Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <cl@gentwo.org>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_owner.h>
30#include <linux/sched/isolation.h>
31
32#include "internal.h"
33
34#ifdef CONFIG_PROC_FS
35#ifdef CONFIG_NUMA
36#define ENABLE_NUMA_STAT 1
37static int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39/* zero numa counters within a zone */
40static void zero_zone_numa_counters(struct zone *zone)
41{
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_event[item], 0);
46 for_each_online_cpu(cpu) {
47 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
48 = 0;
49 }
50 }
51}
52
53/* zero numa counters of all the populated zones */
54static void zero_zones_numa_counters(void)
55{
56 struct zone *zone;
57
58 for_each_populated_zone(zone)
59 zero_zone_numa_counters(zone);
60}
61
62/* zero global numa counters */
63static void zero_global_numa_counters(void)
64{
65 int item;
66
67 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
68 atomic_long_set(&vm_numa_event[item], 0);
69}
70
71static void invalid_numa_statistics(void)
72{
73 zero_zones_numa_counters();
74 zero_global_numa_counters();
75}
76
77static DEFINE_MUTEX(vm_numa_stat_lock);
78
79static int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
80 void *buffer, size_t *length, loff_t *ppos)
81{
82 int ret, oldval;
83
84 mutex_lock(&vm_numa_stat_lock);
85 if (write)
86 oldval = sysctl_vm_numa_stat;
87 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
88 if (ret || !write)
89 goto out;
90
91 if (oldval == sysctl_vm_numa_stat)
92 goto out;
93 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
94 static_branch_enable(&vm_numa_stat_key);
95 pr_info("enable numa statistics\n");
96 } else {
97 static_branch_disable(&vm_numa_stat_key);
98 invalid_numa_statistics();
99 pr_info("disable numa statistics, and clear numa counters\n");
100 }
101
102out:
103 mutex_unlock(&vm_numa_stat_lock);
104 return ret;
105}
106#endif
107#endif /* CONFIG_PROC_FS */
108
109#ifdef CONFIG_VM_EVENT_COUNTERS
110DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
111EXPORT_PER_CPU_SYMBOL(vm_event_states);
112
113static void sum_vm_events(unsigned long *ret)
114{
115 int cpu;
116 int i;
117
118 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
119
120 for_each_online_cpu(cpu) {
121 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
122
123 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
124 ret[i] += this->event[i];
125 }
126}
127
128/*
129 * Accumulate the vm event counters across all CPUs.
130 * The result is unavoidably approximate - it can change
131 * during and after execution of this function.
132*/
133void all_vm_events(unsigned long *ret)
134{
135 cpus_read_lock();
136 sum_vm_events(ret);
137 cpus_read_unlock();
138}
139EXPORT_SYMBOL_GPL(all_vm_events);
140
141/*
142 * Fold the foreign cpu events into our own.
143 *
144 * This is adding to the events on one processor
145 * but keeps the global counts constant.
146 */
147void vm_events_fold_cpu(int cpu)
148{
149 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
150 int i;
151
152 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
153 count_vm_events(i, fold_state->event[i]);
154 fold_state->event[i] = 0;
155 }
156}
157
158#endif /* CONFIG_VM_EVENT_COUNTERS */
159
160/*
161 * Manage combined zone based / global counters
162 *
163 * vm_stat contains the global counters
164 */
165atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
166atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
167atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
168EXPORT_SYMBOL(vm_zone_stat);
169EXPORT_SYMBOL(vm_node_stat);
170
171#ifdef CONFIG_NUMA
172static void fold_vm_zone_numa_events(struct zone *zone)
173{
174 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
175 int cpu;
176 enum numa_stat_item item;
177
178 for_each_online_cpu(cpu) {
179 struct per_cpu_zonestat *pzstats;
180
181 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
182 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
183 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
184 }
185
186 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
187 zone_numa_event_add(zone_numa_events[item], zone, item);
188}
189
190void fold_vm_numa_events(void)
191{
192 struct zone *zone;
193
194 for_each_populated_zone(zone)
195 fold_vm_zone_numa_events(zone);
196}
197#endif
198
199#ifdef CONFIG_SMP
200
201int calculate_pressure_threshold(struct zone *zone)
202{
203 int threshold;
204 int watermark_distance;
205
206 /*
207 * As vmstats are not up to date, there is drift between the estimated
208 * and real values. For high thresholds and a high number of CPUs, it
209 * is possible for the min watermark to be breached while the estimated
210 * value looks fine. The pressure threshold is a reduced value such
211 * that even the maximum amount of drift will not accidentally breach
212 * the min watermark
213 */
214 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
215 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
216
217 /*
218 * Maximum threshold is 125
219 */
220 threshold = min(125, threshold);
221
222 return threshold;
223}
224
225int calculate_normal_threshold(struct zone *zone)
226{
227 int threshold;
228 int mem; /* memory in 128 MB units */
229
230 /*
231 * The threshold scales with the number of processors and the amount
232 * of memory per zone. More memory means that we can defer updates for
233 * longer, more processors could lead to more contention.
234 * fls() is used to have a cheap way of logarithmic scaling.
235 *
236 * Some sample thresholds:
237 *
238 * Threshold Processors (fls) Zonesize fls(mem)+1
239 * ------------------------------------------------------------------
240 * 8 1 1 0.9-1 GB 4
241 * 16 2 2 0.9-1 GB 4
242 * 20 2 2 1-2 GB 5
243 * 24 2 2 2-4 GB 6
244 * 28 2 2 4-8 GB 7
245 * 32 2 2 8-16 GB 8
246 * 4 2 2 <128M 1
247 * 30 4 3 2-4 GB 5
248 * 48 4 3 8-16 GB 8
249 * 32 8 4 1-2 GB 4
250 * 32 8 4 0.9-1GB 4
251 * 10 16 5 <128M 1
252 * 40 16 5 900M 4
253 * 70 64 7 2-4 GB 5
254 * 84 64 7 4-8 GB 6
255 * 108 512 9 4-8 GB 6
256 * 125 1024 10 8-16 GB 8
257 * 125 1024 10 16-32 GB 9
258 */
259
260 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
261
262 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
263
264 /*
265 * Maximum threshold is 125
266 */
267 threshold = min(125, threshold);
268
269 return threshold;
270}
271
272/*
273 * Refresh the thresholds for each zone.
274 */
275void refresh_zone_stat_thresholds(void)
276{
277 struct pglist_data *pgdat;
278 struct zone *zone;
279 int cpu;
280 int threshold;
281
282 /* Zero current pgdat thresholds */
283 for_each_online_pgdat(pgdat) {
284 for_each_online_cpu(cpu) {
285 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
286 }
287 }
288
289 for_each_populated_zone(zone) {
290 struct pglist_data *pgdat = zone->zone_pgdat;
291 unsigned long max_drift, tolerate_drift;
292
293 threshold = calculate_normal_threshold(zone);
294
295 for_each_online_cpu(cpu) {
296 int pgdat_threshold;
297
298 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
299 = threshold;
300
301 /* Base nodestat threshold on the largest populated zone. */
302 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
303 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
304 = max(threshold, pgdat_threshold);
305 }
306
307 /*
308 * Only set percpu_drift_mark if there is a danger that
309 * NR_FREE_PAGES reports the low watermark is ok when in fact
310 * the min watermark could be breached by an allocation
311 */
312 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
313 max_drift = num_online_cpus() * threshold;
314 if (max_drift > tolerate_drift)
315 zone->percpu_drift_mark = high_wmark_pages(zone) +
316 max_drift;
317 }
318}
319
320void set_pgdat_percpu_threshold(pg_data_t *pgdat,
321 int (*calculate_pressure)(struct zone *))
322{
323 struct zone *zone;
324 int cpu;
325 int threshold;
326 int i;
327
328 for (i = 0; i < pgdat->nr_zones; i++) {
329 zone = &pgdat->node_zones[i];
330 if (!zone->percpu_drift_mark)
331 continue;
332
333 threshold = (*calculate_pressure)(zone);
334 for_each_online_cpu(cpu)
335 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
336 = threshold;
337 }
338}
339
340/*
341 * For use when we know that interrupts are disabled,
342 * or when we know that preemption is disabled and that
343 * particular counter cannot be updated from interrupt context.
344 */
345void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
346 long delta)
347{
348 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
349 s8 __percpu *p = pcp->vm_stat_diff + item;
350 long x;
351 long t;
352
353 /*
354 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
355 * atomicity is provided by IRQs being disabled -- either explicitly
356 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
357 * CPU migrations and preemption potentially corrupts a counter so
358 * disable preemption.
359 */
360 preempt_disable_nested();
361
362 x = delta + __this_cpu_read(*p);
363
364 t = __this_cpu_read(pcp->stat_threshold);
365
366 if (unlikely(abs(x) > t)) {
367 zone_page_state_add(x, zone, item);
368 x = 0;
369 }
370 __this_cpu_write(*p, x);
371
372 preempt_enable_nested();
373}
374EXPORT_SYMBOL(__mod_zone_page_state);
375
376void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
377 long delta)
378{
379 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
380 s8 __percpu *p = pcp->vm_node_stat_diff + item;
381 long x;
382 long t;
383
384 if (vmstat_item_in_bytes(item)) {
385 /*
386 * Only cgroups use subpage accounting right now; at
387 * the global level, these items still change in
388 * multiples of whole pages. Store them as pages
389 * internally to keep the per-cpu counters compact.
390 */
391 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
392 delta >>= PAGE_SHIFT;
393 }
394
395 /* See __mod_zone_page_state() */
396 preempt_disable_nested();
397
398 x = delta + __this_cpu_read(*p);
399
400 t = __this_cpu_read(pcp->stat_threshold);
401
402 if (unlikely(abs(x) > t)) {
403 node_page_state_add(x, pgdat, item);
404 x = 0;
405 }
406 __this_cpu_write(*p, x);
407
408 preempt_enable_nested();
409}
410EXPORT_SYMBOL(__mod_node_page_state);
411
412/*
413 * Optimized increment and decrement functions.
414 *
415 * These are only for a single page and therefore can take a struct page *
416 * argument instead of struct zone *. This allows the inclusion of the code
417 * generated for page_zone(page) into the optimized functions.
418 *
419 * No overflow check is necessary and therefore the differential can be
420 * incremented or decremented in place which may allow the compilers to
421 * generate better code.
422 * The increment or decrement is known and therefore one boundary check can
423 * be omitted.
424 *
425 * NOTE: These functions are very performance sensitive. Change only
426 * with care.
427 *
428 * Some processors have inc/dec instructions that are atomic vs an interrupt.
429 * However, the code must first determine the differential location in a zone
430 * based on the processor number and then inc/dec the counter. There is no
431 * guarantee without disabling preemption that the processor will not change
432 * in between and therefore the atomicity vs. interrupt cannot be exploited
433 * in a useful way here.
434 */
435void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
436{
437 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
438 s8 __percpu *p = pcp->vm_stat_diff + item;
439 s8 v, t;
440
441 /* See __mod_zone_page_state() */
442 preempt_disable_nested();
443
444 v = __this_cpu_inc_return(*p);
445 t = __this_cpu_read(pcp->stat_threshold);
446 if (unlikely(v > t)) {
447 s8 overstep = t >> 1;
448
449 zone_page_state_add(v + overstep, zone, item);
450 __this_cpu_write(*p, -overstep);
451 }
452
453 preempt_enable_nested();
454}
455
456void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
457{
458 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
459 s8 __percpu *p = pcp->vm_node_stat_diff + item;
460 s8 v, t;
461
462 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
463
464 /* See __mod_zone_page_state() */
465 preempt_disable_nested();
466
467 v = __this_cpu_inc_return(*p);
468 t = __this_cpu_read(pcp->stat_threshold);
469 if (unlikely(v > t)) {
470 s8 overstep = t >> 1;
471
472 node_page_state_add(v + overstep, pgdat, item);
473 __this_cpu_write(*p, -overstep);
474 }
475
476 preempt_enable_nested();
477}
478
479void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
480{
481 __inc_zone_state(page_zone(page), item);
482}
483EXPORT_SYMBOL(__inc_zone_page_state);
484
485void __inc_node_page_state(struct page *page, enum node_stat_item item)
486{
487 __inc_node_state(page_pgdat(page), item);
488}
489EXPORT_SYMBOL(__inc_node_page_state);
490
491void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
492{
493 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
494 s8 __percpu *p = pcp->vm_stat_diff + item;
495 s8 v, t;
496
497 /* See __mod_zone_page_state() */
498 preempt_disable_nested();
499
500 v = __this_cpu_dec_return(*p);
501 t = __this_cpu_read(pcp->stat_threshold);
502 if (unlikely(v < - t)) {
503 s8 overstep = t >> 1;
504
505 zone_page_state_add(v - overstep, zone, item);
506 __this_cpu_write(*p, overstep);
507 }
508
509 preempt_enable_nested();
510}
511
512void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
513{
514 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
515 s8 __percpu *p = pcp->vm_node_stat_diff + item;
516 s8 v, t;
517
518 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
519
520 /* See __mod_zone_page_state() */
521 preempt_disable_nested();
522
523 v = __this_cpu_dec_return(*p);
524 t = __this_cpu_read(pcp->stat_threshold);
525 if (unlikely(v < - t)) {
526 s8 overstep = t >> 1;
527
528 node_page_state_add(v - overstep, pgdat, item);
529 __this_cpu_write(*p, overstep);
530 }
531
532 preempt_enable_nested();
533}
534
535void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
536{
537 __dec_zone_state(page_zone(page), item);
538}
539EXPORT_SYMBOL(__dec_zone_page_state);
540
541void __dec_node_page_state(struct page *page, enum node_stat_item item)
542{
543 __dec_node_state(page_pgdat(page), item);
544}
545EXPORT_SYMBOL(__dec_node_page_state);
546
547#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
548/*
549 * If we have cmpxchg_local support then we do not need to incur the overhead
550 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
551 *
552 * mod_state() modifies the zone counter state through atomic per cpu
553 * operations.
554 *
555 * Overstep mode specifies how overstep should handled:
556 * 0 No overstepping
557 * 1 Overstepping half of threshold
558 * -1 Overstepping minus half of threshold
559*/
560static inline void mod_zone_state(struct zone *zone,
561 enum zone_stat_item item, long delta, int overstep_mode)
562{
563 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
564 s8 __percpu *p = pcp->vm_stat_diff + item;
565 long n, t, z;
566 s8 o;
567
568 o = this_cpu_read(*p);
569 do {
570 z = 0; /* overflow to zone counters */
571
572 /*
573 * The fetching of the stat_threshold is racy. We may apply
574 * a counter threshold to the wrong the cpu if we get
575 * rescheduled while executing here. However, the next
576 * counter update will apply the threshold again and
577 * therefore bring the counter under the threshold again.
578 *
579 * Most of the time the thresholds are the same anyways
580 * for all cpus in a zone.
581 */
582 t = this_cpu_read(pcp->stat_threshold);
583
584 n = delta + (long)o;
585
586 if (abs(n) > t) {
587 int os = overstep_mode * (t >> 1) ;
588
589 /* Overflow must be added to zone counters */
590 z = n + os;
591 n = -os;
592 }
593 } while (!this_cpu_try_cmpxchg(*p, &o, n));
594
595 if (z)
596 zone_page_state_add(z, zone, item);
597}
598
599void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
600 long delta)
601{
602 mod_zone_state(zone, item, delta, 0);
603}
604EXPORT_SYMBOL(mod_zone_page_state);
605
606void inc_zone_page_state(struct page *page, enum zone_stat_item item)
607{
608 mod_zone_state(page_zone(page), item, 1, 1);
609}
610EXPORT_SYMBOL(inc_zone_page_state);
611
612void dec_zone_page_state(struct page *page, enum zone_stat_item item)
613{
614 mod_zone_state(page_zone(page), item, -1, -1);
615}
616EXPORT_SYMBOL(dec_zone_page_state);
617
618static inline void mod_node_state(struct pglist_data *pgdat,
619 enum node_stat_item item, int delta, int overstep_mode)
620{
621 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
622 s8 __percpu *p = pcp->vm_node_stat_diff + item;
623 long n, t, z;
624 s8 o;
625
626 if (vmstat_item_in_bytes(item)) {
627 /*
628 * Only cgroups use subpage accounting right now; at
629 * the global level, these items still change in
630 * multiples of whole pages. Store them as pages
631 * internally to keep the per-cpu counters compact.
632 */
633 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
634 delta >>= PAGE_SHIFT;
635 }
636
637 o = this_cpu_read(*p);
638 do {
639 z = 0; /* overflow to node counters */
640
641 /*
642 * The fetching of the stat_threshold is racy. We may apply
643 * a counter threshold to the wrong the cpu if we get
644 * rescheduled while executing here. However, the next
645 * counter update will apply the threshold again and
646 * therefore bring the counter under the threshold again.
647 *
648 * Most of the time the thresholds are the same anyways
649 * for all cpus in a node.
650 */
651 t = this_cpu_read(pcp->stat_threshold);
652
653 n = delta + (long)o;
654
655 if (abs(n) > t) {
656 int os = overstep_mode * (t >> 1) ;
657
658 /* Overflow must be added to node counters */
659 z = n + os;
660 n = -os;
661 }
662 } while (!this_cpu_try_cmpxchg(*p, &o, n));
663
664 if (z)
665 node_page_state_add(z, pgdat, item);
666}
667
668void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
669 long delta)
670{
671 mod_node_state(pgdat, item, delta, 0);
672}
673EXPORT_SYMBOL(mod_node_page_state);
674
675void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
676{
677 mod_node_state(pgdat, item, 1, 1);
678}
679
680void inc_node_page_state(struct page *page, enum node_stat_item item)
681{
682 mod_node_state(page_pgdat(page), item, 1, 1);
683}
684EXPORT_SYMBOL(inc_node_page_state);
685
686void dec_node_page_state(struct page *page, enum node_stat_item item)
687{
688 mod_node_state(page_pgdat(page), item, -1, -1);
689}
690EXPORT_SYMBOL(dec_node_page_state);
691#else
692/*
693 * Use interrupt disable to serialize counter updates
694 */
695void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
696 long delta)
697{
698 unsigned long flags;
699
700 local_irq_save(flags);
701 __mod_zone_page_state(zone, item, delta);
702 local_irq_restore(flags);
703}
704EXPORT_SYMBOL(mod_zone_page_state);
705
706void inc_zone_page_state(struct page *page, enum zone_stat_item item)
707{
708 unsigned long flags;
709 struct zone *zone;
710
711 zone = page_zone(page);
712 local_irq_save(flags);
713 __inc_zone_state(zone, item);
714 local_irq_restore(flags);
715}
716EXPORT_SYMBOL(inc_zone_page_state);
717
718void dec_zone_page_state(struct page *page, enum zone_stat_item item)
719{
720 unsigned long flags;
721
722 local_irq_save(flags);
723 __dec_zone_page_state(page, item);
724 local_irq_restore(flags);
725}
726EXPORT_SYMBOL(dec_zone_page_state);
727
728void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
729{
730 unsigned long flags;
731
732 local_irq_save(flags);
733 __inc_node_state(pgdat, item);
734 local_irq_restore(flags);
735}
736EXPORT_SYMBOL(inc_node_state);
737
738void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
739 long delta)
740{
741 unsigned long flags;
742
743 local_irq_save(flags);
744 __mod_node_page_state(pgdat, item, delta);
745 local_irq_restore(flags);
746}
747EXPORT_SYMBOL(mod_node_page_state);
748
749void inc_node_page_state(struct page *page, enum node_stat_item item)
750{
751 unsigned long flags;
752 struct pglist_data *pgdat;
753
754 pgdat = page_pgdat(page);
755 local_irq_save(flags);
756 __inc_node_state(pgdat, item);
757 local_irq_restore(flags);
758}
759EXPORT_SYMBOL(inc_node_page_state);
760
761void dec_node_page_state(struct page *page, enum node_stat_item item)
762{
763 unsigned long flags;
764
765 local_irq_save(flags);
766 __dec_node_page_state(page, item);
767 local_irq_restore(flags);
768}
769EXPORT_SYMBOL(dec_node_page_state);
770#endif
771
772/*
773 * Fold a differential into the global counters.
774 * Returns whether counters were updated.
775 */
776static int fold_diff(int *zone_diff, int *node_diff)
777{
778 int i;
779 bool changed = false;
780
781 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
782 if (zone_diff[i]) {
783 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
784 changed = true;
785 }
786 }
787
788 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
789 if (node_diff[i]) {
790 atomic_long_add(node_diff[i], &vm_node_stat[i]);
791 changed = true;
792 }
793 }
794
795 return changed;
796}
797
798/*
799 * Update the zone counters for the current cpu.
800 *
801 * Note that refresh_cpu_vm_stats strives to only access
802 * node local memory. The per cpu pagesets on remote zones are placed
803 * in the memory local to the processor using that pageset. So the
804 * loop over all zones will access a series of cachelines local to
805 * the processor.
806 *
807 * The call to zone_page_state_add updates the cachelines with the
808 * statistics in the remote zone struct as well as the global cachelines
809 * with the global counters. These could cause remote node cache line
810 * bouncing and will have to be only done when necessary.
811 *
812 * The function returns whether global counters were updated.
813 */
814static bool refresh_cpu_vm_stats(bool do_pagesets)
815{
816 struct pglist_data *pgdat;
817 struct zone *zone;
818 int i;
819 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
820 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
821 bool changed = false;
822
823 for_each_populated_zone(zone) {
824 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
825 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
826
827 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
828 int v;
829
830 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
831 if (v) {
832
833 atomic_long_add(v, &zone->vm_stat[i]);
834 global_zone_diff[i] += v;
835#ifdef CONFIG_NUMA
836 /* 3 seconds idle till flush */
837 __this_cpu_write(pcp->expire, 3);
838#endif
839 }
840 }
841
842 if (do_pagesets) {
843 cond_resched();
844
845 if (decay_pcp_high(zone, this_cpu_ptr(pcp)))
846 changed = true;
847#ifdef CONFIG_NUMA
848 /*
849 * Deal with draining the remote pageset of this
850 * processor
851 *
852 * Check if there are pages remaining in this pageset
853 * if not then there is nothing to expire.
854 */
855 if (!__this_cpu_read(pcp->expire) ||
856 !__this_cpu_read(pcp->count))
857 continue;
858
859 /*
860 * We never drain zones local to this processor.
861 */
862 if (zone_to_nid(zone) == numa_node_id()) {
863 __this_cpu_write(pcp->expire, 0);
864 continue;
865 }
866
867 if (__this_cpu_dec_return(pcp->expire)) {
868 changed = true;
869 continue;
870 }
871
872 if (__this_cpu_read(pcp->count)) {
873 drain_zone_pages(zone, this_cpu_ptr(pcp));
874 changed = true;
875 }
876#endif
877 }
878 }
879
880 for_each_online_pgdat(pgdat) {
881 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
882
883 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
884 int v;
885
886 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
887 if (v) {
888 atomic_long_add(v, &pgdat->vm_stat[i]);
889 global_node_diff[i] += v;
890 }
891 }
892 }
893
894 if (fold_diff(global_zone_diff, global_node_diff))
895 changed = true;
896 return changed;
897}
898
899/*
900 * Fold the data for an offline cpu into the global array.
901 * There cannot be any access by the offline cpu and therefore
902 * synchronization is simplified.
903 */
904void cpu_vm_stats_fold(int cpu)
905{
906 struct pglist_data *pgdat;
907 struct zone *zone;
908 int i;
909 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
911
912 for_each_populated_zone(zone) {
913 struct per_cpu_zonestat *pzstats;
914
915 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
916
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918 if (pzstats->vm_stat_diff[i]) {
919 int v;
920
921 v = pzstats->vm_stat_diff[i];
922 pzstats->vm_stat_diff[i] = 0;
923 atomic_long_add(v, &zone->vm_stat[i]);
924 global_zone_diff[i] += v;
925 }
926 }
927#ifdef CONFIG_NUMA
928 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929 if (pzstats->vm_numa_event[i]) {
930 unsigned long v;
931
932 v = pzstats->vm_numa_event[i];
933 pzstats->vm_numa_event[i] = 0;
934 zone_numa_event_add(v, zone, i);
935 }
936 }
937#endif
938 }
939
940 for_each_online_pgdat(pgdat) {
941 struct per_cpu_nodestat *p;
942
943 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
944
945 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946 if (p->vm_node_stat_diff[i]) {
947 int v;
948
949 v = p->vm_node_stat_diff[i];
950 p->vm_node_stat_diff[i] = 0;
951 atomic_long_add(v, &pgdat->vm_stat[i]);
952 global_node_diff[i] += v;
953 }
954 }
955
956 fold_diff(global_zone_diff, global_node_diff);
957}
958
959/*
960 * this is only called if !populated_zone(zone), which implies no other users of
961 * pset->vm_stat_diff[] exist.
962 */
963void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
964{
965 unsigned long v;
966 int i;
967
968 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969 if (pzstats->vm_stat_diff[i]) {
970 v = pzstats->vm_stat_diff[i];
971 pzstats->vm_stat_diff[i] = 0;
972 zone_page_state_add(v, zone, i);
973 }
974 }
975
976#ifdef CONFIG_NUMA
977 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978 if (pzstats->vm_numa_event[i]) {
979 v = pzstats->vm_numa_event[i];
980 pzstats->vm_numa_event[i] = 0;
981 zone_numa_event_add(v, zone, i);
982 }
983 }
984#endif
985}
986#endif
987
988#ifdef CONFIG_NUMA
989/*
990 * Determine the per node value of a stat item. This function
991 * is called frequently in a NUMA machine, so try to be as
992 * frugal as possible.
993 */
994unsigned long sum_zone_node_page_state(int node,
995 enum zone_stat_item item)
996{
997 struct zone *zones = NODE_DATA(node)->node_zones;
998 int i;
999 unsigned long count = 0;
1000
1001 for (i = 0; i < MAX_NR_ZONES; i++)
1002 count += zone_page_state(zones + i, item);
1003
1004 return count;
1005}
1006
1007/* Determine the per node value of a numa stat item. */
1008unsigned long sum_zone_numa_event_state(int node,
1009 enum numa_stat_item item)
1010{
1011 struct zone *zones = NODE_DATA(node)->node_zones;
1012 unsigned long count = 0;
1013 int i;
1014
1015 for (i = 0; i < MAX_NR_ZONES; i++)
1016 count += zone_numa_event_state(zones + i, item);
1017
1018 return count;
1019}
1020
1021/*
1022 * Determine the per node value of a stat item.
1023 */
1024unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025 enum node_stat_item item)
1026{
1027 long x = atomic_long_read(&pgdat->vm_stat[item]);
1028#ifdef CONFIG_SMP
1029 if (x < 0)
1030 x = 0;
1031#endif
1032 return x;
1033}
1034
1035unsigned long node_page_state(struct pglist_data *pgdat,
1036 enum node_stat_item item)
1037{
1038 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1039
1040 return node_page_state_pages(pgdat, item);
1041}
1042#endif
1043
1044/*
1045 * Count number of pages "struct page" and "struct page_ext" consume.
1046 * nr_memmap_boot_pages: # of pages allocated by boot allocator
1047 * nr_memmap_pages: # of pages that were allocated by buddy allocator
1048 */
1049static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1050static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1051
1052void memmap_boot_pages_add(long delta)
1053{
1054 atomic_long_add(delta, &nr_memmap_boot_pages);
1055}
1056
1057void memmap_pages_add(long delta)
1058{
1059 atomic_long_add(delta, &nr_memmap_pages);
1060}
1061
1062#ifdef CONFIG_COMPACTION
1063
1064struct contig_page_info {
1065 unsigned long free_pages;
1066 unsigned long free_blocks_total;
1067 unsigned long free_blocks_suitable;
1068};
1069
1070/*
1071 * Calculate the number of free pages in a zone, how many contiguous
1072 * pages are free and how many are large enough to satisfy an allocation of
1073 * the target size. Note that this function makes no attempt to estimate
1074 * how many suitable free blocks there *might* be if MOVABLE pages were
1075 * migrated. Calculating that is possible, but expensive and can be
1076 * figured out from userspace
1077 */
1078static void fill_contig_page_info(struct zone *zone,
1079 unsigned int suitable_order,
1080 struct contig_page_info *info)
1081{
1082 unsigned int order;
1083
1084 info->free_pages = 0;
1085 info->free_blocks_total = 0;
1086 info->free_blocks_suitable = 0;
1087
1088 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1089 unsigned long blocks;
1090
1091 /*
1092 * Count number of free blocks.
1093 *
1094 * Access to nr_free is lockless as nr_free is used only for
1095 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1096 */
1097 blocks = data_race(zone->free_area[order].nr_free);
1098 info->free_blocks_total += blocks;
1099
1100 /* Count free base pages */
1101 info->free_pages += blocks << order;
1102
1103 /* Count the suitable free blocks */
1104 if (order >= suitable_order)
1105 info->free_blocks_suitable += blocks <<
1106 (order - suitable_order);
1107 }
1108}
1109
1110/*
1111 * A fragmentation index only makes sense if an allocation of a requested
1112 * size would fail. If that is true, the fragmentation index indicates
1113 * whether external fragmentation or a lack of memory was the problem.
1114 * The value can be used to determine if page reclaim or compaction
1115 * should be used
1116 */
1117static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1118{
1119 unsigned long requested = 1UL << order;
1120
1121 if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1122 return 0;
1123
1124 if (!info->free_blocks_total)
1125 return 0;
1126
1127 /* Fragmentation index only makes sense when a request would fail */
1128 if (info->free_blocks_suitable)
1129 return -1000;
1130
1131 /*
1132 * Index is between 0 and 1 so return within 3 decimal places
1133 *
1134 * 0 => allocation would fail due to lack of memory
1135 * 1 => allocation would fail due to fragmentation
1136 */
1137 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1138}
1139
1140/*
1141 * Calculates external fragmentation within a zone wrt the given order.
1142 * It is defined as the percentage of pages found in blocks of size
1143 * less than 1 << order. It returns values in range [0, 100].
1144 */
1145unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1146{
1147 struct contig_page_info info;
1148
1149 fill_contig_page_info(zone, order, &info);
1150 if (info.free_pages == 0)
1151 return 0;
1152
1153 return div_u64((info.free_pages -
1154 (info.free_blocks_suitable << order)) * 100,
1155 info.free_pages);
1156}
1157
1158/* Same as __fragmentation index but allocs contig_page_info on stack */
1159int fragmentation_index(struct zone *zone, unsigned int order)
1160{
1161 struct contig_page_info info;
1162
1163 fill_contig_page_info(zone, order, &info);
1164 return __fragmentation_index(order, &info);
1165}
1166#endif
1167
1168#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1169 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1170#ifdef CONFIG_ZONE_DMA
1171#define TEXT_FOR_DMA(xx, yy) [xx##_DMA] = yy "_dma",
1172#else
1173#define TEXT_FOR_DMA(xx, yy)
1174#endif
1175
1176#ifdef CONFIG_ZONE_DMA32
1177#define TEXT_FOR_DMA32(xx, yy) [xx##_DMA32] = yy "_dma32",
1178#else
1179#define TEXT_FOR_DMA32(xx, yy)
1180#endif
1181
1182#ifdef CONFIG_HIGHMEM
1183#define TEXT_FOR_HIGHMEM(xx, yy) [xx##_HIGH] = yy "_high",
1184#else
1185#define TEXT_FOR_HIGHMEM(xx, yy)
1186#endif
1187
1188#ifdef CONFIG_ZONE_DEVICE
1189#define TEXT_FOR_DEVICE(xx, yy) [xx##_DEVICE] = yy "_device",
1190#else
1191#define TEXT_FOR_DEVICE(xx, yy)
1192#endif
1193
1194#define TEXTS_FOR_ZONES(xx, yy) \
1195 TEXT_FOR_DMA(xx, yy) \
1196 TEXT_FOR_DMA32(xx, yy) \
1197 [xx##_NORMAL] = yy "_normal", \
1198 TEXT_FOR_HIGHMEM(xx, yy) \
1199 [xx##_MOVABLE] = yy "_movable", \
1200 TEXT_FOR_DEVICE(xx, yy)
1201
1202const char * const vmstat_text[] = {
1203 /* enum zone_stat_item counters */
1204#define I(x) (x)
1205 [I(NR_FREE_PAGES)] = "nr_free_pages",
1206 [I(NR_FREE_PAGES_BLOCKS)] = "nr_free_pages_blocks",
1207 [I(NR_ZONE_INACTIVE_ANON)] = "nr_zone_inactive_anon",
1208 [I(NR_ZONE_ACTIVE_ANON)] = "nr_zone_active_anon",
1209 [I(NR_ZONE_INACTIVE_FILE)] = "nr_zone_inactive_file",
1210 [I(NR_ZONE_ACTIVE_FILE)] = "nr_zone_active_file",
1211 [I(NR_ZONE_UNEVICTABLE)] = "nr_zone_unevictable",
1212 [I(NR_ZONE_WRITE_PENDING)] = "nr_zone_write_pending",
1213 [I(NR_MLOCK)] = "nr_mlock",
1214#if IS_ENABLED(CONFIG_ZSMALLOC)
1215 [I(NR_ZSPAGES)] = "nr_zspages",
1216#endif
1217 [I(NR_FREE_CMA_PAGES)] = "nr_free_cma",
1218#ifdef CONFIG_UNACCEPTED_MEMORY
1219 [I(NR_UNACCEPTED)] = "nr_unaccepted",
1220#endif
1221#undef I
1222
1223 /* enum numa_stat_item counters */
1224#define I(x) (NR_VM_ZONE_STAT_ITEMS + x)
1225#ifdef CONFIG_NUMA
1226 [I(NUMA_HIT)] = "numa_hit",
1227 [I(NUMA_MISS)] = "numa_miss",
1228 [I(NUMA_FOREIGN)] = "numa_foreign",
1229 [I(NUMA_INTERLEAVE_HIT)] = "numa_interleave",
1230 [I(NUMA_LOCAL)] = "numa_local",
1231 [I(NUMA_OTHER)] = "numa_other",
1232#endif
1233#undef I
1234
1235 /* enum node_stat_item counters */
1236#define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + x)
1237 [I(NR_INACTIVE_ANON)] = "nr_inactive_anon",
1238 [I(NR_ACTIVE_ANON)] = "nr_active_anon",
1239 [I(NR_INACTIVE_FILE)] = "nr_inactive_file",
1240 [I(NR_ACTIVE_FILE)] = "nr_active_file",
1241 [I(NR_UNEVICTABLE)] = "nr_unevictable",
1242 [I(NR_SLAB_RECLAIMABLE_B)] = "nr_slab_reclaimable",
1243 [I(NR_SLAB_UNRECLAIMABLE_B)] = "nr_slab_unreclaimable",
1244 [I(NR_ISOLATED_ANON)] = "nr_isolated_anon",
1245 [I(NR_ISOLATED_FILE)] = "nr_isolated_file",
1246 [I(WORKINGSET_NODES)] = "workingset_nodes",
1247 [I(WORKINGSET_REFAULT_ANON)] = "workingset_refault_anon",
1248 [I(WORKINGSET_REFAULT_FILE)] = "workingset_refault_file",
1249 [I(WORKINGSET_ACTIVATE_ANON)] = "workingset_activate_anon",
1250 [I(WORKINGSET_ACTIVATE_FILE)] = "workingset_activate_file",
1251 [I(WORKINGSET_RESTORE_ANON)] = "workingset_restore_anon",
1252 [I(WORKINGSET_RESTORE_FILE)] = "workingset_restore_file",
1253 [I(WORKINGSET_NODERECLAIM)] = "workingset_nodereclaim",
1254 [I(NR_ANON_MAPPED)] = "nr_anon_pages",
1255 [I(NR_FILE_MAPPED)] = "nr_mapped",
1256 [I(NR_FILE_PAGES)] = "nr_file_pages",
1257 [I(NR_FILE_DIRTY)] = "nr_dirty",
1258 [I(NR_WRITEBACK)] = "nr_writeback",
1259 [I(NR_SHMEM)] = "nr_shmem",
1260 [I(NR_SHMEM_THPS)] = "nr_shmem_hugepages",
1261 [I(NR_SHMEM_PMDMAPPED)] = "nr_shmem_pmdmapped",
1262 [I(NR_FILE_THPS)] = "nr_file_hugepages",
1263 [I(NR_FILE_PMDMAPPED)] = "nr_file_pmdmapped",
1264 [I(NR_ANON_THPS)] = "nr_anon_transparent_hugepages",
1265 [I(NR_VMSCAN_WRITE)] = "nr_vmscan_write",
1266 [I(NR_VMSCAN_IMMEDIATE)] = "nr_vmscan_immediate_reclaim",
1267 [I(NR_DIRTIED)] = "nr_dirtied",
1268 [I(NR_WRITTEN)] = "nr_written",
1269 [I(NR_THROTTLED_WRITTEN)] = "nr_throttled_written",
1270 [I(NR_KERNEL_MISC_RECLAIMABLE)] = "nr_kernel_misc_reclaimable",
1271 [I(NR_FOLL_PIN_ACQUIRED)] = "nr_foll_pin_acquired",
1272 [I(NR_FOLL_PIN_RELEASED)] = "nr_foll_pin_released",
1273 [I(NR_KERNEL_STACK_KB)] = "nr_kernel_stack",
1274#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1275 [I(NR_KERNEL_SCS_KB)] = "nr_shadow_call_stack",
1276#endif
1277 [I(NR_PAGETABLE)] = "nr_page_table_pages",
1278 [I(NR_SECONDARY_PAGETABLE)] = "nr_sec_page_table_pages",
1279#ifdef CONFIG_IOMMU_SUPPORT
1280 [I(NR_IOMMU_PAGES)] = "nr_iommu_pages",
1281#endif
1282#ifdef CONFIG_SWAP
1283 [I(NR_SWAPCACHE)] = "nr_swapcached",
1284#endif
1285#ifdef CONFIG_NUMA_BALANCING
1286 [I(PGPROMOTE_SUCCESS)] = "pgpromote_success",
1287 [I(PGPROMOTE_CANDIDATE)] = "pgpromote_candidate",
1288 [I(PGPROMOTE_CANDIDATE_NRL)] = "pgpromote_candidate_nrl",
1289#endif
1290 [I(PGDEMOTE_KSWAPD)] = "pgdemote_kswapd",
1291 [I(PGDEMOTE_DIRECT)] = "pgdemote_direct",
1292 [I(PGDEMOTE_KHUGEPAGED)] = "pgdemote_khugepaged",
1293 [I(PGDEMOTE_PROACTIVE)] = "pgdemote_proactive",
1294#ifdef CONFIG_HUGETLB_PAGE
1295 [I(NR_HUGETLB)] = "nr_hugetlb",
1296#endif
1297 [I(NR_BALLOON_PAGES)] = "nr_balloon_pages",
1298 [I(NR_KERNEL_FILE_PAGES)] = "nr_kernel_file_pages",
1299#undef I
1300
1301 /* system-wide enum vm_stat_item counters */
1302#define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1303 NR_VM_NODE_STAT_ITEMS + x)
1304 [I(NR_DIRTY_THRESHOLD)] = "nr_dirty_threshold",
1305 [I(NR_DIRTY_BG_THRESHOLD)] = "nr_dirty_background_threshold",
1306 [I(NR_MEMMAP_PAGES)] = "nr_memmap_pages",
1307 [I(NR_MEMMAP_BOOT_PAGES)] = "nr_memmap_boot_pages",
1308#undef I
1309
1310#if defined(CONFIG_VM_EVENT_COUNTERS)
1311 /* enum vm_event_item counters */
1312#define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1313 NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS + x)
1314
1315 [I(PGPGIN)] = "pgpgin",
1316 [I(PGPGOUT)] = "pgpgout",
1317 [I(PSWPIN)] = "pswpin",
1318 [I(PSWPOUT)] = "pswpout",
1319
1320#define OFF (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1321 NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS)
1322 TEXTS_FOR_ZONES(OFF+PGALLOC, "pgalloc")
1323 TEXTS_FOR_ZONES(OFF+ALLOCSTALL, "allocstall")
1324 TEXTS_FOR_ZONES(OFF+PGSCAN_SKIP, "pgskip")
1325#undef OFF
1326
1327 [I(PGFREE)] = "pgfree",
1328 [I(PGACTIVATE)] = "pgactivate",
1329 [I(PGDEACTIVATE)] = "pgdeactivate",
1330 [I(PGLAZYFREE)] = "pglazyfree",
1331
1332 [I(PGFAULT)] = "pgfault",
1333 [I(PGMAJFAULT)] = "pgmajfault",
1334 [I(PGLAZYFREED)] = "pglazyfreed",
1335
1336 [I(PGREFILL)] = "pgrefill",
1337 [I(PGREUSE)] = "pgreuse",
1338 [I(PGSTEAL_KSWAPD)] = "pgsteal_kswapd",
1339 [I(PGSTEAL_DIRECT)] = "pgsteal_direct",
1340 [I(PGSTEAL_KHUGEPAGED)] = "pgsteal_khugepaged",
1341 [I(PGSTEAL_PROACTIVE)] = "pgsteal_proactive",
1342 [I(PGSCAN_KSWAPD)] = "pgscan_kswapd",
1343 [I(PGSCAN_DIRECT)] = "pgscan_direct",
1344 [I(PGSCAN_KHUGEPAGED)] = "pgscan_khugepaged",
1345 [I(PGSCAN_PROACTIVE)] = "pgscan_proactive",
1346 [I(PGSCAN_DIRECT_THROTTLE)] = "pgscan_direct_throttle",
1347 [I(PGSCAN_ANON)] = "pgscan_anon",
1348 [I(PGSCAN_FILE)] = "pgscan_file",
1349 [I(PGSTEAL_ANON)] = "pgsteal_anon",
1350 [I(PGSTEAL_FILE)] = "pgsteal_file",
1351
1352#ifdef CONFIG_NUMA
1353 [I(PGSCAN_ZONE_RECLAIM_SUCCESS)] = "zone_reclaim_success",
1354 [I(PGSCAN_ZONE_RECLAIM_FAILED)] = "zone_reclaim_failed",
1355#endif
1356 [I(PGINODESTEAL)] = "pginodesteal",
1357 [I(SLABS_SCANNED)] = "slabs_scanned",
1358 [I(KSWAPD_INODESTEAL)] = "kswapd_inodesteal",
1359 [I(KSWAPD_LOW_WMARK_HIT_QUICKLY)] = "kswapd_low_wmark_hit_quickly",
1360 [I(KSWAPD_HIGH_WMARK_HIT_QUICKLY)] = "kswapd_high_wmark_hit_quickly",
1361 [I(PAGEOUTRUN)] = "pageoutrun",
1362
1363 [I(PGROTATED)] = "pgrotated",
1364
1365 [I(DROP_PAGECACHE)] = "drop_pagecache",
1366 [I(DROP_SLAB)] = "drop_slab",
1367 [I(OOM_KILL)] = "oom_kill",
1368
1369#ifdef CONFIG_NUMA_BALANCING
1370 [I(NUMA_PTE_UPDATES)] = "numa_pte_updates",
1371 [I(NUMA_HUGE_PTE_UPDATES)] = "numa_huge_pte_updates",
1372 [I(NUMA_HINT_FAULTS)] = "numa_hint_faults",
1373 [I(NUMA_HINT_FAULTS_LOCAL)] = "numa_hint_faults_local",
1374 [I(NUMA_PAGE_MIGRATE)] = "numa_pages_migrated",
1375#endif
1376#ifdef CONFIG_MIGRATION
1377 [I(PGMIGRATE_SUCCESS)] = "pgmigrate_success",
1378 [I(PGMIGRATE_FAIL)] = "pgmigrate_fail",
1379 [I(THP_MIGRATION_SUCCESS)] = "thp_migration_success",
1380 [I(THP_MIGRATION_FAIL)] = "thp_migration_fail",
1381 [I(THP_MIGRATION_SPLIT)] = "thp_migration_split",
1382#endif
1383#ifdef CONFIG_COMPACTION
1384 [I(COMPACTMIGRATE_SCANNED)] = "compact_migrate_scanned",
1385 [I(COMPACTFREE_SCANNED)] = "compact_free_scanned",
1386 [I(COMPACTISOLATED)] = "compact_isolated",
1387 [I(COMPACTSTALL)] = "compact_stall",
1388 [I(COMPACTFAIL)] = "compact_fail",
1389 [I(COMPACTSUCCESS)] = "compact_success",
1390 [I(KCOMPACTD_WAKE)] = "compact_daemon_wake",
1391 [I(KCOMPACTD_MIGRATE_SCANNED)] = "compact_daemon_migrate_scanned",
1392 [I(KCOMPACTD_FREE_SCANNED)] = "compact_daemon_free_scanned",
1393#endif
1394
1395#ifdef CONFIG_HUGETLB_PAGE
1396 [I(HTLB_BUDDY_PGALLOC)] = "htlb_buddy_alloc_success",
1397 [I(HTLB_BUDDY_PGALLOC_FAIL)] = "htlb_buddy_alloc_fail",
1398#endif
1399#ifdef CONFIG_CMA
1400 [I(CMA_ALLOC_SUCCESS)] = "cma_alloc_success",
1401 [I(CMA_ALLOC_FAIL)] = "cma_alloc_fail",
1402#endif
1403 [I(UNEVICTABLE_PGCULLED)] = "unevictable_pgs_culled",
1404 [I(UNEVICTABLE_PGSCANNED)] = "unevictable_pgs_scanned",
1405 [I(UNEVICTABLE_PGRESCUED)] = "unevictable_pgs_rescued",
1406 [I(UNEVICTABLE_PGMLOCKED)] = "unevictable_pgs_mlocked",
1407 [I(UNEVICTABLE_PGMUNLOCKED)] = "unevictable_pgs_munlocked",
1408 [I(UNEVICTABLE_PGCLEARED)] = "unevictable_pgs_cleared",
1409 [I(UNEVICTABLE_PGSTRANDED)] = "unevictable_pgs_stranded",
1410
1411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 [I(THP_FAULT_ALLOC)] = "thp_fault_alloc",
1413 [I(THP_FAULT_FALLBACK)] = "thp_fault_fallback",
1414 [I(THP_FAULT_FALLBACK_CHARGE)] = "thp_fault_fallback_charge",
1415 [I(THP_COLLAPSE_ALLOC)] = "thp_collapse_alloc",
1416 [I(THP_COLLAPSE_ALLOC_FAILED)] = "thp_collapse_alloc_failed",
1417 [I(THP_FILE_ALLOC)] = "thp_file_alloc",
1418 [I(THP_FILE_FALLBACK)] = "thp_file_fallback",
1419 [I(THP_FILE_FALLBACK_CHARGE)] = "thp_file_fallback_charge",
1420 [I(THP_FILE_MAPPED)] = "thp_file_mapped",
1421 [I(THP_SPLIT_PAGE)] = "thp_split_page",
1422 [I(THP_SPLIT_PAGE_FAILED)] = "thp_split_page_failed",
1423 [I(THP_DEFERRED_SPLIT_PAGE)] = "thp_deferred_split_page",
1424 [I(THP_UNDERUSED_SPLIT_PAGE)] = "thp_underused_split_page",
1425 [I(THP_SPLIT_PMD)] = "thp_split_pmd",
1426 [I(THP_SCAN_EXCEED_NONE_PTE)] = "thp_scan_exceed_none_pte",
1427 [I(THP_SCAN_EXCEED_SWAP_PTE)] = "thp_scan_exceed_swap_pte",
1428 [I(THP_SCAN_EXCEED_SHARED_PTE)] = "thp_scan_exceed_share_pte",
1429#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1430 [I(THP_SPLIT_PUD)] = "thp_split_pud",
1431#endif
1432 [I(THP_ZERO_PAGE_ALLOC)] = "thp_zero_page_alloc",
1433 [I(THP_ZERO_PAGE_ALLOC_FAILED)] = "thp_zero_page_alloc_failed",
1434 [I(THP_SWPOUT)] = "thp_swpout",
1435 [I(THP_SWPOUT_FALLBACK)] = "thp_swpout_fallback",
1436#endif
1437#ifdef CONFIG_MEMORY_BALLOON
1438 [I(BALLOON_INFLATE)] = "balloon_inflate",
1439 [I(BALLOON_DEFLATE)] = "balloon_deflate",
1440#ifdef CONFIG_BALLOON_COMPACTION
1441 [I(BALLOON_MIGRATE)] = "balloon_migrate",
1442#endif
1443#endif /* CONFIG_MEMORY_BALLOON */
1444#ifdef CONFIG_DEBUG_TLBFLUSH
1445 [I(NR_TLB_REMOTE_FLUSH)] = "nr_tlb_remote_flush",
1446 [I(NR_TLB_REMOTE_FLUSH_RECEIVED)] = "nr_tlb_remote_flush_received",
1447 [I(NR_TLB_LOCAL_FLUSH_ALL)] = "nr_tlb_local_flush_all",
1448 [I(NR_TLB_LOCAL_FLUSH_ONE)] = "nr_tlb_local_flush_one",
1449#endif /* CONFIG_DEBUG_TLBFLUSH */
1450
1451#ifdef CONFIG_SWAP
1452 [I(SWAP_RA)] = "swap_ra",
1453 [I(SWAP_RA_HIT)] = "swap_ra_hit",
1454 [I(SWPIN_ZERO)] = "swpin_zero",
1455 [I(SWPOUT_ZERO)] = "swpout_zero",
1456#ifdef CONFIG_KSM
1457 [I(KSM_SWPIN_COPY)] = "ksm_swpin_copy",
1458#endif
1459#endif
1460#ifdef CONFIG_KSM
1461 [I(COW_KSM)] = "cow_ksm",
1462#endif
1463#ifdef CONFIG_ZSWAP
1464 [I(ZSWPIN)] = "zswpin",
1465 [I(ZSWPOUT)] = "zswpout",
1466 [I(ZSWPWB)] = "zswpwb",
1467#endif
1468#ifdef CONFIG_X86
1469 [I(DIRECT_MAP_LEVEL2_SPLIT)] = "direct_map_level2_splits",
1470 [I(DIRECT_MAP_LEVEL3_SPLIT)] = "direct_map_level3_splits",
1471 [I(DIRECT_MAP_LEVEL2_COLLAPSE)] = "direct_map_level2_collapses",
1472 [I(DIRECT_MAP_LEVEL3_COLLAPSE)] = "direct_map_level3_collapses",
1473#endif
1474#ifdef CONFIG_PER_VMA_LOCK_STATS
1475 [I(VMA_LOCK_SUCCESS)] = "vma_lock_success",
1476 [I(VMA_LOCK_ABORT)] = "vma_lock_abort",
1477 [I(VMA_LOCK_RETRY)] = "vma_lock_retry",
1478 [I(VMA_LOCK_MISS)] = "vma_lock_miss",
1479#endif
1480#ifdef CONFIG_DEBUG_STACK_USAGE
1481 [I(KSTACK_1K)] = "kstack_1k",
1482#if THREAD_SIZE > 1024
1483 [I(KSTACK_2K)] = "kstack_2k",
1484#endif
1485#if THREAD_SIZE > 2048
1486 [I(KSTACK_4K)] = "kstack_4k",
1487#endif
1488#if THREAD_SIZE > 4096
1489 [I(KSTACK_8K)] = "kstack_8k",
1490#endif
1491#if THREAD_SIZE > 8192
1492 [I(KSTACK_16K)] = "kstack_16k",
1493#endif
1494#if THREAD_SIZE > 16384
1495 [I(KSTACK_32K)] = "kstack_32k",
1496#endif
1497#if THREAD_SIZE > 32768
1498 [I(KSTACK_64K)] = "kstack_64k",
1499#endif
1500#if THREAD_SIZE > 65536
1501 [I(KSTACK_REST)] = "kstack_rest",
1502#endif
1503#endif
1504#undef I
1505#endif /* CONFIG_VM_EVENT_COUNTERS */
1506};
1507#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1508
1509#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1510 defined(CONFIG_PROC_FS)
1511static void *frag_start(struct seq_file *m, loff_t *pos)
1512{
1513 pg_data_t *pgdat;
1514 loff_t node = *pos;
1515
1516 for (pgdat = first_online_pgdat();
1517 pgdat && node;
1518 pgdat = next_online_pgdat(pgdat))
1519 --node;
1520
1521 return pgdat;
1522}
1523
1524static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1525{
1526 pg_data_t *pgdat = (pg_data_t *)arg;
1527
1528 (*pos)++;
1529 return next_online_pgdat(pgdat);
1530}
1531
1532static void frag_stop(struct seq_file *m, void *arg)
1533{
1534}
1535
1536/*
1537 * Walk zones in a node and print using a callback.
1538 * If @assert_populated is true, only use callback for zones that are populated.
1539 */
1540static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1541 bool assert_populated, bool nolock,
1542 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1543{
1544 struct zone *zone;
1545 struct zone *node_zones = pgdat->node_zones;
1546 unsigned long flags;
1547
1548 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1549 if (assert_populated && !populated_zone(zone))
1550 continue;
1551
1552 if (!nolock)
1553 spin_lock_irqsave(&zone->lock, flags);
1554 print(m, pgdat, zone);
1555 if (!nolock)
1556 spin_unlock_irqrestore(&zone->lock, flags);
1557 }
1558}
1559#endif
1560
1561#ifdef CONFIG_PROC_FS
1562static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1563 struct zone *zone)
1564{
1565 int order;
1566
1567 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1568 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1569 /*
1570 * Access to nr_free is lockless as nr_free is used only for
1571 * printing purposes. Use data_race to avoid KCSAN warning.
1572 */
1573 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1574 seq_putc(m, '\n');
1575}
1576
1577/*
1578 * This walks the free areas for each zone.
1579 */
1580static int frag_show(struct seq_file *m, void *arg)
1581{
1582 pg_data_t *pgdat = (pg_data_t *)arg;
1583 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1584 return 0;
1585}
1586
1587static void pagetypeinfo_showfree_print(struct seq_file *m,
1588 pg_data_t *pgdat, struct zone *zone)
1589{
1590 int order, mtype;
1591
1592 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1593 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1594 pgdat->node_id,
1595 zone->name,
1596 migratetype_names[mtype]);
1597 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1598 unsigned long freecount = 0;
1599 struct free_area *area;
1600 struct list_head *curr;
1601 bool overflow = false;
1602
1603 area = &(zone->free_area[order]);
1604
1605 list_for_each(curr, &area->free_list[mtype]) {
1606 /*
1607 * Cap the free_list iteration because it might
1608 * be really large and we are under a spinlock
1609 * so a long time spent here could trigger a
1610 * hard lockup detector. Anyway this is a
1611 * debugging tool so knowing there is a handful
1612 * of pages of this order should be more than
1613 * sufficient.
1614 */
1615 if (++freecount >= 100000) {
1616 overflow = true;
1617 break;
1618 }
1619 }
1620 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1621 spin_unlock_irq(&zone->lock);
1622 cond_resched();
1623 spin_lock_irq(&zone->lock);
1624 }
1625 seq_putc(m, '\n');
1626 }
1627}
1628
1629/* Print out the free pages at each order for each migatetype */
1630static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1631{
1632 int order;
1633 pg_data_t *pgdat = (pg_data_t *)arg;
1634
1635 /* Print header */
1636 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1637 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1638 seq_printf(m, "%6d ", order);
1639 seq_putc(m, '\n');
1640
1641 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1642}
1643
1644static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1645 pg_data_t *pgdat, struct zone *zone)
1646{
1647 int mtype;
1648 unsigned long pfn;
1649 unsigned long start_pfn = zone->zone_start_pfn;
1650 unsigned long end_pfn = zone_end_pfn(zone);
1651 unsigned long count[MIGRATE_TYPES] = { 0, };
1652
1653 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1654 struct page *page;
1655
1656 page = pfn_to_online_page(pfn);
1657 if (!page)
1658 continue;
1659
1660 if (page_zone(page) != zone)
1661 continue;
1662
1663 mtype = get_pageblock_migratetype(page);
1664
1665 if (mtype < MIGRATE_TYPES)
1666 count[mtype]++;
1667 }
1668
1669 /* Print counts */
1670 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1671 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1672 seq_printf(m, "%12lu ", count[mtype]);
1673 seq_putc(m, '\n');
1674}
1675
1676/* Print out the number of pageblocks for each migratetype */
1677static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1678{
1679 int mtype;
1680 pg_data_t *pgdat = (pg_data_t *)arg;
1681
1682 seq_printf(m, "\n%-23s", "Number of blocks type ");
1683 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1684 seq_printf(m, "%12s ", migratetype_names[mtype]);
1685 seq_putc(m, '\n');
1686 walk_zones_in_node(m, pgdat, true, false,
1687 pagetypeinfo_showblockcount_print);
1688}
1689
1690/*
1691 * Print out the number of pageblocks for each migratetype that contain pages
1692 * of other types. This gives an indication of how well fallbacks are being
1693 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1694 * to determine what is going on
1695 */
1696static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1697{
1698#ifdef CONFIG_PAGE_OWNER
1699 int mtype;
1700
1701 if (!static_branch_unlikely(&page_owner_inited))
1702 return;
1703
1704 drain_all_pages(NULL);
1705
1706 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1707 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1708 seq_printf(m, "%12s ", migratetype_names[mtype]);
1709 seq_putc(m, '\n');
1710
1711 walk_zones_in_node(m, pgdat, true, true,
1712 pagetypeinfo_showmixedcount_print);
1713#endif /* CONFIG_PAGE_OWNER */
1714}
1715
1716/*
1717 * This prints out statistics in relation to grouping pages by mobility.
1718 * It is expensive to collect so do not constantly read the file.
1719 */
1720static int pagetypeinfo_show(struct seq_file *m, void *arg)
1721{
1722 pg_data_t *pgdat = (pg_data_t *)arg;
1723
1724 /* check memoryless node */
1725 if (!node_state(pgdat->node_id, N_MEMORY))
1726 return 0;
1727
1728 seq_printf(m, "Page block order: %d\n", pageblock_order);
1729 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1730 seq_putc(m, '\n');
1731 pagetypeinfo_showfree(m, pgdat);
1732 pagetypeinfo_showblockcount(m, pgdat);
1733 pagetypeinfo_showmixedcount(m, pgdat);
1734
1735 return 0;
1736}
1737
1738static const struct seq_operations fragmentation_op = {
1739 .start = frag_start,
1740 .next = frag_next,
1741 .stop = frag_stop,
1742 .show = frag_show,
1743};
1744
1745static const struct seq_operations pagetypeinfo_op = {
1746 .start = frag_start,
1747 .next = frag_next,
1748 .stop = frag_stop,
1749 .show = pagetypeinfo_show,
1750};
1751
1752static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1753{
1754 int zid;
1755
1756 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1757 struct zone *compare = &pgdat->node_zones[zid];
1758
1759 if (populated_zone(compare))
1760 return zone == compare;
1761 }
1762
1763 return false;
1764}
1765
1766static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1767 struct zone *zone)
1768{
1769 int i;
1770 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1771 if (is_zone_first_populated(pgdat, zone)) {
1772 seq_printf(m, "\n per-node stats");
1773 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1774 unsigned long pages = node_page_state_pages(pgdat, i);
1775
1776 if (vmstat_item_print_in_thp(i))
1777 pages /= HPAGE_PMD_NR;
1778 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1779 pages);
1780 }
1781 }
1782 seq_printf(m,
1783 "\n pages free %lu"
1784 "\n boost %lu"
1785 "\n min %lu"
1786 "\n low %lu"
1787 "\n high %lu"
1788 "\n promo %lu"
1789 "\n spanned %lu"
1790 "\n present %lu"
1791 "\n managed %lu"
1792 "\n cma %lu",
1793 zone_page_state(zone, NR_FREE_PAGES),
1794 zone->watermark_boost,
1795 min_wmark_pages(zone),
1796 low_wmark_pages(zone),
1797 high_wmark_pages(zone),
1798 promo_wmark_pages(zone),
1799 zone->spanned_pages,
1800 zone->present_pages,
1801 zone_managed_pages(zone),
1802 zone_cma_pages(zone));
1803
1804 seq_printf(m,
1805 "\n protection: (%ld",
1806 zone->lowmem_reserve[0]);
1807 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1808 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1809 seq_putc(m, ')');
1810
1811 /* If unpopulated, no other information is useful */
1812 if (!populated_zone(zone)) {
1813 seq_putc(m, '\n');
1814 return;
1815 }
1816
1817 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1818 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1819 zone_page_state(zone, i));
1820
1821#ifdef CONFIG_NUMA
1822 fold_vm_zone_numa_events(zone);
1823 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1824 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1825 zone_numa_event_state(zone, i));
1826#endif
1827
1828 seq_printf(m, "\n pagesets");
1829 for_each_online_cpu(i) {
1830 struct per_cpu_pages *pcp;
1831 struct per_cpu_zonestat __maybe_unused *pzstats;
1832
1833 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1834 seq_printf(m,
1835 "\n cpu: %i"
1836 "\n count: %i"
1837 "\n high: %i"
1838 "\n batch: %i"
1839 "\n high_min: %i"
1840 "\n high_max: %i",
1841 i,
1842 pcp->count,
1843 pcp->high,
1844 pcp->batch,
1845 pcp->high_min,
1846 pcp->high_max);
1847#ifdef CONFIG_SMP
1848 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1849 seq_printf(m, "\n vm stats threshold: %d",
1850 pzstats->stat_threshold);
1851#endif
1852 }
1853 seq_printf(m,
1854 "\n node_unreclaimable: %u"
1855 "\n start_pfn: %lu"
1856 "\n reserved_highatomic: %lu"
1857 "\n free_highatomic: %lu",
1858 atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES,
1859 zone->zone_start_pfn,
1860 zone->nr_reserved_highatomic,
1861 zone->nr_free_highatomic);
1862 seq_putc(m, '\n');
1863}
1864
1865/*
1866 * Output information about zones in @pgdat. All zones are printed regardless
1867 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1868 * set of all zones and userspace would not be aware of such zones if they are
1869 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1870 */
1871static int zoneinfo_show(struct seq_file *m, void *arg)
1872{
1873 pg_data_t *pgdat = (pg_data_t *)arg;
1874 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1875 return 0;
1876}
1877
1878static const struct seq_operations zoneinfo_op = {
1879 .start = frag_start, /* iterate over all zones. The same as in
1880 * fragmentation. */
1881 .next = frag_next,
1882 .stop = frag_stop,
1883 .show = zoneinfo_show,
1884};
1885
1886#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1887 NR_VM_NUMA_EVENT_ITEMS + \
1888 NR_VM_NODE_STAT_ITEMS + \
1889 NR_VM_STAT_ITEMS + \
1890 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1891 NR_VM_EVENT_ITEMS : 0))
1892
1893static void *vmstat_start(struct seq_file *m, loff_t *pos)
1894{
1895 unsigned long *v;
1896 int i;
1897
1898 if (*pos >= NR_VMSTAT_ITEMS)
1899 return NULL;
1900
1901 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) != NR_VMSTAT_ITEMS);
1902 fold_vm_numa_events();
1903 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1904 m->private = v;
1905 if (!v)
1906 return ERR_PTR(-ENOMEM);
1907 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1908 v[i] = global_zone_page_state(i);
1909 v += NR_VM_ZONE_STAT_ITEMS;
1910
1911#ifdef CONFIG_NUMA
1912 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1913 v[i] = global_numa_event_state(i);
1914 v += NR_VM_NUMA_EVENT_ITEMS;
1915#endif
1916
1917 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1918 v[i] = global_node_page_state_pages(i);
1919 if (vmstat_item_print_in_thp(i))
1920 v[i] /= HPAGE_PMD_NR;
1921 }
1922 v += NR_VM_NODE_STAT_ITEMS;
1923
1924 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1925 v + NR_DIRTY_THRESHOLD);
1926 v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1927 v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1928 v += NR_VM_STAT_ITEMS;
1929
1930#ifdef CONFIG_VM_EVENT_COUNTERS
1931 all_vm_events(v);
1932 v[PGPGIN] /= 2; /* sectors -> kbytes */
1933 v[PGPGOUT] /= 2;
1934#endif
1935 return (unsigned long *)m->private + *pos;
1936}
1937
1938static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1939{
1940 (*pos)++;
1941 if (*pos >= NR_VMSTAT_ITEMS)
1942 return NULL;
1943 return (unsigned long *)m->private + *pos;
1944}
1945
1946static int vmstat_show(struct seq_file *m, void *arg)
1947{
1948 unsigned long *l = arg;
1949 unsigned long off = l - (unsigned long *)m->private;
1950
1951 seq_puts(m, vmstat_text[off]);
1952 seq_put_decimal_ull(m, " ", *l);
1953 seq_putc(m, '\n');
1954
1955 if (off == NR_VMSTAT_ITEMS - 1) {
1956 /*
1957 * We've come to the end - add any deprecated counters to avoid
1958 * breaking userspace which might depend on them being present.
1959 */
1960 seq_puts(m, "nr_unstable 0\n");
1961 }
1962 return 0;
1963}
1964
1965static void vmstat_stop(struct seq_file *m, void *arg)
1966{
1967 kfree(m->private);
1968 m->private = NULL;
1969}
1970
1971static const struct seq_operations vmstat_op = {
1972 .start = vmstat_start,
1973 .next = vmstat_next,
1974 .stop = vmstat_stop,
1975 .show = vmstat_show,
1976};
1977#endif /* CONFIG_PROC_FS */
1978
1979#ifdef CONFIG_SMP
1980static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1981static int sysctl_stat_interval __read_mostly = HZ;
1982static int vmstat_late_init_done;
1983
1984#ifdef CONFIG_PROC_FS
1985static void refresh_vm_stats(struct work_struct *work)
1986{
1987 refresh_cpu_vm_stats(true);
1988}
1989
1990static int vmstat_refresh(const struct ctl_table *table, int write,
1991 void *buffer, size_t *lenp, loff_t *ppos)
1992{
1993 long val;
1994 int err;
1995 int i;
1996
1997 /*
1998 * The regular update, every sysctl_stat_interval, may come later
1999 * than expected: leaving a significant amount in per_cpu buckets.
2000 * This is particularly misleading when checking a quantity of HUGE
2001 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
2002 * which can equally be echo'ed to or cat'ted from (by root),
2003 * can be used to update the stats just before reading them.
2004 *
2005 * Oh, and since global_zone_page_state() etc. are so careful to hide
2006 * transiently negative values, report an error here if any of
2007 * the stats is negative, so we know to go looking for imbalance.
2008 */
2009 err = schedule_on_each_cpu(refresh_vm_stats);
2010 if (err)
2011 return err;
2012 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
2013 /*
2014 * Skip checking stats known to go negative occasionally.
2015 */
2016 switch (i) {
2017 case NR_ZONE_WRITE_PENDING:
2018 case NR_FREE_CMA_PAGES:
2019 continue;
2020 }
2021 val = atomic_long_read(&vm_zone_stat[i]);
2022 if (val < 0) {
2023 pr_warn("%s: %s %ld\n",
2024 __func__, zone_stat_name(i), val);
2025 }
2026 }
2027 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2028 /*
2029 * Skip checking stats known to go negative occasionally.
2030 */
2031 switch (i) {
2032 case NR_WRITEBACK:
2033 continue;
2034 }
2035 val = atomic_long_read(&vm_node_stat[i]);
2036 if (val < 0) {
2037 pr_warn("%s: %s %ld\n",
2038 __func__, node_stat_name(i), val);
2039 }
2040 }
2041 if (write)
2042 *ppos += *lenp;
2043 else
2044 *lenp = 0;
2045 return 0;
2046}
2047#endif /* CONFIG_PROC_FS */
2048
2049static void vmstat_update(struct work_struct *w)
2050{
2051 if (refresh_cpu_vm_stats(true)) {
2052 /*
2053 * Counters were updated so we expect more updates
2054 * to occur in the future. Keep on running the
2055 * update worker thread.
2056 */
2057 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
2058 this_cpu_ptr(&vmstat_work),
2059 round_jiffies_relative(sysctl_stat_interval));
2060 }
2061}
2062
2063/*
2064 * Check if the diffs for a certain cpu indicate that
2065 * an update is needed.
2066 */
2067static bool need_update(int cpu)
2068{
2069 pg_data_t *last_pgdat = NULL;
2070 struct zone *zone;
2071
2072 for_each_populated_zone(zone) {
2073 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2074 struct per_cpu_nodestat *n;
2075
2076 /*
2077 * The fast way of checking if there are any vmstat diffs.
2078 */
2079 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2080 return true;
2081
2082 if (last_pgdat == zone->zone_pgdat)
2083 continue;
2084 last_pgdat = zone->zone_pgdat;
2085 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2086 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2087 return true;
2088 }
2089 return false;
2090}
2091
2092/*
2093 * Switch off vmstat processing and then fold all the remaining differentials
2094 * until the diffs stay at zero. The function is used by NOHZ and can only be
2095 * invoked when tick processing is not active.
2096 */
2097void quiet_vmstat(void)
2098{
2099 if (system_state != SYSTEM_RUNNING)
2100 return;
2101
2102 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2103 return;
2104
2105 if (!need_update(smp_processor_id()))
2106 return;
2107
2108 /*
2109 * Just refresh counters and do not care about the pending delayed
2110 * vmstat_update. It doesn't fire that often to matter and canceling
2111 * it would be too expensive from this path.
2112 * vmstat_shepherd will take care about that for us.
2113 */
2114 refresh_cpu_vm_stats(false);
2115}
2116
2117/*
2118 * Shepherd worker thread that checks the
2119 * differentials of processors that have their worker
2120 * threads for vm statistics updates disabled because of
2121 * inactivity.
2122 */
2123static void vmstat_shepherd(struct work_struct *w);
2124
2125static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2126
2127static void vmstat_shepherd(struct work_struct *w)
2128{
2129 int cpu;
2130
2131 cpus_read_lock();
2132 /* Check processors whose vmstat worker threads have been disabled */
2133 for_each_online_cpu(cpu) {
2134 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2135
2136 /*
2137 * In kernel users of vmstat counters either require the precise value and
2138 * they are using zone_page_state_snapshot interface or they can live with
2139 * an imprecision as the regular flushing can happen at arbitrary time and
2140 * cumulative error can grow (see calculate_normal_threshold).
2141 *
2142 * From that POV the regular flushing can be postponed for CPUs that have
2143 * been isolated from the kernel interference without critical
2144 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2145 * for all isolated CPUs to avoid interference with the isolated workload.
2146 */
2147 if (cpu_is_isolated(cpu))
2148 continue;
2149
2150 if (!delayed_work_pending(dw) && need_update(cpu))
2151 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2152
2153 cond_resched();
2154 }
2155 cpus_read_unlock();
2156
2157 schedule_delayed_work(&shepherd,
2158 round_jiffies_relative(sysctl_stat_interval));
2159}
2160
2161static void __init start_shepherd_timer(void)
2162{
2163 int cpu;
2164
2165 for_each_possible_cpu(cpu) {
2166 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2167 vmstat_update);
2168
2169 /*
2170 * For secondary CPUs during CPU hotplug scenarios,
2171 * vmstat_cpu_online() will enable the work.
2172 * mm/vmstat:online enables and disables vmstat_work
2173 * symmetrically during CPU hotplug events.
2174 */
2175 if (!cpu_online(cpu))
2176 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2177 }
2178
2179 schedule_delayed_work(&shepherd,
2180 round_jiffies_relative(sysctl_stat_interval));
2181}
2182
2183static void __init init_cpu_node_state(void)
2184{
2185 int node;
2186
2187 for_each_online_node(node) {
2188 if (!cpumask_empty(cpumask_of_node(node)))
2189 node_set_state(node, N_CPU);
2190 }
2191}
2192
2193static int vmstat_cpu_online(unsigned int cpu)
2194{
2195 if (vmstat_late_init_done)
2196 refresh_zone_stat_thresholds();
2197
2198 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2199 node_set_state(cpu_to_node(cpu), N_CPU);
2200 }
2201 enable_delayed_work(&per_cpu(vmstat_work, cpu));
2202
2203 return 0;
2204}
2205
2206static int vmstat_cpu_down_prep(unsigned int cpu)
2207{
2208 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2209 return 0;
2210}
2211
2212static int vmstat_cpu_dead(unsigned int cpu)
2213{
2214 const struct cpumask *node_cpus;
2215 int node;
2216
2217 node = cpu_to_node(cpu);
2218
2219 refresh_zone_stat_thresholds();
2220 node_cpus = cpumask_of_node(node);
2221 if (!cpumask_empty(node_cpus))
2222 return 0;
2223
2224 node_clear_state(node, N_CPU);
2225
2226 return 0;
2227}
2228
2229static int __init vmstat_late_init(void)
2230{
2231 refresh_zone_stat_thresholds();
2232 vmstat_late_init_done = 1;
2233
2234 return 0;
2235}
2236late_initcall(vmstat_late_init);
2237#endif
2238
2239#ifdef CONFIG_PROC_FS
2240static const struct ctl_table vmstat_table[] = {
2241#ifdef CONFIG_SMP
2242 {
2243 .procname = "stat_interval",
2244 .data = &sysctl_stat_interval,
2245 .maxlen = sizeof(sysctl_stat_interval),
2246 .mode = 0644,
2247 .proc_handler = proc_dointvec_jiffies,
2248 },
2249 {
2250 .procname = "stat_refresh",
2251 .data = NULL,
2252 .maxlen = 0,
2253 .mode = 0600,
2254 .proc_handler = vmstat_refresh,
2255 },
2256#endif
2257#ifdef CONFIG_NUMA
2258 {
2259 .procname = "numa_stat",
2260 .data = &sysctl_vm_numa_stat,
2261 .maxlen = sizeof(int),
2262 .mode = 0644,
2263 .proc_handler = sysctl_vm_numa_stat_handler,
2264 .extra1 = SYSCTL_ZERO,
2265 .extra2 = SYSCTL_ONE,
2266 },
2267#endif
2268};
2269#endif
2270
2271struct workqueue_struct *mm_percpu_wq;
2272
2273void __init init_mm_internals(void)
2274{
2275 int ret __maybe_unused;
2276
2277 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2278
2279#ifdef CONFIG_SMP
2280 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2281 NULL, vmstat_cpu_dead);
2282 if (ret < 0)
2283 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2284
2285 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2286 vmstat_cpu_online,
2287 vmstat_cpu_down_prep);
2288 if (ret < 0)
2289 pr_err("vmstat: failed to register 'online' hotplug state\n");
2290
2291 cpus_read_lock();
2292 init_cpu_node_state();
2293 cpus_read_unlock();
2294
2295 start_shepherd_timer();
2296#endif
2297#ifdef CONFIG_PROC_FS
2298 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2299 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2300 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2301 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2302 register_sysctl_init("vm", vmstat_table);
2303#endif
2304}
2305
2306#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2307
2308/*
2309 * Return an index indicating how much of the available free memory is
2310 * unusable for an allocation of the requested size.
2311 */
2312static int unusable_free_index(unsigned int order,
2313 struct contig_page_info *info)
2314{
2315 /* No free memory is interpreted as all free memory is unusable */
2316 if (info->free_pages == 0)
2317 return 1000;
2318
2319 /*
2320 * Index should be a value between 0 and 1. Return a value to 3
2321 * decimal places.
2322 *
2323 * 0 => no fragmentation
2324 * 1 => high fragmentation
2325 */
2326 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2327
2328}
2329
2330static void unusable_show_print(struct seq_file *m,
2331 pg_data_t *pgdat, struct zone *zone)
2332{
2333 unsigned int order;
2334 int index;
2335 struct contig_page_info info;
2336
2337 seq_printf(m, "Node %d, zone %8s ",
2338 pgdat->node_id,
2339 zone->name);
2340 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2341 fill_contig_page_info(zone, order, &info);
2342 index = unusable_free_index(order, &info);
2343 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2344 }
2345
2346 seq_putc(m, '\n');
2347}
2348
2349/*
2350 * Display unusable free space index
2351 *
2352 * The unusable free space index measures how much of the available free
2353 * memory cannot be used to satisfy an allocation of a given size and is a
2354 * value between 0 and 1. The higher the value, the more of free memory is
2355 * unusable and by implication, the worse the external fragmentation is. This
2356 * can be expressed as a percentage by multiplying by 100.
2357 */
2358static int unusable_show(struct seq_file *m, void *arg)
2359{
2360 pg_data_t *pgdat = (pg_data_t *)arg;
2361
2362 /* check memoryless node */
2363 if (!node_state(pgdat->node_id, N_MEMORY))
2364 return 0;
2365
2366 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2367
2368 return 0;
2369}
2370
2371static const struct seq_operations unusable_sops = {
2372 .start = frag_start,
2373 .next = frag_next,
2374 .stop = frag_stop,
2375 .show = unusable_show,
2376};
2377
2378DEFINE_SEQ_ATTRIBUTE(unusable);
2379
2380static void extfrag_show_print(struct seq_file *m,
2381 pg_data_t *pgdat, struct zone *zone)
2382{
2383 unsigned int order;
2384 int index;
2385
2386 /* Alloc on stack as interrupts are disabled for zone walk */
2387 struct contig_page_info info;
2388
2389 seq_printf(m, "Node %d, zone %8s ",
2390 pgdat->node_id,
2391 zone->name);
2392 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2393 fill_contig_page_info(zone, order, &info);
2394 index = __fragmentation_index(order, &info);
2395 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2396 }
2397
2398 seq_putc(m, '\n');
2399}
2400
2401/*
2402 * Display fragmentation index for orders that allocations would fail for
2403 */
2404static int extfrag_show(struct seq_file *m, void *arg)
2405{
2406 pg_data_t *pgdat = (pg_data_t *)arg;
2407
2408 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2409
2410 return 0;
2411}
2412
2413static const struct seq_operations extfrag_sops = {
2414 .start = frag_start,
2415 .next = frag_next,
2416 .stop = frag_stop,
2417 .show = extfrag_show,
2418};
2419
2420DEFINE_SEQ_ATTRIBUTE(extfrag);
2421
2422static int __init extfrag_debug_init(void)
2423{
2424 struct dentry *extfrag_debug_root;
2425
2426 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2427
2428 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2429 &unusable_fops);
2430
2431 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2432 &extfrag_fops);
2433
2434 return 0;
2435}
2436
2437module_init(extfrag_debug_init);
2438
2439#endif