at master 52 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * zswap.c - zswap driver file 4 * 5 * zswap is a cache that takes pages that are in the process 6 * of being swapped out and attempts to compress and store them in a 7 * RAM-based memory pool. This can result in a significant I/O reduction on 8 * the swap device and, in the case where decompressing from RAM is faster 9 * than reading from the swap device, can also improve workload performance. 10 * 11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 12*/ 13 14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16#include <linux/module.h> 17#include <linux/cpu.h> 18#include <linux/highmem.h> 19#include <linux/slab.h> 20#include <linux/spinlock.h> 21#include <linux/types.h> 22#include <linux/atomic.h> 23#include <linux/swap.h> 24#include <linux/crypto.h> 25#include <linux/scatterlist.h> 26#include <linux/mempolicy.h> 27#include <linux/mempool.h> 28#include <crypto/acompress.h> 29#include <linux/zswap.h> 30#include <linux/mm_types.h> 31#include <linux/page-flags.h> 32#include <linux/swapops.h> 33#include <linux/writeback.h> 34#include <linux/pagemap.h> 35#include <linux/workqueue.h> 36#include <linux/list_lru.h> 37#include <linux/zsmalloc.h> 38 39#include "swap.h" 40#include "internal.h" 41 42/********************************* 43* statistics 44**********************************/ 45/* The number of pages currently stored in zswap */ 46atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0); 47/* The number of incompressible pages currently stored in zswap */ 48static atomic_long_t zswap_stored_incompressible_pages = ATOMIC_LONG_INIT(0); 49 50/* 51 * The statistics below are not protected from concurrent access for 52 * performance reasons so they may not be a 100% accurate. However, 53 * they do provide useful information on roughly how many times a 54 * certain event is occurring. 55*/ 56 57/* Pool limit was hit (see zswap_max_pool_percent) */ 58static u64 zswap_pool_limit_hit; 59/* Pages written back when pool limit was reached */ 60static u64 zswap_written_back_pages; 61/* Store failed due to a reclaim failure after pool limit was reached */ 62static u64 zswap_reject_reclaim_fail; 63/* Store failed due to compression algorithm failure */ 64static u64 zswap_reject_compress_fail; 65/* Compressed page was too big for the allocator to (optimally) store */ 66static u64 zswap_reject_compress_poor; 67/* Load or writeback failed due to decompression failure */ 68static u64 zswap_decompress_fail; 69/* Store failed because underlying allocator could not get memory */ 70static u64 zswap_reject_alloc_fail; 71/* Store failed because the entry metadata could not be allocated (rare) */ 72static u64 zswap_reject_kmemcache_fail; 73 74/* Shrinker work queue */ 75static struct workqueue_struct *shrink_wq; 76/* Pool limit was hit, we need to calm down */ 77static bool zswap_pool_reached_full; 78 79/********************************* 80* tunables 81**********************************/ 82 83#define ZSWAP_PARAM_UNSET "" 84 85static int zswap_setup(void); 86 87/* Enable/disable zswap */ 88static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled); 89static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); 90static int zswap_enabled_param_set(const char *, 91 const struct kernel_param *); 92static const struct kernel_param_ops zswap_enabled_param_ops = { 93 .set = zswap_enabled_param_set, 94 .get = param_get_bool, 95}; 96module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); 97 98/* Crypto compressor to use */ 99static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 100static int zswap_compressor_param_set(const char *, 101 const struct kernel_param *); 102static const struct kernel_param_ops zswap_compressor_param_ops = { 103 .set = zswap_compressor_param_set, 104 .get = param_get_charp, 105 .free = param_free_charp, 106}; 107module_param_cb(compressor, &zswap_compressor_param_ops, 108 &zswap_compressor, 0644); 109 110/* The maximum percentage of memory that the compressed pool can occupy */ 111static unsigned int zswap_max_pool_percent = 20; 112module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); 113 114/* The threshold for accepting new pages after the max_pool_percent was hit */ 115static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ 116module_param_named(accept_threshold_percent, zswap_accept_thr_percent, 117 uint, 0644); 118 119/* Enable/disable memory pressure-based shrinker. */ 120static bool zswap_shrinker_enabled = IS_ENABLED( 121 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON); 122module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644); 123 124bool zswap_is_enabled(void) 125{ 126 return zswap_enabled; 127} 128 129bool zswap_never_enabled(void) 130{ 131 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled); 132} 133 134/********************************* 135* data structures 136**********************************/ 137 138struct crypto_acomp_ctx { 139 struct crypto_acomp *acomp; 140 struct acomp_req *req; 141 struct crypto_wait wait; 142 u8 *buffer; 143 struct mutex mutex; 144 bool is_sleepable; 145}; 146 147/* 148 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock. 149 * The only case where lru_lock is not acquired while holding tree.lock is 150 * when a zswap_entry is taken off the lru for writeback, in that case it 151 * needs to be verified that it's still valid in the tree. 152 */ 153struct zswap_pool { 154 struct zs_pool *zs_pool; 155 struct crypto_acomp_ctx __percpu *acomp_ctx; 156 struct percpu_ref ref; 157 struct list_head list; 158 struct work_struct release_work; 159 struct hlist_node node; 160 char tfm_name[CRYPTO_MAX_ALG_NAME]; 161}; 162 163/* Global LRU lists shared by all zswap pools. */ 164static struct list_lru zswap_list_lru; 165 166/* The lock protects zswap_next_shrink updates. */ 167static DEFINE_SPINLOCK(zswap_shrink_lock); 168static struct mem_cgroup *zswap_next_shrink; 169static struct work_struct zswap_shrink_work; 170static struct shrinker *zswap_shrinker; 171 172/* 173 * struct zswap_entry 174 * 175 * This structure contains the metadata for tracking a single compressed 176 * page within zswap. 177 * 178 * swpentry - associated swap entry, the offset indexes into the xarray 179 * length - the length in bytes of the compressed page data. Needed during 180 * decompression. 181 * referenced - true if the entry recently entered the zswap pool. Unset by the 182 * writeback logic. The entry is only reclaimed by the writeback 183 * logic if referenced is unset. See comments in the shrinker 184 * section for context. 185 * pool - the zswap_pool the entry's data is in 186 * handle - zsmalloc allocation handle that stores the compressed page data 187 * objcg - the obj_cgroup that the compressed memory is charged to 188 * lru - handle to the pool's lru used to evict pages. 189 */ 190struct zswap_entry { 191 swp_entry_t swpentry; 192 unsigned int length; 193 bool referenced; 194 struct zswap_pool *pool; 195 unsigned long handle; 196 struct obj_cgroup *objcg; 197 struct list_head lru; 198}; 199 200static struct xarray *zswap_trees[MAX_SWAPFILES]; 201static unsigned int nr_zswap_trees[MAX_SWAPFILES]; 202 203/* RCU-protected iteration */ 204static LIST_HEAD(zswap_pools); 205/* protects zswap_pools list modification */ 206static DEFINE_SPINLOCK(zswap_pools_lock); 207/* pool counter to provide unique names to zsmalloc */ 208static atomic_t zswap_pools_count = ATOMIC_INIT(0); 209 210enum zswap_init_type { 211 ZSWAP_UNINIT, 212 ZSWAP_INIT_SUCCEED, 213 ZSWAP_INIT_FAILED 214}; 215 216static enum zswap_init_type zswap_init_state; 217 218/* used to ensure the integrity of initialization */ 219static DEFINE_MUTEX(zswap_init_lock); 220 221/* init completed, but couldn't create the initial pool */ 222static bool zswap_has_pool; 223 224/********************************* 225* helpers and fwd declarations 226**********************************/ 227 228/* One swap address space for each 64M swap space */ 229#define ZSWAP_ADDRESS_SPACE_SHIFT 14 230#define ZSWAP_ADDRESS_SPACE_PAGES (1 << ZSWAP_ADDRESS_SPACE_SHIFT) 231static inline struct xarray *swap_zswap_tree(swp_entry_t swp) 232{ 233 return &zswap_trees[swp_type(swp)][swp_offset(swp) 234 >> ZSWAP_ADDRESS_SPACE_SHIFT]; 235} 236 237#define zswap_pool_debug(msg, p) \ 238 pr_debug("%s pool %s\n", msg, (p)->tfm_name) 239 240/********************************* 241* pool functions 242**********************************/ 243static void __zswap_pool_empty(struct percpu_ref *ref); 244 245static struct zswap_pool *zswap_pool_create(char *compressor) 246{ 247 struct zswap_pool *pool; 248 char name[38]; /* 'zswap' + 32 char (max) num + \0 */ 249 int ret, cpu; 250 251 if (!zswap_has_pool && !strcmp(compressor, ZSWAP_PARAM_UNSET)) 252 return NULL; 253 254 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 255 if (!pool) 256 return NULL; 257 258 /* unique name for each pool specifically required by zsmalloc */ 259 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); 260 pool->zs_pool = zs_create_pool(name); 261 if (!pool->zs_pool) 262 goto error; 263 264 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); 265 266 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); 267 if (!pool->acomp_ctx) { 268 pr_err("percpu alloc failed\n"); 269 goto error; 270 } 271 272 for_each_possible_cpu(cpu) 273 mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex); 274 275 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, 276 &pool->node); 277 if (ret) 278 goto error; 279 280 /* being the current pool takes 1 ref; this func expects the 281 * caller to always add the new pool as the current pool 282 */ 283 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty, 284 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 285 if (ret) 286 goto ref_fail; 287 INIT_LIST_HEAD(&pool->list); 288 289 zswap_pool_debug("created", pool); 290 291 return pool; 292 293ref_fail: 294 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 295error: 296 if (pool->acomp_ctx) 297 free_percpu(pool->acomp_ctx); 298 if (pool->zs_pool) 299 zs_destroy_pool(pool->zs_pool); 300 kfree(pool); 301 return NULL; 302} 303 304static struct zswap_pool *__zswap_pool_create_fallback(void) 305{ 306 if (!crypto_has_acomp(zswap_compressor, 0, 0) && 307 strcmp(zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { 308 pr_err("compressor %s not available, using default %s\n", 309 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); 310 param_free_charp(&zswap_compressor); 311 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 312 } 313 314 /* Default compressor should be available. Kconfig bug? */ 315 if (WARN_ON_ONCE(!crypto_has_acomp(zswap_compressor, 0, 0))) { 316 zswap_compressor = ZSWAP_PARAM_UNSET; 317 return NULL; 318 } 319 320 return zswap_pool_create(zswap_compressor); 321} 322 323static void zswap_pool_destroy(struct zswap_pool *pool) 324{ 325 zswap_pool_debug("destroying", pool); 326 327 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 328 free_percpu(pool->acomp_ctx); 329 330 zs_destroy_pool(pool->zs_pool); 331 kfree(pool); 332} 333 334static void __zswap_pool_release(struct work_struct *work) 335{ 336 struct zswap_pool *pool = container_of(work, typeof(*pool), 337 release_work); 338 339 synchronize_rcu(); 340 341 /* nobody should have been able to get a ref... */ 342 WARN_ON(!percpu_ref_is_zero(&pool->ref)); 343 percpu_ref_exit(&pool->ref); 344 345 /* pool is now off zswap_pools list and has no references. */ 346 zswap_pool_destroy(pool); 347} 348 349static struct zswap_pool *zswap_pool_current(void); 350 351static void __zswap_pool_empty(struct percpu_ref *ref) 352{ 353 struct zswap_pool *pool; 354 355 pool = container_of(ref, typeof(*pool), ref); 356 357 spin_lock_bh(&zswap_pools_lock); 358 359 WARN_ON(pool == zswap_pool_current()); 360 361 list_del_rcu(&pool->list); 362 363 INIT_WORK(&pool->release_work, __zswap_pool_release); 364 schedule_work(&pool->release_work); 365 366 spin_unlock_bh(&zswap_pools_lock); 367} 368 369static int __must_check zswap_pool_tryget(struct zswap_pool *pool) 370{ 371 if (!pool) 372 return 0; 373 374 return percpu_ref_tryget(&pool->ref); 375} 376 377/* The caller must already have a reference. */ 378static void zswap_pool_get(struct zswap_pool *pool) 379{ 380 percpu_ref_get(&pool->ref); 381} 382 383static void zswap_pool_put(struct zswap_pool *pool) 384{ 385 percpu_ref_put(&pool->ref); 386} 387 388static struct zswap_pool *__zswap_pool_current(void) 389{ 390 struct zswap_pool *pool; 391 392 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); 393 WARN_ONCE(!pool && zswap_has_pool, 394 "%s: no page storage pool!\n", __func__); 395 396 return pool; 397} 398 399static struct zswap_pool *zswap_pool_current(void) 400{ 401 assert_spin_locked(&zswap_pools_lock); 402 403 return __zswap_pool_current(); 404} 405 406static struct zswap_pool *zswap_pool_current_get(void) 407{ 408 struct zswap_pool *pool; 409 410 rcu_read_lock(); 411 412 pool = __zswap_pool_current(); 413 if (!zswap_pool_tryget(pool)) 414 pool = NULL; 415 416 rcu_read_unlock(); 417 418 return pool; 419} 420 421/* type and compressor must be null-terminated */ 422static struct zswap_pool *zswap_pool_find_get(char *compressor) 423{ 424 struct zswap_pool *pool; 425 426 assert_spin_locked(&zswap_pools_lock); 427 428 list_for_each_entry_rcu(pool, &zswap_pools, list) { 429 if (strcmp(pool->tfm_name, compressor)) 430 continue; 431 /* if we can't get it, it's about to be destroyed */ 432 if (!zswap_pool_tryget(pool)) 433 continue; 434 return pool; 435 } 436 437 return NULL; 438} 439 440static unsigned long zswap_max_pages(void) 441{ 442 return totalram_pages() * zswap_max_pool_percent / 100; 443} 444 445static unsigned long zswap_accept_thr_pages(void) 446{ 447 return zswap_max_pages() * zswap_accept_thr_percent / 100; 448} 449 450unsigned long zswap_total_pages(void) 451{ 452 struct zswap_pool *pool; 453 unsigned long total = 0; 454 455 rcu_read_lock(); 456 list_for_each_entry_rcu(pool, &zswap_pools, list) 457 total += zs_get_total_pages(pool->zs_pool); 458 rcu_read_unlock(); 459 460 return total; 461} 462 463static bool zswap_check_limits(void) 464{ 465 unsigned long cur_pages = zswap_total_pages(); 466 unsigned long max_pages = zswap_max_pages(); 467 468 if (cur_pages >= max_pages) { 469 zswap_pool_limit_hit++; 470 zswap_pool_reached_full = true; 471 } else if (zswap_pool_reached_full && 472 cur_pages <= zswap_accept_thr_pages()) { 473 zswap_pool_reached_full = false; 474 } 475 return zswap_pool_reached_full; 476} 477 478/********************************* 479* param callbacks 480**********************************/ 481 482static int zswap_compressor_param_set(const char *val, const struct kernel_param *kp) 483{ 484 struct zswap_pool *pool, *put_pool = NULL; 485 char *s = strstrip((char *)val); 486 bool create_pool = false; 487 int ret = 0; 488 489 mutex_lock(&zswap_init_lock); 490 switch (zswap_init_state) { 491 case ZSWAP_UNINIT: 492 /* Handled in zswap_setup() */ 493 ret = param_set_charp(s, kp); 494 break; 495 case ZSWAP_INIT_SUCCEED: 496 if (!zswap_has_pool || strcmp(s, *(char **)kp->arg)) 497 create_pool = true; 498 break; 499 case ZSWAP_INIT_FAILED: 500 pr_err("can't set param, initialization failed\n"); 501 ret = -ENODEV; 502 } 503 mutex_unlock(&zswap_init_lock); 504 505 if (!create_pool) 506 return ret; 507 508 if (!crypto_has_acomp(s, 0, 0)) { 509 pr_err("compressor %s not available\n", s); 510 return -ENOENT; 511 } 512 513 spin_lock_bh(&zswap_pools_lock); 514 515 pool = zswap_pool_find_get(s); 516 if (pool) { 517 zswap_pool_debug("using existing", pool); 518 WARN_ON(pool == zswap_pool_current()); 519 list_del_rcu(&pool->list); 520 } 521 522 spin_unlock_bh(&zswap_pools_lock); 523 524 if (!pool) 525 pool = zswap_pool_create(s); 526 else { 527 /* 528 * Restore the initial ref dropped by percpu_ref_kill() 529 * when the pool was decommissioned and switch it again 530 * to percpu mode. 531 */ 532 percpu_ref_resurrect(&pool->ref); 533 534 /* Drop the ref from zswap_pool_find_get(). */ 535 zswap_pool_put(pool); 536 } 537 538 if (pool) 539 ret = param_set_charp(s, kp); 540 else 541 ret = -EINVAL; 542 543 spin_lock_bh(&zswap_pools_lock); 544 545 if (!ret) { 546 put_pool = zswap_pool_current(); 547 list_add_rcu(&pool->list, &zswap_pools); 548 zswap_has_pool = true; 549 } else if (pool) { 550 /* 551 * Add the possibly pre-existing pool to the end of the pools 552 * list; if it's new (and empty) then it'll be removed and 553 * destroyed by the put after we drop the lock 554 */ 555 list_add_tail_rcu(&pool->list, &zswap_pools); 556 put_pool = pool; 557 } 558 559 spin_unlock_bh(&zswap_pools_lock); 560 561 /* 562 * Drop the ref from either the old current pool, 563 * or the new pool we failed to add 564 */ 565 if (put_pool) 566 percpu_ref_kill(&put_pool->ref); 567 568 return ret; 569} 570 571static int zswap_enabled_param_set(const char *val, 572 const struct kernel_param *kp) 573{ 574 int ret = -ENODEV; 575 576 /* if this is load-time (pre-init) param setting, only set param. */ 577 if (system_state != SYSTEM_RUNNING) 578 return param_set_bool(val, kp); 579 580 mutex_lock(&zswap_init_lock); 581 switch (zswap_init_state) { 582 case ZSWAP_UNINIT: 583 if (zswap_setup()) 584 break; 585 fallthrough; 586 case ZSWAP_INIT_SUCCEED: 587 if (!zswap_has_pool) 588 pr_err("can't enable, no pool configured\n"); 589 else 590 ret = param_set_bool(val, kp); 591 break; 592 case ZSWAP_INIT_FAILED: 593 pr_err("can't enable, initialization failed\n"); 594 } 595 mutex_unlock(&zswap_init_lock); 596 597 return ret; 598} 599 600/********************************* 601* lru functions 602**********************************/ 603 604/* should be called under RCU */ 605#ifdef CONFIG_MEMCG 606static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) 607{ 608 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL; 609} 610#else 611static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) 612{ 613 return NULL; 614} 615#endif 616 617static inline int entry_to_nid(struct zswap_entry *entry) 618{ 619 return page_to_nid(virt_to_page(entry)); 620} 621 622static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry) 623{ 624 int nid = entry_to_nid(entry); 625 struct mem_cgroup *memcg; 626 627 /* 628 * Note that it is safe to use rcu_read_lock() here, even in the face of 629 * concurrent memcg offlining: 630 * 631 * 1. list_lru_add() is called before list_lru_one is dead. The 632 * new entry will be reparented to memcg's parent's list_lru. 633 * 2. list_lru_add() is called after list_lru_one is dead. The 634 * new entry will be added directly to memcg's parent's list_lru. 635 * 636 * Similar reasoning holds for list_lru_del(). 637 */ 638 rcu_read_lock(); 639 memcg = mem_cgroup_from_entry(entry); 640 /* will always succeed */ 641 list_lru_add(list_lru, &entry->lru, nid, memcg); 642 rcu_read_unlock(); 643} 644 645static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry) 646{ 647 int nid = entry_to_nid(entry); 648 struct mem_cgroup *memcg; 649 650 rcu_read_lock(); 651 memcg = mem_cgroup_from_entry(entry); 652 /* will always succeed */ 653 list_lru_del(list_lru, &entry->lru, nid, memcg); 654 rcu_read_unlock(); 655} 656 657void zswap_lruvec_state_init(struct lruvec *lruvec) 658{ 659 atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0); 660} 661 662void zswap_folio_swapin(struct folio *folio) 663{ 664 struct lruvec *lruvec; 665 666 if (folio) { 667 lruvec = folio_lruvec(folio); 668 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins); 669 } 670} 671 672/* 673 * This function should be called when a memcg is being offlined. 674 * 675 * Since the global shrinker shrink_worker() may hold a reference 676 * of the memcg, we must check and release the reference in 677 * zswap_next_shrink. 678 * 679 * shrink_worker() must handle the case where this function releases 680 * the reference of memcg being shrunk. 681 */ 682void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) 683{ 684 /* lock out zswap shrinker walking memcg tree */ 685 spin_lock(&zswap_shrink_lock); 686 if (zswap_next_shrink == memcg) { 687 do { 688 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); 689 } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink)); 690 } 691 spin_unlock(&zswap_shrink_lock); 692} 693 694/********************************* 695* zswap entry functions 696**********************************/ 697static struct kmem_cache *zswap_entry_cache; 698 699static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid) 700{ 701 struct zswap_entry *entry; 702 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid); 703 if (!entry) 704 return NULL; 705 return entry; 706} 707 708static void zswap_entry_cache_free(struct zswap_entry *entry) 709{ 710 kmem_cache_free(zswap_entry_cache, entry); 711} 712 713/* 714 * Carries out the common pattern of freeing an entry's zsmalloc allocation, 715 * freeing the entry itself, and decrementing the number of stored pages. 716 */ 717static void zswap_entry_free(struct zswap_entry *entry) 718{ 719 zswap_lru_del(&zswap_list_lru, entry); 720 zs_free(entry->pool->zs_pool, entry->handle); 721 zswap_pool_put(entry->pool); 722 if (entry->objcg) { 723 obj_cgroup_uncharge_zswap(entry->objcg, entry->length); 724 obj_cgroup_put(entry->objcg); 725 } 726 if (entry->length == PAGE_SIZE) 727 atomic_long_dec(&zswap_stored_incompressible_pages); 728 zswap_entry_cache_free(entry); 729 atomic_long_dec(&zswap_stored_pages); 730} 731 732/********************************* 733* compressed storage functions 734**********************************/ 735static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) 736{ 737 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 738 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 739 struct crypto_acomp *acomp = NULL; 740 struct acomp_req *req = NULL; 741 u8 *buffer = NULL; 742 int ret; 743 744 buffer = kmalloc_node(PAGE_SIZE, GFP_KERNEL, cpu_to_node(cpu)); 745 if (!buffer) { 746 ret = -ENOMEM; 747 goto fail; 748 } 749 750 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); 751 if (IS_ERR(acomp)) { 752 pr_err("could not alloc crypto acomp %s : %ld\n", 753 pool->tfm_name, PTR_ERR(acomp)); 754 ret = PTR_ERR(acomp); 755 goto fail; 756 } 757 758 req = acomp_request_alloc(acomp); 759 if (!req) { 760 pr_err("could not alloc crypto acomp_request %s\n", 761 pool->tfm_name); 762 ret = -ENOMEM; 763 goto fail; 764 } 765 766 /* 767 * Only hold the mutex after completing allocations, otherwise we may 768 * recurse into zswap through reclaim and attempt to hold the mutex 769 * again resulting in a deadlock. 770 */ 771 mutex_lock(&acomp_ctx->mutex); 772 crypto_init_wait(&acomp_ctx->wait); 773 774 /* 775 * if the backend of acomp is async zip, crypto_req_done() will wakeup 776 * crypto_wait_req(); if the backend of acomp is scomp, the callback 777 * won't be called, crypto_wait_req() will return without blocking. 778 */ 779 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 780 crypto_req_done, &acomp_ctx->wait); 781 782 acomp_ctx->buffer = buffer; 783 acomp_ctx->acomp = acomp; 784 acomp_ctx->is_sleepable = acomp_is_async(acomp); 785 acomp_ctx->req = req; 786 mutex_unlock(&acomp_ctx->mutex); 787 return 0; 788 789fail: 790 if (acomp) 791 crypto_free_acomp(acomp); 792 kfree(buffer); 793 return ret; 794} 795 796static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) 797{ 798 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 799 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 800 struct acomp_req *req; 801 struct crypto_acomp *acomp; 802 u8 *buffer; 803 804 if (IS_ERR_OR_NULL(acomp_ctx)) 805 return 0; 806 807 mutex_lock(&acomp_ctx->mutex); 808 req = acomp_ctx->req; 809 acomp = acomp_ctx->acomp; 810 buffer = acomp_ctx->buffer; 811 acomp_ctx->req = NULL; 812 acomp_ctx->acomp = NULL; 813 acomp_ctx->buffer = NULL; 814 mutex_unlock(&acomp_ctx->mutex); 815 816 /* 817 * Do the actual freeing after releasing the mutex to avoid subtle 818 * locking dependencies causing deadlocks. 819 */ 820 if (!IS_ERR_OR_NULL(req)) 821 acomp_request_free(req); 822 if (!IS_ERR_OR_NULL(acomp)) 823 crypto_free_acomp(acomp); 824 kfree(buffer); 825 826 return 0; 827} 828 829static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool) 830{ 831 struct crypto_acomp_ctx *acomp_ctx; 832 833 for (;;) { 834 acomp_ctx = raw_cpu_ptr(pool->acomp_ctx); 835 mutex_lock(&acomp_ctx->mutex); 836 if (likely(acomp_ctx->req)) 837 return acomp_ctx; 838 /* 839 * It is possible that we were migrated to a different CPU after 840 * getting the per-CPU ctx but before the mutex was acquired. If 841 * the old CPU got offlined, zswap_cpu_comp_dead() could have 842 * already freed ctx->req (among other things) and set it to 843 * NULL. Just try again on the new CPU that we ended up on. 844 */ 845 mutex_unlock(&acomp_ctx->mutex); 846 } 847} 848 849static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx) 850{ 851 mutex_unlock(&acomp_ctx->mutex); 852} 853 854static bool zswap_compress(struct page *page, struct zswap_entry *entry, 855 struct zswap_pool *pool) 856{ 857 struct crypto_acomp_ctx *acomp_ctx; 858 struct scatterlist input, output; 859 int comp_ret = 0, alloc_ret = 0; 860 unsigned int dlen = PAGE_SIZE; 861 unsigned long handle; 862 gfp_t gfp; 863 u8 *dst; 864 bool mapped = false; 865 866 acomp_ctx = acomp_ctx_get_cpu_lock(pool); 867 dst = acomp_ctx->buffer; 868 sg_init_table(&input, 1); 869 sg_set_page(&input, page, PAGE_SIZE, 0); 870 871 sg_init_one(&output, dst, PAGE_SIZE); 872 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); 873 874 /* 875 * it maybe looks a little bit silly that we send an asynchronous request, 876 * then wait for its completion synchronously. This makes the process look 877 * synchronous in fact. 878 * Theoretically, acomp supports users send multiple acomp requests in one 879 * acomp instance, then get those requests done simultaneously. but in this 880 * case, zswap actually does store and load page by page, there is no 881 * existing method to send the second page before the first page is done 882 * in one thread doing zswap. 883 * but in different threads running on different cpu, we have different 884 * acomp instance, so multiple threads can do (de)compression in parallel. 885 */ 886 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); 887 dlen = acomp_ctx->req->dlen; 888 889 /* 890 * If a page cannot be compressed into a size smaller than PAGE_SIZE, 891 * save the content as is without a compression, to keep the LRU order 892 * of writebacks. If writeback is disabled, reject the page since it 893 * only adds metadata overhead. swap_writeout() will put the page back 894 * to the active LRU list in the case. 895 */ 896 if (comp_ret || !dlen || dlen >= PAGE_SIZE) { 897 if (!mem_cgroup_zswap_writeback_enabled( 898 folio_memcg(page_folio(page)))) { 899 comp_ret = comp_ret ? comp_ret : -EINVAL; 900 goto unlock; 901 } 902 comp_ret = 0; 903 dlen = PAGE_SIZE; 904 dst = kmap_local_page(page); 905 mapped = true; 906 } 907 908 gfp = GFP_NOWAIT | __GFP_NORETRY | __GFP_HIGHMEM | __GFP_MOVABLE; 909 handle = zs_malloc(pool->zs_pool, dlen, gfp, page_to_nid(page)); 910 if (IS_ERR_VALUE(handle)) { 911 alloc_ret = PTR_ERR((void *)handle); 912 goto unlock; 913 } 914 915 zs_obj_write(pool->zs_pool, handle, dst, dlen); 916 entry->handle = handle; 917 entry->length = dlen; 918 919unlock: 920 if (mapped) 921 kunmap_local(dst); 922 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC) 923 zswap_reject_compress_poor++; 924 else if (comp_ret) 925 zswap_reject_compress_fail++; 926 else if (alloc_ret) 927 zswap_reject_alloc_fail++; 928 929 acomp_ctx_put_unlock(acomp_ctx); 930 return comp_ret == 0 && alloc_ret == 0; 931} 932 933static bool zswap_decompress(struct zswap_entry *entry, struct folio *folio) 934{ 935 struct zswap_pool *pool = entry->pool; 936 struct scatterlist input, output; 937 struct crypto_acomp_ctx *acomp_ctx; 938 int decomp_ret = 0, dlen = PAGE_SIZE; 939 u8 *src, *obj; 940 941 acomp_ctx = acomp_ctx_get_cpu_lock(pool); 942 obj = zs_obj_read_begin(pool->zs_pool, entry->handle, acomp_ctx->buffer); 943 944 /* zswap entries of length PAGE_SIZE are not compressed. */ 945 if (entry->length == PAGE_SIZE) { 946 memcpy_to_folio(folio, 0, obj, entry->length); 947 goto read_done; 948 } 949 950 /* 951 * zs_obj_read_begin() might return a kmap address of highmem when 952 * acomp_ctx->buffer is not used. However, sg_init_one() does not 953 * handle highmem addresses, so copy the object to acomp_ctx->buffer. 954 */ 955 if (virt_addr_valid(obj)) { 956 src = obj; 957 } else { 958 WARN_ON_ONCE(obj == acomp_ctx->buffer); 959 memcpy(acomp_ctx->buffer, obj, entry->length); 960 src = acomp_ctx->buffer; 961 } 962 963 sg_init_one(&input, src, entry->length); 964 sg_init_table(&output, 1); 965 sg_set_folio(&output, folio, PAGE_SIZE, 0); 966 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE); 967 decomp_ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); 968 dlen = acomp_ctx->req->dlen; 969 970read_done: 971 zs_obj_read_end(pool->zs_pool, entry->handle, obj); 972 acomp_ctx_put_unlock(acomp_ctx); 973 974 if (!decomp_ret && dlen == PAGE_SIZE) 975 return true; 976 977 zswap_decompress_fail++; 978 pr_alert_ratelimited("Decompression error from zswap (%d:%lu %s %u->%d)\n", 979 swp_type(entry->swpentry), 980 swp_offset(entry->swpentry), 981 entry->pool->tfm_name, entry->length, dlen); 982 return false; 983} 984 985/********************************* 986* writeback code 987**********************************/ 988/* 989 * Attempts to free an entry by adding a folio to the swap cache, 990 * decompressing the entry data into the folio, and issuing a 991 * bio write to write the folio back to the swap device. 992 * 993 * This can be thought of as a "resumed writeback" of the folio 994 * to the swap device. We are basically resuming the same swap 995 * writeback path that was intercepted with the zswap_store() 996 * in the first place. After the folio has been decompressed into 997 * the swap cache, the compressed version stored by zswap can be 998 * freed. 999 */ 1000static int zswap_writeback_entry(struct zswap_entry *entry, 1001 swp_entry_t swpentry) 1002{ 1003 struct xarray *tree; 1004 pgoff_t offset = swp_offset(swpentry); 1005 struct folio *folio; 1006 struct mempolicy *mpol; 1007 bool folio_was_allocated; 1008 struct swap_info_struct *si; 1009 int ret = 0; 1010 1011 /* try to allocate swap cache folio */ 1012 si = get_swap_device(swpentry); 1013 if (!si) 1014 return -EEXIST; 1015 1016 mpol = get_task_policy(current); 1017 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol, 1018 NO_INTERLEAVE_INDEX, &folio_was_allocated, true); 1019 put_swap_device(si); 1020 if (!folio) 1021 return -ENOMEM; 1022 1023 /* 1024 * Found an existing folio, we raced with swapin or concurrent 1025 * shrinker. We generally writeback cold folios from zswap, and 1026 * swapin means the folio just became hot, so skip this folio. 1027 * For unlikely concurrent shrinker case, it will be unlinked 1028 * and freed when invalidated by the concurrent shrinker anyway. 1029 */ 1030 if (!folio_was_allocated) { 1031 ret = -EEXIST; 1032 goto out; 1033 } 1034 1035 /* 1036 * folio is locked, and the swapcache is now secured against 1037 * concurrent swapping to and from the slot, and concurrent 1038 * swapoff so we can safely dereference the zswap tree here. 1039 * Verify that the swap entry hasn't been invalidated and recycled 1040 * behind our backs, to avoid overwriting a new swap folio with 1041 * old compressed data. Only when this is successful can the entry 1042 * be dereferenced. 1043 */ 1044 tree = swap_zswap_tree(swpentry); 1045 if (entry != xa_load(tree, offset)) { 1046 ret = -ENOMEM; 1047 goto out; 1048 } 1049 1050 if (!zswap_decompress(entry, folio)) { 1051 ret = -EIO; 1052 goto out; 1053 } 1054 1055 xa_erase(tree, offset); 1056 1057 count_vm_event(ZSWPWB); 1058 if (entry->objcg) 1059 count_objcg_events(entry->objcg, ZSWPWB, 1); 1060 1061 zswap_entry_free(entry); 1062 1063 /* folio is up to date */ 1064 folio_mark_uptodate(folio); 1065 1066 /* move it to the tail of the inactive list after end_writeback */ 1067 folio_set_reclaim(folio); 1068 1069 /* start writeback */ 1070 __swap_writepage(folio, NULL); 1071 1072out: 1073 if (ret && ret != -EEXIST) { 1074 swap_cache_del_folio(folio); 1075 folio_unlock(folio); 1076 } 1077 folio_put(folio); 1078 return ret; 1079} 1080 1081/********************************* 1082* shrinker functions 1083**********************************/ 1084/* 1085 * The dynamic shrinker is modulated by the following factors: 1086 * 1087 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving 1088 * the entry a second chance) before rotating it in the LRU list. If the 1089 * entry is considered again by the shrinker, with its referenced bit unset, 1090 * it is written back. The writeback rate as a result is dynamically 1091 * adjusted by the pool activities - if the pool is dominated by new entries 1092 * (i.e lots of recent zswapouts), these entries will be protected and 1093 * the writeback rate will slow down. On the other hand, if the pool has a 1094 * lot of stagnant entries, these entries will be reclaimed immediately, 1095 * effectively increasing the writeback rate. 1096 * 1097 * 2. Swapins counter: If we observe swapins, it is a sign that we are 1098 * overshrinking and should slow down. We maintain a swapins counter, which 1099 * is consumed and subtract from the number of eligible objects on the LRU 1100 * in zswap_shrinker_count(). 1101 * 1102 * 3. Compression ratio. The better the workload compresses, the less gains we 1103 * can expect from writeback. We scale down the number of objects available 1104 * for reclaim by this ratio. 1105 */ 1106static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, 1107 void *arg) 1108{ 1109 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru); 1110 bool *encountered_page_in_swapcache = (bool *)arg; 1111 swp_entry_t swpentry; 1112 enum lru_status ret = LRU_REMOVED_RETRY; 1113 int writeback_result; 1114 1115 /* 1116 * Second chance algorithm: if the entry has its referenced bit set, give it 1117 * a second chance. Only clear the referenced bit and rotate it in the 1118 * zswap's LRU list. 1119 */ 1120 if (entry->referenced) { 1121 entry->referenced = false; 1122 return LRU_ROTATE; 1123 } 1124 1125 /* 1126 * As soon as we drop the LRU lock, the entry can be freed by 1127 * a concurrent invalidation. This means the following: 1128 * 1129 * 1. We extract the swp_entry_t to the stack, allowing 1130 * zswap_writeback_entry() to pin the swap entry and 1131 * then validate the zswap entry against that swap entry's 1132 * tree using pointer value comparison. Only when that 1133 * is successful can the entry be dereferenced. 1134 * 1135 * 2. Usually, objects are taken off the LRU for reclaim. In 1136 * this case this isn't possible, because if reclaim fails 1137 * for whatever reason, we have no means of knowing if the 1138 * entry is alive to put it back on the LRU. 1139 * 1140 * So rotate it before dropping the lock. If the entry is 1141 * written back or invalidated, the free path will unlink 1142 * it. For failures, rotation is the right thing as well. 1143 * 1144 * Temporary failures, where the same entry should be tried 1145 * again immediately, almost never happen for this shrinker. 1146 * We don't do any trylocking; -ENOMEM comes closest, 1147 * but that's extremely rare and doesn't happen spuriously 1148 * either. Don't bother distinguishing this case. 1149 */ 1150 list_move_tail(item, &l->list); 1151 1152 /* 1153 * Once the lru lock is dropped, the entry might get freed. The 1154 * swpentry is copied to the stack, and entry isn't deref'd again 1155 * until the entry is verified to still be alive in the tree. 1156 */ 1157 swpentry = entry->swpentry; 1158 1159 /* 1160 * It's safe to drop the lock here because we return either 1161 * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP. 1162 */ 1163 spin_unlock(&l->lock); 1164 1165 writeback_result = zswap_writeback_entry(entry, swpentry); 1166 1167 if (writeback_result) { 1168 zswap_reject_reclaim_fail++; 1169 ret = LRU_RETRY; 1170 1171 /* 1172 * Encountering a page already in swap cache is a sign that we are shrinking 1173 * into the warmer region. We should terminate shrinking (if we're in the dynamic 1174 * shrinker context). 1175 */ 1176 if (writeback_result == -EEXIST && encountered_page_in_swapcache) { 1177 ret = LRU_STOP; 1178 *encountered_page_in_swapcache = true; 1179 } 1180 } else { 1181 zswap_written_back_pages++; 1182 } 1183 1184 return ret; 1185} 1186 1187static unsigned long zswap_shrinker_scan(struct shrinker *shrinker, 1188 struct shrink_control *sc) 1189{ 1190 unsigned long shrink_ret; 1191 bool encountered_page_in_swapcache = false; 1192 1193 if (!zswap_shrinker_enabled || 1194 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) { 1195 sc->nr_scanned = 0; 1196 return SHRINK_STOP; 1197 } 1198 1199 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb, 1200 &encountered_page_in_swapcache); 1201 1202 if (encountered_page_in_swapcache) 1203 return SHRINK_STOP; 1204 1205 return shrink_ret ? shrink_ret : SHRINK_STOP; 1206} 1207 1208static unsigned long zswap_shrinker_count(struct shrinker *shrinker, 1209 struct shrink_control *sc) 1210{ 1211 struct mem_cgroup *memcg = sc->memcg; 1212 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid)); 1213 atomic_long_t *nr_disk_swapins = 1214 &lruvec->zswap_lruvec_state.nr_disk_swapins; 1215 unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur, 1216 nr_remain; 1217 1218 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg)) 1219 return 0; 1220 1221 /* 1222 * The shrinker resumes swap writeback, which will enter block 1223 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS 1224 * rules (may_enter_fs()), which apply on a per-folio basis. 1225 */ 1226 if (!gfp_has_io_fs(sc->gfp_mask)) 1227 return 0; 1228 1229 /* 1230 * For memcg, use the cgroup-wide ZSWAP stats since we don't 1231 * have them per-node and thus per-lruvec. Careful if memcg is 1232 * runtime-disabled: we can get sc->memcg == NULL, which is ok 1233 * for the lruvec, but not for memcg_page_state(). 1234 * 1235 * Without memcg, use the zswap pool-wide metrics. 1236 */ 1237 if (!mem_cgroup_disabled()) { 1238 mem_cgroup_flush_stats(memcg); 1239 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT; 1240 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED); 1241 } else { 1242 nr_backing = zswap_total_pages(); 1243 nr_stored = atomic_long_read(&zswap_stored_pages); 1244 } 1245 1246 if (!nr_stored) 1247 return 0; 1248 1249 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc); 1250 if (!nr_freeable) 1251 return 0; 1252 1253 /* 1254 * Subtract from the lru size the number of pages that are recently swapped 1255 * in from disk. The idea is that had we protect the zswap's LRU by this 1256 * amount of pages, these disk swapins would not have happened. 1257 */ 1258 nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins); 1259 do { 1260 if (nr_freeable >= nr_disk_swapins_cur) 1261 nr_remain = 0; 1262 else 1263 nr_remain = nr_disk_swapins_cur - nr_freeable; 1264 } while (!atomic_long_try_cmpxchg( 1265 nr_disk_swapins, &nr_disk_swapins_cur, nr_remain)); 1266 1267 nr_freeable -= nr_disk_swapins_cur - nr_remain; 1268 if (!nr_freeable) 1269 return 0; 1270 1271 /* 1272 * Scale the number of freeable pages by the memory saving factor. 1273 * This ensures that the better zswap compresses memory, the fewer 1274 * pages we will evict to swap (as it will otherwise incur IO for 1275 * relatively small memory saving). 1276 */ 1277 return mult_frac(nr_freeable, nr_backing, nr_stored); 1278} 1279 1280static struct shrinker *zswap_alloc_shrinker(void) 1281{ 1282 struct shrinker *shrinker; 1283 1284 shrinker = 1285 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap"); 1286 if (!shrinker) 1287 return NULL; 1288 1289 shrinker->scan_objects = zswap_shrinker_scan; 1290 shrinker->count_objects = zswap_shrinker_count; 1291 shrinker->batch = 0; 1292 shrinker->seeks = DEFAULT_SEEKS; 1293 return shrinker; 1294} 1295 1296static int shrink_memcg(struct mem_cgroup *memcg) 1297{ 1298 int nid, shrunk = 0, scanned = 0; 1299 1300 if (!mem_cgroup_zswap_writeback_enabled(memcg)) 1301 return -ENOENT; 1302 1303 /* 1304 * Skip zombies because their LRUs are reparented and we would be 1305 * reclaiming from the parent instead of the dead memcg. 1306 */ 1307 if (memcg && !mem_cgroup_online(memcg)) 1308 return -ENOENT; 1309 1310 for_each_node_state(nid, N_NORMAL_MEMORY) { 1311 unsigned long nr_to_walk = 1; 1312 1313 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg, 1314 &shrink_memcg_cb, NULL, &nr_to_walk); 1315 scanned += 1 - nr_to_walk; 1316 } 1317 1318 if (!scanned) 1319 return -ENOENT; 1320 1321 return shrunk ? 0 : -EAGAIN; 1322} 1323 1324static void shrink_worker(struct work_struct *w) 1325{ 1326 struct mem_cgroup *memcg; 1327 int ret, failures = 0, attempts = 0; 1328 unsigned long thr; 1329 1330 /* Reclaim down to the accept threshold */ 1331 thr = zswap_accept_thr_pages(); 1332 1333 /* 1334 * Global reclaim will select cgroup in a round-robin fashion from all 1335 * online memcgs, but memcgs that have no pages in zswap and 1336 * writeback-disabled memcgs (memory.zswap.writeback=0) are not 1337 * candidates for shrinking. 1338 * 1339 * Shrinking will be aborted if we encounter the following 1340 * MAX_RECLAIM_RETRIES times: 1341 * - No writeback-candidate memcgs found in a memcg tree walk. 1342 * - Shrinking a writeback-candidate memcg failed. 1343 * 1344 * We save iteration cursor memcg into zswap_next_shrink, 1345 * which can be modified by the offline memcg cleaner 1346 * zswap_memcg_offline_cleanup(). 1347 * 1348 * Since the offline cleaner is called only once, we cannot leave an 1349 * offline memcg reference in zswap_next_shrink. 1350 * We can rely on the cleaner only if we get online memcg under lock. 1351 * 1352 * If we get an offline memcg, we cannot determine if the cleaner has 1353 * already been called or will be called later. We must put back the 1354 * reference before returning from this function. Otherwise, the 1355 * offline memcg left in zswap_next_shrink will hold the reference 1356 * until the next run of shrink_worker(). 1357 */ 1358 do { 1359 /* 1360 * Start shrinking from the next memcg after zswap_next_shrink. 1361 * When the offline cleaner has already advanced the cursor, 1362 * advancing the cursor here overlooks one memcg, but this 1363 * should be negligibly rare. 1364 * 1365 * If we get an online memcg, keep the extra reference in case 1366 * the original one obtained by mem_cgroup_iter() is dropped by 1367 * zswap_memcg_offline_cleanup() while we are shrinking the 1368 * memcg. 1369 */ 1370 spin_lock(&zswap_shrink_lock); 1371 do { 1372 memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); 1373 zswap_next_shrink = memcg; 1374 } while (memcg && !mem_cgroup_tryget_online(memcg)); 1375 spin_unlock(&zswap_shrink_lock); 1376 1377 if (!memcg) { 1378 /* 1379 * Continue shrinking without incrementing failures if 1380 * we found candidate memcgs in the last tree walk. 1381 */ 1382 if (!attempts && ++failures == MAX_RECLAIM_RETRIES) 1383 break; 1384 1385 attempts = 0; 1386 goto resched; 1387 } 1388 1389 ret = shrink_memcg(memcg); 1390 /* drop the extra reference */ 1391 mem_cgroup_put(memcg); 1392 1393 /* 1394 * There are no writeback-candidate pages in the memcg. 1395 * This is not an issue as long as we can find another memcg 1396 * with pages in zswap. Skip this without incrementing attempts 1397 * and failures. 1398 */ 1399 if (ret == -ENOENT) 1400 continue; 1401 ++attempts; 1402 1403 if (ret && ++failures == MAX_RECLAIM_RETRIES) 1404 break; 1405resched: 1406 cond_resched(); 1407 } while (zswap_total_pages() > thr); 1408} 1409 1410/********************************* 1411* main API 1412**********************************/ 1413 1414static bool zswap_store_page(struct page *page, 1415 struct obj_cgroup *objcg, 1416 struct zswap_pool *pool) 1417{ 1418 swp_entry_t page_swpentry = page_swap_entry(page); 1419 struct zswap_entry *entry, *old; 1420 1421 /* allocate entry */ 1422 entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page)); 1423 if (!entry) { 1424 zswap_reject_kmemcache_fail++; 1425 return false; 1426 } 1427 1428 if (!zswap_compress(page, entry, pool)) 1429 goto compress_failed; 1430 1431 old = xa_store(swap_zswap_tree(page_swpentry), 1432 swp_offset(page_swpentry), 1433 entry, GFP_KERNEL); 1434 if (xa_is_err(old)) { 1435 int err = xa_err(old); 1436 1437 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err); 1438 zswap_reject_alloc_fail++; 1439 goto store_failed; 1440 } 1441 1442 /* 1443 * We may have had an existing entry that became stale when 1444 * the folio was redirtied and now the new version is being 1445 * swapped out. Get rid of the old. 1446 */ 1447 if (old) 1448 zswap_entry_free(old); 1449 1450 /* 1451 * The entry is successfully compressed and stored in the tree, there is 1452 * no further possibility of failure. Grab refs to the pool and objcg, 1453 * charge zswap memory, and increment zswap_stored_pages. 1454 * The opposite actions will be performed by zswap_entry_free() 1455 * when the entry is removed from the tree. 1456 */ 1457 zswap_pool_get(pool); 1458 if (objcg) { 1459 obj_cgroup_get(objcg); 1460 obj_cgroup_charge_zswap(objcg, entry->length); 1461 } 1462 atomic_long_inc(&zswap_stored_pages); 1463 if (entry->length == PAGE_SIZE) 1464 atomic_long_inc(&zswap_stored_incompressible_pages); 1465 1466 /* 1467 * We finish initializing the entry while it's already in xarray. 1468 * This is safe because: 1469 * 1470 * 1. Concurrent stores and invalidations are excluded by folio lock. 1471 * 1472 * 2. Writeback is excluded by the entry not being on the LRU yet. 1473 * The publishing order matters to prevent writeback from seeing 1474 * an incoherent entry. 1475 */ 1476 entry->pool = pool; 1477 entry->swpentry = page_swpentry; 1478 entry->objcg = objcg; 1479 entry->referenced = true; 1480 if (entry->length) { 1481 INIT_LIST_HEAD(&entry->lru); 1482 zswap_lru_add(&zswap_list_lru, entry); 1483 } 1484 1485 return true; 1486 1487store_failed: 1488 zs_free(pool->zs_pool, entry->handle); 1489compress_failed: 1490 zswap_entry_cache_free(entry); 1491 return false; 1492} 1493 1494bool zswap_store(struct folio *folio) 1495{ 1496 long nr_pages = folio_nr_pages(folio); 1497 swp_entry_t swp = folio->swap; 1498 struct obj_cgroup *objcg = NULL; 1499 struct mem_cgroup *memcg = NULL; 1500 struct zswap_pool *pool; 1501 bool ret = false; 1502 long index; 1503 1504 VM_WARN_ON_ONCE(!folio_test_locked(folio)); 1505 VM_WARN_ON_ONCE(!folio_test_swapcache(folio)); 1506 1507 if (!zswap_enabled) 1508 goto check_old; 1509 1510 objcg = get_obj_cgroup_from_folio(folio); 1511 if (objcg && !obj_cgroup_may_zswap(objcg)) { 1512 memcg = get_mem_cgroup_from_objcg(objcg); 1513 if (shrink_memcg(memcg)) { 1514 mem_cgroup_put(memcg); 1515 goto put_objcg; 1516 } 1517 mem_cgroup_put(memcg); 1518 } 1519 1520 if (zswap_check_limits()) 1521 goto put_objcg; 1522 1523 pool = zswap_pool_current_get(); 1524 if (!pool) 1525 goto put_objcg; 1526 1527 if (objcg) { 1528 memcg = get_mem_cgroup_from_objcg(objcg); 1529 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) { 1530 mem_cgroup_put(memcg); 1531 goto put_pool; 1532 } 1533 mem_cgroup_put(memcg); 1534 } 1535 1536 for (index = 0; index < nr_pages; ++index) { 1537 struct page *page = folio_page(folio, index); 1538 1539 if (!zswap_store_page(page, objcg, pool)) 1540 goto put_pool; 1541 } 1542 1543 if (objcg) 1544 count_objcg_events(objcg, ZSWPOUT, nr_pages); 1545 1546 count_vm_events(ZSWPOUT, nr_pages); 1547 1548 ret = true; 1549 1550put_pool: 1551 zswap_pool_put(pool); 1552put_objcg: 1553 obj_cgroup_put(objcg); 1554 if (!ret && zswap_pool_reached_full) 1555 queue_work(shrink_wq, &zswap_shrink_work); 1556check_old: 1557 /* 1558 * If the zswap store fails or zswap is disabled, we must invalidate 1559 * the possibly stale entries which were previously stored at the 1560 * offsets corresponding to each page of the folio. Otherwise, 1561 * writeback could overwrite the new data in the swapfile. 1562 */ 1563 if (!ret) { 1564 unsigned type = swp_type(swp); 1565 pgoff_t offset = swp_offset(swp); 1566 struct zswap_entry *entry; 1567 struct xarray *tree; 1568 1569 for (index = 0; index < nr_pages; ++index) { 1570 tree = swap_zswap_tree(swp_entry(type, offset + index)); 1571 entry = xa_erase(tree, offset + index); 1572 if (entry) 1573 zswap_entry_free(entry); 1574 } 1575 } 1576 1577 return ret; 1578} 1579 1580/** 1581 * zswap_load() - load a folio from zswap 1582 * @folio: folio to load 1583 * 1584 * Return: 0 on success, with the folio unlocked and marked up-to-date, or one 1585 * of the following error codes: 1586 * 1587 * -EIO: if the swapped out content was in zswap, but could not be loaded 1588 * into the page due to a decompression failure. The folio is unlocked, but 1589 * NOT marked up-to-date, so that an IO error is emitted (e.g. do_swap_page() 1590 * will SIGBUS). 1591 * 1592 * -EINVAL: if the swapped out content was in zswap, but the page belongs 1593 * to a large folio, which is not supported by zswap. The folio is unlocked, 1594 * but NOT marked up-to-date, so that an IO error is emitted (e.g. 1595 * do_swap_page() will SIGBUS). 1596 * 1597 * -ENOENT: if the swapped out content was not in zswap. The folio remains 1598 * locked on return. 1599 */ 1600int zswap_load(struct folio *folio) 1601{ 1602 swp_entry_t swp = folio->swap; 1603 pgoff_t offset = swp_offset(swp); 1604 bool swapcache = folio_test_swapcache(folio); 1605 struct xarray *tree = swap_zswap_tree(swp); 1606 struct zswap_entry *entry; 1607 1608 VM_WARN_ON_ONCE(!folio_test_locked(folio)); 1609 1610 if (zswap_never_enabled()) 1611 return -ENOENT; 1612 1613 /* 1614 * Large folios should not be swapped in while zswap is being used, as 1615 * they are not properly handled. Zswap does not properly load large 1616 * folios, and a large folio may only be partially in zswap. 1617 */ 1618 if (WARN_ON_ONCE(folio_test_large(folio))) { 1619 folio_unlock(folio); 1620 return -EINVAL; 1621 } 1622 1623 entry = xa_load(tree, offset); 1624 if (!entry) 1625 return -ENOENT; 1626 1627 if (!zswap_decompress(entry, folio)) { 1628 folio_unlock(folio); 1629 return -EIO; 1630 } 1631 1632 folio_mark_uptodate(folio); 1633 1634 count_vm_event(ZSWPIN); 1635 if (entry->objcg) 1636 count_objcg_events(entry->objcg, ZSWPIN, 1); 1637 1638 /* 1639 * When reading into the swapcache, invalidate our entry. The 1640 * swapcache can be the authoritative owner of the page and 1641 * its mappings, and the pressure that results from having two 1642 * in-memory copies outweighs any benefits of caching the 1643 * compression work. 1644 * 1645 * (Most swapins go through the swapcache. The notable 1646 * exception is the singleton fault on SWP_SYNCHRONOUS_IO 1647 * files, which reads into a private page and may free it if 1648 * the fault fails. We remain the primary owner of the entry.) 1649 */ 1650 if (swapcache) { 1651 folio_mark_dirty(folio); 1652 xa_erase(tree, offset); 1653 zswap_entry_free(entry); 1654 } 1655 1656 folio_unlock(folio); 1657 return 0; 1658} 1659 1660void zswap_invalidate(swp_entry_t swp) 1661{ 1662 pgoff_t offset = swp_offset(swp); 1663 struct xarray *tree = swap_zswap_tree(swp); 1664 struct zswap_entry *entry; 1665 1666 if (xa_empty(tree)) 1667 return; 1668 1669 entry = xa_erase(tree, offset); 1670 if (entry) 1671 zswap_entry_free(entry); 1672} 1673 1674int zswap_swapon(int type, unsigned long nr_pages) 1675{ 1676 struct xarray *trees, *tree; 1677 unsigned int nr, i; 1678 1679 nr = DIV_ROUND_UP(nr_pages, ZSWAP_ADDRESS_SPACE_PAGES); 1680 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL); 1681 if (!trees) { 1682 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 1683 return -ENOMEM; 1684 } 1685 1686 for (i = 0; i < nr; i++) 1687 xa_init(trees + i); 1688 1689 nr_zswap_trees[type] = nr; 1690 zswap_trees[type] = trees; 1691 return 0; 1692} 1693 1694void zswap_swapoff(int type) 1695{ 1696 struct xarray *trees = zswap_trees[type]; 1697 unsigned int i; 1698 1699 if (!trees) 1700 return; 1701 1702 /* try_to_unuse() invalidated all the entries already */ 1703 for (i = 0; i < nr_zswap_trees[type]; i++) 1704 WARN_ON_ONCE(!xa_empty(trees + i)); 1705 1706 kvfree(trees); 1707 nr_zswap_trees[type] = 0; 1708 zswap_trees[type] = NULL; 1709} 1710 1711/********************************* 1712* debugfs functions 1713**********************************/ 1714#ifdef CONFIG_DEBUG_FS 1715#include <linux/debugfs.h> 1716 1717static struct dentry *zswap_debugfs_root; 1718 1719static int debugfs_get_total_size(void *data, u64 *val) 1720{ 1721 *val = zswap_total_pages() * PAGE_SIZE; 1722 return 0; 1723} 1724DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n"); 1725 1726static int debugfs_get_stored_pages(void *data, u64 *val) 1727{ 1728 *val = atomic_long_read(&zswap_stored_pages); 1729 return 0; 1730} 1731DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n"); 1732 1733static int debugfs_get_stored_incompressible_pages(void *data, u64 *val) 1734{ 1735 *val = atomic_long_read(&zswap_stored_incompressible_pages); 1736 return 0; 1737} 1738DEFINE_DEBUGFS_ATTRIBUTE(stored_incompressible_pages_fops, 1739 debugfs_get_stored_incompressible_pages, NULL, "%llu\n"); 1740 1741static int zswap_debugfs_init(void) 1742{ 1743 if (!debugfs_initialized()) 1744 return -ENODEV; 1745 1746 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 1747 1748 debugfs_create_u64("pool_limit_hit", 0444, 1749 zswap_debugfs_root, &zswap_pool_limit_hit); 1750 debugfs_create_u64("reject_reclaim_fail", 0444, 1751 zswap_debugfs_root, &zswap_reject_reclaim_fail); 1752 debugfs_create_u64("reject_alloc_fail", 0444, 1753 zswap_debugfs_root, &zswap_reject_alloc_fail); 1754 debugfs_create_u64("reject_kmemcache_fail", 0444, 1755 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 1756 debugfs_create_u64("reject_compress_fail", 0444, 1757 zswap_debugfs_root, &zswap_reject_compress_fail); 1758 debugfs_create_u64("reject_compress_poor", 0444, 1759 zswap_debugfs_root, &zswap_reject_compress_poor); 1760 debugfs_create_u64("decompress_fail", 0444, 1761 zswap_debugfs_root, &zswap_decompress_fail); 1762 debugfs_create_u64("written_back_pages", 0444, 1763 zswap_debugfs_root, &zswap_written_back_pages); 1764 debugfs_create_file("pool_total_size", 0444, 1765 zswap_debugfs_root, NULL, &total_size_fops); 1766 debugfs_create_file("stored_pages", 0444, 1767 zswap_debugfs_root, NULL, &stored_pages_fops); 1768 debugfs_create_file("stored_incompressible_pages", 0444, 1769 zswap_debugfs_root, NULL, 1770 &stored_incompressible_pages_fops); 1771 1772 return 0; 1773} 1774#else 1775static int zswap_debugfs_init(void) 1776{ 1777 return 0; 1778} 1779#endif 1780 1781/********************************* 1782* module init and exit 1783**********************************/ 1784static int zswap_setup(void) 1785{ 1786 struct zswap_pool *pool; 1787 int ret; 1788 1789 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 1790 if (!zswap_entry_cache) { 1791 pr_err("entry cache creation failed\n"); 1792 goto cache_fail; 1793 } 1794 1795 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, 1796 "mm/zswap_pool:prepare", 1797 zswap_cpu_comp_prepare, 1798 zswap_cpu_comp_dead); 1799 if (ret) 1800 goto hp_fail; 1801 1802 shrink_wq = alloc_workqueue("zswap-shrink", 1803 WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 1804 if (!shrink_wq) 1805 goto shrink_wq_fail; 1806 1807 zswap_shrinker = zswap_alloc_shrinker(); 1808 if (!zswap_shrinker) 1809 goto shrinker_fail; 1810 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker)) 1811 goto lru_fail; 1812 shrinker_register(zswap_shrinker); 1813 1814 INIT_WORK(&zswap_shrink_work, shrink_worker); 1815 1816 pool = __zswap_pool_create_fallback(); 1817 if (pool) { 1818 pr_info("loaded using pool %s\n", pool->tfm_name); 1819 list_add(&pool->list, &zswap_pools); 1820 zswap_has_pool = true; 1821 static_branch_enable(&zswap_ever_enabled); 1822 } else { 1823 pr_err("pool creation failed\n"); 1824 zswap_enabled = false; 1825 } 1826 1827 if (zswap_debugfs_init()) 1828 pr_warn("debugfs initialization failed\n"); 1829 zswap_init_state = ZSWAP_INIT_SUCCEED; 1830 return 0; 1831 1832lru_fail: 1833 shrinker_free(zswap_shrinker); 1834shrinker_fail: 1835 destroy_workqueue(shrink_wq); 1836shrink_wq_fail: 1837 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE); 1838hp_fail: 1839 kmem_cache_destroy(zswap_entry_cache); 1840cache_fail: 1841 /* if built-in, we aren't unloaded on failure; don't allow use */ 1842 zswap_init_state = ZSWAP_INIT_FAILED; 1843 zswap_enabled = false; 1844 return -ENOMEM; 1845} 1846 1847static int __init zswap_init(void) 1848{ 1849 if (!zswap_enabled) 1850 return 0; 1851 return zswap_setup(); 1852} 1853/* must be late so crypto has time to come up */ 1854late_initcall(zswap_init); 1855 1856MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 1857MODULE_DESCRIPTION("Compressed cache for swap pages");