Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20#include <trace/events/sock.h>
21
22#include <linux/ceph/ceph_features.h>
23#include <linux/ceph/libceph.h>
24#include <linux/ceph/messenger.h>
25#include <linux/ceph/decode.h>
26#include <linux/ceph/pagelist.h>
27#include <linux/export.h>
28
29/*
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
35 * the sender.
36 */
37
38/*
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
42 * unexpected state.
43 *
44 * --------
45 * | NEW* | transient initial state
46 * --------
47 * | con_sock_state_init()
48 * v
49 * ----------
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
52 * ^ \
53 * | \ con_sock_state_connecting()
54 * | ----------------------
55 * | \
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
58 * | \ \ \
59 * | ----------- \ \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
62 * | ^ \ |
63 * | | \ |
64 * | + con_sock_state_closing() \ |
65 * | / \ | |
66 * | / --------------- | |
67 * | / \ v v
68 * | / --------------
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
72 * | | v
73 * -------------
74 * | CONNECTED | TCP connection established
75 * -------------
76 *
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 */
79
80#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
86static bool con_flag_valid(unsigned long con_flag)
87{
88 switch (con_flag) {
89 case CEPH_CON_F_LOSSYTX:
90 case CEPH_CON_F_KEEPALIVE_PENDING:
91 case CEPH_CON_F_WRITE_PENDING:
92 case CEPH_CON_F_SOCK_CLOSED:
93 case CEPH_CON_F_BACKOFF:
94 return true;
95 default:
96 return false;
97 }
98}
99
100void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101{
102 BUG_ON(!con_flag_valid(con_flag));
103
104 clear_bit(con_flag, &con->flags);
105}
106
107void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108{
109 BUG_ON(!con_flag_valid(con_flag));
110
111 set_bit(con_flag, &con->flags);
112}
113
114bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115{
116 BUG_ON(!con_flag_valid(con_flag));
117
118 return test_bit(con_flag, &con->flags);
119}
120
121bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
122 unsigned long con_flag)
123{
124 BUG_ON(!con_flag_valid(con_flag));
125
126 return test_and_clear_bit(con_flag, &con->flags);
127}
128
129bool ceph_con_flag_test_and_set(struct ceph_connection *con,
130 unsigned long con_flag)
131{
132 BUG_ON(!con_flag_valid(con_flag));
133
134 return test_and_set_bit(con_flag, &con->flags);
135}
136
137/* Slab caches for frequently-allocated structures */
138
139static struct kmem_cache *ceph_msg_cache;
140
141#ifdef CONFIG_LOCKDEP
142static struct lock_class_key socket_class;
143#endif
144
145static void queue_con(struct ceph_connection *con);
146static void cancel_con(struct ceph_connection *con);
147static void ceph_con_workfn(struct work_struct *);
148static void con_fault(struct ceph_connection *con);
149
150/*
151 * Nicely render a sockaddr as a string. An array of formatted
152 * strings is used, to approximate reentrancy.
153 */
154#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
155#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
156#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
157#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
158
159static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
160static atomic_t addr_str_seq = ATOMIC_INIT(0);
161
162struct page *ceph_zero_page; /* used in certain error cases */
163
164const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
165{
166 int i;
167 char *s;
168 struct sockaddr_storage ss = addr->in_addr; /* align */
169 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
170 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171
172 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
173 s = addr_str[i];
174
175 switch (ss.ss_family) {
176 case AF_INET:
177 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
178 le32_to_cpu(addr->type), &in4->sin_addr,
179 ntohs(in4->sin_port));
180 break;
181
182 case AF_INET6:
183 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
184 le32_to_cpu(addr->type), &in6->sin6_addr,
185 ntohs(in6->sin6_port));
186 break;
187
188 default:
189 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
190 ss.ss_family);
191 }
192
193 return s;
194}
195EXPORT_SYMBOL(ceph_pr_addr);
196
197void ceph_encode_my_addr(struct ceph_messenger *msgr)
198{
199 if (!ceph_msgr2(from_msgr(msgr))) {
200 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
201 sizeof(msgr->my_enc_addr));
202 ceph_encode_banner_addr(&msgr->my_enc_addr);
203 }
204}
205
206/*
207 * work queue for all reading and writing to/from the socket.
208 */
209static struct workqueue_struct *ceph_msgr_wq;
210
211static int ceph_msgr_slab_init(void)
212{
213 BUG_ON(ceph_msg_cache);
214 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
215 if (!ceph_msg_cache)
216 return -ENOMEM;
217
218 return 0;
219}
220
221static void ceph_msgr_slab_exit(void)
222{
223 BUG_ON(!ceph_msg_cache);
224 kmem_cache_destroy(ceph_msg_cache);
225 ceph_msg_cache = NULL;
226}
227
228static void _ceph_msgr_exit(void)
229{
230 if (ceph_msgr_wq) {
231 destroy_workqueue(ceph_msgr_wq);
232 ceph_msgr_wq = NULL;
233 }
234
235 BUG_ON(!ceph_zero_page);
236 put_page(ceph_zero_page);
237 ceph_zero_page = NULL;
238
239 ceph_msgr_slab_exit();
240}
241
242int __init ceph_msgr_init(void)
243{
244 if (ceph_msgr_slab_init())
245 return -ENOMEM;
246
247 BUG_ON(ceph_zero_page);
248 ceph_zero_page = ZERO_PAGE(0);
249 get_page(ceph_zero_page);
250
251 /*
252 * The number of active work items is limited by the number of
253 * connections, so leave @max_active at default.
254 */
255 ceph_msgr_wq = alloc_workqueue("ceph-msgr",
256 WQ_MEM_RECLAIM | WQ_PERCPU, 0);
257 if (ceph_msgr_wq)
258 return 0;
259
260 pr_err("msgr_init failed to create workqueue\n");
261 _ceph_msgr_exit();
262
263 return -ENOMEM;
264}
265
266void ceph_msgr_exit(void)
267{
268 BUG_ON(ceph_msgr_wq == NULL);
269
270 _ceph_msgr_exit();
271}
272
273void ceph_msgr_flush(void)
274{
275 flush_workqueue(ceph_msgr_wq);
276}
277EXPORT_SYMBOL(ceph_msgr_flush);
278
279/* Connection socket state transition functions */
280
281static void con_sock_state_init(struct ceph_connection *con)
282{
283 int old_state;
284
285 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
286 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
287 printk("%s: unexpected old state %d\n", __func__, old_state);
288 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
289 CON_SOCK_STATE_CLOSED);
290}
291
292static void con_sock_state_connecting(struct ceph_connection *con)
293{
294 int old_state;
295
296 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
297 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
298 printk("%s: unexpected old state %d\n", __func__, old_state);
299 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
300 CON_SOCK_STATE_CONNECTING);
301}
302
303static void con_sock_state_connected(struct ceph_connection *con)
304{
305 int old_state;
306
307 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
308 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
309 printk("%s: unexpected old state %d\n", __func__, old_state);
310 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
311 CON_SOCK_STATE_CONNECTED);
312}
313
314static void con_sock_state_closing(struct ceph_connection *con)
315{
316 int old_state;
317
318 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
319 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
320 old_state != CON_SOCK_STATE_CONNECTED &&
321 old_state != CON_SOCK_STATE_CLOSING))
322 printk("%s: unexpected old state %d\n", __func__, old_state);
323 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
324 CON_SOCK_STATE_CLOSING);
325}
326
327static void con_sock_state_closed(struct ceph_connection *con)
328{
329 int old_state;
330
331 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
332 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
333 old_state != CON_SOCK_STATE_CLOSING &&
334 old_state != CON_SOCK_STATE_CONNECTING &&
335 old_state != CON_SOCK_STATE_CLOSED))
336 printk("%s: unexpected old state %d\n", __func__, old_state);
337 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
338 CON_SOCK_STATE_CLOSED);
339}
340
341/*
342 * socket callback functions
343 */
344
345/* data available on socket, or listen socket received a connect */
346static void ceph_sock_data_ready(struct sock *sk)
347{
348 struct ceph_connection *con = sk->sk_user_data;
349
350 trace_sk_data_ready(sk);
351
352 if (atomic_read(&con->msgr->stopping)) {
353 return;
354 }
355
356 if (sk->sk_state != TCP_CLOSE_WAIT) {
357 dout("%s %p state = %d, queueing work\n", __func__,
358 con, con->state);
359 queue_con(con);
360 }
361}
362
363/* socket has buffer space for writing */
364static void ceph_sock_write_space(struct sock *sk)
365{
366 struct ceph_connection *con = sk->sk_user_data;
367
368 /* only queue to workqueue if there is data we want to write,
369 * and there is sufficient space in the socket buffer to accept
370 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
371 * doesn't get called again until try_write() fills the socket
372 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
373 * and net/core/stream.c:sk_stream_write_space().
374 */
375 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
376 if (sk_stream_is_writeable(sk)) {
377 dout("%s %p queueing write work\n", __func__, con);
378 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
379 queue_con(con);
380 }
381 } else {
382 dout("%s %p nothing to write\n", __func__, con);
383 }
384}
385
386/* socket's state has changed */
387static void ceph_sock_state_change(struct sock *sk)
388{
389 struct ceph_connection *con = sk->sk_user_data;
390
391 dout("%s %p state = %d sk_state = %u\n", __func__,
392 con, con->state, sk->sk_state);
393
394 switch (sk->sk_state) {
395 case TCP_CLOSE:
396 dout("%s TCP_CLOSE\n", __func__);
397 fallthrough;
398 case TCP_CLOSE_WAIT:
399 dout("%s TCP_CLOSE_WAIT\n", __func__);
400 con_sock_state_closing(con);
401 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
402 queue_con(con);
403 break;
404 case TCP_ESTABLISHED:
405 dout("%s TCP_ESTABLISHED\n", __func__);
406 con_sock_state_connected(con);
407 queue_con(con);
408 break;
409 default: /* Everything else is uninteresting */
410 break;
411 }
412}
413
414/*
415 * set up socket callbacks
416 */
417static void set_sock_callbacks(struct socket *sock,
418 struct ceph_connection *con)
419{
420 struct sock *sk = sock->sk;
421 sk->sk_user_data = con;
422 sk->sk_data_ready = ceph_sock_data_ready;
423 sk->sk_write_space = ceph_sock_write_space;
424 sk->sk_state_change = ceph_sock_state_change;
425}
426
427
428/*
429 * socket helpers
430 */
431
432/*
433 * initiate connection to a remote socket.
434 */
435int ceph_tcp_connect(struct ceph_connection *con)
436{
437 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
438 struct socket *sock;
439 unsigned int noio_flag;
440 int ret;
441
442 dout("%s con %p peer_addr %s\n", __func__, con,
443 ceph_pr_addr(&con->peer_addr));
444 BUG_ON(con->sock);
445
446 /* sock_create_kern() allocates with GFP_KERNEL */
447 noio_flag = memalloc_noio_save();
448 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
449 SOCK_STREAM, IPPROTO_TCP, &sock);
450 memalloc_noio_restore(noio_flag);
451 if (ret)
452 return ret;
453 sock->sk->sk_allocation = GFP_NOFS;
454 sock->sk->sk_use_task_frag = false;
455
456#ifdef CONFIG_LOCKDEP
457 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
458#endif
459
460 set_sock_callbacks(sock, con);
461
462 con_sock_state_connecting(con);
463 ret = kernel_connect(sock, (struct sockaddr_unsized *)&ss, sizeof(ss),
464 O_NONBLOCK);
465 if (ret == -EINPROGRESS) {
466 dout("connect %s EINPROGRESS sk_state = %u\n",
467 ceph_pr_addr(&con->peer_addr),
468 sock->sk->sk_state);
469 } else if (ret < 0) {
470 pr_err("connect %s error %d\n",
471 ceph_pr_addr(&con->peer_addr), ret);
472 sock_release(sock);
473 return ret;
474 }
475
476 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
477 tcp_sock_set_nodelay(sock->sk);
478
479 con->sock = sock;
480 return 0;
481}
482
483/*
484 * Shutdown/close the socket for the given connection.
485 */
486int ceph_con_close_socket(struct ceph_connection *con)
487{
488 int rc = 0;
489
490 dout("%s con %p sock %p\n", __func__, con, con->sock);
491 if (con->sock) {
492 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
493 sock_release(con->sock);
494 con->sock = NULL;
495 }
496
497 /*
498 * Forcibly clear the SOCK_CLOSED flag. It gets set
499 * independent of the connection mutex, and we could have
500 * received a socket close event before we had the chance to
501 * shut the socket down.
502 */
503 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
504
505 con_sock_state_closed(con);
506 return rc;
507}
508
509static void ceph_con_reset_protocol(struct ceph_connection *con)
510{
511 dout("%s con %p\n", __func__, con);
512
513 ceph_con_close_socket(con);
514 if (con->in_msg) {
515 WARN_ON(con->in_msg->con != con);
516 ceph_msg_put(con->in_msg);
517 con->in_msg = NULL;
518 }
519 if (con->out_msg) {
520 WARN_ON(con->out_msg->con != con);
521 ceph_msg_put(con->out_msg);
522 con->out_msg = NULL;
523 }
524 if (con->bounce_page) {
525 __free_page(con->bounce_page);
526 con->bounce_page = NULL;
527 }
528
529 if (ceph_msgr2(from_msgr(con->msgr)))
530 ceph_con_v2_reset_protocol(con);
531 else
532 ceph_con_v1_reset_protocol(con);
533}
534
535/*
536 * Reset a connection. Discard all incoming and outgoing messages
537 * and clear *_seq state.
538 */
539static void ceph_msg_remove(struct ceph_msg *msg)
540{
541 list_del_init(&msg->list_head);
542
543 ceph_msg_put(msg);
544}
545
546static void ceph_msg_remove_list(struct list_head *head)
547{
548 while (!list_empty(head)) {
549 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
550 list_head);
551 ceph_msg_remove(msg);
552 }
553}
554
555void ceph_con_reset_session(struct ceph_connection *con)
556{
557 dout("%s con %p\n", __func__, con);
558
559 WARN_ON(con->in_msg);
560 WARN_ON(con->out_msg);
561 ceph_msg_remove_list(&con->out_queue);
562 ceph_msg_remove_list(&con->out_sent);
563 con->out_seq = 0;
564 con->in_seq = 0;
565 con->in_seq_acked = 0;
566
567 if (ceph_msgr2(from_msgr(con->msgr)))
568 ceph_con_v2_reset_session(con);
569 else
570 ceph_con_v1_reset_session(con);
571}
572
573/*
574 * mark a peer down. drop any open connections.
575 */
576void ceph_con_close(struct ceph_connection *con)
577{
578 mutex_lock(&con->mutex);
579 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
580 con->state = CEPH_CON_S_CLOSED;
581
582 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
583 connect */
584 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
585 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
586 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
587
588 ceph_con_reset_protocol(con);
589 ceph_con_reset_session(con);
590 cancel_con(con);
591 mutex_unlock(&con->mutex);
592}
593EXPORT_SYMBOL(ceph_con_close);
594
595/*
596 * Reopen a closed connection, with a new peer address.
597 */
598void ceph_con_open(struct ceph_connection *con,
599 __u8 entity_type, __u64 entity_num,
600 struct ceph_entity_addr *addr)
601{
602 mutex_lock(&con->mutex);
603 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
604
605 WARN_ON(con->state != CEPH_CON_S_CLOSED);
606 con->state = CEPH_CON_S_PREOPEN;
607
608 con->peer_name.type = (__u8) entity_type;
609 con->peer_name.num = cpu_to_le64(entity_num);
610
611 memcpy(&con->peer_addr, addr, sizeof(*addr));
612 con->delay = 0; /* reset backoff memory */
613 mutex_unlock(&con->mutex);
614 queue_con(con);
615}
616EXPORT_SYMBOL(ceph_con_open);
617
618/*
619 * return true if this connection ever successfully opened
620 */
621bool ceph_con_opened(struct ceph_connection *con)
622{
623 if (ceph_msgr2(from_msgr(con->msgr)))
624 return ceph_con_v2_opened(con);
625
626 return ceph_con_v1_opened(con);
627}
628
629/*
630 * initialize a new connection.
631 */
632void ceph_con_init(struct ceph_connection *con, void *private,
633 const struct ceph_connection_operations *ops,
634 struct ceph_messenger *msgr)
635{
636 dout("con_init %p\n", con);
637 memset(con, 0, sizeof(*con));
638 con->private = private;
639 con->ops = ops;
640 con->msgr = msgr;
641
642 con_sock_state_init(con);
643
644 mutex_init(&con->mutex);
645 INIT_LIST_HEAD(&con->out_queue);
646 INIT_LIST_HEAD(&con->out_sent);
647 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
648
649 con->state = CEPH_CON_S_CLOSED;
650}
651EXPORT_SYMBOL(ceph_con_init);
652
653/*
654 * We maintain a global counter to order connection attempts. Get
655 * a unique seq greater than @gt.
656 */
657u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
658{
659 u32 ret;
660
661 spin_lock(&msgr->global_seq_lock);
662 if (msgr->global_seq < gt)
663 msgr->global_seq = gt;
664 ret = ++msgr->global_seq;
665 spin_unlock(&msgr->global_seq_lock);
666 return ret;
667}
668
669/*
670 * Discard messages that have been acked by the server.
671 */
672void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
673{
674 struct ceph_msg *msg;
675 u64 seq;
676
677 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
678 while (!list_empty(&con->out_sent)) {
679 msg = list_first_entry(&con->out_sent, struct ceph_msg,
680 list_head);
681 WARN_ON(msg->needs_out_seq);
682 seq = le64_to_cpu(msg->hdr.seq);
683 if (seq > ack_seq)
684 break;
685
686 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
687 msg, seq);
688 ceph_msg_remove(msg);
689 }
690}
691
692/*
693 * Discard messages that have been requeued in con_fault(), up to
694 * reconnect_seq. This avoids gratuitously resending messages that
695 * the server had received and handled prior to reconnect.
696 */
697void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
698{
699 struct ceph_msg *msg;
700 u64 seq;
701
702 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
703 while (!list_empty(&con->out_queue)) {
704 msg = list_first_entry(&con->out_queue, struct ceph_msg,
705 list_head);
706 if (msg->needs_out_seq)
707 break;
708 seq = le64_to_cpu(msg->hdr.seq);
709 if (seq > reconnect_seq)
710 break;
711
712 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
713 msg, seq);
714 ceph_msg_remove(msg);
715 }
716}
717
718#ifdef CONFIG_BLOCK
719
720/*
721 * For a bio data item, a piece is whatever remains of the next
722 * entry in the current bio iovec, or the first entry in the next
723 * bio in the list.
724 */
725static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
726 size_t length)
727{
728 struct ceph_msg_data *data = cursor->data;
729 struct ceph_bio_iter *it = &cursor->bio_iter;
730
731 cursor->resid = min_t(size_t, length, data->bio_length);
732 *it = data->bio_pos;
733 if (cursor->resid < it->iter.bi_size)
734 it->iter.bi_size = cursor->resid;
735
736 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
737}
738
739static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
740 size_t *page_offset,
741 size_t *length)
742{
743 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
744 cursor->bio_iter.iter);
745
746 *page_offset = bv.bv_offset;
747 *length = bv.bv_len;
748 return bv.bv_page;
749}
750
751static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
752 size_t bytes)
753{
754 struct ceph_bio_iter *it = &cursor->bio_iter;
755 struct page *page = bio_iter_page(it->bio, it->iter);
756
757 BUG_ON(bytes > cursor->resid);
758 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
759 cursor->resid -= bytes;
760 bio_advance_iter(it->bio, &it->iter, bytes);
761
762 if (!cursor->resid)
763 return false; /* no more data */
764
765 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
766 page == bio_iter_page(it->bio, it->iter)))
767 return false; /* more bytes to process in this segment */
768
769 if (!it->iter.bi_size) {
770 it->bio = it->bio->bi_next;
771 it->iter = it->bio->bi_iter;
772 if (cursor->resid < it->iter.bi_size)
773 it->iter.bi_size = cursor->resid;
774 }
775
776 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
777 return true;
778}
779#endif /* CONFIG_BLOCK */
780
781static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
782 size_t length)
783{
784 struct ceph_msg_data *data = cursor->data;
785 struct bio_vec *bvecs = data->bvec_pos.bvecs;
786
787 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
788 cursor->bvec_iter = data->bvec_pos.iter;
789 cursor->bvec_iter.bi_size = cursor->resid;
790
791 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
792}
793
794static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
795 size_t *page_offset,
796 size_t *length)
797{
798 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
799 cursor->bvec_iter);
800
801 *page_offset = bv.bv_offset;
802 *length = bv.bv_len;
803 return bv.bv_page;
804}
805
806static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
807 size_t bytes)
808{
809 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
810 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
811
812 BUG_ON(bytes > cursor->resid);
813 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
814 cursor->resid -= bytes;
815 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
816
817 if (!cursor->resid)
818 return false; /* no more data */
819
820 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
821 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
822 return false; /* more bytes to process in this segment */
823
824 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
825 return true;
826}
827
828/*
829 * For a page array, a piece comes from the first page in the array
830 * that has not already been fully consumed.
831 */
832static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
833 size_t length)
834{
835 struct ceph_msg_data *data = cursor->data;
836 int page_count;
837
838 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
839
840 BUG_ON(!data->pages);
841 BUG_ON(!data->length);
842
843 cursor->resid = min(length, data->length);
844 page_count = calc_pages_for(data->alignment, (u64)data->length);
845 cursor->page_offset = data->alignment & ~PAGE_MASK;
846 cursor->page_index = 0;
847 BUG_ON(page_count > (int)USHRT_MAX);
848 cursor->page_count = (unsigned short)page_count;
849 BUG_ON(length > SIZE_MAX - cursor->page_offset);
850}
851
852static struct page *
853ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
854 size_t *page_offset, size_t *length)
855{
856 struct ceph_msg_data *data = cursor->data;
857
858 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
859
860 BUG_ON(cursor->page_index >= cursor->page_count);
861 BUG_ON(cursor->page_offset >= PAGE_SIZE);
862
863 *page_offset = cursor->page_offset;
864 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
865 return data->pages[cursor->page_index];
866}
867
868static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
869 size_t bytes)
870{
871 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
872
873 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
874
875 /* Advance the cursor page offset */
876
877 cursor->resid -= bytes;
878 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
879 if (!bytes || cursor->page_offset)
880 return false; /* more bytes to process in the current page */
881
882 if (!cursor->resid)
883 return false; /* no more data */
884
885 /* Move on to the next page; offset is already at 0 */
886
887 BUG_ON(cursor->page_index >= cursor->page_count);
888 cursor->page_index++;
889 return true;
890}
891
892/*
893 * For a pagelist, a piece is whatever remains to be consumed in the
894 * first page in the list, or the front of the next page.
895 */
896static void
897ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
898 size_t length)
899{
900 struct ceph_msg_data *data = cursor->data;
901 struct ceph_pagelist *pagelist;
902 struct page *page;
903
904 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
905
906 pagelist = data->pagelist;
907 BUG_ON(!pagelist);
908
909 if (!length)
910 return; /* pagelist can be assigned but empty */
911
912 BUG_ON(list_empty(&pagelist->head));
913 page = list_first_entry(&pagelist->head, struct page, lru);
914
915 cursor->resid = min(length, pagelist->length);
916 cursor->page = page;
917 cursor->offset = 0;
918}
919
920static struct page *
921ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
922 size_t *page_offset, size_t *length)
923{
924 struct ceph_msg_data *data = cursor->data;
925 struct ceph_pagelist *pagelist;
926
927 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
928
929 pagelist = data->pagelist;
930 BUG_ON(!pagelist);
931
932 BUG_ON(!cursor->page);
933 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
934
935 /* offset of first page in pagelist is always 0 */
936 *page_offset = cursor->offset & ~PAGE_MASK;
937 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
938 return cursor->page;
939}
940
941static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
942 size_t bytes)
943{
944 struct ceph_msg_data *data = cursor->data;
945 struct ceph_pagelist *pagelist;
946
947 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
948
949 pagelist = data->pagelist;
950 BUG_ON(!pagelist);
951
952 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
953 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
954
955 /* Advance the cursor offset */
956
957 cursor->resid -= bytes;
958 cursor->offset += bytes;
959 /* offset of first page in pagelist is always 0 */
960 if (!bytes || cursor->offset & ~PAGE_MASK)
961 return false; /* more bytes to process in the current page */
962
963 if (!cursor->resid)
964 return false; /* no more data */
965
966 /* Move on to the next page */
967
968 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
969 cursor->page = list_next_entry(cursor->page, lru);
970 return true;
971}
972
973static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
974 size_t length)
975{
976 struct ceph_msg_data *data = cursor->data;
977
978 cursor->iov_iter = data->iter;
979 cursor->lastlen = 0;
980 iov_iter_truncate(&cursor->iov_iter, length);
981 cursor->resid = iov_iter_count(&cursor->iov_iter);
982}
983
984static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
985 size_t *page_offset, size_t *length)
986{
987 struct page *page;
988 ssize_t len;
989
990 if (cursor->lastlen)
991 iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
992
993 len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
994 1, page_offset);
995 BUG_ON(len < 0);
996
997 cursor->lastlen = len;
998
999 /*
1000 * FIXME: The assumption is that the pages represented by the iov_iter
1001 * are pinned, with the references held by the upper-level
1002 * callers, or by virtue of being under writeback. Eventually,
1003 * we'll get an iov_iter_get_pages2 variant that doesn't take
1004 * page refs. Until then, just put the page ref.
1005 */
1006 VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1007 put_page(page);
1008
1009 *length = min_t(size_t, len, cursor->resid);
1010 return page;
1011}
1012
1013static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1014 size_t bytes)
1015{
1016 BUG_ON(bytes > cursor->resid);
1017 cursor->resid -= bytes;
1018
1019 if (bytes < cursor->lastlen) {
1020 cursor->lastlen -= bytes;
1021 } else {
1022 iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1023 cursor->lastlen = 0;
1024 }
1025
1026 return cursor->resid;
1027}
1028
1029/*
1030 * Message data is handled (sent or received) in pieces, where each
1031 * piece resides on a single page. The network layer might not
1032 * consume an entire piece at once. A data item's cursor keeps
1033 * track of which piece is next to process and how much remains to
1034 * be processed in that piece. It also tracks whether the current
1035 * piece is the last one in the data item.
1036 */
1037static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1038{
1039 size_t length = cursor->total_resid;
1040
1041 switch (cursor->data->type) {
1042 case CEPH_MSG_DATA_PAGELIST:
1043 ceph_msg_data_pagelist_cursor_init(cursor, length);
1044 break;
1045 case CEPH_MSG_DATA_PAGES:
1046 ceph_msg_data_pages_cursor_init(cursor, length);
1047 break;
1048#ifdef CONFIG_BLOCK
1049 case CEPH_MSG_DATA_BIO:
1050 ceph_msg_data_bio_cursor_init(cursor, length);
1051 break;
1052#endif /* CONFIG_BLOCK */
1053 case CEPH_MSG_DATA_BVECS:
1054 ceph_msg_data_bvecs_cursor_init(cursor, length);
1055 break;
1056 case CEPH_MSG_DATA_ITER:
1057 ceph_msg_data_iter_cursor_init(cursor, length);
1058 break;
1059 case CEPH_MSG_DATA_NONE:
1060 default:
1061 /* BUG(); */
1062 break;
1063 }
1064 cursor->need_crc = true;
1065}
1066
1067void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1068 struct ceph_msg *msg, size_t length)
1069{
1070 BUG_ON(!length);
1071 BUG_ON(length > msg->data_length);
1072 BUG_ON(!msg->num_data_items);
1073
1074 cursor->total_resid = length;
1075 cursor->data = msg->data;
1076 cursor->sr_resid = 0;
1077
1078 __ceph_msg_data_cursor_init(cursor);
1079}
1080
1081/*
1082 * Return the page containing the next piece to process for a given
1083 * data item, and supply the page offset and length of that piece.
1084 * Indicate whether this is the last piece in this data item.
1085 */
1086struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1087 size_t *page_offset, size_t *length)
1088{
1089 struct page *page;
1090
1091 switch (cursor->data->type) {
1092 case CEPH_MSG_DATA_PAGELIST:
1093 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1094 break;
1095 case CEPH_MSG_DATA_PAGES:
1096 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1097 break;
1098#ifdef CONFIG_BLOCK
1099 case CEPH_MSG_DATA_BIO:
1100 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1101 break;
1102#endif /* CONFIG_BLOCK */
1103 case CEPH_MSG_DATA_BVECS:
1104 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1105 break;
1106 case CEPH_MSG_DATA_ITER:
1107 page = ceph_msg_data_iter_next(cursor, page_offset, length);
1108 break;
1109 case CEPH_MSG_DATA_NONE:
1110 default:
1111 page = NULL;
1112 break;
1113 }
1114
1115 BUG_ON(!page);
1116 BUG_ON(*page_offset + *length > PAGE_SIZE);
1117 BUG_ON(!*length);
1118 BUG_ON(*length > cursor->resid);
1119
1120 return page;
1121}
1122
1123/*
1124 * Returns true if the result moves the cursor on to the next piece
1125 * of the data item.
1126 */
1127void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1128{
1129 bool new_piece;
1130
1131 BUG_ON(bytes > cursor->resid);
1132 switch (cursor->data->type) {
1133 case CEPH_MSG_DATA_PAGELIST:
1134 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1135 break;
1136 case CEPH_MSG_DATA_PAGES:
1137 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1138 break;
1139#ifdef CONFIG_BLOCK
1140 case CEPH_MSG_DATA_BIO:
1141 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1142 break;
1143#endif /* CONFIG_BLOCK */
1144 case CEPH_MSG_DATA_BVECS:
1145 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1146 break;
1147 case CEPH_MSG_DATA_ITER:
1148 new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1149 break;
1150 case CEPH_MSG_DATA_NONE:
1151 default:
1152 BUG();
1153 break;
1154 }
1155 cursor->total_resid -= bytes;
1156
1157 if (!cursor->resid && cursor->total_resid) {
1158 cursor->data++;
1159 __ceph_msg_data_cursor_init(cursor);
1160 new_piece = true;
1161 }
1162 cursor->need_crc = new_piece;
1163}
1164
1165u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1166 unsigned int length)
1167{
1168 char *kaddr;
1169
1170 kaddr = kmap(page);
1171 BUG_ON(kaddr == NULL);
1172 crc = crc32c(crc, kaddr + page_offset, length);
1173 kunmap(page);
1174
1175 return crc;
1176}
1177
1178bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1179{
1180 struct sockaddr_storage ss = addr->in_addr; /* align */
1181 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1182 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1183
1184 switch (ss.ss_family) {
1185 case AF_INET:
1186 return addr4->s_addr == htonl(INADDR_ANY);
1187 case AF_INET6:
1188 return ipv6_addr_any(addr6);
1189 default:
1190 return true;
1191 }
1192}
1193EXPORT_SYMBOL(ceph_addr_is_blank);
1194
1195int ceph_addr_port(const struct ceph_entity_addr *addr)
1196{
1197 switch (get_unaligned(&addr->in_addr.ss_family)) {
1198 case AF_INET:
1199 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1200 case AF_INET6:
1201 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1202 }
1203 return 0;
1204}
1205
1206void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1207{
1208 switch (get_unaligned(&addr->in_addr.ss_family)) {
1209 case AF_INET:
1210 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1211 break;
1212 case AF_INET6:
1213 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1214 break;
1215 }
1216}
1217
1218/*
1219 * Unlike other *_pton function semantics, zero indicates success.
1220 */
1221static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1222 char delim, const char **ipend)
1223{
1224 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1225
1226 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1227 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1228 return 0;
1229 }
1230
1231 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1232 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1233 return 0;
1234 }
1235
1236 return -EINVAL;
1237}
1238
1239/*
1240 * Extract hostname string and resolve using kernel DNS facility.
1241 */
1242#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1243static int ceph_dns_resolve_name(const char *name, size_t namelen,
1244 struct ceph_entity_addr *addr, char delim, const char **ipend)
1245{
1246 const char *end, *delim_p;
1247 char *colon_p, *ip_addr = NULL;
1248 int ip_len, ret;
1249
1250 /*
1251 * The end of the hostname occurs immediately preceding the delimiter or
1252 * the port marker (':') where the delimiter takes precedence.
1253 */
1254 delim_p = memchr(name, delim, namelen);
1255 colon_p = memchr(name, ':', namelen);
1256
1257 if (delim_p && colon_p)
1258 end = min(delim_p, colon_p);
1259 else if (!delim_p && colon_p)
1260 end = colon_p;
1261 else {
1262 end = delim_p;
1263 if (!end) /* case: hostname:/ */
1264 end = name + namelen;
1265 }
1266
1267 if (end <= name)
1268 return -EINVAL;
1269
1270 /* do dns_resolve upcall */
1271 ip_len = dns_query(current->nsproxy->net_ns,
1272 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1273 if (ip_len > 0)
1274 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1275 else
1276 ret = -ESRCH;
1277
1278 kfree(ip_addr);
1279
1280 *ipend = end;
1281
1282 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1283 ret, ret ? "failed" : ceph_pr_addr(addr));
1284
1285 return ret;
1286}
1287#else
1288static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1289 struct ceph_entity_addr *addr, char delim, const char **ipend)
1290{
1291 return -EINVAL;
1292}
1293#endif
1294
1295/*
1296 * Parse a server name (IP or hostname). If a valid IP address is not found
1297 * then try to extract a hostname to resolve using userspace DNS upcall.
1298 */
1299static int ceph_parse_server_name(const char *name, size_t namelen,
1300 struct ceph_entity_addr *addr, char delim, const char **ipend)
1301{
1302 int ret;
1303
1304 ret = ceph_pton(name, namelen, addr, delim, ipend);
1305 if (ret)
1306 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1307
1308 return ret;
1309}
1310
1311/*
1312 * Parse an ip[:port] list into an addr array. Use the default
1313 * monitor port if a port isn't specified.
1314 */
1315int ceph_parse_ips(const char *c, const char *end,
1316 struct ceph_entity_addr *addr,
1317 int max_count, int *count, char delim)
1318{
1319 int i, ret = -EINVAL;
1320 const char *p = c;
1321
1322 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1323 for (i = 0; i < max_count; i++) {
1324 char cur_delim = delim;
1325 const char *ipend;
1326 int port;
1327
1328 if (*p == '[') {
1329 cur_delim = ']';
1330 p++;
1331 }
1332
1333 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1334 &ipend);
1335 if (ret)
1336 goto bad;
1337 ret = -EINVAL;
1338
1339 p = ipend;
1340
1341 if (cur_delim == ']') {
1342 if (*p != ']') {
1343 dout("missing matching ']'\n");
1344 goto bad;
1345 }
1346 p++;
1347 }
1348
1349 /* port? */
1350 if (p < end && *p == ':') {
1351 port = 0;
1352 p++;
1353 while (p < end && *p >= '0' && *p <= '9') {
1354 port = (port * 10) + (*p - '0');
1355 p++;
1356 }
1357 if (port == 0)
1358 port = CEPH_MON_PORT;
1359 else if (port > 65535)
1360 goto bad;
1361 } else {
1362 port = CEPH_MON_PORT;
1363 }
1364
1365 ceph_addr_set_port(&addr[i], port);
1366 /*
1367 * We want the type to be set according to ms_mode
1368 * option, but options are normally parsed after mon
1369 * addresses. Rather than complicating parsing, set
1370 * to LEGACY and override in build_initial_monmap()
1371 * for mon addresses and ceph_messenger_init() for
1372 * ip option.
1373 */
1374 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1375 addr[i].nonce = 0;
1376
1377 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1378
1379 if (p == end)
1380 break;
1381 if (*p != delim)
1382 goto bad;
1383 p++;
1384 }
1385
1386 if (p != end)
1387 goto bad;
1388
1389 if (count)
1390 *count = i + 1;
1391 return 0;
1392
1393bad:
1394 return ret;
1395}
1396
1397/*
1398 * Process message. This happens in the worker thread. The callback should
1399 * be careful not to do anything that waits on other incoming messages or it
1400 * may deadlock.
1401 */
1402void ceph_con_process_message(struct ceph_connection *con)
1403{
1404 struct ceph_msg *msg = con->in_msg;
1405
1406 BUG_ON(con->in_msg->con != con);
1407 con->in_msg = NULL;
1408
1409 /* if first message, set peer_name */
1410 if (con->peer_name.type == 0)
1411 con->peer_name = msg->hdr.src;
1412
1413 con->in_seq++;
1414 mutex_unlock(&con->mutex);
1415
1416 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1417 msg, le64_to_cpu(msg->hdr.seq),
1418 ENTITY_NAME(msg->hdr.src),
1419 le16_to_cpu(msg->hdr.type),
1420 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1421 le32_to_cpu(msg->hdr.front_len),
1422 le32_to_cpu(msg->hdr.middle_len),
1423 le32_to_cpu(msg->hdr.data_len),
1424 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1425 con->ops->dispatch(con, msg);
1426
1427 mutex_lock(&con->mutex);
1428}
1429
1430/*
1431 * Atomically queue work on a connection after the specified delay.
1432 * Bump @con reference to avoid races with connection teardown.
1433 * Returns 0 if work was queued, or an error code otherwise.
1434 */
1435static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1436{
1437 if (!con->ops->get(con)) {
1438 dout("%s %p ref count 0\n", __func__, con);
1439 return -ENOENT;
1440 }
1441
1442 if (delay >= HZ)
1443 delay = round_jiffies_relative(delay);
1444
1445 dout("%s %p %lu\n", __func__, con, delay);
1446 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1447 dout("%s %p - already queued\n", __func__, con);
1448 con->ops->put(con);
1449 return -EBUSY;
1450 }
1451
1452 return 0;
1453}
1454
1455static void queue_con(struct ceph_connection *con)
1456{
1457 (void) queue_con_delay(con, 0);
1458}
1459
1460static void cancel_con(struct ceph_connection *con)
1461{
1462 if (cancel_delayed_work(&con->work)) {
1463 dout("%s %p\n", __func__, con);
1464 con->ops->put(con);
1465 }
1466}
1467
1468static bool con_sock_closed(struct ceph_connection *con)
1469{
1470 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1471 return false;
1472
1473#define CASE(x) \
1474 case CEPH_CON_S_ ## x: \
1475 con->error_msg = "socket closed (con state " #x ")"; \
1476 break;
1477
1478 switch (con->state) {
1479 CASE(CLOSED);
1480 CASE(PREOPEN);
1481 CASE(V1_BANNER);
1482 CASE(V1_CONNECT_MSG);
1483 CASE(V2_BANNER_PREFIX);
1484 CASE(V2_BANNER_PAYLOAD);
1485 CASE(V2_HELLO);
1486 CASE(V2_AUTH);
1487 CASE(V2_AUTH_SIGNATURE);
1488 CASE(V2_SESSION_CONNECT);
1489 CASE(V2_SESSION_RECONNECT);
1490 CASE(OPEN);
1491 CASE(STANDBY);
1492 default:
1493 BUG();
1494 }
1495#undef CASE
1496
1497 return true;
1498}
1499
1500static bool con_backoff(struct ceph_connection *con)
1501{
1502 int ret;
1503
1504 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1505 return false;
1506
1507 ret = queue_con_delay(con, con->delay);
1508 if (ret) {
1509 dout("%s: con %p FAILED to back off %lu\n", __func__,
1510 con, con->delay);
1511 BUG_ON(ret == -ENOENT);
1512 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1513 }
1514
1515 return true;
1516}
1517
1518/* Finish fault handling; con->mutex must *not* be held here */
1519
1520static void con_fault_finish(struct ceph_connection *con)
1521{
1522 dout("%s %p\n", __func__, con);
1523
1524 /*
1525 * in case we faulted due to authentication, invalidate our
1526 * current tickets so that we can get new ones.
1527 */
1528 if (!ceph_msgr2(from_msgr(con->msgr)) && con->v1.auth_retry) {
1529 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1530 if (con->ops->invalidate_authorizer)
1531 con->ops->invalidate_authorizer(con);
1532 con->v1.auth_retry = 0;
1533 }
1534
1535 if (con->ops->fault)
1536 con->ops->fault(con);
1537}
1538
1539/*
1540 * Do some work on a connection. Drop a connection ref when we're done.
1541 */
1542static void ceph_con_workfn(struct work_struct *work)
1543{
1544 struct ceph_connection *con = container_of(work, struct ceph_connection,
1545 work.work);
1546 bool fault;
1547
1548 mutex_lock(&con->mutex);
1549 while (true) {
1550 int ret;
1551
1552 if ((fault = con_sock_closed(con))) {
1553 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1554 break;
1555 }
1556 if (con_backoff(con)) {
1557 dout("%s: con %p BACKOFF\n", __func__, con);
1558 break;
1559 }
1560 if (con->state == CEPH_CON_S_STANDBY) {
1561 dout("%s: con %p STANDBY\n", __func__, con);
1562 break;
1563 }
1564 if (con->state == CEPH_CON_S_CLOSED) {
1565 dout("%s: con %p CLOSED\n", __func__, con);
1566 BUG_ON(con->sock);
1567 break;
1568 }
1569 if (con->state == CEPH_CON_S_PREOPEN) {
1570 dout("%s: con %p PREOPEN\n", __func__, con);
1571 BUG_ON(con->sock);
1572 }
1573
1574 if (ceph_msgr2(from_msgr(con->msgr)))
1575 ret = ceph_con_v2_try_read(con);
1576 else
1577 ret = ceph_con_v1_try_read(con);
1578 if (ret < 0) {
1579 if (ret == -EAGAIN)
1580 continue;
1581 if (!con->error_msg)
1582 con->error_msg = "socket error on read";
1583 fault = true;
1584 break;
1585 }
1586
1587 if (ceph_msgr2(from_msgr(con->msgr)))
1588 ret = ceph_con_v2_try_write(con);
1589 else
1590 ret = ceph_con_v1_try_write(con);
1591 if (ret < 0) {
1592 if (ret == -EAGAIN)
1593 continue;
1594 if (!con->error_msg)
1595 con->error_msg = "socket error on write";
1596 fault = true;
1597 }
1598
1599 break; /* If we make it to here, we're done */
1600 }
1601 if (fault)
1602 con_fault(con);
1603 mutex_unlock(&con->mutex);
1604
1605 if (fault)
1606 con_fault_finish(con);
1607
1608 con->ops->put(con);
1609}
1610
1611/*
1612 * Generic error/fault handler. A retry mechanism is used with
1613 * exponential backoff
1614 */
1615static void con_fault(struct ceph_connection *con)
1616{
1617 dout("fault %p state %d to peer %s\n",
1618 con, con->state, ceph_pr_addr(&con->peer_addr));
1619
1620 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1621 ceph_pr_addr(&con->peer_addr), con->error_msg);
1622 con->error_msg = NULL;
1623
1624 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1625 con->state == CEPH_CON_S_CLOSED);
1626
1627 ceph_con_reset_protocol(con);
1628
1629 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1630 dout("fault on LOSSYTX channel, marking CLOSED\n");
1631 con->state = CEPH_CON_S_CLOSED;
1632 return;
1633 }
1634
1635 /* Requeue anything that hasn't been acked */
1636 list_splice_init(&con->out_sent, &con->out_queue);
1637
1638 /* If there are no messages queued or keepalive pending, place
1639 * the connection in a STANDBY state */
1640 if (list_empty(&con->out_queue) &&
1641 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1642 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1643 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1644 con->state = CEPH_CON_S_STANDBY;
1645 } else {
1646 /* retry after a delay. */
1647 con->state = CEPH_CON_S_PREOPEN;
1648 if (!con->delay) {
1649 con->delay = BASE_DELAY_INTERVAL;
1650 } else if (con->delay < MAX_DELAY_INTERVAL) {
1651 con->delay *= 2;
1652 if (con->delay > MAX_DELAY_INTERVAL)
1653 con->delay = MAX_DELAY_INTERVAL;
1654 }
1655 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1656 queue_con(con);
1657 }
1658}
1659
1660void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1661{
1662 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1663 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1664 ceph_encode_my_addr(msgr);
1665}
1666
1667/*
1668 * initialize a new messenger instance
1669 */
1670void ceph_messenger_init(struct ceph_messenger *msgr,
1671 struct ceph_entity_addr *myaddr)
1672{
1673 spin_lock_init(&msgr->global_seq_lock);
1674
1675 if (myaddr) {
1676 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1677 sizeof(msgr->inst.addr.in_addr));
1678 ceph_addr_set_port(&msgr->inst.addr, 0);
1679 }
1680
1681 /*
1682 * Since nautilus, clients are identified using type ANY.
1683 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1684 */
1685 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1686
1687 /* generate a random non-zero nonce */
1688 do {
1689 get_random_bytes(&msgr->inst.addr.nonce,
1690 sizeof(msgr->inst.addr.nonce));
1691 } while (!msgr->inst.addr.nonce);
1692 ceph_encode_my_addr(msgr);
1693
1694 atomic_set(&msgr->stopping, 0);
1695 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1696
1697 dout("%s %p\n", __func__, msgr);
1698}
1699
1700void ceph_messenger_fini(struct ceph_messenger *msgr)
1701{
1702 put_net(read_pnet(&msgr->net));
1703}
1704
1705static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1706{
1707 if (msg->con)
1708 msg->con->ops->put(msg->con);
1709
1710 msg->con = con ? con->ops->get(con) : NULL;
1711 BUG_ON(msg->con != con);
1712}
1713
1714static void clear_standby(struct ceph_connection *con)
1715{
1716 /* come back from STANDBY? */
1717 if (con->state == CEPH_CON_S_STANDBY) {
1718 dout("clear_standby %p\n", con);
1719 con->state = CEPH_CON_S_PREOPEN;
1720 if (!ceph_msgr2(from_msgr(con->msgr)))
1721 con->v1.connect_seq++;
1722 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1723 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1724 }
1725}
1726
1727/*
1728 * Queue up an outgoing message on the given connection.
1729 *
1730 * Consumes a ref on @msg.
1731 */
1732void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1733{
1734 /* set src+dst */
1735 msg->hdr.src = con->msgr->inst.name;
1736 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1737 msg->needs_out_seq = true;
1738
1739 mutex_lock(&con->mutex);
1740
1741 if (con->state == CEPH_CON_S_CLOSED) {
1742 dout("con_send %p closed, dropping %p\n", con, msg);
1743 ceph_msg_put(msg);
1744 mutex_unlock(&con->mutex);
1745 return;
1746 }
1747
1748 msg_con_set(msg, con);
1749
1750 BUG_ON(!list_empty(&msg->list_head));
1751 list_add_tail(&msg->list_head, &con->out_queue);
1752 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1753 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1754 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1755 le32_to_cpu(msg->hdr.front_len),
1756 le32_to_cpu(msg->hdr.middle_len),
1757 le32_to_cpu(msg->hdr.data_len));
1758
1759 clear_standby(con);
1760 mutex_unlock(&con->mutex);
1761
1762 /* if there wasn't anything waiting to send before, queue
1763 * new work */
1764 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1765 queue_con(con);
1766}
1767EXPORT_SYMBOL(ceph_con_send);
1768
1769/*
1770 * Revoke a message that was previously queued for send
1771 */
1772void ceph_msg_revoke(struct ceph_msg *msg)
1773{
1774 struct ceph_connection *con = msg->con;
1775
1776 if (!con) {
1777 dout("%s msg %p null con\n", __func__, msg);
1778 return; /* Message not in our possession */
1779 }
1780
1781 mutex_lock(&con->mutex);
1782 if (list_empty(&msg->list_head)) {
1783 WARN_ON(con->out_msg == msg);
1784 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1785 mutex_unlock(&con->mutex);
1786 return;
1787 }
1788
1789 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1790 msg->hdr.seq = 0;
1791 ceph_msg_remove(msg);
1792
1793 if (con->out_msg == msg) {
1794 WARN_ON(con->state != CEPH_CON_S_OPEN);
1795 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1796 if (ceph_msgr2(from_msgr(con->msgr)))
1797 ceph_con_v2_revoke(con, msg);
1798 else
1799 ceph_con_v1_revoke(con, msg);
1800 ceph_msg_put(con->out_msg);
1801 con->out_msg = NULL;
1802 } else {
1803 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1804 con, msg, con->out_msg);
1805 }
1806 mutex_unlock(&con->mutex);
1807}
1808
1809/*
1810 * Revoke a message that we may be reading data into
1811 */
1812void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1813{
1814 struct ceph_connection *con = msg->con;
1815
1816 if (!con) {
1817 dout("%s msg %p null con\n", __func__, msg);
1818 return; /* Message not in our possession */
1819 }
1820
1821 mutex_lock(&con->mutex);
1822 if (con->in_msg == msg) {
1823 WARN_ON(con->state != CEPH_CON_S_OPEN);
1824 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1825 if (ceph_msgr2(from_msgr(con->msgr)))
1826 ceph_con_v2_revoke_incoming(con);
1827 else
1828 ceph_con_v1_revoke_incoming(con);
1829 ceph_msg_put(con->in_msg);
1830 con->in_msg = NULL;
1831 } else {
1832 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1833 con, msg, con->in_msg);
1834 }
1835 mutex_unlock(&con->mutex);
1836}
1837
1838/*
1839 * Queue a keepalive byte to ensure the tcp connection is alive.
1840 */
1841void ceph_con_keepalive(struct ceph_connection *con)
1842{
1843 dout("con_keepalive %p\n", con);
1844 mutex_lock(&con->mutex);
1845 clear_standby(con);
1846 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1847 mutex_unlock(&con->mutex);
1848
1849 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1850 queue_con(con);
1851}
1852EXPORT_SYMBOL(ceph_con_keepalive);
1853
1854bool ceph_con_keepalive_expired(struct ceph_connection *con,
1855 unsigned long interval)
1856{
1857 if (interval > 0 &&
1858 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1859 struct timespec64 now;
1860 struct timespec64 ts;
1861 ktime_get_real_ts64(&now);
1862 jiffies_to_timespec64(interval, &ts);
1863 ts = timespec64_add(con->last_keepalive_ack, ts);
1864 return timespec64_compare(&now, &ts) >= 0;
1865 }
1866 return false;
1867}
1868
1869static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1870{
1871 BUG_ON(msg->num_data_items >= msg->max_data_items);
1872 return &msg->data[msg->num_data_items++];
1873}
1874
1875static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1876{
1877 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1878 int num_pages = calc_pages_for(data->alignment, data->length);
1879 ceph_release_page_vector(data->pages, num_pages);
1880 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1881 ceph_pagelist_release(data->pagelist);
1882 }
1883}
1884
1885void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1886 size_t length, size_t alignment, bool own_pages)
1887{
1888 struct ceph_msg_data *data;
1889
1890 BUG_ON(!pages);
1891 BUG_ON(!length);
1892
1893 data = ceph_msg_data_add(msg);
1894 data->type = CEPH_MSG_DATA_PAGES;
1895 data->pages = pages;
1896 data->length = length;
1897 data->alignment = alignment & ~PAGE_MASK;
1898 data->own_pages = own_pages;
1899
1900 msg->data_length += length;
1901}
1902EXPORT_SYMBOL(ceph_msg_data_add_pages);
1903
1904void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1905 struct ceph_pagelist *pagelist)
1906{
1907 struct ceph_msg_data *data;
1908
1909 BUG_ON(!pagelist);
1910 BUG_ON(!pagelist->length);
1911
1912 data = ceph_msg_data_add(msg);
1913 data->type = CEPH_MSG_DATA_PAGELIST;
1914 refcount_inc(&pagelist->refcnt);
1915 data->pagelist = pagelist;
1916
1917 msg->data_length += pagelist->length;
1918}
1919EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1920
1921#ifdef CONFIG_BLOCK
1922void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1923 u32 length)
1924{
1925 struct ceph_msg_data *data;
1926
1927 data = ceph_msg_data_add(msg);
1928 data->type = CEPH_MSG_DATA_BIO;
1929 data->bio_pos = *bio_pos;
1930 data->bio_length = length;
1931
1932 msg->data_length += length;
1933}
1934EXPORT_SYMBOL(ceph_msg_data_add_bio);
1935#endif /* CONFIG_BLOCK */
1936
1937void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1938 struct ceph_bvec_iter *bvec_pos)
1939{
1940 struct ceph_msg_data *data;
1941
1942 data = ceph_msg_data_add(msg);
1943 data->type = CEPH_MSG_DATA_BVECS;
1944 data->bvec_pos = *bvec_pos;
1945
1946 msg->data_length += bvec_pos->iter.bi_size;
1947}
1948EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1949
1950void ceph_msg_data_add_iter(struct ceph_msg *msg,
1951 struct iov_iter *iter)
1952{
1953 struct ceph_msg_data *data;
1954
1955 data = ceph_msg_data_add(msg);
1956 data->type = CEPH_MSG_DATA_ITER;
1957 data->iter = *iter;
1958
1959 msg->data_length += iov_iter_count(&data->iter);
1960}
1961
1962/*
1963 * construct a new message with given type, size
1964 * the new msg has a ref count of 1.
1965 */
1966struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1967 gfp_t flags, bool can_fail)
1968{
1969 struct ceph_msg *m;
1970
1971 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1972 if (m == NULL)
1973 goto out;
1974
1975 m->hdr.type = cpu_to_le16(type);
1976 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1977 m->hdr.front_len = cpu_to_le32(front_len);
1978
1979 INIT_LIST_HEAD(&m->list_head);
1980 kref_init(&m->kref);
1981
1982 /* front */
1983 if (front_len) {
1984 m->front.iov_base = kvmalloc(front_len, flags);
1985 if (m->front.iov_base == NULL) {
1986 dout("ceph_msg_new can't allocate %d bytes\n",
1987 front_len);
1988 goto out2;
1989 }
1990 } else {
1991 m->front.iov_base = NULL;
1992 }
1993 m->front_alloc_len = m->front.iov_len = front_len;
1994
1995 if (max_data_items) {
1996 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1997 flags);
1998 if (!m->data)
1999 goto out2;
2000
2001 m->max_data_items = max_data_items;
2002 }
2003
2004 dout("ceph_msg_new %p front %d\n", m, front_len);
2005 return m;
2006
2007out2:
2008 ceph_msg_put(m);
2009out:
2010 if (!can_fail) {
2011 pr_err("msg_new can't create type %d front %d\n", type,
2012 front_len);
2013 WARN_ON(1);
2014 } else {
2015 dout("msg_new can't create type %d front %d\n", type,
2016 front_len);
2017 }
2018 return NULL;
2019}
2020EXPORT_SYMBOL(ceph_msg_new2);
2021
2022struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2023 bool can_fail)
2024{
2025 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2026}
2027EXPORT_SYMBOL(ceph_msg_new);
2028
2029/*
2030 * Allocate "middle" portion of a message, if it is needed and wasn't
2031 * allocated by alloc_msg. This allows us to read a small fixed-size
2032 * per-type header in the front and then gracefully fail (i.e.,
2033 * propagate the error to the caller based on info in the front) when
2034 * the middle is too large.
2035 */
2036static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2037{
2038 int type = le16_to_cpu(msg->hdr.type);
2039 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2040
2041 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2042 ceph_msg_type_name(type), middle_len);
2043 BUG_ON(!middle_len);
2044 BUG_ON(msg->middle);
2045
2046 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2047 if (!msg->middle)
2048 return -ENOMEM;
2049 return 0;
2050}
2051
2052/*
2053 * Allocate a message for receiving an incoming message on a
2054 * connection, and save the result in con->in_msg. Uses the
2055 * connection's private alloc_msg op if available.
2056 *
2057 * Returns 0 on success, or a negative error code.
2058 *
2059 * On success, if we set *skip = 1:
2060 * - the next message should be skipped and ignored.
2061 * - con->in_msg == NULL
2062 * or if we set *skip = 0:
2063 * - con->in_msg is non-null.
2064 * On error (ENOMEM, EAGAIN, ...),
2065 * - con->in_msg == NULL
2066 */
2067int ceph_con_in_msg_alloc(struct ceph_connection *con,
2068 struct ceph_msg_header *hdr, int *skip)
2069{
2070 int middle_len = le32_to_cpu(hdr->middle_len);
2071 struct ceph_msg *msg;
2072 int ret = 0;
2073
2074 BUG_ON(con->in_msg != NULL);
2075 BUG_ON(!con->ops->alloc_msg);
2076
2077 mutex_unlock(&con->mutex);
2078 msg = con->ops->alloc_msg(con, hdr, skip);
2079 mutex_lock(&con->mutex);
2080 if (con->state != CEPH_CON_S_OPEN) {
2081 if (msg)
2082 ceph_msg_put(msg);
2083 return -EAGAIN;
2084 }
2085 if (msg) {
2086 BUG_ON(*skip);
2087 msg_con_set(msg, con);
2088 con->in_msg = msg;
2089 } else {
2090 /*
2091 * Null message pointer means either we should skip
2092 * this message or we couldn't allocate memory. The
2093 * former is not an error.
2094 */
2095 if (*skip)
2096 return 0;
2097
2098 con->error_msg = "error allocating memory for incoming message";
2099 return -ENOMEM;
2100 }
2101 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2102
2103 if (middle_len && !con->in_msg->middle) {
2104 ret = ceph_alloc_middle(con, con->in_msg);
2105 if (ret < 0) {
2106 ceph_msg_put(con->in_msg);
2107 con->in_msg = NULL;
2108 }
2109 }
2110
2111 return ret;
2112}
2113
2114struct ceph_msg *ceph_con_get_out_msg(struct ceph_connection *con)
2115{
2116 struct ceph_msg *msg;
2117
2118 if (list_empty(&con->out_queue))
2119 return NULL;
2120
2121 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2122 WARN_ON(msg->con != con);
2123
2124 /*
2125 * Put the message on "sent" list using a ref from ceph_con_send().
2126 * It is put when the message is acked or revoked.
2127 */
2128 list_move_tail(&msg->list_head, &con->out_sent);
2129
2130 /*
2131 * Only assign outgoing seq # if we haven't sent this message
2132 * yet. If it is requeued, resend with it's original seq.
2133 */
2134 if (msg->needs_out_seq) {
2135 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2136 msg->needs_out_seq = false;
2137
2138 if (con->ops->reencode_message)
2139 con->ops->reencode_message(msg);
2140 }
2141
2142 /*
2143 * Get a ref for out_msg. It is put when we are done sending the
2144 * message or in case of a fault.
2145 */
2146 WARN_ON(con->out_msg);
2147 return con->out_msg = ceph_msg_get(msg);
2148}
2149
2150/*
2151 * Free a generically kmalloc'd message.
2152 */
2153static void ceph_msg_free(struct ceph_msg *m)
2154{
2155 dout("%s %p\n", __func__, m);
2156 kvfree(m->front.iov_base);
2157 kfree(m->data);
2158 kmem_cache_free(ceph_msg_cache, m);
2159}
2160
2161static void ceph_msg_release(struct kref *kref)
2162{
2163 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2164 int i;
2165
2166 dout("%s %p\n", __func__, m);
2167 WARN_ON(!list_empty(&m->list_head));
2168
2169 msg_con_set(m, NULL);
2170
2171 /* drop middle, data, if any */
2172 if (m->middle) {
2173 ceph_buffer_put(m->middle);
2174 m->middle = NULL;
2175 }
2176
2177 for (i = 0; i < m->num_data_items; i++)
2178 ceph_msg_data_destroy(&m->data[i]);
2179
2180 if (m->pool)
2181 ceph_msgpool_put(m->pool, m);
2182 else
2183 ceph_msg_free(m);
2184}
2185
2186struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2187{
2188 dout("%s %p (was %d)\n", __func__, msg,
2189 kref_read(&msg->kref));
2190 kref_get(&msg->kref);
2191 return msg;
2192}
2193EXPORT_SYMBOL(ceph_msg_get);
2194
2195void ceph_msg_put(struct ceph_msg *msg)
2196{
2197 dout("%s %p (was %d)\n", __func__, msg,
2198 kref_read(&msg->kref));
2199 kref_put(&msg->kref, ceph_msg_release);
2200}
2201EXPORT_SYMBOL(ceph_msg_put);
2202
2203void ceph_msg_dump(struct ceph_msg *msg)
2204{
2205 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2206 msg->front_alloc_len, msg->data_length);
2207 print_hex_dump(KERN_DEBUG, "header: ",
2208 DUMP_PREFIX_OFFSET, 16, 1,
2209 &msg->hdr, sizeof(msg->hdr), true);
2210 print_hex_dump(KERN_DEBUG, " front: ",
2211 DUMP_PREFIX_OFFSET, 16, 1,
2212 msg->front.iov_base, msg->front.iov_len, true);
2213 if (msg->middle)
2214 print_hex_dump(KERN_DEBUG, "middle: ",
2215 DUMP_PREFIX_OFFSET, 16, 1,
2216 msg->middle->vec.iov_base,
2217 msg->middle->vec.iov_len, true);
2218 print_hex_dump(KERN_DEBUG, "footer: ",
2219 DUMP_PREFIX_OFFSET, 16, 1,
2220 &msg->footer, sizeof(msg->footer), true);
2221}
2222EXPORT_SYMBOL(ceph_msg_dump);