore calling __dev_set_promiscuity here is safe. 9646 */ 9647 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9648 __dev_set_promiscuity(dev, 1, false); 9649 dev->uc_promisc = true; 9650 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9651 __dev_set_promiscuity(dev, -1, false); 9652 dev->uc_promisc = false; 9653 } 9654 } 9655 9656 if (ops->ndo_set_rx_mode) 9657 ops->ndo_set_rx_mode(dev); 9658} 9659 9660void dev_set_rx_mode(struct net_device *dev) 9661{ 9662 netif_addr_lock_bh(dev); 9663 __dev_set_rx_mode(dev); 9664 netif_addr_unlock_bh(dev); 9665} 9666 9667/** 9668 * netif_get_flags() - get flags reported to userspace 9669 * @dev: device 9670 * 9671 * Get the combination of flag bits exported through APIs to userspace. 9672 */ 9673unsigned int netif_get_flags(const struct net_device *dev) 9674{ 9675 unsigned int flags; 9676 9677 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9678 IFF_ALLMULTI | 9679 IFF_RUNNING | 9680 IFF_LOWER_UP | 9681 IFF_DORMANT)) | 9682 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9683 IFF_ALLMULTI)); 9684 9685 if (netif_running(dev)) { 9686 if (netif_oper_up(dev)) 9687 flags |= IFF_RUNNING; 9688 if (netif_carrier_ok(dev)) 9689 flags |= IFF_LOWER_UP; 9690 if (netif_dormant(dev)) 9691 flags |= IFF_DORMANT; 9692 } 9693 9694 return flags; 9695} 9696EXPORT_SYMBOL(netif_get_flags); 9697 9698int __dev_change_flags(struct net_device *dev, unsigned int flags, 9699 struct netlink_ext_ack *extack) 9700{ 9701 unsigned int old_flags = dev->flags; 9702 int ret; 9703 9704 ASSERT_RTNL(); 9705 9706 /* 9707 * Set the flags on our device. 9708 */ 9709 9710 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9711 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9712 IFF_AUTOMEDIA)) | 9713 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9714 IFF_ALLMULTI)); 9715 9716 /* 9717 * Load in the correct multicast list now the flags have changed. 9718 */ 9719 9720 if ((old_flags ^ flags) & IFF_MULTICAST) 9721 dev_change_rx_flags(dev, IFF_MULTICAST); 9722 9723 dev_set_rx_mode(dev); 9724 9725 /* 9726 * Have we downed the interface. We handle IFF_UP ourselves 9727 * according to user attempts to set it, rather than blindly 9728 * setting it. 9729 */ 9730 9731 ret = 0; 9732 if ((old_flags ^ flags) & IFF_UP) { 9733 if (old_flags & IFF_UP) 9734 __dev_close(dev); 9735 else 9736 ret = __dev_open(dev, extack); 9737 } 9738 9739 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9740 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9741 old_flags = dev->flags; 9742 9743 dev->gflags ^= IFF_PROMISC; 9744 9745 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9746 if (dev->flags != old_flags) 9747 dev_set_rx_mode(dev); 9748 } 9749 9750 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9751 * is important. Some (broken) drivers set IFF_PROMISC, when 9752 * IFF_ALLMULTI is requested not asking us and not reporting. 9753 */ 9754 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9755 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9756 9757 dev->gflags ^= IFF_ALLMULTI; 9758 netif_set_allmulti(dev, inc, false); 9759 } 9760 9761 return ret; 9762} 9763 9764void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9765 unsigned int gchanges, u32 portid, 9766 const struct nlmsghdr *nlh) 9767{ 9768 unsigned int changes = dev->flags ^ old_flags; 9769 9770 if (gchanges) 9771 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9772 9773 if (changes & IFF_UP) { 9774 if (dev->flags & IFF_UP) 9775 call_netdevice_notifiers(NETDEV_UP, dev); 9776 else 9777 call_netdevice_notifiers(NETDEV_DOWN, dev); 9778 } 9779 9780 if (dev->flags & IFF_UP && 9781 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9782 struct netdev_notifier_change_info change_info = { 9783 .info = { 9784 .dev = dev, 9785 }, 9786 .flags_changed = changes, 9787 }; 9788 9789 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9790 } 9791} 9792 9793int netif_change_flags(struct net_device *dev, unsigned int flags, 9794 struct netlink_ext_ack *extack) 9795{ 9796 int ret; 9797 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9798 9799 ret = __dev_change_flags(dev, flags, extack); 9800 if (ret < 0) 9801 return ret; 9802 9803 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9804 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9805 return ret; 9806} 9807 9808int __netif_set_mtu(struct net_device *dev, int new_mtu) 9809{ 9810 const struct net_device_ops *ops = dev->netdev_ops; 9811 9812 if (ops->ndo_change_mtu) 9813 return ops->ndo_change_mtu(dev, new_mtu); 9814 9815 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9816 WRITE_ONCE(dev->mtu, new_mtu); 9817 return 0; 9818} 9819EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9820 9821int dev_validate_mtu(struct net_device *dev, int new_mtu, 9822 struct netlink_ext_ack *extack) 9823{ 9824 /* MTU must be positive, and in range */ 9825 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9826 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9827 return -EINVAL; 9828 } 9829 9830 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9831 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9832 return -EINVAL; 9833 } 9834 return 0; 9835} 9836 9837/** 9838 * netif_set_mtu_ext() - Change maximum transfer unit 9839 * @dev: device 9840 * @new_mtu: new transfer unit 9841 * @extack: netlink extended ack 9842 * 9843 * Change the maximum transfer size of the network device. 9844 * 9845 * Return: 0 on success, -errno on failure. 9846 */ 9847int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9848 struct netlink_ext_ack *extack) 9849{ 9850 int err, orig_mtu; 9851 9852 netdev_ops_assert_locked(dev); 9853 9854 if (new_mtu == dev->mtu) 9855 return 0; 9856 9857 err = dev_validate_mtu(dev, new_mtu, extack); 9858 if (err) 9859 return err; 9860 9861 if (!netif_device_present(dev)) 9862 return -ENODEV; 9863 9864 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9865 err = notifier_to_errno(err); 9866 if (err) 9867 return err; 9868 9869 orig_mtu = dev->mtu; 9870 err = __netif_set_mtu(dev, new_mtu); 9871 9872 if (!err) { 9873 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9874 orig_mtu); 9875 err = notifier_to_errno(err); 9876 if (err) { 9877 /* setting mtu back and notifying everyone again, 9878 * so that they have a chance to revert changes. 9879 */ 9880 __netif_set_mtu(dev, orig_mtu); 9881 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9882 new_mtu); 9883 } 9884 } 9885 return err; 9886} 9887 9888int netif_set_mtu(struct net_device *dev, int new_mtu) 9889{ 9890 struct netlink_ext_ack extack; 9891 int err; 9892 9893 memset(&extack, 0, sizeof(extack)); 9894 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9895 if (err && extack._msg) 9896 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9897 return err; 9898} 9899EXPORT_SYMBOL(netif_set_mtu); 9900 9901int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9902{ 9903 unsigned int orig_len = dev->tx_queue_len; 9904 int res; 9905 9906 if (new_len != (unsigned int)new_len) 9907 return -ERANGE; 9908 9909 if (new_len != orig_len) { 9910 WRITE_ONCE(dev->tx_queue_len, new_len); 9911 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9912 res = notifier_to_errno(res); 9913 if (res) 9914 goto err_rollback; 9915 res = dev_qdisc_change_tx_queue_len(dev); 9916 if (res) 9917 goto err_rollback; 9918 } 9919 9920 return 0; 9921 9922err_rollback: 9923 netdev_err(dev, "refused to change device tx_queue_len\n"); 9924 WRITE_ONCE(dev->tx_queue_len, orig_len); 9925 return res; 9926} 9927 9928void netif_set_group(struct net_device *dev, int new_group) 9929{ 9930 dev->group = new_group; 9931} 9932 9933/** 9934 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9935 * @dev: device 9936 * @addr: new address 9937 * @extack: netlink extended ack 9938 * 9939 * Return: 0 on success, -errno on failure. 9940 */ 9941int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9942 struct netlink_ext_ack *extack) 9943{ 9944 struct netdev_notifier_pre_changeaddr_info info = { 9945 .info.dev = dev, 9946 .info.extack = extack, 9947 .dev_addr = addr, 9948 }; 9949 int rc; 9950 9951 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9952 return notifier_to_errno(rc); 9953} 9954EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9955 9956int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9957 struct netlink_ext_ack *extack) 9958{ 9959 const struct net_device_ops *ops = dev->netdev_ops; 9960 int err; 9961 9962 if (!ops->ndo_set_mac_address) 9963 return -EOPNOTSUPP; 9964 if (ss->ss_family != dev->type) 9965 return -EINVAL; 9966 if (!netif_device_present(dev)) 9967 return -ENODEV; 9968 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9969 if (err) 9970 return err; 9971 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9972 err = ops->ndo_set_mac_address(dev, ss); 9973 if (err) 9974 return err; 9975 } 9976 dev->addr_assign_type = NET_ADDR_SET; 9977 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9978 add_device_randomness(dev->dev_addr, dev->addr_len); 9979 return 0; 9980} 9981 9982DECLARE_RWSEM(dev_addr_sem); 9983 9984/* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9985int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9986{ 9987 size_t size = sizeof(sa->sa_data); 9988 struct net_device *dev; 9989 int ret = 0; 9990 9991 down_read(&dev_addr_sem); 9992 rcu_read_lock(); 9993 9994 dev = dev_get_by_name_rcu(net, dev_name); 9995 if (!dev) { 9996 ret = -ENODEV; 9997 goto unlock; 9998 } 9999 if (!dev->addr_len) 10000 memset(sa->sa_data, 0, size); 10001 else 10002 memcpy(sa->sa_data, dev->dev_addr, 10003 min_t(size_t, size, dev->addr_len)); 10004 sa->sa_family = dev->type; 10005 10006unlock: 10007 rcu_read_unlock(); 10008 up_read(&dev_addr_sem); 10009 return ret; 10010} 10011EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 10012 10013int netif_change_carrier(struct net_device *dev, bool new_carrier) 10014{ 10015 const struct net_device_ops *ops = dev->netdev_ops; 10016 10017 if (!ops->ndo_change_carrier) 10018 return -EOPNOTSUPP; 10019 if (!netif_device_present(dev)) 10020 return -ENODEV; 10021 return ops->ndo_change_carrier(dev, new_carrier); 10022} 10023 10024/** 10025 * dev_get_phys_port_id - Get device physical port ID 10026 * @dev: device 10027 * @ppid: port ID 10028 * 10029 * Get device physical port ID 10030 */ 10031int dev_get_phys_port_id(struct net_device *dev, 10032 struct netdev_phys_item_id *ppid) 10033{ 10034 const struct net_device_ops *ops = dev->netdev_ops; 10035 10036 if (!ops->ndo_get_phys_port_id) 10037 return -EOPNOTSUPP; 10038 return ops->ndo_get_phys_port_id(dev, ppid); 10039} 10040 10041/** 10042 * dev_get_phys_port_name - Get device physical port name 10043 * @dev: device 10044 * @name: port name 10045 * @len: limit of bytes to copy to name 10046 * 10047 * Get device physical port name 10048 */ 10049int dev_get_phys_port_name(struct net_device *dev, 10050 char *name, size_t len) 10051{ 10052 const struct net_device_ops *ops = dev->netdev_ops; 10053 int err; 10054 10055 if (ops->ndo_get_phys_port_name) { 10056 err = ops->ndo_get_phys_port_name(dev, name, len); 10057 if (err != -EOPNOTSUPP) 10058 return err; 10059 } 10060 return devlink_compat_phys_port_name_get(dev, name, len); 10061} 10062 10063/** 10064 * netif_get_port_parent_id() - Get the device's port parent identifier 10065 * @dev: network device 10066 * @ppid: pointer to a storage for the port's parent identifier 10067 * @recurse: allow/disallow recursion to lower devices 10068 * 10069 * Get the devices's port parent identifier. 10070 * 10071 * Return: 0 on success, -errno on failure. 10072 */ 10073int netif_get_port_parent_id(struct net_device *dev, 10074 struct netdev_phys_item_id *ppid, bool recurse) 10075{ 10076 const struct net_device_ops *ops = dev->netdev_ops; 10077 struct netdev_phys_item_id first = { }; 10078 struct net_device *lower_dev; 10079 struct list_head *iter; 10080 int err; 10081 10082 if (ops->ndo_get_port_parent_id) { 10083 err = ops->ndo_get_port_parent_id(dev, ppid); 10084 if (err != -EOPNOTSUPP) 10085 return err; 10086 } 10087 10088 err = devlink_compat_switch_id_get(dev, ppid); 10089 if (!recurse || err != -EOPNOTSUPP) 10090 return err; 10091 10092 netdev_for_each_lower_dev(dev, lower_dev, iter) { 10093 err = netif_get_port_parent_id(lower_dev, ppid, true); 10094 if (err) 10095 break; 10096 if (!first.id_len) 10097 first = *ppid; 10098 else if (memcmp(&first, ppid, sizeof(*ppid))) 10099 return -EOPNOTSUPP; 10100 } 10101 10102 return err; 10103} 10104EXPORT_SYMBOL(netif_get_port_parent_id); 10105 10106/** 10107 * netdev_port_same_parent_id - Indicate if two network devices have 10108 * the same port parent identifier 10109 * @a: first network device 10110 * @b: second network device 10111 */ 10112bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 10113{ 10114 struct netdev_phys_item_id a_id = { }; 10115 struct netdev_phys_item_id b_id = { }; 10116 10117 if (netif_get_port_parent_id(a, &a_id, true) || 10118 netif_get_port_parent_id(b, &b_id, true)) 10119 return false; 10120 10121 return netdev_phys_item_id_same(&a_id, &b_id); 10122} 10123EXPORT_SYMBOL(netdev_port_same_parent_id); 10124 10125int netif_change_proto_down(struct net_device *dev, bool proto_down) 10126{ 10127 if (!dev->change_proto_down) 10128 return -EOPNOTSUPP; 10129 if (!netif_device_present(dev)) 10130 return -ENODEV; 10131 if (proto_down) 10132 netif_carrier_off(dev); 10133 else 10134 netif_carrier_on(dev); 10135 WRITE_ONCE(dev->proto_down, proto_down); 10136 return 0; 10137} 10138 10139/** 10140 * netdev_change_proto_down_reason_locked - proto down reason 10141 * 10142 * @dev: device 10143 * @mask: proto down mask 10144 * @value: proto down value 10145 */ 10146void netdev_change_proto_down_reason_locked(struct net_device *dev, 10147 unsigned long mask, u32 value) 10148{ 10149 u32 proto_down_reason; 10150 int b; 10151 10152 if (!mask) { 10153 proto_down_reason = value; 10154 } else { 10155 proto_down_reason = dev->proto_down_reason; 10156 for_each_set_bit(b, &mask, 32) { 10157 if (value & (1 << b)) 10158 proto_down_reason |= BIT(b); 10159 else 10160 proto_down_reason &= ~BIT(b); 10161 } 10162 } 10163 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 10164} 10165 10166struct bpf_xdp_link { 10167 struct bpf_link link; 10168 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 10169 int flags; 10170}; 10171 10172static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 10173{ 10174 if (flags & XDP_FLAGS_HW_MODE) 10175 return XDP_MODE_HW; 10176 if (flags & XDP_FLAGS_DRV_MODE) 10177 return XDP_MODE_DRV; 10178 if (flags & XDP_FLAGS_SKB_MODE) 10179 return XDP_MODE_SKB; 10180 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 10181} 10182 10183static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 10184{ 10185 switch (mode) { 10186 case XDP_MODE_SKB: 10187 return generic_xdp_install; 10188 case XDP_MODE_DRV: 10189 case XDP_MODE_HW: 10190 return dev->netdev_ops->ndo_bpf; 10191 default: 10192 return NULL; 10193 } 10194} 10195 10196static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 10197 enum bpf_xdp_mode mode) 10198{ 10199 return dev->xdp_state[mode].link; 10200} 10201 10202static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 10203 enum bpf_xdp_mode mode) 10204{ 10205 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 10206 10207 if (link) 10208 return link->link.prog; 10209 return dev->xdp_state[mode].prog; 10210} 10211 10212u8 dev_xdp_prog_count(struct net_device *dev) 10213{ 10214 u8 count = 0; 10215 int i; 10216 10217 for (i = 0; i < __MAX_XDP_MODE; i++) 10218 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10219 count++; 10220 return count; 10221} 10222EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10223 10224u8 dev_xdp_sb_prog_count(struct net_device *dev) 10225{ 10226 u8 count = 0; 10227 int i; 10228 10229 for (i = 0; i < __MAX_XDP_MODE; i++) 10230 if (dev->xdp_state[i].prog && 10231 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10232 count++; 10233 return count; 10234} 10235 10236int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10237{ 10238 if (!dev->netdev_ops->ndo_bpf) 10239 return -EOPNOTSUPP; 10240 10241 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10242 bpf->command == XDP_SETUP_PROG && 10243 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10244 NL_SET_ERR_MSG(bpf->extack, 10245 "unable to propagate XDP to device using tcp-data-split"); 10246 return -EBUSY; 10247 } 10248 10249 if (dev_get_min_mp_channel_count(dev)) { 10250 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10251 return -EBUSY; 10252 } 10253 10254 return dev->netdev_ops->ndo_bpf(dev, bpf); 10255} 10256EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10257 10258u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10259{ 10260 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10261 10262 return prog ? prog->aux->id : 0; 10263} 10264 10265static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10266 struct bpf_xdp_link *link) 10267{ 10268 dev->xdp_state[mode].link = link; 10269 dev->xdp_state[mode].prog = NULL; 10270} 10271 10272static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10273 struct bpf_prog *prog) 10274{ 10275 dev->xdp_state[mode].link = NULL; 10276 dev->xdp_state[mode].prog = prog; 10277} 10278 10279static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10280 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10281 u32 flags, struct bpf_prog *prog) 10282{ 10283 struct netdev_bpf xdp; 10284 int err; 10285 10286 netdev_ops_assert_locked(dev); 10287 10288 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10289 prog && !prog->aux->xdp_has_frags) { 10290 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10291 return -EBUSY; 10292 } 10293 10294 if (dev_get_min_mp_channel_count(dev)) { 10295 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10296 return -EBUSY; 10297 } 10298 10299 memset(&xdp, 0, sizeof(xdp)); 10300 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10301 xdp.extack = extack; 10302 xdp.flags = flags; 10303 xdp.prog = prog; 10304 10305 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10306 * "moved" into driver), so they don't increment it on their own, but 10307 * they do decrement refcnt when program is detached or replaced. 10308 * Given net_device also owns link/prog, we need to bump refcnt here 10309 * to prevent drivers from underflowing it. 10310 */ 10311 if (prog) 10312 bpf_prog_inc(prog); 10313 err = bpf_op(dev, &xdp); 10314 if (err) { 10315 if (prog) 10316 bpf_prog_put(prog); 10317 return err; 10318 } 10319 10320 if (mode != XDP_MODE_HW) 10321 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10322 10323 return 0; 10324} 10325 10326static void dev_xdp_uninstall(struct net_device *dev) 10327{ 10328 struct bpf_xdp_link *link; 10329 struct bpf_prog *prog; 10330 enum bpf_xdp_mode mode; 10331 bpf_op_t bpf_op; 10332 10333 ASSERT_RTNL(); 10334 10335 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10336 prog = dev_xdp_prog(dev, mode); 10337 if (!prog) 10338 continue; 10339 10340 bpf_op = dev_xdp_bpf_op(dev, mode); 10341 if (!bpf_op) 10342 continue; 10343 10344 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10345 10346 /* auto-detach link from net device */ 10347 link = dev_xdp_link(dev, mode); 10348 if (link) 10349 link->dev = NULL; 10350 else 10351 bpf_prog_put(prog); 10352 10353 dev_xdp_set_link(dev, mode, NULL); 10354 } 10355} 10356 10357static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10358 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10359 struct bpf_prog *old_prog, u32 flags) 10360{ 10361 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10362 struct bpf_prog *cur_prog; 10363 struct net_device *upper; 10364 struct list_head *iter; 10365 enum bpf_xdp_mode mode; 10366 bpf_op_t bpf_op; 10367 int err; 10368 10369 ASSERT_RTNL(); 10370 10371 /* either link or prog attachment, never both */ 10372 if (link && (new_prog || old_prog)) 10373 return -EINVAL; 10374 /* link supports only XDP mode flags */ 10375 if (link && (flags & ~XDP_FLAGS_MODES)) { 10376 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10377 return -EINVAL; 10378 } 10379 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10380 if (num_modes > 1) { 10381 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10382 return -EINVAL; 10383 } 10384 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10385 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10386 NL_SET_ERR_MSG(extack, 10387 "More than one program loaded, unset mode is ambiguous"); 10388 return -EINVAL; 10389 } 10390 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10391 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10392 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10393 return -EINVAL; 10394 } 10395 10396 mode = dev_xdp_mode(dev, flags); 10397 /* can't replace attached link */ 10398 if (dev_xdp_link(dev, mode)) { 10399 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10400 return -EBUSY; 10401 } 10402 10403 /* don't allow if an upper device already has a program */ 10404 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10405 if (dev_xdp_prog_count(upper) > 0) { 10406 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10407 return -EEXIST; 10408 } 10409 } 10410 10411 cur_prog = dev_xdp_prog(dev, mode); 10412 /* can't replace attached prog with link */ 10413 if (link && cur_prog) { 10414 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10415 return -EBUSY; 10416 } 10417 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10418 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10419 return -EEXIST; 10420 } 10421 10422 /* put effective new program into new_prog */ 10423 if (link) 10424 new_prog = link->link.prog; 10425 10426 if (new_prog) { 10427 bool offload = mode == XDP_MODE_HW; 10428 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10429 ? XDP_MODE_DRV : XDP_MODE_SKB; 10430 10431 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10432 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10433 return -EBUSY; 10434 } 10435 if (!offload && dev_xdp_prog(dev, other_mode)) { 10436 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10437 return -EEXIST; 10438 } 10439 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10440 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10441 return -EINVAL; 10442 } 10443 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10444 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10445 return -EINVAL; 10446 } 10447 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10448 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10449 return -EINVAL; 10450 } 10451 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10452 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10453 return -EINVAL; 10454 } 10455 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10456 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10457 return -EINVAL; 10458 } 10459 } 10460 10461 /* don't call drivers if the effective program didn't change */ 10462 if (new_prog != cur_prog) { 10463 bpf_op = dev_xdp_bpf_op(dev, mode); 10464 if (!bpf_op) { 10465 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10466 return -EOPNOTSUPP; 10467 } 10468 10469 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10470 if (err) 10471 return err; 10472 } 10473 10474 if (link) 10475 dev_xdp_set_link(dev, mode, link); 10476 else 10477 dev_xdp_set_prog(dev, mode, new_prog); 10478 if (cur_prog) 10479 bpf_prog_put(cur_prog); 10480 10481 return 0; 10482} 10483 10484static int dev_xdp_attach_link(struct net_device *dev, 10485 struct netlink_ext_ack *extack, 10486 struct bpf_xdp_link *link) 10487{ 10488 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10489} 10490 10491static int dev_xdp_detach_link(struct net_device *dev, 10492 struct netlink_ext_ack *extack, 10493 struct bpf_xdp_link *link) 10494{ 10495 enum bpf_xdp_mode mode; 10496 bpf_op_t bpf_op; 10497 10498 ASSERT_RTNL(); 10499 10500 mode = dev_xdp_mode(dev, link->flags); 10501 if (dev_xdp_link(dev, mode) != link) 10502 return -EINVAL; 10503 10504 bpf_op = dev_xdp_bpf_op(dev, mode); 10505 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10506 dev_xdp_set_link(dev, mode, NULL); 10507 return 0; 10508} 10509 10510static void bpf_xdp_link_release(struct bpf_link *link) 10511{ 10512 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10513 10514 rtnl_lock(); 10515 10516 /* if racing with net_device's tear down, xdp_link->dev might be 10517 * already NULL, in which case link was already auto-detached 10518 */ 10519 if (xdp_link->dev) { 10520 netdev_lock_ops(xdp_link->dev); 10521 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10522 netdev_unlock_ops(xdp_link->dev); 10523 xdp_link->dev = NULL; 10524 } 10525 10526 rtnl_unlock(); 10527} 10528 10529static int bpf_xdp_link_detach(struct bpf_link *link) 10530{ 10531 bpf_xdp_link_release(link); 10532 return 0; 10533} 10534 10535static void bpf_xdp_link_dealloc(struct bpf_link *link) 10536{ 10537 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10538 10539 kfree(xdp_link); 10540} 10541 10542static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10543 struct seq_file *seq) 10544{ 10545 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10546 u32 ifindex = 0; 10547 10548 rtnl_lock(); 10549 if (xdp_link->dev) 10550 ifindex = xdp_link->dev->ifindex; 10551 rtnl_unlock(); 10552 10553 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10554} 10555 10556static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10557 struct bpf_link_info *info) 10558{ 10559 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10560 u32 ifindex = 0; 10561 10562 rtnl_lock(); 10563 if (xdp_link->dev) 10564 ifindex = xdp_link->dev->ifindex; 10565 rtnl_unlock(); 10566 10567 info->xdp.ifindex = ifindex; 10568 return 0; 10569} 10570 10571static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10572 struct bpf_prog *old_prog) 10573{ 10574 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10575 enum bpf_xdp_mode mode; 10576 bpf_op_t bpf_op; 10577 int err = 0; 10578 10579 rtnl_lock(); 10580 10581 /* link might have been auto-released already, so fail */ 10582 if (!xdp_link->dev) { 10583 err = -ENOLINK; 10584 goto out_unlock; 10585 } 10586 10587 if (old_prog && link->prog != old_prog) { 10588 err = -EPERM; 10589 goto out_unlock; 10590 } 10591 old_prog = link->prog; 10592 if (old_prog->type != new_prog->type || 10593 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10594 err = -EINVAL; 10595 goto out_unlock; 10596 } 10597 10598 if (old_prog == new_prog) { 10599 /* no-op, don't disturb drivers */ 10600 bpf_prog_put(new_prog); 10601 goto out_unlock; 10602 } 10603 10604 netdev_lock_ops(xdp_link->dev); 10605 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10606 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10607 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10608 xdp_link->flags, new_prog); 10609 netdev_unlock_ops(xdp_link->dev); 10610 if (err) 10611 goto out_unlock; 10612 10613 old_prog = xchg(&link->prog, new_prog); 10614 bpf_prog_put(old_prog); 10615 10616out_unlock: 10617 rtnl_unlock(); 10618 return err; 10619} 10620 10621static const struct bpf_link_ops bpf_xdp_link_lops = { 10622 .release = bpf_xdp_link_release, 10623 .dealloc = bpf_xdp_link_dealloc, 10624 .detach = bpf_xdp_link_detach, 10625 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10626 .fill_link_info = bpf_xdp_link_fill_link_info, 10627 .update_prog = bpf_xdp_link_update, 10628}; 10629 10630int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10631{ 10632 struct net *net = current->nsproxy->net_ns; 10633 struct bpf_link_primer link_primer; 10634 struct netlink_ext_ack extack = {}; 10635 struct bpf_xdp_link *link; 10636 struct net_device *dev; 10637 int err, fd; 10638 10639 rtnl_lock(); 10640 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10641 if (!dev) { 10642 rtnl_unlock(); 10643 return -EINVAL; 10644 } 10645 10646 link = kzalloc(sizeof(*link), GFP_USER); 10647 if (!link) { 10648 err = -ENOMEM; 10649 goto unlock; 10650 } 10651 10652 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog, 10653 attr->link_create.attach_type); 10654 link->dev = dev; 10655 link->flags = attr->link_create.flags; 10656 10657 err = bpf_link_prime(&link->link, &link_primer); 10658 if (err) { 10659 kfree(link); 10660 goto unlock; 10661 } 10662 10663 netdev_lock_ops(dev); 10664 err = dev_xdp_attach_link(dev, &extack, link); 10665 netdev_unlock_ops(dev); 10666 rtnl_unlock(); 10667 10668 if (err) { 10669 link->dev = NULL; 10670 bpf_link_cleanup(&link_primer); 10671 trace_bpf_xdp_link_attach_failed(extack._msg); 10672 goto out_put_dev; 10673 } 10674 10675 fd = bpf_link_settle(&link_primer); 10676 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10677 dev_put(dev); 10678 return fd; 10679 10680unlock: 10681 rtnl_unlock(); 10682 10683out_put_dev: 10684 dev_put(dev); 10685 return err; 10686} 10687 10688/** 10689 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10690 * @dev: device 10691 * @extack: netlink extended ack 10692 * @fd: new program fd or negative value to clear 10693 * @expected_fd: old program fd that userspace expects to replace or clear 10694 * @flags: xdp-related flags 10695 * 10696 * Set or clear a bpf program for a device 10697 */ 10698int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10699 int fd, int expected_fd, u32 flags) 10700{ 10701 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10702 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10703 int err; 10704 10705 ASSERT_RTNL(); 10706 10707 if (fd >= 0) { 10708 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10709 mode != XDP_MODE_SKB); 10710 if (IS_ERR(new_prog)) 10711 return PTR_ERR(new_prog); 10712 } 10713 10714 if (expected_fd >= 0) { 10715 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10716 mode != XDP_MODE_SKB); 10717 if (IS_ERR(old_prog)) { 10718 err = PTR_ERR(old_prog); 10719 old_prog = NULL; 10720 goto err_out; 10721 } 10722 } 10723 10724 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10725 10726err_out: 10727 if (err && new_prog) 10728 bpf_prog_put(new_prog); 10729 if (old_prog) 10730 bpf_prog_put(old_prog); 10731 return err; 10732} 10733 10734u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10735{ 10736 int i; 10737 10738 netdev_ops_assert_locked(dev); 10739 10740 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10741 if (dev->_rx[i].mp_params.mp_priv) 10742 /* The channel count is the idx plus 1. */ 10743 return i + 1; 10744 10745 return 0; 10746} 10747 10748/** 10749 * dev_index_reserve() - allocate an ifindex in a namespace 10750 * @net: the applicable net namespace 10751 * @ifindex: requested ifindex, pass %0 to get one allocated 10752 * 10753 * Allocate a ifindex for a new device. Caller must either use the ifindex 10754 * to store the device (via list_netdevice()) or call dev_index_release() 10755 * to give the index up. 10756 * 10757 * Return: a suitable unique value for a new device interface number or -errno. 10758 */ 10759static int dev_index_reserve(struct net *net, u32 ifindex) 10760{ 10761 int err; 10762 10763 if (ifindex > INT_MAX) { 10764 DEBUG_NET_WARN_ON_ONCE(1); 10765 return -EINVAL; 10766 } 10767 10768 if (!ifindex) 10769 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10770 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10771 else 10772 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10773 if (err < 0) 10774 return err; 10775 10776 return ifindex; 10777} 10778 10779static void dev_index_release(struct net *net, int ifindex) 10780{ 10781 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10782 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10783} 10784 10785static bool from_cleanup_net(void) 10786{ 10787#ifdef CONFIG_NET_NS 10788 return current == READ_ONCE(cleanup_net_task); 10789#else 10790 return false; 10791#endif 10792} 10793 10794/* Delayed registration/unregisteration */ 10795LIST_HEAD(net_todo_list); 10796DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10797atomic_t dev_unreg_count = ATOMIC_INIT(0); 10798 10799static void net_set_todo(struct net_device *dev) 10800{ 10801 list_add_tail(&dev->todo_list, &net_todo_list); 10802} 10803 10804static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10805 struct net_device *upper, netdev_features_t features) 10806{ 10807 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10808 netdev_features_t feature; 10809 int feature_bit; 10810 10811 for_each_netdev_feature(upper_disables, feature_bit) { 10812 feature = __NETIF_F_BIT(feature_bit); 10813 if (!(upper->wanted_features & feature) 10814 && (features & feature)) { 10815 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10816 &feature, upper->name); 10817 features &= ~feature; 10818 } 10819 } 10820 10821 return features; 10822} 10823 10824static void netdev_sync_lower_features(struct net_device *upper, 10825 struct net_device *lower, netdev_features_t features) 10826{ 10827 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10828 netdev_features_t feature; 10829 int feature_bit; 10830 10831 for_each_netdev_feature(upper_disables, feature_bit) { 10832 feature = __NETIF_F_BIT(feature_bit); 10833 if (!(features & feature) && (lower->features & feature)) { 10834 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10835 &feature, lower->name); 10836 netdev_lock_ops(lower); 10837 lower->wanted_features &= ~feature; 10838 __netdev_update_features(lower); 10839 10840 if (unlikely(lower->features & feature)) 10841 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10842 &feature, lower->name); 10843 else 10844 netdev_features_change(lower); 10845 netdev_unlock_ops(lower); 10846 } 10847 } 10848} 10849 10850static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10851{ 10852 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10853 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10854 bool hw_csum = features & NETIF_F_HW_CSUM; 10855 10856 return ip_csum || hw_csum; 10857} 10858 10859static netdev_features_t netdev_fix_features(struct net_device *dev, 10860 netdev_features_t features) 10861{ 10862 /* Fix illegal checksum combinations */ 10863 if ((features & NETIF_F_HW_CSUM) && 10864 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10865 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10866 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10867 } 10868 10869 /* TSO requires that SG is present as well. */ 10870 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10871 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10872 features &= ~NETIF_F_ALL_TSO; 10873 } 10874 10875 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10876 !(features & NETIF_F_IP_CSUM)) { 10877 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10878 features &= ~NETIF_F_TSO; 10879 features &= ~NETIF_F_TSO_ECN; 10880 } 10881 10882 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10883 !(features & NETIF_F_IPV6_CSUM)) { 10884 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10885 features &= ~NETIF_F_TSO6; 10886 } 10887 10888 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10889 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10890 features &= ~NETIF_F_TSO_MANGLEID; 10891 10892 /* TSO ECN requires that TSO is present as well. */ 10893 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10894 features &= ~NETIF_F_TSO_ECN; 10895 10896 /* Software GSO depends on SG. */ 10897 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10898 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10899 features &= ~NETIF_F_GSO; 10900 } 10901 10902 /* GSO partial features require GSO partial be set */ 10903 if ((features & dev->gso_partial_features) && 10904 !(features & NETIF_F_GSO_PARTIAL)) { 10905 netdev_dbg(dev, 10906 "Dropping partially supported GSO features since no GSO partial.\n"); 10907 features &= ~dev->gso_partial_features; 10908 } 10909 10910 if (!(features & NETIF_F_RXCSUM)) { 10911 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10912 * successfully merged by hardware must also have the 10913 * checksum verified by hardware. If the user does not 10914 * want to enable RXCSUM, logically, we should disable GRO_HW. 10915 */ 10916 if (features & NETIF_F_GRO_HW) { 10917 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10918 features &= ~NETIF_F_GRO_HW; 10919 } 10920 } 10921 10922 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10923 if (features & NETIF_F_RXFCS) { 10924 if (features & NETIF_F_LRO) { 10925 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10926 features &= ~NETIF_F_LRO; 10927 } 10928 10929 if (features & NETIF_F_GRO_HW) { 10930 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10931 features &= ~NETIF_F_GRO_HW; 10932 } 10933 } 10934 10935 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10936 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10937 features &= ~NETIF_F_LRO; 10938 } 10939 10940 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10941 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10942 features &= ~NETIF_F_HW_TLS_TX; 10943 } 10944 10945 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10946 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10947 features &= ~NETIF_F_HW_TLS_RX; 10948 } 10949 10950 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10951 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10952 features &= ~NETIF_F_GSO_UDP_L4; 10953 } 10954 10955 return features; 10956} 10957 10958int __netdev_update_features(struct net_device *dev) 10959{ 10960 struct net_device *upper, *lower; 10961 netdev_features_t features; 10962 struct list_head *iter; 10963 int err = -1; 10964 10965 ASSERT_RTNL(); 10966 netdev_ops_assert_locked(dev); 10967 10968 features = netdev_get_wanted_features(dev); 10969 10970 if (dev->netdev_ops->ndo_fix_features) 10971 features = dev->netdev_ops->ndo_fix_features(dev, features); 10972 10973 /* driver might be less strict about feature dependencies */ 10974 features = netdev_fix_features(dev, features); 10975 10976 /* some features can't be enabled if they're off on an upper device */ 10977 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10978 features = netdev_sync_upper_features(dev, upper, features); 10979 10980 if (dev->features == features) 10981 goto sync_lower; 10982 10983 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10984 &dev->features, &features); 10985 10986 if (dev->netdev_ops->ndo_set_features) 10987 err = dev->netdev_ops->ndo_set_features(dev, features); 10988 else 10989 err = 0; 10990 10991 if (unlikely(err < 0)) { 10992 netdev_err(dev, 10993 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10994 err, &features, &dev->features); 10995 /* return non-0 since some features might have changed and 10996 * it's better to fire a spurious notification than miss it 10997 */ 10998 return -1; 10999 } 11000 11001sync_lower: 11002 /* some features must be disabled on lower devices when disabled 11003 * on an upper device (think: bonding master or bridge) 11004 */ 11005 netdev_for_each_lower_dev(dev, lower, iter) 11006 netdev_sync_lower_features(dev, lower, features); 11007 11008 if (!err) { 11009 netdev_features_t diff = features ^ dev->features; 11010 11011 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 11012 /* udp_tunnel_{get,drop}_rx_info both need 11013 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 11014 * device, or they won't do anything. 11015 * Thus we need to update dev->features 11016 * *before* calling udp_tunnel_get_rx_info, 11017 * but *after* calling udp_tunnel_drop_rx_info. 11018 */ 11019 udp_tunnel_nic_lock(dev); 11020 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 11021 dev->features = features; 11022 udp_tunnel_get_rx_info(dev); 11023 } else { 11024 udp_tunnel_drop_rx_info(dev); 11025 } 11026 udp_tunnel_nic_unlock(dev); 11027 } 11028 11029 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 11030 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 11031 dev->features = features; 11032 err |= vlan_get_rx_ctag_filter_info(dev); 11033 } else { 11034 vlan_drop_rx_ctag_filter_info(dev); 11035 } 11036 } 11037 11038 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 11039 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 11040 dev->features = features; 11041 err |= vlan_get_rx_stag_filter_info(dev); 11042 } else { 11043 vlan_drop_rx_stag_filter_info(dev); 11044 } 11045 } 11046 11047 dev->features = features; 11048 } 11049 11050 return err < 0 ? 0 : 1; 11051} 11052 11053/** 11054 * netdev_update_features - recalculate device features 11055 * @dev: the device to check 11056 * 11057 * Recalculate dev->features set and send notifications if it 11058 * has changed. Should be called after driver or hardware dependent 11059 * conditions might have changed that influence the features. 11060 */ 11061void netdev_update_features(struct net_device *dev) 11062{ 11063 if (__netdev_update_features(dev)) 11064 netdev_features_change(dev); 11065} 11066EXPORT_SYMBOL(netdev_update_features); 11067 11068/** 11069 * netdev_change_features - recalculate device features 11070 * @dev: the device to check 11071 * 11072 * Recalculate dev->features set and send notifications even 11073 * if they have not changed. Should be called instead of 11074 * netdev_update_features() if also dev->vlan_features might 11075 * have changed to allow the changes to be propagated to stacked 11076 * VLAN devices. 11077 */ 11078void netdev_change_features(struct net_device *dev) 11079{ 11080 __netdev_update_features(dev); 11081 netdev_features_change(dev); 11082} 11083EXPORT_SYMBOL(netdev_change_features); 11084 11085/** 11086 * netif_stacked_transfer_operstate - transfer operstate 11087 * @rootdev: the root or lower level device to transfer state from 11088 * @dev: the device to transfer operstate to 11089 * 11090 * Transfer operational state from root to device. This is normally 11091 * called when a stacking relationship exists between the root 11092 * device and the device(a leaf device). 11093 */ 11094void netif_stacked_transfer_operstate(const struct net_device *rootdev, 11095 struct net_device *dev) 11096{ 11097 if (rootdev->operstate == IF_OPER_DORMANT) 11098 netif_dormant_on(dev); 11099 else 11100 netif_dormant_off(dev); 11101 11102 if (rootdev->operstate == IF_OPER_TESTING) 11103 netif_testing_on(dev); 11104 else 11105 netif_testing_off(dev); 11106 11107 if (netif_carrier_ok(rootdev)) 11108 netif_carrier_on(dev); 11109 else 11110 netif_carrier_off(dev); 11111} 11112EXPORT_SYMBOL(netif_stacked_transfer_operstate); 11113 11114static int netif_alloc_rx_queues(struct net_device *dev) 11115{ 11116 unsigned int i, count = dev->num_rx_queues; 11117 struct netdev_rx_queue *rx; 11118 size_t sz = count * sizeof(*rx); 11119 int err = 0; 11120 11121 BUG_ON(count < 1); 11122 11123 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11124 if (!rx) 11125 return -ENOMEM; 11126 11127 dev->_rx = rx; 11128 11129 for (i = 0; i < count; i++) { 11130 rx[i].dev = dev; 11131 11132 /* XDP RX-queue setup */ 11133 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 11134 if (err < 0) 11135 goto err_rxq_info; 11136 } 11137 return 0; 11138 11139err_rxq_info: 11140 /* Rollback successful reg's and free other resources */ 11141 while (i--) 11142 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 11143 kvfree(dev->_rx); 11144 dev->_rx = NULL; 11145 return err; 11146} 11147 11148static void netif_free_rx_queues(struct net_device *dev) 11149{ 11150 unsigned int i, count = dev->num_rx_queues; 11151 11152 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 11153 if (!dev->_rx) 11154 return; 11155 11156 for (i = 0; i < count; i++) 11157 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 11158 11159 kvfree(dev->_rx); 11160} 11161 11162static void netdev_init_one_queue(struct net_device *dev, 11163 struct netdev_queue *queue, void *_unused) 11164{ 11165 /* Initialize queue lock */ 11166 spin_lock_init(&queue->_xmit_lock); 11167 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 11168 queue->xmit_lock_owner = -1; 11169 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 11170 queue->dev = dev; 11171#ifdef CONFIG_BQL 11172 dql_init(&queue->dql, HZ); 11173#endif 11174} 11175 11176static void netif_free_tx_queues(struct net_device *dev) 11177{ 11178 kvfree(dev->_tx); 11179} 11180 11181static int netif_alloc_netdev_queues(struct net_device *dev) 11182{ 11183 unsigned int count = dev->num_tx_queues; 11184 struct netdev_queue *tx; 11185 size_t sz = count * sizeof(*tx); 11186 11187 if (count < 1 || count > 0xffff) 11188 return -EINVAL; 11189 11190 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11191 if (!tx) 11192 return -ENOMEM; 11193 11194 dev->_tx = tx; 11195 11196 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 11197 spin_lock_init(&dev->tx_global_lock); 11198 11199 return 0; 11200} 11201 11202void netif_tx_stop_all_queues(struct net_device *dev) 11203{ 11204 unsigned int i; 11205 11206 for (i = 0; i < dev->num_tx_queues; i++) { 11207 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 11208 11209 netif_tx_stop_queue(txq); 11210 } 11211} 11212EXPORT_SYMBOL(netif_tx_stop_all_queues); 11213 11214static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11215{ 11216 void __percpu *v; 11217 11218 /* Drivers implementing ndo_get_peer_dev must support tstat 11219 * accounting, so that skb_do_redirect() can bump the dev's 11220 * RX stats upon network namespace switch. 11221 */ 11222 if (dev->netdev_ops->ndo_get_peer_dev && 11223 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11224 return -EOPNOTSUPP; 11225 11226 switch (dev->pcpu_stat_type) { 11227 case NETDEV_PCPU_STAT_NONE: 11228 return 0; 11229 case NETDEV_PCPU_STAT_LSTATS: 11230 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11231 break; 11232 case NETDEV_PCPU_STAT_TSTATS: 11233 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11234 break; 11235 case NETDEV_PCPU_STAT_DSTATS: 11236 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11237 break; 11238 default: 11239 return -EINVAL; 11240 } 11241 11242 return v ? 0 : -ENOMEM; 11243} 11244 11245static void netdev_do_free_pcpu_stats(struct net_device *dev) 11246{ 11247 switch (dev->pcpu_stat_type) { 11248 case NETDEV_PCPU_STAT_NONE: 11249 return; 11250 case NETDEV_PCPU_STAT_LSTATS: 11251 free_percpu(dev->lstats); 11252 break; 11253 case NETDEV_PCPU_STAT_TSTATS: 11254 free_percpu(dev->tstats); 11255 break; 11256 case NETDEV_PCPU_STAT_DSTATS: 11257 free_percpu(dev->dstats); 11258 break; 11259 } 11260} 11261 11262static void netdev_free_phy_link_topology(struct net_device *dev) 11263{ 11264 struct phy_link_topology *topo = dev->link_topo; 11265 11266 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11267 xa_destroy(&topo->phys); 11268 kfree(topo); 11269 dev->link_topo = NULL; 11270 } 11271} 11272 11273/** 11274 * register_netdevice() - register a network device 11275 * @dev: device to register 11276 * 11277 * Take a prepared network device structure and make it externally accessible. 11278 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11279 * Callers must hold the rtnl lock - you may want register_netdev() 11280 * instead of this. 11281 */ 11282int register_netdevice(struct net_device *dev) 11283{ 11284 int ret; 11285 struct net *net = dev_net(dev); 11286 11287 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11288 NETDEV_FEATURE_COUNT); 11289 BUG_ON(dev_boot_phase); 11290 ASSERT_RTNL(); 11291 11292 might_sleep(); 11293 11294 /* When net_device's are persistent, this will be fatal. */ 11295 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11296 BUG_ON(!net); 11297 11298 ret = ethtool_check_ops(dev->ethtool_ops); 11299 if (ret) 11300 return ret; 11301 11302 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11303 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11304 mutex_init(&dev->ethtool->rss_lock); 11305 11306 spin_lock_init(&dev->addr_list_lock); 11307 netdev_set_addr_lockdep_class(dev); 11308 11309 ret = dev_get_valid_name(net, dev, dev->name); 11310 if (ret < 0) 11311 goto out; 11312 11313 ret = -ENOMEM; 11314 dev->name_node = netdev_name_node_head_alloc(dev); 11315 if (!dev->name_node) 11316 goto out; 11317 11318 /* Init, if this function is available */ 11319 if (dev->netdev_ops->ndo_init) { 11320 ret = dev->netdev_ops->ndo_init(dev); 11321 if (ret) { 11322 if (ret > 0) 11323 ret = -EIO; 11324 goto err_free_name; 11325 } 11326 } 11327 11328 if (((dev->hw_features | dev->features) & 11329 NETIF_F_HW_VLAN_CTAG_FILTER) && 11330 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11331 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11332 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11333 ret = -EINVAL; 11334 goto err_uninit; 11335 } 11336 11337 ret = netdev_do_alloc_pcpu_stats(dev); 11338 if (ret) 11339 goto err_uninit; 11340 11341 ret = dev_index_reserve(net, dev->ifindex); 11342 if (ret < 0) 11343 goto err_free_pcpu; 11344 dev->ifindex = ret; 11345 11346 /* Transfer changeable features to wanted_features and enable 11347 * software offloads (GSO and GRO). 11348 */ 11349 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11350 dev->features |= NETIF_F_SOFT_FEATURES; 11351 11352 if (dev->udp_tunnel_nic_info) { 11353 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11354 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11355 } 11356 11357 dev->wanted_features = dev->features & dev->hw_features; 11358 11359 if (!(dev->flags & IFF_LOOPBACK)) 11360 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11361 11362 /* If IPv4 TCP segmentation offload is supported we should also 11363 * allow the device to enable segmenting the frame with the option 11364 * of ignoring a static IP ID value. This doesn't enable the 11365 * feature itself but allows the user to enable it later. 11366 */ 11367 if (dev->hw_features & NETIF_F_TSO) 11368 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11369 if (dev->vlan_features & NETIF_F_TSO) 11370 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11371 if (dev->mpls_features & NETIF_F_TSO) 11372 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11373 if (dev->hw_enc_features & NETIF_F_TSO) 11374 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11375 11376 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11377 */ 11378 dev->vlan_features |= NETIF_F_HIGHDMA; 11379 11380 /* Make NETIF_F_SG inheritable to tunnel devices. 11381 */ 11382 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11383 11384 /* Make NETIF_F_SG inheritable to MPLS. 11385 */ 11386 dev->mpls_features |= NETIF_F_SG; 11387 11388 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11389 ret = notifier_to_errno(ret); 11390 if (ret) 11391 goto err_ifindex_release; 11392 11393 ret = netdev_register_kobject(dev); 11394 11395 netdev_lock(dev); 11396 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11397 netdev_unlock(dev); 11398 11399 if (ret) 11400 goto err_uninit_notify; 11401 11402 netdev_lock_ops(dev); 11403 __netdev_update_features(dev); 11404 netdev_unlock_ops(dev); 11405 11406 /* 11407 * Default initial state at registry is that the 11408 * device is present. 11409 */ 11410 11411 set_bit(__LINK_STATE_PRESENT, &dev->state); 11412 11413 linkwatch_init_dev(dev); 11414 11415 dev_init_scheduler(dev); 11416 11417 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11418 list_netdevice(dev); 11419 11420 add_device_randomness(dev->dev_addr, dev->addr_len); 11421 11422 /* If the device has permanent device address, driver should 11423 * set dev_addr and also addr_assign_type should be set to 11424 * NET_ADDR_PERM (default value). 11425 */ 11426 if (dev->addr_assign_type == NET_ADDR_PERM) 11427 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11428 11429 /* Notify protocols, that a new device appeared. */ 11430 netdev_lock_ops(dev); 11431 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11432 netdev_unlock_ops(dev); 11433 ret = notifier_to_errno(ret); 11434 if (ret) { 11435 /* Expect explicit free_netdev() on failure */ 11436 dev->needs_free_netdev = false; 11437 unregister_netdevice_queue(dev, NULL); 11438 goto out; 11439 } 11440 /* 11441 * Prevent userspace races by waiting until the network 11442 * device is fully setup before sending notifications. 11443 */ 11444 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11445 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11446 11447out: 11448 return ret; 11449 11450err_uninit_notify: 11451 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11452err_ifindex_release: 11453 dev_index_release(net, dev->ifindex); 11454err_free_pcpu: 11455 netdev_do_free_pcpu_stats(dev); 11456err_uninit: 11457 if (dev->netdev_ops->ndo_uninit) 11458 dev->netdev_ops->ndo_uninit(dev); 11459 if (dev->priv_destructor) 11460 dev->priv_destructor(dev); 11461err_free_name: 11462 netdev_name_node_free(dev->name_node); 11463 goto out; 11464} 11465EXPORT_SYMBOL(register_netdevice); 11466 11467/* Initialize the core of a dummy net device. 11468 * The setup steps dummy netdevs need which normal netdevs get by going 11469 * through register_netdevice(). 11470 */ 11471static void init_dummy_netdev(struct net_device *dev) 11472{ 11473 /* make sure we BUG if trying to hit standard 11474 * register/unregister code path 11475 */ 11476 dev->reg_state = NETREG_DUMMY; 11477 11478 /* a dummy interface is started by default */ 11479 set_bit(__LINK_STATE_PRESENT, &dev->state); 11480 set_bit(__LINK_STATE_START, &dev->state); 11481 11482 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11483 * because users of this 'device' dont need to change 11484 * its refcount. 11485 */ 11486} 11487 11488/** 11489 * register_netdev - register a network device 11490 * @dev: device to register 11491 * 11492 * Take a completed network device structure and add it to the kernel 11493 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11494 * chain. 0 is returned on success. A negative errno code is returned 11495 * on a failure to set up the device, or if the name is a duplicate. 11496 * 11497 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11498 * and expands the device name if you passed a format string to 11499 * alloc_netdev. 11500 */ 11501int register_netdev(struct net_device *dev) 11502{ 11503 struct net *net = dev_net(dev); 11504 int err; 11505 11506 if (rtnl_net_lock_killable(net)) 11507 return -EINTR; 11508 11509 err = register_netdevice(dev); 11510 11511 rtnl_net_unlock(net); 11512 11513 return err; 11514} 11515EXPORT_SYMBOL(register_netdev); 11516 11517int netdev_refcnt_read(const struct net_device *dev) 11518{ 11519#ifdef CONFIG_PCPU_DEV_REFCNT 11520 int i, refcnt = 0; 11521 11522 for_each_possible_cpu(i) 11523 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11524 return refcnt; 11525#else 11526 return refcount_read(&dev->dev_refcnt); 11527#endif 11528} 11529EXPORT_SYMBOL(netdev_refcnt_read); 11530 11531int netdev_unregister_timeout_secs __read_mostly = 10; 11532 11533#define WAIT_REFS_MIN_MSECS 1 11534#define WAIT_REFS_MAX_MSECS 250 11535/** 11536 * netdev_wait_allrefs_any - wait until all references are gone. 11537 * @list: list of net_devices to wait on 11538 * 11539 * This is called when unregistering network devices. 11540 * 11541 * Any protocol or device that holds a reference should register 11542 * for netdevice notification, and cleanup and put back the 11543 * reference if they receive an UNREGISTER event. 11544 * We can get stuck here if buggy protocols don't correctly 11545 * call dev_put. 11546 */ 11547static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11548{ 11549 unsigned long rebroadcast_time, warning_time; 11550 struct net_device *dev; 11551 int wait = 0; 11552 11553 rebroadcast_time = warning_time = jiffies; 11554 11555 list_for_each_entry(dev, list, todo_list) 11556 if (netdev_refcnt_read(dev) == 1) 11557 return dev; 11558 11559 while (true) { 11560 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11561 rtnl_lock(); 11562 11563 /* Rebroadcast unregister notification */ 11564 list_for_each_entry(dev, list, todo_list) 11565 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11566 11567 __rtnl_unlock(); 11568 rcu_barrier(); 11569 rtnl_lock(); 11570 11571 list_for_each_entry(dev, list, todo_list) 11572 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11573 &dev->state)) { 11574 /* We must not have linkwatch events 11575 * pending on unregister. If this 11576 * happens, we simply run the queue 11577 * unscheduled, resulting in a noop 11578 * for this device. 11579 */ 11580 linkwatch_run_queue(); 11581 break; 11582 } 11583 11584 __rtnl_unlock(); 11585 11586 rebroadcast_time = jiffies; 11587 } 11588 11589 rcu_barrier(); 11590 11591 if (!wait) { 11592 wait = WAIT_REFS_MIN_MSECS; 11593 } else { 11594 msleep(wait); 11595 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11596 } 11597 11598 list_for_each_entry(dev, list, todo_list) 11599 if (netdev_refcnt_read(dev) == 1) 11600 return dev; 11601 11602 if (time_after(jiffies, warning_time + 11603 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11604 list_for_each_entry(dev, list, todo_list) { 11605 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11606 dev->name, netdev_refcnt_read(dev)); 11607 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11608 } 11609 11610 warning_time = jiffies; 11611 } 11612 } 11613} 11614 11615/* The sequence is: 11616 * 11617 * rtnl_lock(); 11618 * ... 11619 * register_netdevice(x1); 11620 * register_netdevice(x2); 11621 * ... 11622 * unregister_netdevice(y1); 11623 * unregister_netdevice(y2); 11624 * ... 11625 * rtnl_unlock(); 11626 * free_netdev(y1); 11627 * free_netdev(y2); 11628 * 11629 * We are invoked by rtnl_unlock(). 11630 * This allows us to deal with problems: 11631 * 1) We can delete sysfs objects which invoke hotplug 11632 * without deadlocking with linkwatch via keventd. 11633 * 2) Since we run with the RTNL semaphore not held, we can sleep 11634 * safely in order to wait for the netdev refcnt to drop to zero. 11635 * 11636 * We must not return until all unregister events added during 11637 * the interval the lock was held have been completed. 11638 */ 11639void netdev_run_todo(void) 11640{ 11641 struct net_device *dev, *tmp; 11642 struct list_head list; 11643 int cnt; 11644#ifdef CONFIG_LOCKDEP 11645 struct list_head unlink_list; 11646 11647 list_replace_init(&net_unlink_list, &unlink_list); 11648 11649 while (!list_empty(&unlink_list)) { 11650 dev = list_first_entry(&unlink_list, struct net_device, 11651 unlink_list); 11652 list_del_init(&dev->unlink_list); 11653 dev->nested_level = dev->lower_level - 1; 11654 } 11655#endif 11656 11657 /* Snapshot list, allow later requests */ 11658 list_replace_init(&net_todo_list, &list); 11659 11660 __rtnl_unlock(); 11661 11662 /* Wait for rcu callbacks to finish before next phase */ 11663 if (!list_empty(&list)) 11664 rcu_barrier(); 11665 11666 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11667 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11668 netdev_WARN(dev, "run_todo but not unregistering\n"); 11669 list_del(&dev->todo_list); 11670 continue; 11671 } 11672 11673 netdev_lock(dev); 11674 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11675 netdev_unlock(dev); 11676 linkwatch_sync_dev(dev); 11677 } 11678 11679 cnt = 0; 11680 while (!list_empty(&list)) { 11681 dev = netdev_wait_allrefs_any(&list); 11682 list_del(&dev->todo_list); 11683 11684 /* paranoia */ 11685 BUG_ON(netdev_refcnt_read(dev) != 1); 11686 BUG_ON(!list_empty(&dev->ptype_all)); 11687 BUG_ON(!list_empty(&dev->ptype_specific)); 11688 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11689 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11690 11691 netdev_do_free_pcpu_stats(dev); 11692 if (dev->priv_destructor) 11693 dev->priv_destructor(dev); 11694 if (dev->needs_free_netdev) 11695 free_netdev(dev); 11696 11697 cnt++; 11698 11699 /* Free network device */ 11700 kobject_put(&dev->dev.kobj); 11701 } 11702 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11703 wake_up(&netdev_unregistering_wq); 11704} 11705 11706/* Collate per-cpu network dstats statistics 11707 * 11708 * Read per-cpu network statistics from dev->dstats and populate the related 11709 * fields in @s. 11710 */ 11711static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11712 const struct pcpu_dstats __percpu *dstats) 11713{ 11714 int cpu; 11715 11716 for_each_possible_cpu(cpu) { 11717 u64 rx_packets, rx_bytes, rx_drops; 11718 u64 tx_packets, tx_bytes, tx_drops; 11719 const struct pcpu_dstats *stats; 11720 unsigned int start; 11721 11722 stats = per_cpu_ptr(dstats, cpu); 11723 do { 11724 start = u64_stats_fetch_begin(&stats->syncp); 11725 rx_packets = u64_stats_read(&stats->rx_packets); 11726 rx_bytes = u64_stats_read(&stats->rx_bytes); 11727 rx_drops = u64_stats_read(&stats->rx_drops); 11728 tx_packets = u64_stats_read(&stats->tx_packets); 11729 tx_bytes = u64_stats_read(&stats->tx_bytes); 11730 tx_drops = u64_stats_read(&stats->tx_drops); 11731 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11732 11733 s->rx_packets += rx_packets; 11734 s->rx_bytes += rx_bytes; 11735 s->rx_dropped += rx_drops; 11736 s->tx_packets += tx_packets; 11737 s->tx_bytes += tx_bytes; 11738 s->tx_dropped += tx_drops; 11739 } 11740} 11741 11742/* ndo_get_stats64 implementation for dtstats-based accounting. 11743 * 11744 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11745 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11746 */ 11747static void dev_get_dstats64(const struct net_device *dev, 11748 struct rtnl_link_stats64 *s) 11749{ 11750 netdev_stats_to_stats64(s, &dev->stats); 11751 dev_fetch_dstats(s, dev->dstats); 11752} 11753 11754/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11755 * all the same fields in the same order as net_device_stats, with only 11756 * the type differing, but rtnl_link_stats64 may have additional fields 11757 * at the end for newer counters. 11758 */ 11759void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11760 const struct net_device_stats *netdev_stats) 11761{ 11762 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11763 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11764 u64 *dst = (u64 *)stats64; 11765 11766 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11767 for (i = 0; i < n; i++) 11768 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11769 /* zero out counters that only exist in rtnl_link_stats64 */ 11770 memset((char *)stats64 + n * sizeof(u64), 0, 11771 sizeof(*stats64) - n * sizeof(u64)); 11772} 11773EXPORT_SYMBOL(netdev_stats_to_stats64); 11774 11775static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11776 struct net_device *dev) 11777{ 11778 struct net_device_core_stats __percpu *p; 11779 11780 p = alloc_percpu_gfp(struct net_device_core_stats, 11781 GFP_ATOMIC | __GFP_NOWARN); 11782 11783 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11784 free_percpu(p); 11785 11786 /* This READ_ONCE() pairs with the cmpxchg() above */ 11787 return READ_ONCE(dev->core_stats); 11788} 11789 11790noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11791{ 11792 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11793 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11794 unsigned long __percpu *field; 11795 11796 if (unlikely(!p)) { 11797 p = netdev_core_stats_alloc(dev); 11798 if (!p) 11799 return; 11800 } 11801 11802 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11803 this_cpu_inc(*field); 11804} 11805EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11806 11807/** 11808 * dev_get_stats - get network device statistics 11809 * @dev: device to get statistics from 11810 * @storage: place to store stats 11811 * 11812 * Get network statistics from device. Return @storage. 11813 * The device driver may provide its own method by setting 11814 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11815 * otherwise the internal statistics structure is used. 11816 */ 11817struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11818 struct rtnl_link_stats64 *storage) 11819{ 11820 const struct net_device_ops *ops = dev->netdev_ops; 11821 const struct net_device_core_stats __percpu *p; 11822 11823 /* 11824 * IPv{4,6} and udp tunnels share common stat helpers and use 11825 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11826 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11827 */ 11828 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11829 offsetof(struct pcpu_dstats, rx_bytes)); 11830 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11831 offsetof(struct pcpu_dstats, rx_packets)); 11832 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11833 offsetof(struct pcpu_dstats, tx_bytes)); 11834 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11835 offsetof(struct pcpu_dstats, tx_packets)); 11836 11837 if (ops->ndo_get_stats64) { 11838 memset(storage, 0, sizeof(*storage)); 11839 ops->ndo_get_stats64(dev, storage); 11840 } else if (ops->ndo_get_stats) { 11841 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11842 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11843 dev_get_tstats64(dev, storage); 11844 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11845 dev_get_dstats64(dev, storage); 11846 } else { 11847 netdev_stats_to_stats64(storage, &dev->stats); 11848 } 11849 11850 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11851 p = READ_ONCE(dev->core_stats); 11852 if (p) { 11853 const struct net_device_core_stats *core_stats; 11854 int i; 11855 11856 for_each_possible_cpu(i) { 11857 core_stats = per_cpu_ptr(p, i); 11858 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11859 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11860 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11861 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11862 } 11863 } 11864 return storage; 11865} 11866EXPORT_SYMBOL(dev_get_stats); 11867 11868/** 11869 * dev_fetch_sw_netstats - get per-cpu network device statistics 11870 * @s: place to store stats 11871 * @netstats: per-cpu network stats to read from 11872 * 11873 * Read per-cpu network statistics and populate the related fields in @s. 11874 */ 11875void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11876 const struct pcpu_sw_netstats __percpu *netstats) 11877{ 11878 int cpu; 11879 11880 for_each_possible_cpu(cpu) { 11881 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11882 const struct pcpu_sw_netstats *stats; 11883 unsigned int start; 11884 11885 stats = per_cpu_ptr(netstats, cpu); 11886 do { 11887 start = u64_stats_fetch_begin(&stats->syncp); 11888 rx_packets = u64_stats_read(&stats->rx_packets); 11889 rx_bytes = u64_stats_read(&stats->rx_bytes); 11890 tx_packets = u64_stats_read(&stats->tx_packets); 11891 tx_bytes = u64_stats_read(&stats->tx_bytes); 11892 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11893 11894 s->rx_packets += rx_packets; 11895 s->rx_bytes += rx_bytes; 11896 s->tx_packets += tx_packets; 11897 s->tx_bytes += tx_bytes; 11898 } 11899} 11900EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11901 11902/** 11903 * dev_get_tstats64 - ndo_get_stats64 implementation 11904 * @dev: device to get statistics from 11905 * @s: place to store stats 11906 * 11907 * Populate @s from dev->stats and dev->tstats. Can be used as 11908 * ndo_get_stats64() callback. 11909 */ 11910void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11911{ 11912 netdev_stats_to_stats64(s, &dev->stats); 11913 dev_fetch_sw_netstats(s, dev->tstats); 11914} 11915EXPORT_SYMBOL_GPL(dev_get_tstats64); 11916 11917struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11918{ 11919 struct netdev_queue *queue = dev_ingress_queue(dev); 11920 11921#ifdef CONFIG_NET_CLS_ACT 11922 if (queue) 11923 return queue; 11924 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11925 if (!queue) 11926 return NULL; 11927 netdev_init_one_queue(dev, queue, NULL); 11928 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11929 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11930 rcu_assign_pointer(dev->ingress_queue, queue); 11931#endif 11932 return queue; 11933} 11934 11935static const struct ethtool_ops default_ethtool_ops; 11936 11937void netdev_set_default_ethtool_ops(struct net_device *dev, 11938 const struct ethtool_ops *ops) 11939{ 11940 if (dev->ethtool_ops == &default_ethtool_ops) 11941 dev->ethtool_ops = ops; 11942} 11943EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11944 11945/** 11946 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11947 * @dev: netdev to enable the IRQ coalescing on 11948 * 11949 * Sets a conservative default for SW IRQ coalescing. Users can use 11950 * sysfs attributes to override the default values. 11951 */ 11952void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11953{ 11954 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11955 11956 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11957 netdev_set_gro_flush_timeout(dev, 20000); 11958 netdev_set_defer_hard_irqs(dev, 1); 11959 } 11960} 11961EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11962 11963/** 11964 * alloc_netdev_mqs - allocate network device 11965 * @sizeof_priv: size of private data to allocate space for 11966 * @name: device name format string 11967 * @name_assign_type: origin of device name 11968 * @setup: callback to initialize device 11969 * @txqs: the number of TX subqueues to allocate 11970 * @rxqs: the number of RX subqueues to allocate 11971 * 11972 * Allocates a struct net_device with private data area for driver use 11973 * and performs basic initialization. Also allocates subqueue structs 11974 * for each queue on the device. 11975 */ 11976struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11977 unsigned char name_assign_type, 11978 void (*setup)(struct net_device *), 11979 unsigned int txqs, unsigned int rxqs) 11980{ 11981 struct net_device *dev; 11982 size_t napi_config_sz; 11983 unsigned int maxqs; 11984 11985 BUG_ON(strlen(name) >= sizeof(dev->name)); 11986 11987 if (txqs < 1) { 11988 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11989 return NULL; 11990 } 11991 11992 if (rxqs < 1) { 11993 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11994 return NULL; 11995 } 11996 11997 maxqs = max(txqs, rxqs); 11998 11999 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 12000 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 12001 if (!dev) 12002 return NULL; 12003 12004 dev->priv_len = sizeof_priv; 12005 12006 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 12007#ifdef CONFIG_PCPU_DEV_REFCNT 12008 dev->pcpu_refcnt = alloc_percpu(int); 12009 if (!dev->pcpu_refcnt) 12010 goto free_dev; 12011 __dev_hold(dev); 12012#else 12013 refcount_set(&dev->dev_refcnt, 1); 12014#endif 12015 12016 if (dev_addr_init(dev)) 12017 goto free_pcpu; 12018 12019 dev_mc_init(dev); 12020 dev_uc_init(dev); 12021 12022 dev_net_set(dev, &init_net); 12023 12024 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 12025 dev->xdp_zc_max_segs = 1; 12026 dev->gso_max_segs = GSO_MAX_SEGS; 12027 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 12028 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 12029 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 12030 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 12031 dev->tso_max_segs = TSO_MAX_SEGS; 12032 dev->upper_level = 1; 12033 dev->lower_level = 1; 12034#ifdef CONFIG_LOCKDEP 12035 dev->nested_level = 0; 12036 INIT_LIST_HEAD(&dev->unlink_list); 12037#endif 12038 12039 INIT_LIST_HEAD(&dev->napi_list); 12040 INIT_LIST_HEAD(&dev->unreg_list); 12041 INIT_LIST_HEAD(&dev->close_list); 12042 INIT_LIST_HEAD(&dev->link_watch_list); 12043 INIT_LIST_HEAD(&dev->adj_list.upper); 12044 INIT_LIST_HEAD(&dev->adj_list.lower); 12045 INIT_LIST_HEAD(&dev->ptype_all); 12046 INIT_LIST_HEAD(&dev->ptype_specific); 12047 INIT_LIST_HEAD(&dev->net_notifier_list); 12048#ifdef CONFIG_NET_SCHED 12049 hash_init(dev->qdisc_hash); 12050#endif 12051 12052 mutex_init(&dev->lock); 12053 12054 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 12055 setup(dev); 12056 12057 if (!dev->tx_queue_len) { 12058 dev->priv_flags |= IFF_NO_QUEUE; 12059 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 12060 } 12061 12062 dev->num_tx_queues = txqs; 12063 dev->real_num_tx_queues = txqs; 12064 if (netif_alloc_netdev_queues(dev)) 12065 goto free_all; 12066 12067 dev->num_rx_queues = rxqs; 12068 dev->real_num_rx_queues = rxqs; 12069 if (netif_alloc_rx_queues(dev)) 12070 goto free_all; 12071 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 12072 if (!dev->ethtool) 12073 goto free_all; 12074 12075 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 12076 if (!dev->cfg) 12077 goto free_all; 12078 dev->cfg_pending = dev->cfg; 12079 12080 dev->num_napi_configs = maxqs; 12081 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 12082 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 12083 if (!dev->napi_config) 12084 goto free_all; 12085 12086 strscpy(dev->name, name); 12087 dev->name_assign_type = name_assign_type; 12088 dev->group = INIT_NETDEV_GROUP; 12089 if (!dev->ethtool_ops) 12090 dev->ethtool_ops = &default_ethtool_ops; 12091 12092 nf_hook_netdev_init(dev); 12093 12094 return dev; 12095 12096free_all: 12097 free_netdev(dev); 12098 return NULL; 12099 12100free_pcpu: 12101#ifdef CONFIG_PCPU_DEV_REFCNT 12102 free_percpu(dev->pcpu_refcnt); 12103free_dev: 12104#endif 12105 kvfree(dev); 12106 return NULL; 12107} 12108EXPORT_SYMBOL(alloc_netdev_mqs); 12109 12110static void netdev_napi_exit(struct net_device *dev) 12111{ 12112 if (!list_empty(&dev->napi_list)) { 12113 struct napi_struct *p, *n; 12114 12115 netdev_lock(dev); 12116 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 12117 __netif_napi_del_locked(p); 12118 netdev_unlock(dev); 12119 12120 synchronize_net(); 12121 } 12122 12123 kvfree(dev->napi_config); 12124} 12125 12126/** 12127 * free_netdev - free network device 12128 * @dev: device 12129 * 12130 * This function does the last stage of destroying an allocated device 12131 * interface. The reference to the device object is released. If this 12132 * is the last reference then it will be freed.Must be called in process 12133 * context. 12134 */ 12135void free_netdev(struct net_device *dev) 12136{ 12137 might_sleep(); 12138 12139 /* When called immediately after register_netdevice() failed the unwind 12140 * handling may still be dismantling the device. Handle that case by 12141 * deferring the free. 12142 */ 12143 if (dev->reg_state == NETREG_UNREGISTERING) { 12144 ASSERT_RTNL(); 12145 dev->needs_free_netdev = true; 12146 return; 12147 } 12148 12149 WARN_ON(dev->cfg != dev->cfg_pending); 12150 kfree(dev->cfg); 12151 kfree(dev->ethtool); 12152 netif_free_tx_queues(dev); 12153 netif_free_rx_queues(dev); 12154 12155 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 12156 12157 /* Flush device addresses */ 12158 dev_addr_flush(dev); 12159 12160 netdev_napi_exit(dev); 12161 12162 netif_del_cpu_rmap(dev); 12163 12164 ref_tracker_dir_exit(&dev->refcnt_tracker); 12165#ifdef CONFIG_PCPU_DEV_REFCNT 12166 free_percpu(dev->pcpu_refcnt); 12167 dev->pcpu_refcnt = NULL; 12168#endif 12169 free_percpu(dev->core_stats); 12170 dev->core_stats = NULL; 12171 free_percpu(dev->xdp_bulkq); 12172 dev->xdp_bulkq = NULL; 12173 12174 netdev_free_phy_link_topology(dev); 12175 12176 mutex_destroy(&dev->lock); 12177 12178 /* Compatibility with error handling in drivers */ 12179 if (dev->reg_state == NETREG_UNINITIALIZED || 12180 dev->reg_state == NETREG_DUMMY) { 12181 kvfree(dev); 12182 return; 12183 } 12184 12185 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 12186 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 12187 12188 /* will free via device release */ 12189 put_device(&dev->dev); 12190} 12191EXPORT_SYMBOL(free_netdev); 12192 12193/** 12194 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 12195 * @sizeof_priv: size of private data to allocate space for 12196 * 12197 * Return: the allocated net_device on success, NULL otherwise 12198 */ 12199struct net_device *alloc_netdev_dummy(int sizeof_priv) 12200{ 12201 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 12202 init_dummy_netdev); 12203} 12204EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 12205 12206/** 12207 * synchronize_net - Synchronize with packet receive processing 12208 * 12209 * Wait for packets currently being received to be done. 12210 * Does not block later packets from starting. 12211 */ 12212void synchronize_net(void) 12213{ 12214 might_sleep(); 12215 if (from_cleanup_net() || rtnl_is_locked()) 12216 synchronize_rcu_expedited(); 12217 else 12218 synchronize_rcu(); 12219} 12220EXPORT_SYMBOL(synchronize_net); 12221 12222static void netdev_rss_contexts_free(struct net_device *dev) 12223{ 12224 struct ethtool_rxfh_context *ctx; 12225 unsigned long context; 12226 12227 mutex_lock(&dev->ethtool->rss_lock); 12228 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12229 xa_erase(&dev->ethtool->rss_ctx, context); 12230 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12231 kfree(ctx); 12232 } 12233 xa_destroy(&dev->ethtool->rss_ctx); 12234 mutex_unlock(&dev->ethtool->rss_lock); 12235} 12236 12237/** 12238 * unregister_netdevice_queue - remove device from the kernel 12239 * @dev: device 12240 * @head: list 12241 * 12242 * This function shuts down a device interface and removes it 12243 * from the kernel tables. 12244 * If head not NULL, device is queued to be unregistered later. 12245 * 12246 * Callers must hold the rtnl semaphore. You may want 12247 * unregister_netdev() instead of this. 12248 */ 12249 12250void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12251{ 12252 ASSERT_RTNL(); 12253 12254 if (head) { 12255 list_move_tail(&dev->unreg_list, head); 12256 } else { 12257 LIST_HEAD(single); 12258 12259 list_add(&dev->unreg_list, &single); 12260 unregister_netdevice_many(&single); 12261 } 12262} 12263EXPORT_SYMBOL(unregister_netdevice_queue); 12264 12265static void dev_memory_provider_uninstall(struct net_device *dev) 12266{ 12267 unsigned int i; 12268 12269 for (i = 0; i < dev->real_num_rx_queues; i++) { 12270 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12271 struct pp_memory_provider_params *p = &rxq->mp_params; 12272 12273 if (p->mp_ops && p->mp_ops->uninstall) 12274 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12275 } 12276} 12277 12278/* devices must be UP and netdev_lock()'d */ 12279static void netif_close_many_and_unlock(struct list_head *close_head) 12280{ 12281 struct net_device *dev, *tmp; 12282 12283 netif_close_many(close_head, false); 12284 12285 /* ... now unlock them */ 12286 list_for_each_entry_safe(dev, tmp, close_head, close_list) { 12287 netdev_unlock(dev); 12288 list_del_init(&dev->close_list); 12289 } 12290} 12291 12292static void netif_close_many_and_unlock_cond(struct list_head *close_head) 12293{ 12294#ifdef CONFIG_LOCKDEP 12295 /* We can only track up to MAX_LOCK_DEPTH locks per task. 12296 * 12297 * Reserve half the available slots for additional locks possibly 12298 * taken by notifiers and (soft)irqs. 12299 */ 12300 unsigned int limit = MAX_LOCK_DEPTH / 2; 12301 12302 if (lockdep_depth(current) > limit) 12303 netif_close_many_and_unlock(close_head); 12304#endif 12305} 12306 12307void unregister_netdevice_many_notify(struct list_head *head, 12308 u32 portid, const struct nlmsghdr *nlh) 12309{ 12310 struct net_device *dev, *tmp; 12311 LIST_HEAD(close_head); 12312 int cnt = 0; 12313 12314 BUG_ON(dev_boot_phase); 12315 ASSERT_RTNL(); 12316 12317 if (list_empty(head)) 12318 return; 12319 12320 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12321 /* Some devices call without registering 12322 * for initialization unwind. Remove those 12323 * devices and proceed with the remaining. 12324 */ 12325 if (dev->reg_state == NETREG_UNINITIALIZED) { 12326 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12327 dev->name, dev); 12328 12329 WARN_ON(1); 12330 list_del(&dev->unreg_list); 12331 continue; 12332 } 12333 dev->dismantle = true; 12334 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12335 } 12336 12337 /* If device is running, close it first. Start with ops locked... */ 12338 list_for_each_entry(dev, head, unreg_list) { 12339 if (!(dev->flags & IFF_UP)) 12340 continue; 12341 if (netdev_need_ops_lock(dev)) { 12342 list_add_tail(&dev->close_list, &close_head); 12343 netdev_lock(dev); 12344 } 12345 netif_close_many_and_unlock_cond(&close_head); 12346 } 12347 netif_close_many_and_unlock(&close_head); 12348 /* ... now go over the rest. */ 12349 list_for_each_entry(dev, head, unreg_list) { 12350 if (!netdev_need_ops_lock(dev)) 12351 list_add_tail(&dev->close_list, &close_head); 12352 } 12353 netif_close_many(&close_head, true); 12354 12355 list_for_each_entry(dev, head, unreg_list) { 12356 /* And unlink it from device chain. */ 12357 unlist_netdevice(dev); 12358 netdev_lock(dev); 12359 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12360 netdev_unlock(dev); 12361 } 12362 flush_all_backlogs(); 12363 12364 synchronize_net(); 12365 12366 list_for_each_entry(dev, head, unreg_list) { 12367 struct sk_buff *skb = NULL; 12368 12369 /* Shutdown queueing discipline. */ 12370 netdev_lock_ops(dev); 12371 dev_shutdown(dev); 12372 dev_tcx_uninstall(dev); 12373 dev_xdp_uninstall(dev); 12374 dev_memory_provider_uninstall(dev); 12375 netdev_unlock_ops(dev); 12376 bpf_dev_bound_netdev_unregister(dev); 12377 12378 netdev_offload_xstats_disable_all(dev); 12379 12380 /* Notify protocols, that we are about to destroy 12381 * this device. They should clean all the things. 12382 */ 12383 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12384 12385 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12386 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12387 GFP_KERNEL, NULL, 0, 12388 portid, nlh); 12389 12390 /* 12391 * Flush the unicast and multicast chains 12392 */ 12393 dev_uc_flush(dev); 12394 dev_mc_flush(dev); 12395 12396 netdev_name_node_alt_flush(dev); 12397 netdev_name_node_free(dev->name_node); 12398 12399 netdev_rss_contexts_free(dev); 12400 12401 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12402 12403 if (dev->netdev_ops->ndo_uninit) 12404 dev->netdev_ops->ndo_uninit(dev); 12405 12406 mutex_destroy(&dev->ethtool->rss_lock); 12407 12408 net_shaper_flush_netdev(dev); 12409 12410 if (skb) 12411 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12412 12413 /* Notifier chain MUST detach us all upper devices. */ 12414 WARN_ON(netdev_has_any_upper_dev(dev)); 12415 WARN_ON(netdev_has_any_lower_dev(dev)); 12416 12417 /* Remove entries from kobject tree */ 12418 netdev_unregister_kobject(dev); 12419#ifdef CONFIG_XPS 12420 /* Remove XPS queueing entries */ 12421 netif_reset_xps_queues_gt(dev, 0); 12422#endif 12423 } 12424 12425 synchronize_net(); 12426 12427 list_for_each_entry(dev, head, unreg_list) { 12428 netdev_put(dev, &dev->dev_registered_tracker); 12429 net_set_todo(dev); 12430 cnt++; 12431 } 12432 atomic_add(cnt, &dev_unreg_count); 12433 12434 list_del(head); 12435} 12436 12437/** 12438 * unregister_netdevice_many - unregister many devices 12439 * @head: list of devices 12440 * 12441 * Note: As most callers use a stack allocated list_head, 12442 * we force a list_del() to make sure stack won't be corrupted later. 12443 */ 12444void unregister_netdevice_many(struct list_head *head) 12445{ 12446 unregister_netdevice_many_notify(head, 0, NULL); 12447} 12448EXPORT_SYMBOL(unregister_netdevice_many); 12449 12450/** 12451 * unregister_netdev - remove device from the kernel 12452 * @dev: device 12453 * 12454 * This function shuts down a device interface and removes it 12455 * from the kernel tables. 12456 * 12457 * This is just a wrapper for unregister_netdevice that takes 12458 * the rtnl semaphore. In general you want to use this and not 12459 * unregister_netdevice. 12460 */ 12461void unregister_netdev(struct net_device *dev) 12462{ 12463 rtnl_net_dev_lock(dev); 12464 unregister_netdevice(dev); 12465 rtnl_net_dev_unlock(dev); 12466} 12467EXPORT_SYMBOL(unregister_netdev); 12468 12469int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12470 const char *pat, int new_ifindex, 12471 struct netlink_ext_ack *extack) 12472{ 12473 struct netdev_name_node *name_node; 12474 struct net *net_old = dev_net(dev); 12475 char new_name[IFNAMSIZ] = {}; 12476 int err, new_nsid; 12477 12478 ASSERT_RTNL(); 12479 12480 /* Don't allow namespace local devices to be moved. */ 12481 err = -EINVAL; 12482 if (dev->netns_immutable) { 12483 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12484 goto out; 12485 } 12486 12487 /* Ensure the device has been registered */ 12488 if (dev->reg_state != NETREG_REGISTERED) { 12489 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12490 goto out; 12491 } 12492 12493 /* Get out if there is nothing todo */ 12494 err = 0; 12495 if (net_eq(net_old, net)) 12496 goto out; 12497 12498 /* Pick the destination device name, and ensure 12499 * we can use it in the destination network namespace. 12500 */ 12501 err = -EEXIST; 12502 if (netdev_name_in_use(net, dev->name)) { 12503 /* We get here if we can't use the current device name */ 12504 if (!pat) { 12505 NL_SET_ERR_MSG(extack, 12506 "An interface with the same name exists in the target netns"); 12507 goto out; 12508 } 12509 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12510 if (err < 0) { 12511 NL_SET_ERR_MSG_FMT(extack, 12512 "Unable to use '%s' for the new interface name in the target netns", 12513 pat); 12514 goto out; 12515 } 12516 } 12517 /* Check that none of the altnames conflicts. */ 12518 err = -EEXIST; 12519 netdev_for_each_altname(dev, name_node) { 12520 if (netdev_name_in_use(net, name_node->name)) { 12521 NL_SET_ERR_MSG_FMT(extack, 12522 "An interface with the altname %s exists in the target netns", 12523 name_node->name); 12524 goto out; 12525 } 12526 } 12527 12528 /* Check that new_ifindex isn't used yet. */ 12529 if (new_ifindex) { 12530 err = dev_index_reserve(net, new_ifindex); 12531 if (err < 0) { 12532 NL_SET_ERR_MSG_FMT(extack, 12533 "The ifindex %d is not available in the target netns", 12534 new_ifindex); 12535 goto out; 12536 } 12537 } else { 12538 /* If there is an ifindex conflict assign a new one */ 12539 err = dev_index_reserve(net, dev->ifindex); 12540 if (err == -EBUSY) 12541 err = dev_index_reserve(net, 0); 12542 if (err < 0) { 12543 NL_SET_ERR_MSG(extack, 12544 "Unable to allocate a new ifindex in the target netns"); 12545 goto out; 12546 } 12547 new_ifindex = err; 12548 } 12549 12550 /* 12551 * And now a mini version of register_netdevice unregister_netdevice. 12552 */ 12553 12554 netdev_lock_ops(dev); 12555 /* If device is running close it first. */ 12556 netif_close(dev); 12557 /* And unlink it from device chain */ 12558 unlist_netdevice(dev); 12559 12560 if (!netdev_need_ops_lock(dev)) 12561 netdev_lock(dev); 12562 dev->moving_ns = true; 12563 netdev_unlock(dev); 12564 12565 synchronize_net(); 12566 12567 /* Shutdown queueing discipline. */ 12568 netdev_lock_ops(dev); 12569 dev_shutdown(dev); 12570 netdev_unlock_ops(dev); 12571 12572 /* Notify protocols, that we are about to destroy 12573 * this device. They should clean all the things. 12574 * 12575 * Note that dev->reg_state stays at NETREG_REGISTERED. 12576 * This is wanted because this way 8021q and macvlan know 12577 * the device is just moving and can keep their slaves up. 12578 */ 12579 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12580 rcu_barrier(); 12581 12582 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12583 12584 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12585 new_ifindex); 12586 12587 /* 12588 * Flush the unicast and multicast chains 12589 */ 12590 dev_uc_flush(dev); 12591 dev_mc_flush(dev); 12592 12593 /* Send a netdev-removed uevent to the old namespace */ 12594 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12595 netdev_adjacent_del_links(dev); 12596 12597 /* Move per-net netdevice notifiers that are following the netdevice */ 12598 move_netdevice_notifiers_dev_net(dev, net); 12599 12600 /* Actually switch the network namespace */ 12601 netdev_lock(dev); 12602 dev_net_set(dev, net); 12603 netdev_unlock(dev); 12604 dev->ifindex = new_ifindex; 12605 12606 if (new_name[0]) { 12607 /* Rename the netdev to prepared name */ 12608 write_seqlock_bh(&netdev_rename_lock); 12609 strscpy(dev->name, new_name, IFNAMSIZ); 12610 write_sequnlock_bh(&netdev_rename_lock); 12611 } 12612 12613 /* Fixup kobjects */ 12614 dev_set_uevent_suppress(&dev->dev, 1); 12615 err = device_rename(&dev->dev, dev->name); 12616 dev_set_uevent_suppress(&dev->dev, 0); 12617 WARN_ON(err); 12618 12619 /* Send a netdev-add uevent to the new namespace */ 12620 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12621 netdev_adjacent_add_links(dev); 12622 12623 /* Adapt owner in case owning user namespace of target network 12624 * namespace is different from the original one. 12625 */ 12626 err = netdev_change_owner(dev, net_old, net); 12627 WARN_ON(err); 12628 12629 netdev_lock(dev); 12630 dev->moving_ns = false; 12631 if (!netdev_need_ops_lock(dev)) 12632 netdev_unlock(dev); 12633 12634 /* Add the device back in the hashes */ 12635 list_netdevice(dev); 12636 /* Notify protocols, that a new device appeared. */ 12637 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12638 netdev_unlock_ops(dev); 12639 12640 /* 12641 * Prevent userspace races by waiting until the network 12642 * device is fully setup before sending notifications. 12643 */ 12644 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12645 12646 synchronize_net(); 12647 err = 0; 12648out: 12649 return err; 12650} 12651 12652static int dev_cpu_dead(unsigned int oldcpu) 12653{ 12654 struct sk_buff **list_skb; 12655 struct sk_buff *skb; 12656 unsigned int cpu; 12657 struct softnet_data *sd, *oldsd, *remsd = NULL; 12658 12659 local_irq_disable(); 12660 cpu = smp_processor_id(); 12661 sd = &per_cpu(softnet_data, cpu); 12662 oldsd = &per_cpu(softnet_data, oldcpu); 12663 12664 /* Find end of our completion_queue. */ 12665 list_skb = &sd->completion_queue; 12666 while (*list_skb) 12667 list_skb = &(*list_skb)->next; 12668 /* Append completion queue from offline CPU. */ 12669 *list_skb = oldsd->completion_queue; 12670 oldsd->completion_queue = NULL; 12671 12672 /* Append output queue from offline CPU. */ 12673 if (oldsd->output_queue) { 12674 *sd->output_queue_tailp = oldsd->output_queue; 12675 sd->output_queue_tailp = oldsd->output_queue_tailp; 12676 oldsd->output_queue = NULL; 12677 oldsd->output_queue_tailp = &oldsd->output_queue; 12678 } 12679 /* Append NAPI poll list from offline CPU, with one exception : 12680 * process_backlog() must be called by cpu owning percpu backlog. 12681 * We properly handle process_queue & input_pkt_queue later. 12682 */ 12683 while (!list_empty(&oldsd->poll_list)) { 12684 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12685 struct napi_struct, 12686 poll_list); 12687 12688 list_del_init(&napi->poll_list); 12689 if (napi->poll == process_backlog) 12690 napi->state &= NAPIF_STATE_THREADED; 12691 else 12692 ____napi_schedule(sd, napi); 12693 } 12694 12695 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12696 local_irq_enable(); 12697 12698 if (!use_backlog_threads()) { 12699#ifdef CONFIG_RPS 12700 remsd = oldsd->rps_ipi_list; 12701 oldsd->rps_ipi_list = NULL; 12702#endif 12703 /* send out pending IPI's on offline CPU */ 12704 net_rps_send_ipi(remsd); 12705 } 12706 12707 /* Process offline CPU's input_pkt_queue */ 12708 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12709 netif_rx(skb); 12710 rps_input_queue_head_incr(oldsd); 12711 } 12712 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12713 netif_rx(skb); 12714 rps_input_queue_head_incr(oldsd); 12715 } 12716 12717 return 0; 12718} 12719 12720/** 12721 * netdev_increment_features - increment feature set by one 12722 * @all: current feature set 12723 * @one: new feature set 12724 * @mask: mask feature set 12725 * 12726 * Computes a new feature set after adding a device with feature set 12727 * @one to the master device with current feature set @all. Will not 12728 * enable anything that is off in @mask. Returns the new feature set. 12729 */ 12730netdev_features_t netdev_increment_features(netdev_features_t all, 12731 netdev_features_t one, netdev_features_t mask) 12732{ 12733 if (mask & NETIF_F_HW_CSUM) 12734 mask |= NETIF_F_CSUM_MASK; 12735 mask |= NETIF_F_VLAN_CHALLENGED; 12736 12737 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12738 all &= one | ~NETIF_F_ALL_FOR_ALL; 12739 12740 /* If one device supports hw checksumming, set for all. */ 12741 if (all & NETIF_F_HW_CSUM) 12742 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12743 12744 return all; 12745} 12746EXPORT_SYMBOL(netdev_increment_features); 12747 12748/** 12749 * netdev_compute_master_upper_features - compute feature from lowers 12750 * @dev: the upper device 12751 * @update_header: whether to update upper device's header_len/headroom/tailroom 12752 * 12753 * Recompute the upper device's feature based on all lower devices. 12754 */ 12755void netdev_compute_master_upper_features(struct net_device *dev, bool update_header) 12756{ 12757 unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 12758 netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES; 12759 netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES; 12760 netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES; 12761 netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES; 12762 netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES; 12763 unsigned short max_header_len = ETH_HLEN; 12764 unsigned int tso_max_size = TSO_MAX_SIZE; 12765 unsigned short max_headroom = 0; 12766 unsigned short max_tailroom = 0; 12767 u16 tso_max_segs = TSO_MAX_SEGS; 12768 struct net_device *lower_dev; 12769 struct list_head *iter; 12770 12771 mpls_features = netdev_base_features(mpls_features); 12772 vlan_features = netdev_base_features(vlan_features); 12773 enc_features = netdev_base_features(enc_features); 12774 12775 netdev_for_each_lower_dev(dev, lower_dev, iter) { 12776 gso_partial_features = netdev_increment_features(gso_partial_features, 12777 lower_dev->gso_partial_features, 12778 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES); 12779 12780 vlan_features = netdev_increment_features(vlan_features, 12781 lower_dev->vlan_features, 12782 MASTER_UPPER_DEV_VLAN_FEATURES); 12783 12784 enc_features = netdev_increment_features(enc_features, 12785 lower_dev->hw_enc_features, 12786 MASTER_UPPER_DEV_ENC_FEATURES); 12787 12788 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) 12789 xfrm_features = netdev_increment_features(xfrm_features, 12790 lower_dev->hw_enc_features, 12791 MASTER_UPPER_DEV_XFRM_FEATURES); 12792 12793 mpls_features = netdev_increment_features(mpls_features, 12794 lower_dev->mpls_features, 12795 MASTER_UPPER_DEV_MPLS_FEATURES); 12796 12797 dst_release_flag &= lower_dev->priv_flags; 12798 12799 if (update_header) { 12800 max_header_len = max(max_header_len, lower_dev->hard_header_len); 12801 max_headroom = max(max_headroom, lower_dev->needed_headroom); 12802 max_tailroom = max(max_tailroom, lower_dev->needed_tailroom); 12803 } 12804 12805 tso_max_size = min(tso_max_size, lower_dev->tso_max_size); 12806 tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs); 12807 } 12808 12809 dev->gso_partial_features = gso_partial_features; 12810 dev->vlan_features = vlan_features; 12811 dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL | 12812 NETIF_F_HW_VLAN_CTAG_TX | 12813 NETIF_F_HW_VLAN_STAG_TX; 12814 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) 12815 dev->hw_enc_features |= xfrm_features; 12816 dev->mpls_features = mpls_features; 12817 12818 dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; 12819 if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) && 12820 dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM)) 12821 dev->priv_flags |= IFF_XMIT_DST_RELEASE; 12822 12823 if (update_header) { 12824 dev->hard_header_len = max_header_len; 12825 dev->needed_headroom = max_headroom; 12826 dev->needed_tailroom = max_tailroom; 12827 } 12828 12829 netif_set_tso_max_segs(dev, tso_max_segs); 12830 netif_set_tso_max_size(dev, tso_max_size); 12831 12832 netdev_change_features(dev); 12833} 12834EXPORT_SYMBOL(netdev_compute_master_upper_features); 12835 12836static struct hlist_head * __net_init netdev_create_hash(void) 12837{ 12838 int i; 12839 struct hlist_head *hash; 12840 12841 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12842 if (hash != NULL) 12843 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12844 INIT_HLIST_HEAD(&hash[i]); 12845 12846 return hash; 12847} 12848 12849/* Initialize per network namespace state */ 12850static int __net_init netdev_init(struct net *net) 12851{ 12852 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12853 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12854 12855 INIT_LIST_HEAD(&net->dev_base_head); 12856 12857 net->dev_name_head = netdev_create_hash(); 12858 if (net->dev_name_head == NULL) 12859 goto err_name; 12860 12861 net->dev_index_head = netdev_create_hash(); 12862 if (net->dev_index_head == NULL) 12863 goto err_idx; 12864 12865 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12866 12867 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12868 12869 return 0; 12870 12871err_idx: 12872 kfree(net->dev_name_head); 12873err_name: 12874 return -ENOMEM; 12875} 12876 12877/** 12878 * netdev_drivername - network driver for the device 12879 * @dev: network device 12880 * 12881 * Determine network driver for device. 12882 */ 12883const char *netdev_drivername(const struct net_device *dev) 12884{ 12885 const struct device_driver *driver; 12886 const struct device *parent; 12887 const char *empty = ""; 12888 12889 parent = dev->dev.parent; 12890 if (!parent) 12891 return empty; 12892 12893 driver = parent->driver; 12894 if (driver && driver->name) 12895 return driver->name; 12896 return empty; 12897} 12898 12899static void __netdev_printk(const char *level, const struct net_device *dev, 12900 struct va_format *vaf) 12901{ 12902 if (dev && dev->dev.parent) { 12903 dev_printk_emit(level[1] - '0', 12904 dev->dev.parent, 12905 "%s %s %s%s: %pV", 12906 dev_driver_string(dev->dev.parent), 12907 dev_name(dev->dev.parent), 12908 netdev_name(dev), netdev_reg_state(dev), 12909 vaf); 12910 } else if (dev) { 12911 printk("%s%s%s: %pV", 12912 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12913 } else { 12914 printk("%s(NULL net_device): %pV", level, vaf); 12915 } 12916} 12917 12918void netdev_printk(const char *level, const struct net_device *dev, 12919 const char *format, ...) 12920{ 12921 struct va_format vaf; 12922 va_list args; 12923 12924 va_start(args, format); 12925 12926 vaf.fmt = format; 12927 vaf.va = &args; 12928 12929 __netdev_printk(level, dev, &vaf); 12930 12931 va_end(args); 12932} 12933EXPORT_SYMBOL(netdev_printk); 12934 12935#define define_netdev_printk_level(func, level) \ 12936void func(const struct net_device *dev, const char *fmt, ...) \ 12937{ \ 12938 struct va_format vaf; \ 12939 va_list args; \ 12940 \ 12941 va_start(args, fmt); \ 12942 \ 12943 vaf.fmt = fmt; \ 12944 vaf.va = &args; \ 12945 \ 12946 __netdev_printk(level, dev, &vaf); \ 12947 \ 12948 va_end(args); \ 12949} \ 12950EXPORT_SYMBOL(func); 12951 12952define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12953define_netdev_printk_level(netdev_alert, KERN_ALERT); 12954define_netdev_printk_level(netdev_crit, KERN_CRIT); 12955define_netdev_printk_level(netdev_err, KERN_ERR); 12956define_netdev_printk_level(netdev_warn, KERN_WARNING); 12957define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12958define_netdev_printk_level(netdev_info, KERN_INFO); 12959 12960static void __net_exit netdev_exit(struct net *net) 12961{ 12962 kfree(net->dev_name_head); 12963 kfree(net->dev_index_head); 12964 xa_destroy(&net->dev_by_index); 12965 if (net != &init_net) 12966 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12967} 12968 12969static struct pernet_operations __net_initdata netdev_net_ops = { 12970 .init = netdev_init, 12971 .exit = netdev_exit, 12972}; 12973 12974static void __net_exit default_device_exit_net(struct net *net) 12975{ 12976 struct netdev_name_node *name_node, *tmp; 12977 struct net_device *dev, *aux; 12978 /* 12979 * Push all migratable network devices back to the 12980 * initial network namespace 12981 */ 12982 ASSERT_RTNL(); 12983 for_each_netdev_safe(net, dev, aux) { 12984 int err; 12985 char fb_name[IFNAMSIZ]; 12986 12987 /* Ignore unmoveable devices (i.e. loopback) */ 12988 if (dev->netns_immutable) 12989 continue; 12990 12991 /* Leave virtual devices for the generic cleanup */ 12992 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12993 continue; 12994 12995 /* Push remaining network devices to init_net */ 12996 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12997 if (netdev_name_in_use(&init_net, fb_name)) 12998 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12999 13000 netdev_for_each_altname_safe(dev, name_node, tmp) 13001 if (netdev_name_in_use(&init_net, name_node->name)) 13002 __netdev_name_node_alt_destroy(name_node); 13003 13004 err = dev_change_net_namespace(dev, &init_net, fb_name); 13005 if (err) { 13006 pr_emerg("%s: failed to move %s to init_net: %d\n", 13007 __func__, dev->name, err); 13008 BUG(); 13009 } 13010 } 13011} 13012 13013static void __net_exit default_device_exit_batch(struct list_head *net_list) 13014{ 13015 /* At exit all network devices most be removed from a network 13016 * namespace. Do this in the reverse order of registration. 13017 * Do this across as many network namespaces as possible to 13018 * improve batching efficiency. 13019 */ 13020 struct net_device *dev; 13021 struct net *net; 13022 LIST_HEAD(dev_kill_list); 13023 13024 rtnl_lock(); 13025 list_for_each_entry(net, net_list, exit_list) { 13026 default_device_exit_net(net); 13027 cond_resched(); 13028 } 13029 13030 list_for_each_entry(net, net_list, exit_list) { 13031 for_each_netdev_reverse(net, dev) { 13032 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 13033 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 13034 else 13035 unregister_netdevice_queue(dev, &dev_kill_list); 13036 } 13037 } 13038 unregister_netdevice_many(&dev_kill_list); 13039 rtnl_unlock(); 13040} 13041 13042static struct pernet_operations __net_initdata default_device_ops = { 13043 .exit_batch = default_device_exit_batch, 13044}; 13045 13046static void __init net_dev_struct_check(void) 13047{ 13048 /* TX read-mostly hotpath */ 13049 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 13050 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 13051 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 13052 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 13053 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 13054 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 13055 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 13056 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 13057 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 13058 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 13059 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 13060 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 13061 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 13062#ifdef CONFIG_XPS 13063 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 13064#endif 13065#ifdef CONFIG_NETFILTER_EGRESS 13066 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 13067#endif 13068#ifdef CONFIG_NET_XGRESS 13069 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 13070#endif 13071 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 13072 13073 /* TXRX read-mostly hotpath */ 13074 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 13075 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 13076 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 13077 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 13078 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 13079 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 13080 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 13081 13082 /* RX read-mostly hotpath */ 13083 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 13084 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 13085 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 13086 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 13087 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 13088 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 13089 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 13090 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 13091 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 13092#ifdef CONFIG_NETPOLL 13093 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 13094#endif 13095#ifdef CONFIG_NET_XGRESS 13096 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 13097#endif 13098 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 13099} 13100 13101/* 13102 * Initialize the DEV module. At boot time this walks the device list and 13103 * unhooks any devices that fail to initialise (normally hardware not 13104 * present) and leaves us with a valid list of present and active devices. 13105 * 13106 */ 13107 13108/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 13109#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 13110 13111static int net_page_pool_create(int cpuid) 13112{ 13113#if IS_ENABLED(CONFIG_PAGE_POOL) 13114 struct page_pool_params page_pool_params = { 13115 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 13116 .flags = PP_FLAG_SYSTEM_POOL, 13117 .nid = cpu_to_mem(cpuid), 13118 }; 13119 struct page_pool *pp_ptr; 13120 int err; 13121 13122 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 13123 if (IS_ERR(pp_ptr)) 13124 return -ENOMEM; 13125 13126 err = xdp_reg_page_pool(pp_ptr); 13127 if (err) { 13128 page_pool_destroy(pp_ptr); 13129 return err; 13130 } 13131 13132 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 13133#endif 13134 return 0; 13135} 13136 13137static int backlog_napi_should_run(unsigned int cpu) 13138{ 13139 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13140 struct napi_struct *napi = &sd->backlog; 13141 13142 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 13143} 13144 13145static void run_backlog_napi(unsigned int cpu) 13146{ 13147 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13148 13149 napi_threaded_poll_loop(&sd->backlog, false); 13150} 13151 13152static void backlog_napi_setup(unsigned int cpu) 13153{ 13154 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13155 struct napi_struct *napi = &sd->backlog; 13156 13157 napi->thread = this_cpu_read(backlog_napi); 13158 set_bit(NAPI_STATE_THREADED, &napi->state); 13159} 13160 13161static struct smp_hotplug_thread backlog_threads = { 13162 .store = &backlog_napi, 13163 .thread_should_run = backlog_napi_should_run, 13164 .thread_fn = run_backlog_napi, 13165 .thread_comm = "backlog_napi/%u", 13166 .setup = backlog_napi_setup, 13167}; 13168 13169/* 13170 * This is called single threaded during boot, so no need 13171 * to take the rtnl semaphore. 13172 */ 13173static int __init net_dev_init(void) 13174{ 13175 int i, rc = -ENOMEM; 13176 13177 BUG_ON(!dev_boot_phase); 13178 13179 net_dev_struct_check(); 13180 13181 if (dev_proc_init()) 13182 goto out; 13183 13184 if (netdev_kobject_init()) 13185 goto out; 13186 13187 for (i = 0; i < PTYPE_HASH_SIZE; i++) 13188 INIT_LIST_HEAD(&ptype_base[i]); 13189 13190 if (register_pernet_subsys(&netdev_net_ops)) 13191 goto out; 13192 13193 /* 13194 * Initialise the packet receive queues. 13195 */ 13196 13197 flush_backlogs_fallback = flush_backlogs_alloc(); 13198 if (!flush_backlogs_fallback) 13199 goto out; 13200 13201 for_each_possible_cpu(i) { 13202 struct softnet_data *sd = &per_cpu(softnet_data, i); 13203 13204 skb_queue_head_init(&sd->input_pkt_queue); 13205 skb_queue_head_init(&sd->process_queue); 13206#ifdef CONFIG_XFRM_OFFLOAD 13207 skb_queue_head_init(&sd->xfrm_backlog); 13208#endif 13209 INIT_LIST_HEAD(&sd->poll_list); 13210 sd->output_queue_tailp = &sd->output_queue; 13211#ifdef CONFIG_RPS 13212 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 13213 sd->cpu = i; 13214#endif 13215 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 13216 13217 gro_init(&sd->backlog.gro); 13218 sd->backlog.poll = process_backlog; 13219 sd->backlog.weight = weight_p; 13220 INIT_LIST_HEAD(&sd->backlog.poll_list); 13221 13222 if (net_page_pool_create(i)) 13223 goto out; 13224 } 13225 net_hotdata.skb_defer_nodes = 13226 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids, 13227 __alignof__(struct skb_defer_node)); 13228 if (!net_hotdata.skb_defer_nodes) 13229 goto out; 13230 if (use_backlog_threads()) 13231 smpboot_register_percpu_thread(&backlog_threads); 13232 13233 dev_boot_phase = 0; 13234 13235 /* The loopback device is special if any other network devices 13236 * is present in a network namespace the loopback device must 13237 * be present. Since we now dynamically allocate and free the 13238 * loopback device ensure this invariant is maintained by 13239 * keeping the loopback device as the first device on the 13240 * list of network devices. Ensuring the loopback devices 13241 * is the first device that appears and the last network device 13242 * that disappears. 13243 */ 13244 if (register_pernet_device(&loopback_net_ops)) 13245 goto out; 13246 13247 if (register_pernet_device(&default_device_ops)) 13248 goto out; 13249 13250 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 13251 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 13252 13253 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 13254 NULL, dev_cpu_dead); 13255 WARN_ON(rc < 0); 13256 rc = 0; 13257 13258 /* avoid static key IPIs to isolated CPUs */ 13259 if (housekeeping_enabled(HK_TYPE_MISC)) 13260 net_enable_timestamp(); 13261out: 13262 if (rc < 0) { 13263 for_each_possible_cpu(i) { 13264 struct page_pool *pp_ptr; 13265 13266 pp_ptr = per_cpu(system_page_pool.pool, i); 13267 if (!pp_ptr) 13268 continue; 13269 13270 xdp_unreg_page_pool(pp_ptr); 13271 page_pool_destroy(pp_ptr); 13272 per_cpu(system_page_pool.pool, i) = NULL; 13273 } 13274 } 13275 13276 return rc; 13277} 13278 13279subsys_initcall(net_dev_init);