Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/swab.h>
19#include <linux/bitops.h>
20#include <linux/slab.h>
21#include "slab.h"
22#include <linux/vmalloc.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/kasan.h>
26#include <linux/node.h>
27#include <linux/kmsan.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/mempolicy.h>
31#include <linux/ctype.h>
32#include <linux/stackdepot.h>
33#include <linux/debugobjects.h>
34#include <linux/kallsyms.h>
35#include <linux/kfence.h>
36#include <linux/memory.h>
37#include <linux/math64.h>
38#include <linux/fault-inject.h>
39#include <linux/kmemleak.h>
40#include <linux/stacktrace.h>
41#include <linux/prefetch.h>
42#include <linux/memcontrol.h>
43#include <linux/random.h>
44#include <kunit/test.h>
45#include <kunit/test-bug.h>
46#include <linux/sort.h>
47#include <linux/irq_work.h>
48#include <linux/kprobes.h>
49#include <linux/debugfs.h>
50#include <trace/events/kmem.h>
51
52#include "internal.h"
53
54/*
55 * Lock order:
56 * 1. slab_mutex (Global Mutex)
57 * 2. node->list_lock (Spinlock)
58 * 3. kmem_cache->cpu_slab->lock (Local lock)
59 * 4. slab_lock(slab) (Only on some arches)
60 * 5. object_map_lock (Only for debugging)
61 *
62 * slab_mutex
63 *
64 * The role of the slab_mutex is to protect the list of all the slabs
65 * and to synchronize major metadata changes to slab cache structures.
66 * Also synchronizes memory hotplug callbacks.
67 *
68 * slab_lock
69 *
70 * The slab_lock is a wrapper around the page lock, thus it is a bit
71 * spinlock.
72 *
73 * The slab_lock is only used on arches that do not have the ability
74 * to do a cmpxchg_double. It only protects:
75 *
76 * A. slab->freelist -> List of free objects in a slab
77 * B. slab->inuse -> Number of objects in use
78 * C. slab->objects -> Number of objects in slab
79 * D. slab->frozen -> frozen state
80 *
81 * Frozen slabs
82 *
83 * If a slab is frozen then it is exempt from list management. It is
84 * the cpu slab which is actively allocated from by the processor that
85 * froze it and it is not on any list. The processor that froze the
86 * slab is the one who can perform list operations on the slab. Other
87 * processors may put objects onto the freelist but the processor that
88 * froze the slab is the only one that can retrieve the objects from the
89 * slab's freelist.
90 *
91 * CPU partial slabs
92 *
93 * The partially empty slabs cached on the CPU partial list are used
94 * for performance reasons, which speeds up the allocation process.
95 * These slabs are not frozen, but are also exempt from list management,
96 * by clearing the SL_partial flag when moving out of the node
97 * partial list. Please see __slab_free() for more details.
98 *
99 * To sum up, the current scheme is:
100 * - node partial slab: SL_partial && !frozen
101 * - cpu partial slab: !SL_partial && !frozen
102 * - cpu slab: !SL_partial && frozen
103 * - full slab: !SL_partial && !frozen
104 *
105 * list_lock
106 *
107 * The list_lock protects the partial and full list on each node and
108 * the partial slab counter. If taken then no new slabs may be added or
109 * removed from the lists nor make the number of partial slabs be modified.
110 * (Note that the total number of slabs is an atomic value that may be
111 * modified without taking the list lock).
112 *
113 * The list_lock is a centralized lock and thus we avoid taking it as
114 * much as possible. As long as SLUB does not have to handle partial
115 * slabs, operations can continue without any centralized lock. F.e.
116 * allocating a long series of objects that fill up slabs does not require
117 * the list lock.
118 *
119 * For debug caches, all allocations are forced to go through a list_lock
120 * protected region to serialize against concurrent validation.
121 *
122 * cpu_slab->lock local lock
123 *
124 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
125 * except the stat counters. This is a percpu structure manipulated only by
126 * the local cpu, so the lock protects against being preempted or interrupted
127 * by an irq. Fast path operations rely on lockless operations instead.
128 *
129 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
130 * which means the lockless fastpath cannot be used as it might interfere with
131 * an in-progress slow path operations. In this case the local lock is always
132 * taken but it still utilizes the freelist for the common operations.
133 *
134 * lockless fastpaths
135 *
136 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
137 * are fully lockless when satisfied from the percpu slab (and when
138 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
139 * They also don't disable preemption or migration or irqs. They rely on
140 * the transaction id (tid) field to detect being preempted or moved to
141 * another cpu.
142 *
143 * irq, preemption, migration considerations
144 *
145 * Interrupts are disabled as part of list_lock or local_lock operations, or
146 * around the slab_lock operation, in order to make the slab allocator safe
147 * to use in the context of an irq.
148 *
149 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
150 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
151 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
152 * doesn't have to be revalidated in each section protected by the local lock.
153 *
154 * SLUB assigns one slab for allocation to each processor.
155 * Allocations only occur from these slabs called cpu slabs.
156 *
157 * Slabs with free elements are kept on a partial list and during regular
158 * operations no list for full slabs is used. If an object in a full slab is
159 * freed then the slab will show up again on the partial lists.
160 * We track full slabs for debugging purposes though because otherwise we
161 * cannot scan all objects.
162 *
163 * Slabs are freed when they become empty. Teardown and setup is
164 * minimal so we rely on the page allocators per cpu caches for
165 * fast frees and allocs.
166 *
167 * slab->frozen The slab is frozen and exempt from list processing.
168 * This means that the slab is dedicated to a purpose
169 * such as satisfying allocations for a specific
170 * processor. Objects may be freed in the slab while
171 * it is frozen but slab_free will then skip the usual
172 * list operations. It is up to the processor holding
173 * the slab to integrate the slab into the slab lists
174 * when the slab is no longer needed.
175 *
176 * One use of this flag is to mark slabs that are
177 * used for allocations. Then such a slab becomes a cpu
178 * slab. The cpu slab may be equipped with an additional
179 * freelist that allows lockless access to
180 * free objects in addition to the regular freelist
181 * that requires the slab lock.
182 *
183 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
184 * options set. This moves slab handling out of
185 * the fast path and disables lockless freelists.
186 */
187
188/**
189 * enum slab_flags - How the slab flags bits are used.
190 * @SL_locked: Is locked with slab_lock()
191 * @SL_partial: On the per-node partial list
192 * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
193 *
194 * The slab flags share space with the page flags but some bits have
195 * different interpretations. The high bits are used for information
196 * like zone/node/section.
197 */
198enum slab_flags {
199 SL_locked = PG_locked,
200 SL_partial = PG_workingset, /* Historical reasons for this bit */
201 SL_pfmemalloc = PG_active, /* Historical reasons for this bit */
202};
203
204/*
205 * We could simply use migrate_disable()/enable() but as long as it's a
206 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
207 */
208#ifndef CONFIG_PREEMPT_RT
209#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
210#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
211#define USE_LOCKLESS_FAST_PATH() (true)
212#else
213#define slub_get_cpu_ptr(var) \
214({ \
215 migrate_disable(); \
216 this_cpu_ptr(var); \
217})
218#define slub_put_cpu_ptr(var) \
219do { \
220 (void)(var); \
221 migrate_enable(); \
222} while (0)
223#define USE_LOCKLESS_FAST_PATH() (false)
224#endif
225
226#ifndef CONFIG_SLUB_TINY
227#define __fastpath_inline __always_inline
228#else
229#define __fastpath_inline
230#endif
231
232#ifdef CONFIG_SLUB_DEBUG
233#ifdef CONFIG_SLUB_DEBUG_ON
234DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
235#else
236DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
237#endif
238#endif /* CONFIG_SLUB_DEBUG */
239
240#ifdef CONFIG_NUMA
241static DEFINE_STATIC_KEY_FALSE(strict_numa);
242#endif
243
244/* Structure holding parameters for get_partial() call chain */
245struct partial_context {
246 gfp_t flags;
247 unsigned int orig_size;
248 void *object;
249};
250
251static inline bool kmem_cache_debug(struct kmem_cache *s)
252{
253 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
254}
255
256void *fixup_red_left(struct kmem_cache *s, void *p)
257{
258 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
259 p += s->red_left_pad;
260
261 return p;
262}
263
264static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
265{
266#ifdef CONFIG_SLUB_CPU_PARTIAL
267 return !kmem_cache_debug(s);
268#else
269 return false;
270#endif
271}
272
273/*
274 * Issues still to be resolved:
275 *
276 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
277 *
278 * - Variable sizing of the per node arrays
279 */
280
281/* Enable to log cmpxchg failures */
282#undef SLUB_DEBUG_CMPXCHG
283
284#ifndef CONFIG_SLUB_TINY
285/*
286 * Minimum number of partial slabs. These will be left on the partial
287 * lists even if they are empty. kmem_cache_shrink may reclaim them.
288 */
289#define MIN_PARTIAL 5
290
291/*
292 * Maximum number of desirable partial slabs.
293 * The existence of more partial slabs makes kmem_cache_shrink
294 * sort the partial list by the number of objects in use.
295 */
296#define MAX_PARTIAL 10
297#else
298#define MIN_PARTIAL 0
299#define MAX_PARTIAL 0
300#endif
301
302#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
303 SLAB_POISON | SLAB_STORE_USER)
304
305/*
306 * These debug flags cannot use CMPXCHG because there might be consistency
307 * issues when checking or reading debug information
308 */
309#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
310 SLAB_TRACE)
311
312
313/*
314 * Debugging flags that require metadata to be stored in the slab. These get
315 * disabled when slab_debug=O is used and a cache's min order increases with
316 * metadata.
317 */
318#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
319
320#define OO_SHIFT 16
321#define OO_MASK ((1 << OO_SHIFT) - 1)
322#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
323
324/* Internal SLUB flags */
325/* Poison object */
326#define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
327/* Use cmpxchg_double */
328
329#ifdef system_has_freelist_aba
330#define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
331#else
332#define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
333#endif
334
335/*
336 * Tracking user of a slab.
337 */
338#define TRACK_ADDRS_COUNT 16
339struct track {
340 unsigned long addr; /* Called from address */
341#ifdef CONFIG_STACKDEPOT
342 depot_stack_handle_t handle;
343#endif
344 int cpu; /* Was running on cpu */
345 int pid; /* Pid context */
346 unsigned long when; /* When did the operation occur */
347};
348
349enum track_item { TRACK_ALLOC, TRACK_FREE };
350
351#ifdef SLAB_SUPPORTS_SYSFS
352static int sysfs_slab_add(struct kmem_cache *);
353static int sysfs_slab_alias(struct kmem_cache *, const char *);
354#else
355static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
356static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
357 { return 0; }
358#endif
359
360#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
361static void debugfs_slab_add(struct kmem_cache *);
362#else
363static inline void debugfs_slab_add(struct kmem_cache *s) { }
364#endif
365
366enum stat_item {
367 ALLOC_PCS, /* Allocation from percpu sheaf */
368 ALLOC_FASTPATH, /* Allocation from cpu slab */
369 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
370 FREE_PCS, /* Free to percpu sheaf */
371 FREE_RCU_SHEAF, /* Free to rcu_free sheaf */
372 FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */
373 FREE_FASTPATH, /* Free to cpu slab */
374 FREE_SLOWPATH, /* Freeing not to cpu slab */
375 FREE_FROZEN, /* Freeing to frozen slab */
376 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
377 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
378 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
379 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
380 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
381 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
382 FREE_SLAB, /* Slab freed to the page allocator */
383 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
384 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
385 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
386 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
387 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
388 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
389 DEACTIVATE_BYPASS, /* Implicit deactivation */
390 ORDER_FALLBACK, /* Number of times fallback was necessary */
391 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
392 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
393 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
394 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
395 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
396 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
397 SHEAF_FLUSH, /* Objects flushed from a sheaf */
398 SHEAF_REFILL, /* Objects refilled to a sheaf */
399 SHEAF_ALLOC, /* Allocation of an empty sheaf */
400 SHEAF_FREE, /* Freeing of an empty sheaf */
401 BARN_GET, /* Got full sheaf from barn */
402 BARN_GET_FAIL, /* Failed to get full sheaf from barn */
403 BARN_PUT, /* Put full sheaf to barn */
404 BARN_PUT_FAIL, /* Failed to put full sheaf to barn */
405 SHEAF_PREFILL_FAST, /* Sheaf prefill grabbed the spare sheaf */
406 SHEAF_PREFILL_SLOW, /* Sheaf prefill found no spare sheaf */
407 SHEAF_PREFILL_OVERSIZE, /* Allocation of oversize sheaf for prefill */
408 SHEAF_RETURN_FAST, /* Sheaf return reattached spare sheaf */
409 SHEAF_RETURN_SLOW, /* Sheaf return could not reattach spare */
410 NR_SLUB_STAT_ITEMS
411};
412
413struct freelist_tid {
414 union {
415 struct {
416 void *freelist; /* Pointer to next available object */
417 unsigned long tid; /* Globally unique transaction id */
418 };
419 freelist_full_t freelist_tid;
420 };
421};
422
423/*
424 * When changing the layout, make sure freelist and tid are still compatible
425 * with this_cpu_cmpxchg_double() alignment requirements.
426 */
427struct kmem_cache_cpu {
428 struct freelist_tid;
429 struct slab *slab; /* The slab from which we are allocating */
430#ifdef CONFIG_SLUB_CPU_PARTIAL
431 struct slab *partial; /* Partially allocated slabs */
432#endif
433 local_trylock_t lock; /* Protects the fields above */
434#ifdef CONFIG_SLUB_STATS
435 unsigned int stat[NR_SLUB_STAT_ITEMS];
436#endif
437};
438
439static inline void stat(const struct kmem_cache *s, enum stat_item si)
440{
441#ifdef CONFIG_SLUB_STATS
442 /*
443 * The rmw is racy on a preemptible kernel but this is acceptable, so
444 * avoid this_cpu_add()'s irq-disable overhead.
445 */
446 raw_cpu_inc(s->cpu_slab->stat[si]);
447#endif
448}
449
450static inline
451void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
452{
453#ifdef CONFIG_SLUB_STATS
454 raw_cpu_add(s->cpu_slab->stat[si], v);
455#endif
456}
457
458#define MAX_FULL_SHEAVES 10
459#define MAX_EMPTY_SHEAVES 10
460
461struct node_barn {
462 spinlock_t lock;
463 struct list_head sheaves_full;
464 struct list_head sheaves_empty;
465 unsigned int nr_full;
466 unsigned int nr_empty;
467};
468
469struct slab_sheaf {
470 union {
471 struct rcu_head rcu_head;
472 struct list_head barn_list;
473 /* only used for prefilled sheafs */
474 struct {
475 unsigned int capacity;
476 bool pfmemalloc;
477 };
478 };
479 struct kmem_cache *cache;
480 unsigned int size;
481 int node; /* only used for rcu_sheaf */
482 void *objects[];
483};
484
485struct slub_percpu_sheaves {
486 local_trylock_t lock;
487 struct slab_sheaf *main; /* never NULL when unlocked */
488 struct slab_sheaf *spare; /* empty or full, may be NULL */
489 struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
490};
491
492/*
493 * The slab lists for all objects.
494 */
495struct kmem_cache_node {
496 spinlock_t list_lock;
497 unsigned long nr_partial;
498 struct list_head partial;
499#ifdef CONFIG_SLUB_DEBUG
500 atomic_long_t nr_slabs;
501 atomic_long_t total_objects;
502 struct list_head full;
503#endif
504 struct node_barn *barn;
505};
506
507static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
508{
509 return s->node[node];
510}
511
512/*
513 * Get the barn of the current cpu's closest memory node. It may not exist on
514 * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES
515 */
516static inline struct node_barn *get_barn(struct kmem_cache *s)
517{
518 struct kmem_cache_node *n = get_node(s, numa_mem_id());
519
520 if (!n)
521 return NULL;
522
523 return n->barn;
524}
525
526/*
527 * Iterator over all nodes. The body will be executed for each node that has
528 * a kmem_cache_node structure allocated (which is true for all online nodes)
529 */
530#define for_each_kmem_cache_node(__s, __node, __n) \
531 for (__node = 0; __node < nr_node_ids; __node++) \
532 if ((__n = get_node(__s, __node)))
533
534/*
535 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
536 * Corresponds to node_state[N_MEMORY], but can temporarily
537 * differ during memory hotplug/hotremove operations.
538 * Protected by slab_mutex.
539 */
540static nodemask_t slab_nodes;
541
542/*
543 * Workqueue used for flush_cpu_slab().
544 */
545static struct workqueue_struct *flushwq;
546
547struct slub_flush_work {
548 struct work_struct work;
549 struct kmem_cache *s;
550 bool skip;
551};
552
553static DEFINE_MUTEX(flush_lock);
554static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
555
556/********************************************************************
557 * Core slab cache functions
558 *******************************************************************/
559
560/*
561 * Returns freelist pointer (ptr). With hardening, this is obfuscated
562 * with an XOR of the address where the pointer is held and a per-cache
563 * random number.
564 */
565static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
566 void *ptr, unsigned long ptr_addr)
567{
568 unsigned long encoded;
569
570#ifdef CONFIG_SLAB_FREELIST_HARDENED
571 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
572#else
573 encoded = (unsigned long)ptr;
574#endif
575 return (freeptr_t){.v = encoded};
576}
577
578static inline void *freelist_ptr_decode(const struct kmem_cache *s,
579 freeptr_t ptr, unsigned long ptr_addr)
580{
581 void *decoded;
582
583#ifdef CONFIG_SLAB_FREELIST_HARDENED
584 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
585#else
586 decoded = (void *)ptr.v;
587#endif
588 return decoded;
589}
590
591static inline void *get_freepointer(struct kmem_cache *s, void *object)
592{
593 unsigned long ptr_addr;
594 freeptr_t p;
595
596 object = kasan_reset_tag(object);
597 ptr_addr = (unsigned long)object + s->offset;
598 p = *(freeptr_t *)(ptr_addr);
599 return freelist_ptr_decode(s, p, ptr_addr);
600}
601
602static void prefetch_freepointer(const struct kmem_cache *s, void *object)
603{
604 prefetchw(object + s->offset);
605}
606
607/*
608 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
609 * pointer value in the case the current thread loses the race for the next
610 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
611 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
612 * KMSAN will still check all arguments of cmpxchg because of imperfect
613 * handling of inline assembly.
614 * To work around this problem, we apply __no_kmsan_checks to ensure that
615 * get_freepointer_safe() returns initialized memory.
616 */
617__no_kmsan_checks
618static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
619{
620 unsigned long freepointer_addr;
621 freeptr_t p;
622
623 if (!debug_pagealloc_enabled_static())
624 return get_freepointer(s, object);
625
626 object = kasan_reset_tag(object);
627 freepointer_addr = (unsigned long)object + s->offset;
628 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
629 return freelist_ptr_decode(s, p, freepointer_addr);
630}
631
632static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
633{
634 unsigned long freeptr_addr = (unsigned long)object + s->offset;
635
636#ifdef CONFIG_SLAB_FREELIST_HARDENED
637 BUG_ON(object == fp); /* naive detection of double free or corruption */
638#endif
639
640 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
641 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
642}
643
644/*
645 * See comment in calculate_sizes().
646 */
647static inline bool freeptr_outside_object(struct kmem_cache *s)
648{
649 return s->offset >= s->inuse;
650}
651
652/*
653 * Return offset of the end of info block which is inuse + free pointer if
654 * not overlapping with object.
655 */
656static inline unsigned int get_info_end(struct kmem_cache *s)
657{
658 if (freeptr_outside_object(s))
659 return s->inuse + sizeof(void *);
660 else
661 return s->inuse;
662}
663
664/* Loop over all objects in a slab */
665#define for_each_object(__p, __s, __addr, __objects) \
666 for (__p = fixup_red_left(__s, __addr); \
667 __p < (__addr) + (__objects) * (__s)->size; \
668 __p += (__s)->size)
669
670static inline unsigned int order_objects(unsigned int order, unsigned int size)
671{
672 return ((unsigned int)PAGE_SIZE << order) / size;
673}
674
675static inline struct kmem_cache_order_objects oo_make(unsigned int order,
676 unsigned int size)
677{
678 struct kmem_cache_order_objects x = {
679 (order << OO_SHIFT) + order_objects(order, size)
680 };
681
682 return x;
683}
684
685static inline unsigned int oo_order(struct kmem_cache_order_objects x)
686{
687 return x.x >> OO_SHIFT;
688}
689
690static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
691{
692 return x.x & OO_MASK;
693}
694
695#ifdef CONFIG_SLUB_CPU_PARTIAL
696static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
697{
698 unsigned int nr_slabs;
699
700 s->cpu_partial = nr_objects;
701
702 /*
703 * We take the number of objects but actually limit the number of
704 * slabs on the per cpu partial list, in order to limit excessive
705 * growth of the list. For simplicity we assume that the slabs will
706 * be half-full.
707 */
708 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
709 s->cpu_partial_slabs = nr_slabs;
710}
711
712static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
713{
714 return s->cpu_partial_slabs;
715}
716#else
717#ifdef SLAB_SUPPORTS_SYSFS
718static inline void
719slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
720{
721}
722#endif
723
724static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
725{
726 return 0;
727}
728#endif /* CONFIG_SLUB_CPU_PARTIAL */
729
730/*
731 * If network-based swap is enabled, slub must keep track of whether memory
732 * were allocated from pfmemalloc reserves.
733 */
734static inline bool slab_test_pfmemalloc(const struct slab *slab)
735{
736 return test_bit(SL_pfmemalloc, &slab->flags.f);
737}
738
739static inline void slab_set_pfmemalloc(struct slab *slab)
740{
741 set_bit(SL_pfmemalloc, &slab->flags.f);
742}
743
744static inline void __slab_clear_pfmemalloc(struct slab *slab)
745{
746 __clear_bit(SL_pfmemalloc, &slab->flags.f);
747}
748
749/*
750 * Per slab locking using the pagelock
751 */
752static __always_inline void slab_lock(struct slab *slab)
753{
754 bit_spin_lock(SL_locked, &slab->flags.f);
755}
756
757static __always_inline void slab_unlock(struct slab *slab)
758{
759 bit_spin_unlock(SL_locked, &slab->flags.f);
760}
761
762static inline bool
763__update_freelist_fast(struct slab *slab, struct freelist_counters *old,
764 struct freelist_counters *new)
765{
766#ifdef system_has_freelist_aba
767 return try_cmpxchg_freelist(&slab->freelist_counters,
768 &old->freelist_counters,
769 new->freelist_counters);
770#else
771 return false;
772#endif
773}
774
775static inline bool
776__update_freelist_slow(struct slab *slab, struct freelist_counters *old,
777 struct freelist_counters *new)
778{
779 bool ret = false;
780
781 slab_lock(slab);
782 if (slab->freelist == old->freelist &&
783 slab->counters == old->counters) {
784 slab->freelist = new->freelist;
785 slab->counters = new->counters;
786 ret = true;
787 }
788 slab_unlock(slab);
789
790 return ret;
791}
792
793/*
794 * Interrupts must be disabled (for the fallback code to work right), typically
795 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
796 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
797 * allocation/ free operation in hardirq context. Therefore nothing can
798 * interrupt the operation.
799 */
800static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
801 struct freelist_counters *old, struct freelist_counters *new, const char *n)
802{
803 bool ret;
804
805 if (USE_LOCKLESS_FAST_PATH())
806 lockdep_assert_irqs_disabled();
807
808 if (s->flags & __CMPXCHG_DOUBLE)
809 ret = __update_freelist_fast(slab, old, new);
810 else
811 ret = __update_freelist_slow(slab, old, new);
812
813 if (likely(ret))
814 return true;
815
816 cpu_relax();
817 stat(s, CMPXCHG_DOUBLE_FAIL);
818
819#ifdef SLUB_DEBUG_CMPXCHG
820 pr_info("%s %s: cmpxchg double redo ", n, s->name);
821#endif
822
823 return false;
824}
825
826static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
827 struct freelist_counters *old, struct freelist_counters *new, const char *n)
828{
829 bool ret;
830
831 if (s->flags & __CMPXCHG_DOUBLE) {
832 ret = __update_freelist_fast(slab, old, new);
833 } else {
834 unsigned long flags;
835
836 local_irq_save(flags);
837 ret = __update_freelist_slow(slab, old, new);
838 local_irq_restore(flags);
839 }
840 if (likely(ret))
841 return true;
842
843 cpu_relax();
844 stat(s, CMPXCHG_DOUBLE_FAIL);
845
846#ifdef SLUB_DEBUG_CMPXCHG
847 pr_info("%s %s: cmpxchg double redo ", n, s->name);
848#endif
849
850 return false;
851}
852
853/*
854 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
855 * family will round up the real request size to these fixed ones, so
856 * there could be an extra area than what is requested. Save the original
857 * request size in the meta data area, for better debug and sanity check.
858 */
859static inline void set_orig_size(struct kmem_cache *s,
860 void *object, unsigned int orig_size)
861{
862 void *p = kasan_reset_tag(object);
863
864 if (!slub_debug_orig_size(s))
865 return;
866
867 p += get_info_end(s);
868 p += sizeof(struct track) * 2;
869
870 *(unsigned int *)p = orig_size;
871}
872
873static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
874{
875 void *p = kasan_reset_tag(object);
876
877 if (is_kfence_address(object))
878 return kfence_ksize(object);
879
880 if (!slub_debug_orig_size(s))
881 return s->object_size;
882
883 p += get_info_end(s);
884 p += sizeof(struct track) * 2;
885
886 return *(unsigned int *)p;
887}
888
889#ifdef CONFIG_SLUB_DEBUG
890
891/*
892 * For debugging context when we want to check if the struct slab pointer
893 * appears to be valid.
894 */
895static inline bool validate_slab_ptr(struct slab *slab)
896{
897 return PageSlab(slab_page(slab));
898}
899
900static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
901static DEFINE_SPINLOCK(object_map_lock);
902
903static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
904 struct slab *slab)
905{
906 void *addr = slab_address(slab);
907 void *p;
908
909 bitmap_zero(obj_map, slab->objects);
910
911 for (p = slab->freelist; p; p = get_freepointer(s, p))
912 set_bit(__obj_to_index(s, addr, p), obj_map);
913}
914
915#if IS_ENABLED(CONFIG_KUNIT)
916static bool slab_add_kunit_errors(void)
917{
918 struct kunit_resource *resource;
919
920 if (!kunit_get_current_test())
921 return false;
922
923 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
924 if (!resource)
925 return false;
926
927 (*(int *)resource->data)++;
928 kunit_put_resource(resource);
929 return true;
930}
931
932bool slab_in_kunit_test(void)
933{
934 struct kunit_resource *resource;
935
936 if (!kunit_get_current_test())
937 return false;
938
939 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
940 if (!resource)
941 return false;
942
943 kunit_put_resource(resource);
944 return true;
945}
946#else
947static inline bool slab_add_kunit_errors(void) { return false; }
948#endif
949
950static inline unsigned int size_from_object(struct kmem_cache *s)
951{
952 if (s->flags & SLAB_RED_ZONE)
953 return s->size - s->red_left_pad;
954
955 return s->size;
956}
957
958static inline void *restore_red_left(struct kmem_cache *s, void *p)
959{
960 if (s->flags & SLAB_RED_ZONE)
961 p -= s->red_left_pad;
962
963 return p;
964}
965
966/*
967 * Debug settings:
968 */
969#if defined(CONFIG_SLUB_DEBUG_ON)
970static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
971#else
972static slab_flags_t slub_debug;
973#endif
974
975static const char *slub_debug_string __ro_after_init;
976static int disable_higher_order_debug;
977
978/*
979 * slub is about to manipulate internal object metadata. This memory lies
980 * outside the range of the allocated object, so accessing it would normally
981 * be reported by kasan as a bounds error. metadata_access_enable() is used
982 * to tell kasan that these accesses are OK.
983 */
984static inline void metadata_access_enable(void)
985{
986 kasan_disable_current();
987 kmsan_disable_current();
988}
989
990static inline void metadata_access_disable(void)
991{
992 kmsan_enable_current();
993 kasan_enable_current();
994}
995
996/*
997 * Object debugging
998 */
999
1000/* Verify that a pointer has an address that is valid within a slab page */
1001static inline int check_valid_pointer(struct kmem_cache *s,
1002 struct slab *slab, void *object)
1003{
1004 void *base;
1005
1006 if (!object)
1007 return 1;
1008
1009 base = slab_address(slab);
1010 object = kasan_reset_tag(object);
1011 object = restore_red_left(s, object);
1012 if (object < base || object >= base + slab->objects * s->size ||
1013 (object - base) % s->size) {
1014 return 0;
1015 }
1016
1017 return 1;
1018}
1019
1020static void print_section(char *level, char *text, u8 *addr,
1021 unsigned int length)
1022{
1023 metadata_access_enable();
1024 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
1025 16, 1, kasan_reset_tag((void *)addr), length, 1);
1026 metadata_access_disable();
1027}
1028
1029static struct track *get_track(struct kmem_cache *s, void *object,
1030 enum track_item alloc)
1031{
1032 struct track *p;
1033
1034 p = object + get_info_end(s);
1035
1036 return kasan_reset_tag(p + alloc);
1037}
1038
1039#ifdef CONFIG_STACKDEPOT
1040static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1041{
1042 depot_stack_handle_t handle;
1043 unsigned long entries[TRACK_ADDRS_COUNT];
1044 unsigned int nr_entries;
1045
1046 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
1047 handle = stack_depot_save(entries, nr_entries, gfp_flags);
1048
1049 return handle;
1050}
1051#else
1052static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1053{
1054 return 0;
1055}
1056#endif
1057
1058static void set_track_update(struct kmem_cache *s, void *object,
1059 enum track_item alloc, unsigned long addr,
1060 depot_stack_handle_t handle)
1061{
1062 struct track *p = get_track(s, object, alloc);
1063
1064#ifdef CONFIG_STACKDEPOT
1065 p->handle = handle;
1066#endif
1067 p->addr = addr;
1068 p->cpu = smp_processor_id();
1069 p->pid = current->pid;
1070 p->when = jiffies;
1071}
1072
1073static __always_inline void set_track(struct kmem_cache *s, void *object,
1074 enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1075{
1076 depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1077
1078 set_track_update(s, object, alloc, addr, handle);
1079}
1080
1081static void init_tracking(struct kmem_cache *s, void *object)
1082{
1083 struct track *p;
1084
1085 if (!(s->flags & SLAB_STORE_USER))
1086 return;
1087
1088 p = get_track(s, object, TRACK_ALLOC);
1089 memset(p, 0, 2*sizeof(struct track));
1090}
1091
1092static void print_track(const char *s, struct track *t, unsigned long pr_time)
1093{
1094 depot_stack_handle_t handle __maybe_unused;
1095
1096 if (!t->addr)
1097 return;
1098
1099 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1100 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1101#ifdef CONFIG_STACKDEPOT
1102 handle = READ_ONCE(t->handle);
1103 if (handle)
1104 stack_depot_print(handle);
1105 else
1106 pr_err("object allocation/free stack trace missing\n");
1107#endif
1108}
1109
1110void print_tracking(struct kmem_cache *s, void *object)
1111{
1112 unsigned long pr_time = jiffies;
1113 if (!(s->flags & SLAB_STORE_USER))
1114 return;
1115
1116 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1117 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1118}
1119
1120static void print_slab_info(const struct slab *slab)
1121{
1122 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1123 slab, slab->objects, slab->inuse, slab->freelist,
1124 &slab->flags.f);
1125}
1126
1127void skip_orig_size_check(struct kmem_cache *s, const void *object)
1128{
1129 set_orig_size(s, (void *)object, s->object_size);
1130}
1131
1132static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1133{
1134 struct va_format vaf;
1135 va_list args;
1136
1137 va_copy(args, argsp);
1138 vaf.fmt = fmt;
1139 vaf.va = &args;
1140 pr_err("=============================================================================\n");
1141 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1142 pr_err("-----------------------------------------------------------------------------\n\n");
1143 va_end(args);
1144}
1145
1146static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1147{
1148 va_list args;
1149
1150 va_start(args, fmt);
1151 __slab_bug(s, fmt, args);
1152 va_end(args);
1153}
1154
1155__printf(2, 3)
1156static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1157{
1158 struct va_format vaf;
1159 va_list args;
1160
1161 if (slab_add_kunit_errors())
1162 return;
1163
1164 va_start(args, fmt);
1165 vaf.fmt = fmt;
1166 vaf.va = &args;
1167 pr_err("FIX %s: %pV\n", s->name, &vaf);
1168 va_end(args);
1169}
1170
1171static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1172{
1173 unsigned int off; /* Offset of last byte */
1174 u8 *addr = slab_address(slab);
1175
1176 print_tracking(s, p);
1177
1178 print_slab_info(slab);
1179
1180 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1181 p, p - addr, get_freepointer(s, p));
1182
1183 if (s->flags & SLAB_RED_ZONE)
1184 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1185 s->red_left_pad);
1186 else if (p > addr + 16)
1187 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1188
1189 print_section(KERN_ERR, "Object ", p,
1190 min_t(unsigned int, s->object_size, PAGE_SIZE));
1191 if (s->flags & SLAB_RED_ZONE)
1192 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1193 s->inuse - s->object_size);
1194
1195 off = get_info_end(s);
1196
1197 if (s->flags & SLAB_STORE_USER)
1198 off += 2 * sizeof(struct track);
1199
1200 if (slub_debug_orig_size(s))
1201 off += sizeof(unsigned int);
1202
1203 off += kasan_metadata_size(s, false);
1204
1205 if (off != size_from_object(s))
1206 /* Beginning of the filler is the free pointer */
1207 print_section(KERN_ERR, "Padding ", p + off,
1208 size_from_object(s) - off);
1209}
1210
1211static void object_err(struct kmem_cache *s, struct slab *slab,
1212 u8 *object, const char *reason)
1213{
1214 if (slab_add_kunit_errors())
1215 return;
1216
1217 slab_bug(s, reason);
1218 if (!object || !check_valid_pointer(s, slab, object)) {
1219 print_slab_info(slab);
1220 pr_err("Invalid pointer 0x%p\n", object);
1221 } else {
1222 print_trailer(s, slab, object);
1223 }
1224 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1225
1226 WARN_ON(1);
1227}
1228
1229static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1230 void **freelist, void *nextfree)
1231{
1232 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1233 !check_valid_pointer(s, slab, nextfree) && freelist) {
1234 object_err(s, slab, *freelist, "Freechain corrupt");
1235 *freelist = NULL;
1236 slab_fix(s, "Isolate corrupted freechain");
1237 return true;
1238 }
1239
1240 return false;
1241}
1242
1243static void __slab_err(struct slab *slab)
1244{
1245 if (slab_in_kunit_test())
1246 return;
1247
1248 print_slab_info(slab);
1249 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1250
1251 WARN_ON(1);
1252}
1253
1254static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1255 const char *fmt, ...)
1256{
1257 va_list args;
1258
1259 if (slab_add_kunit_errors())
1260 return;
1261
1262 va_start(args, fmt);
1263 __slab_bug(s, fmt, args);
1264 va_end(args);
1265
1266 __slab_err(slab);
1267}
1268
1269static void init_object(struct kmem_cache *s, void *object, u8 val)
1270{
1271 u8 *p = kasan_reset_tag(object);
1272 unsigned int poison_size = s->object_size;
1273
1274 if (s->flags & SLAB_RED_ZONE) {
1275 /*
1276 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1277 * the shadow makes it possible to distinguish uninit-value
1278 * from use-after-free.
1279 */
1280 memset_no_sanitize_memory(p - s->red_left_pad, val,
1281 s->red_left_pad);
1282
1283 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1284 /*
1285 * Redzone the extra allocated space by kmalloc than
1286 * requested, and the poison size will be limited to
1287 * the original request size accordingly.
1288 */
1289 poison_size = get_orig_size(s, object);
1290 }
1291 }
1292
1293 if (s->flags & __OBJECT_POISON) {
1294 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1295 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1296 }
1297
1298 if (s->flags & SLAB_RED_ZONE)
1299 memset_no_sanitize_memory(p + poison_size, val,
1300 s->inuse - poison_size);
1301}
1302
1303static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1304 void *from, void *to)
1305{
1306 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1307 memset(from, data, to - from);
1308}
1309
1310#ifdef CONFIG_KMSAN
1311#define pad_check_attributes noinline __no_kmsan_checks
1312#else
1313#define pad_check_attributes
1314#endif
1315
1316static pad_check_attributes int
1317check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1318 u8 *object, const char *what, u8 *start, unsigned int value,
1319 unsigned int bytes, bool slab_obj_print)
1320{
1321 u8 *fault;
1322 u8 *end;
1323 u8 *addr = slab_address(slab);
1324
1325 metadata_access_enable();
1326 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1327 metadata_access_disable();
1328 if (!fault)
1329 return 1;
1330
1331 end = start + bytes;
1332 while (end > fault && end[-1] == value)
1333 end--;
1334
1335 if (slab_add_kunit_errors())
1336 goto skip_bug_print;
1337
1338 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1339 what, fault, end - 1, fault - addr, fault[0], value);
1340
1341 if (slab_obj_print)
1342 object_err(s, slab, object, "Object corrupt");
1343
1344skip_bug_print:
1345 restore_bytes(s, what, value, fault, end);
1346 return 0;
1347}
1348
1349/*
1350 * Object layout:
1351 *
1352 * object address
1353 * Bytes of the object to be managed.
1354 * If the freepointer may overlay the object then the free
1355 * pointer is at the middle of the object.
1356 *
1357 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1358 * 0xa5 (POISON_END)
1359 *
1360 * object + s->object_size
1361 * Padding to reach word boundary. This is also used for Redzoning.
1362 * Padding is extended by another word if Redzoning is enabled and
1363 * object_size == inuse.
1364 *
1365 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1366 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1367 *
1368 * object + s->inuse
1369 * Meta data starts here.
1370 *
1371 * A. Free pointer (if we cannot overwrite object on free)
1372 * B. Tracking data for SLAB_STORE_USER
1373 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1374 * D. Padding to reach required alignment boundary or at minimum
1375 * one word if debugging is on to be able to detect writes
1376 * before the word boundary.
1377 *
1378 * Padding is done using 0x5a (POISON_INUSE)
1379 *
1380 * object + s->size
1381 * Nothing is used beyond s->size.
1382 *
1383 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1384 * ignored. And therefore no slab options that rely on these boundaries
1385 * may be used with merged slabcaches.
1386 */
1387
1388static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1389{
1390 unsigned long off = get_info_end(s); /* The end of info */
1391
1392 if (s->flags & SLAB_STORE_USER) {
1393 /* We also have user information there */
1394 off += 2 * sizeof(struct track);
1395
1396 if (s->flags & SLAB_KMALLOC)
1397 off += sizeof(unsigned int);
1398 }
1399
1400 off += kasan_metadata_size(s, false);
1401
1402 if (size_from_object(s) == off)
1403 return 1;
1404
1405 return check_bytes_and_report(s, slab, p, "Object padding",
1406 p + off, POISON_INUSE, size_from_object(s) - off, true);
1407}
1408
1409/* Check the pad bytes at the end of a slab page */
1410static pad_check_attributes void
1411slab_pad_check(struct kmem_cache *s, struct slab *slab)
1412{
1413 u8 *start;
1414 u8 *fault;
1415 u8 *end;
1416 u8 *pad;
1417 int length;
1418 int remainder;
1419
1420 if (!(s->flags & SLAB_POISON))
1421 return;
1422
1423 start = slab_address(slab);
1424 length = slab_size(slab);
1425 end = start + length;
1426 remainder = length % s->size;
1427 if (!remainder)
1428 return;
1429
1430 pad = end - remainder;
1431 metadata_access_enable();
1432 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1433 metadata_access_disable();
1434 if (!fault)
1435 return;
1436 while (end > fault && end[-1] == POISON_INUSE)
1437 end--;
1438
1439 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1440 fault, end - 1, fault - start);
1441 print_section(KERN_ERR, "Padding ", pad, remainder);
1442 __slab_err(slab);
1443
1444 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1445}
1446
1447static int check_object(struct kmem_cache *s, struct slab *slab,
1448 void *object, u8 val)
1449{
1450 u8 *p = object;
1451 u8 *endobject = object + s->object_size;
1452 unsigned int orig_size, kasan_meta_size;
1453 int ret = 1;
1454
1455 if (s->flags & SLAB_RED_ZONE) {
1456 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1457 object - s->red_left_pad, val, s->red_left_pad, ret))
1458 ret = 0;
1459
1460 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1461 endobject, val, s->inuse - s->object_size, ret))
1462 ret = 0;
1463
1464 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1465 orig_size = get_orig_size(s, object);
1466
1467 if (s->object_size > orig_size &&
1468 !check_bytes_and_report(s, slab, object,
1469 "kmalloc Redzone", p + orig_size,
1470 val, s->object_size - orig_size, ret)) {
1471 ret = 0;
1472 }
1473 }
1474 } else {
1475 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1476 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1477 endobject, POISON_INUSE,
1478 s->inuse - s->object_size, ret))
1479 ret = 0;
1480 }
1481 }
1482
1483 if (s->flags & SLAB_POISON) {
1484 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1485 /*
1486 * KASAN can save its free meta data inside of the
1487 * object at offset 0. Thus, skip checking the part of
1488 * the redzone that overlaps with the meta data.
1489 */
1490 kasan_meta_size = kasan_metadata_size(s, true);
1491 if (kasan_meta_size < s->object_size - 1 &&
1492 !check_bytes_and_report(s, slab, p, "Poison",
1493 p + kasan_meta_size, POISON_FREE,
1494 s->object_size - kasan_meta_size - 1, ret))
1495 ret = 0;
1496 if (kasan_meta_size < s->object_size &&
1497 !check_bytes_and_report(s, slab, p, "End Poison",
1498 p + s->object_size - 1, POISON_END, 1, ret))
1499 ret = 0;
1500 }
1501 /*
1502 * check_pad_bytes cleans up on its own.
1503 */
1504 if (!check_pad_bytes(s, slab, p))
1505 ret = 0;
1506 }
1507
1508 /*
1509 * Cannot check freepointer while object is allocated if
1510 * object and freepointer overlap.
1511 */
1512 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1513 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1514 object_err(s, slab, p, "Freepointer corrupt");
1515 /*
1516 * No choice but to zap it and thus lose the remainder
1517 * of the free objects in this slab. May cause
1518 * another error because the object count is now wrong.
1519 */
1520 set_freepointer(s, p, NULL);
1521 ret = 0;
1522 }
1523
1524 return ret;
1525}
1526
1527/*
1528 * Checks if the slab state looks sane. Assumes the struct slab pointer
1529 * was either obtained in a way that ensures it's valid, or validated
1530 * by validate_slab_ptr()
1531 */
1532static int check_slab(struct kmem_cache *s, struct slab *slab)
1533{
1534 int maxobj;
1535
1536 maxobj = order_objects(slab_order(slab), s->size);
1537 if (slab->objects > maxobj) {
1538 slab_err(s, slab, "objects %u > max %u",
1539 slab->objects, maxobj);
1540 return 0;
1541 }
1542 if (slab->inuse > slab->objects) {
1543 slab_err(s, slab, "inuse %u > max %u",
1544 slab->inuse, slab->objects);
1545 return 0;
1546 }
1547 if (slab->frozen) {
1548 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1549 return 0;
1550 }
1551
1552 /* Slab_pad_check fixes things up after itself */
1553 slab_pad_check(s, slab);
1554 return 1;
1555}
1556
1557/*
1558 * Determine if a certain object in a slab is on the freelist. Must hold the
1559 * slab lock to guarantee that the chains are in a consistent state.
1560 */
1561static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1562{
1563 int nr = 0;
1564 void *fp;
1565 void *object = NULL;
1566 int max_objects;
1567
1568 fp = slab->freelist;
1569 while (fp && nr <= slab->objects) {
1570 if (fp == search)
1571 return true;
1572 if (!check_valid_pointer(s, slab, fp)) {
1573 if (object) {
1574 object_err(s, slab, object,
1575 "Freechain corrupt");
1576 set_freepointer(s, object, NULL);
1577 break;
1578 } else {
1579 slab_err(s, slab, "Freepointer corrupt");
1580 slab->freelist = NULL;
1581 slab->inuse = slab->objects;
1582 slab_fix(s, "Freelist cleared");
1583 return false;
1584 }
1585 }
1586 object = fp;
1587 fp = get_freepointer(s, object);
1588 nr++;
1589 }
1590
1591 if (nr > slab->objects) {
1592 slab_err(s, slab, "Freelist cycle detected");
1593 slab->freelist = NULL;
1594 slab->inuse = slab->objects;
1595 slab_fix(s, "Freelist cleared");
1596 return false;
1597 }
1598
1599 max_objects = order_objects(slab_order(slab), s->size);
1600 if (max_objects > MAX_OBJS_PER_PAGE)
1601 max_objects = MAX_OBJS_PER_PAGE;
1602
1603 if (slab->objects != max_objects) {
1604 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1605 slab->objects, max_objects);
1606 slab->objects = max_objects;
1607 slab_fix(s, "Number of objects adjusted");
1608 }
1609 if (slab->inuse != slab->objects - nr) {
1610 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1611 slab->inuse, slab->objects - nr);
1612 slab->inuse = slab->objects - nr;
1613 slab_fix(s, "Object count adjusted");
1614 }
1615 return search == NULL;
1616}
1617
1618static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1619 int alloc)
1620{
1621 if (s->flags & SLAB_TRACE) {
1622 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1623 s->name,
1624 alloc ? "alloc" : "free",
1625 object, slab->inuse,
1626 slab->freelist);
1627
1628 if (!alloc)
1629 print_section(KERN_INFO, "Object ", (void *)object,
1630 s->object_size);
1631
1632 dump_stack();
1633 }
1634}
1635
1636/*
1637 * Tracking of fully allocated slabs for debugging purposes.
1638 */
1639static void add_full(struct kmem_cache *s,
1640 struct kmem_cache_node *n, struct slab *slab)
1641{
1642 if (!(s->flags & SLAB_STORE_USER))
1643 return;
1644
1645 lockdep_assert_held(&n->list_lock);
1646 list_add(&slab->slab_list, &n->full);
1647}
1648
1649static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1650{
1651 if (!(s->flags & SLAB_STORE_USER))
1652 return;
1653
1654 lockdep_assert_held(&n->list_lock);
1655 list_del(&slab->slab_list);
1656}
1657
1658static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1659{
1660 return atomic_long_read(&n->nr_slabs);
1661}
1662
1663static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1664{
1665 struct kmem_cache_node *n = get_node(s, node);
1666
1667 atomic_long_inc(&n->nr_slabs);
1668 atomic_long_add(objects, &n->total_objects);
1669}
1670static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1671{
1672 struct kmem_cache_node *n = get_node(s, node);
1673
1674 atomic_long_dec(&n->nr_slabs);
1675 atomic_long_sub(objects, &n->total_objects);
1676}
1677
1678/* Object debug checks for alloc/free paths */
1679static void setup_object_debug(struct kmem_cache *s, void *object)
1680{
1681 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1682 return;
1683
1684 init_object(s, object, SLUB_RED_INACTIVE);
1685 init_tracking(s, object);
1686}
1687
1688static
1689void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1690{
1691 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1692 return;
1693
1694 metadata_access_enable();
1695 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1696 metadata_access_disable();
1697}
1698
1699static inline int alloc_consistency_checks(struct kmem_cache *s,
1700 struct slab *slab, void *object)
1701{
1702 if (!check_slab(s, slab))
1703 return 0;
1704
1705 if (!check_valid_pointer(s, slab, object)) {
1706 object_err(s, slab, object, "Freelist Pointer check fails");
1707 return 0;
1708 }
1709
1710 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1711 return 0;
1712
1713 return 1;
1714}
1715
1716static noinline bool alloc_debug_processing(struct kmem_cache *s,
1717 struct slab *slab, void *object, int orig_size)
1718{
1719 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1720 if (!alloc_consistency_checks(s, slab, object))
1721 goto bad;
1722 }
1723
1724 /* Success. Perform special debug activities for allocs */
1725 trace(s, slab, object, 1);
1726 set_orig_size(s, object, orig_size);
1727 init_object(s, object, SLUB_RED_ACTIVE);
1728 return true;
1729
1730bad:
1731 /*
1732 * Let's do the best we can to avoid issues in the future. Marking all
1733 * objects as used avoids touching the remaining objects.
1734 */
1735 slab_fix(s, "Marking all objects used");
1736 slab->inuse = slab->objects;
1737 slab->freelist = NULL;
1738 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1739
1740 return false;
1741}
1742
1743static inline int free_consistency_checks(struct kmem_cache *s,
1744 struct slab *slab, void *object, unsigned long addr)
1745{
1746 if (!check_valid_pointer(s, slab, object)) {
1747 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1748 return 0;
1749 }
1750
1751 if (on_freelist(s, slab, object)) {
1752 object_err(s, slab, object, "Object already free");
1753 return 0;
1754 }
1755
1756 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1757 return 0;
1758
1759 if (unlikely(s != slab->slab_cache)) {
1760 if (!slab->slab_cache) {
1761 slab_err(NULL, slab, "No slab cache for object 0x%p",
1762 object);
1763 } else {
1764 object_err(s, slab, object,
1765 "page slab pointer corrupt.");
1766 }
1767 return 0;
1768 }
1769 return 1;
1770}
1771
1772/*
1773 * Parse a block of slab_debug options. Blocks are delimited by ';'
1774 *
1775 * @str: start of block
1776 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1777 * @slabs: return start of list of slabs, or NULL when there's no list
1778 * @init: assume this is initial parsing and not per-kmem-create parsing
1779 *
1780 * returns the start of next block if there's any, or NULL
1781 */
1782static const char *
1783parse_slub_debug_flags(const char *str, slab_flags_t *flags, const char **slabs, bool init)
1784{
1785 bool higher_order_disable = false;
1786
1787 /* Skip any completely empty blocks */
1788 while (*str && *str == ';')
1789 str++;
1790
1791 if (*str == ',') {
1792 /*
1793 * No options but restriction on slabs. This means full
1794 * debugging for slabs matching a pattern.
1795 */
1796 *flags = DEBUG_DEFAULT_FLAGS;
1797 goto check_slabs;
1798 }
1799 *flags = 0;
1800
1801 /* Determine which debug features should be switched on */
1802 for (; *str && *str != ',' && *str != ';'; str++) {
1803 switch (tolower(*str)) {
1804 case '-':
1805 *flags = 0;
1806 break;
1807 case 'f':
1808 *flags |= SLAB_CONSISTENCY_CHECKS;
1809 break;
1810 case 'z':
1811 *flags |= SLAB_RED_ZONE;
1812 break;
1813 case 'p':
1814 *flags |= SLAB_POISON;
1815 break;
1816 case 'u':
1817 *flags |= SLAB_STORE_USER;
1818 break;
1819 case 't':
1820 *flags |= SLAB_TRACE;
1821 break;
1822 case 'a':
1823 *flags |= SLAB_FAILSLAB;
1824 break;
1825 case 'o':
1826 /*
1827 * Avoid enabling debugging on caches if its minimum
1828 * order would increase as a result.
1829 */
1830 higher_order_disable = true;
1831 break;
1832 default:
1833 if (init)
1834 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1835 }
1836 }
1837check_slabs:
1838 if (*str == ',')
1839 *slabs = ++str;
1840 else
1841 *slabs = NULL;
1842
1843 /* Skip over the slab list */
1844 while (*str && *str != ';')
1845 str++;
1846
1847 /* Skip any completely empty blocks */
1848 while (*str && *str == ';')
1849 str++;
1850
1851 if (init && higher_order_disable)
1852 disable_higher_order_debug = 1;
1853
1854 if (*str)
1855 return str;
1856 else
1857 return NULL;
1858}
1859
1860static int __init setup_slub_debug(const char *str, const struct kernel_param *kp)
1861{
1862 slab_flags_t flags;
1863 slab_flags_t global_flags;
1864 const char *saved_str;
1865 const char *slab_list;
1866 bool global_slub_debug_changed = false;
1867 bool slab_list_specified = false;
1868
1869 global_flags = DEBUG_DEFAULT_FLAGS;
1870 if (!str || !*str)
1871 /*
1872 * No options specified. Switch on full debugging.
1873 */
1874 goto out;
1875
1876 saved_str = str;
1877 while (str) {
1878 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1879
1880 if (!slab_list) {
1881 global_flags = flags;
1882 global_slub_debug_changed = true;
1883 } else {
1884 slab_list_specified = true;
1885 if (flags & SLAB_STORE_USER)
1886 stack_depot_request_early_init();
1887 }
1888 }
1889
1890 /*
1891 * For backwards compatibility, a single list of flags with list of
1892 * slabs means debugging is only changed for those slabs, so the global
1893 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1894 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1895 * long as there is no option specifying flags without a slab list.
1896 */
1897 if (slab_list_specified) {
1898 if (!global_slub_debug_changed)
1899 global_flags = slub_debug;
1900 slub_debug_string = saved_str;
1901 }
1902out:
1903 slub_debug = global_flags;
1904 if (slub_debug & SLAB_STORE_USER)
1905 stack_depot_request_early_init();
1906 if (slub_debug != 0 || slub_debug_string)
1907 static_branch_enable(&slub_debug_enabled);
1908 else
1909 static_branch_disable(&slub_debug_enabled);
1910 if ((static_branch_unlikely(&init_on_alloc) ||
1911 static_branch_unlikely(&init_on_free)) &&
1912 (slub_debug & SLAB_POISON))
1913 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1914 return 0;
1915}
1916
1917static const struct kernel_param_ops param_ops_slab_debug __initconst = {
1918 .flags = KERNEL_PARAM_OPS_FL_NOARG,
1919 .set = setup_slub_debug,
1920};
1921__core_param_cb(slab_debug, ¶m_ops_slab_debug, NULL, 0);
1922__core_param_cb(slub_debug, ¶m_ops_slab_debug, NULL, 0);
1923
1924/*
1925 * kmem_cache_flags - apply debugging options to the cache
1926 * @flags: flags to set
1927 * @name: name of the cache
1928 *
1929 * Debug option(s) are applied to @flags. In addition to the debug
1930 * option(s), if a slab name (or multiple) is specified i.e.
1931 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1932 * then only the select slabs will receive the debug option(s).
1933 */
1934slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1935{
1936 const char *iter;
1937 size_t len;
1938 const char *next_block;
1939 slab_flags_t block_flags;
1940 slab_flags_t slub_debug_local = slub_debug;
1941
1942 if (flags & SLAB_NO_USER_FLAGS)
1943 return flags;
1944
1945 /*
1946 * If the slab cache is for debugging (e.g. kmemleak) then
1947 * don't store user (stack trace) information by default,
1948 * but let the user enable it via the command line below.
1949 */
1950 if (flags & SLAB_NOLEAKTRACE)
1951 slub_debug_local &= ~SLAB_STORE_USER;
1952
1953 len = strlen(name);
1954 next_block = slub_debug_string;
1955 /* Go through all blocks of debug options, see if any matches our slab's name */
1956 while (next_block) {
1957 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1958 if (!iter)
1959 continue;
1960 /* Found a block that has a slab list, search it */
1961 while (*iter) {
1962 const char *end, *glob;
1963 size_t cmplen;
1964
1965 end = strchrnul(iter, ',');
1966 if (next_block && next_block < end)
1967 end = next_block - 1;
1968
1969 glob = strnchr(iter, end - iter, '*');
1970 if (glob)
1971 cmplen = glob - iter;
1972 else
1973 cmplen = max_t(size_t, len, (end - iter));
1974
1975 if (!strncmp(name, iter, cmplen)) {
1976 flags |= block_flags;
1977 return flags;
1978 }
1979
1980 if (!*end || *end == ';')
1981 break;
1982 iter = end + 1;
1983 }
1984 }
1985
1986 return flags | slub_debug_local;
1987}
1988#else /* !CONFIG_SLUB_DEBUG */
1989static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1990static inline
1991void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1992
1993static inline bool alloc_debug_processing(struct kmem_cache *s,
1994 struct slab *slab, void *object, int orig_size) { return true; }
1995
1996static inline bool free_debug_processing(struct kmem_cache *s,
1997 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1998 unsigned long addr, depot_stack_handle_t handle) { return true; }
1999
2000static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
2001static inline int check_object(struct kmem_cache *s, struct slab *slab,
2002 void *object, u8 val) { return 1; }
2003static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
2004static inline void set_track(struct kmem_cache *s, void *object,
2005 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
2006static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
2007 struct slab *slab) {}
2008static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
2009 struct slab *slab) {}
2010slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
2011{
2012 return flags;
2013}
2014#define slub_debug 0
2015
2016#define disable_higher_order_debug 0
2017
2018static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
2019 { return 0; }
2020static inline void inc_slabs_node(struct kmem_cache *s, int node,
2021 int objects) {}
2022static inline void dec_slabs_node(struct kmem_cache *s, int node,
2023 int objects) {}
2024static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
2025 void **freelist, void *nextfree)
2026{
2027 return false;
2028}
2029#endif /* CONFIG_SLUB_DEBUG */
2030
2031/*
2032 * The allocated objcg pointers array is not accounted directly.
2033 * Moreover, it should not come from DMA buffer and is not readily
2034 * reclaimable. So those GFP bits should be masked off.
2035 */
2036#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2037 __GFP_ACCOUNT | __GFP_NOFAIL)
2038
2039#ifdef CONFIG_SLAB_OBJ_EXT
2040
2041#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2042
2043static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
2044{
2045 struct slabobj_ext *slab_exts;
2046 struct slab *obj_exts_slab;
2047
2048 obj_exts_slab = virt_to_slab(obj_exts);
2049 slab_exts = slab_obj_exts(obj_exts_slab);
2050 if (slab_exts) {
2051 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
2052 obj_exts_slab, obj_exts);
2053
2054 if (unlikely(is_codetag_empty(&slab_exts[offs].ref)))
2055 return;
2056
2057 /* codetag should be NULL here */
2058 WARN_ON(slab_exts[offs].ref.ct);
2059 set_codetag_empty(&slab_exts[offs].ref);
2060 }
2061}
2062
2063static inline bool mark_failed_objexts_alloc(struct slab *slab)
2064{
2065 return cmpxchg(&slab->obj_exts, 0, OBJEXTS_ALLOC_FAIL) == 0;
2066}
2067
2068static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2069 struct slabobj_ext *vec, unsigned int objects)
2070{
2071 /*
2072 * If vector previously failed to allocate then we have live
2073 * objects with no tag reference. Mark all references in this
2074 * vector as empty to avoid warnings later on.
2075 */
2076 if (obj_exts == OBJEXTS_ALLOC_FAIL) {
2077 unsigned int i;
2078
2079 for (i = 0; i < objects; i++)
2080 set_codetag_empty(&vec[i].ref);
2081 }
2082}
2083
2084#else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2085
2086static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
2087static inline bool mark_failed_objexts_alloc(struct slab *slab) { return false; }
2088static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2089 struct slabobj_ext *vec, unsigned int objects) {}
2090
2091#endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2092
2093static inline void init_slab_obj_exts(struct slab *slab)
2094{
2095 slab->obj_exts = 0;
2096}
2097
2098int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2099 gfp_t gfp, bool new_slab)
2100{
2101 bool allow_spin = gfpflags_allow_spinning(gfp);
2102 unsigned int objects = objs_per_slab(s, slab);
2103 unsigned long new_exts;
2104 unsigned long old_exts;
2105 struct slabobj_ext *vec;
2106
2107 gfp &= ~OBJCGS_CLEAR_MASK;
2108 /* Prevent recursive extension vector allocation */
2109 gfp |= __GFP_NO_OBJ_EXT;
2110
2111 /*
2112 * Note that allow_spin may be false during early boot and its
2113 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
2114 * architectures with cmpxchg16b, early obj_exts will be missing for
2115 * very early allocations on those.
2116 */
2117 if (unlikely(!allow_spin)) {
2118 size_t sz = objects * sizeof(struct slabobj_ext);
2119
2120 vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
2121 slab_nid(slab));
2122 } else {
2123 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2124 slab_nid(slab));
2125 }
2126 if (!vec) {
2127 /*
2128 * Try to mark vectors which failed to allocate.
2129 * If this operation fails, there may be a racing process
2130 * that has already completed the allocation.
2131 */
2132 if (!mark_failed_objexts_alloc(slab) &&
2133 slab_obj_exts(slab))
2134 return 0;
2135
2136 return -ENOMEM;
2137 }
2138
2139 new_exts = (unsigned long)vec;
2140 if (unlikely(!allow_spin))
2141 new_exts |= OBJEXTS_NOSPIN_ALLOC;
2142#ifdef CONFIG_MEMCG
2143 new_exts |= MEMCG_DATA_OBJEXTS;
2144#endif
2145retry:
2146 old_exts = READ_ONCE(slab->obj_exts);
2147 handle_failed_objexts_alloc(old_exts, vec, objects);
2148 if (new_slab) {
2149 /*
2150 * If the slab is brand new and nobody can yet access its
2151 * obj_exts, no synchronization is required and obj_exts can
2152 * be simply assigned.
2153 */
2154 slab->obj_exts = new_exts;
2155 } else if (old_exts & ~OBJEXTS_FLAGS_MASK) {
2156 /*
2157 * If the slab is already in use, somebody can allocate and
2158 * assign slabobj_exts in parallel. In this case the existing
2159 * objcg vector should be reused.
2160 */
2161 mark_objexts_empty(vec);
2162 if (unlikely(!allow_spin))
2163 kfree_nolock(vec);
2164 else
2165 kfree(vec);
2166 return 0;
2167 } else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2168 /* Retry if a racing thread changed slab->obj_exts from under us. */
2169 goto retry;
2170 }
2171
2172 if (allow_spin)
2173 kmemleak_not_leak(vec);
2174 return 0;
2175}
2176
2177static inline void free_slab_obj_exts(struct slab *slab)
2178{
2179 struct slabobj_ext *obj_exts;
2180
2181 obj_exts = slab_obj_exts(slab);
2182 if (!obj_exts) {
2183 /*
2184 * If obj_exts allocation failed, slab->obj_exts is set to
2185 * OBJEXTS_ALLOC_FAIL. In this case, we end up here and should
2186 * clear the flag.
2187 */
2188 slab->obj_exts = 0;
2189 return;
2190 }
2191
2192 /*
2193 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2194 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2195 * warning if slab has extensions but the extension of an object is
2196 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2197 * the extension for obj_exts is expected to be NULL.
2198 */
2199 mark_objexts_empty(obj_exts);
2200 if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
2201 kfree_nolock(obj_exts);
2202 else
2203 kfree(obj_exts);
2204 slab->obj_exts = 0;
2205}
2206
2207#else /* CONFIG_SLAB_OBJ_EXT */
2208
2209static inline void init_slab_obj_exts(struct slab *slab)
2210{
2211}
2212
2213static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2214 gfp_t gfp, bool new_slab)
2215{
2216 return 0;
2217}
2218
2219static inline void free_slab_obj_exts(struct slab *slab)
2220{
2221}
2222
2223#endif /* CONFIG_SLAB_OBJ_EXT */
2224
2225#ifdef CONFIG_MEM_ALLOC_PROFILING
2226
2227static inline struct slabobj_ext *
2228prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2229{
2230 struct slab *slab;
2231
2232 slab = virt_to_slab(p);
2233 if (!slab_obj_exts(slab) &&
2234 alloc_slab_obj_exts(slab, s, flags, false)) {
2235 pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2236 __func__, s->name);
2237 return NULL;
2238 }
2239
2240 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2241}
2242
2243/* Should be called only if mem_alloc_profiling_enabled() */
2244static noinline void
2245__alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2246{
2247 struct slabobj_ext *obj_exts;
2248
2249 if (!object)
2250 return;
2251
2252 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2253 return;
2254
2255 if (flags & __GFP_NO_OBJ_EXT)
2256 return;
2257
2258 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2259 /*
2260 * Currently obj_exts is used only for allocation profiling.
2261 * If other users appear then mem_alloc_profiling_enabled()
2262 * check should be added before alloc_tag_add().
2263 */
2264 if (likely(obj_exts))
2265 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2266 else
2267 alloc_tag_set_inaccurate(current->alloc_tag);
2268}
2269
2270static inline void
2271alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2272{
2273 if (mem_alloc_profiling_enabled())
2274 __alloc_tagging_slab_alloc_hook(s, object, flags);
2275}
2276
2277/* Should be called only if mem_alloc_profiling_enabled() */
2278static noinline void
2279__alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2280 int objects)
2281{
2282 struct slabobj_ext *obj_exts;
2283 int i;
2284
2285 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2286 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2287 return;
2288
2289 obj_exts = slab_obj_exts(slab);
2290 if (!obj_exts)
2291 return;
2292
2293 for (i = 0; i < objects; i++) {
2294 unsigned int off = obj_to_index(s, slab, p[i]);
2295
2296 alloc_tag_sub(&obj_exts[off].ref, s->size);
2297 }
2298}
2299
2300static inline void
2301alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2302 int objects)
2303{
2304 if (mem_alloc_profiling_enabled())
2305 __alloc_tagging_slab_free_hook(s, slab, p, objects);
2306}
2307
2308#else /* CONFIG_MEM_ALLOC_PROFILING */
2309
2310static inline void
2311alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2312{
2313}
2314
2315static inline void
2316alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2317 int objects)
2318{
2319}
2320
2321#endif /* CONFIG_MEM_ALLOC_PROFILING */
2322
2323
2324#ifdef CONFIG_MEMCG
2325
2326static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2327
2328static __fastpath_inline
2329bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2330 gfp_t flags, size_t size, void **p)
2331{
2332 if (likely(!memcg_kmem_online()))
2333 return true;
2334
2335 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2336 return true;
2337
2338 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2339 return true;
2340
2341 if (likely(size == 1)) {
2342 memcg_alloc_abort_single(s, *p);
2343 *p = NULL;
2344 } else {
2345 kmem_cache_free_bulk(s, size, p);
2346 }
2347
2348 return false;
2349}
2350
2351static __fastpath_inline
2352void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2353 int objects)
2354{
2355 struct slabobj_ext *obj_exts;
2356
2357 if (!memcg_kmem_online())
2358 return;
2359
2360 obj_exts = slab_obj_exts(slab);
2361 if (likely(!obj_exts))
2362 return;
2363
2364 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2365}
2366
2367static __fastpath_inline
2368bool memcg_slab_post_charge(void *p, gfp_t flags)
2369{
2370 struct slabobj_ext *slab_exts;
2371 struct kmem_cache *s;
2372 struct page *page;
2373 struct slab *slab;
2374 unsigned long off;
2375
2376 page = virt_to_page(p);
2377 if (PageLargeKmalloc(page)) {
2378 unsigned int order;
2379 int size;
2380
2381 if (PageMemcgKmem(page))
2382 return true;
2383
2384 order = large_kmalloc_order(page);
2385 if (__memcg_kmem_charge_page(page, flags, order))
2386 return false;
2387
2388 /*
2389 * This page has already been accounted in the global stats but
2390 * not in the memcg stats. So, subtract from the global and use
2391 * the interface which adds to both global and memcg stats.
2392 */
2393 size = PAGE_SIZE << order;
2394 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, -size);
2395 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, size);
2396 return true;
2397 }
2398
2399 slab = page_slab(page);
2400 s = slab->slab_cache;
2401
2402 /*
2403 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2404 * of slab_obj_exts being allocated from the same slab and thus the slab
2405 * becoming effectively unfreeable.
2406 */
2407 if (is_kmalloc_normal(s))
2408 return true;
2409
2410 /* Ignore already charged objects. */
2411 slab_exts = slab_obj_exts(slab);
2412 if (slab_exts) {
2413 off = obj_to_index(s, slab, p);
2414 if (unlikely(slab_exts[off].objcg))
2415 return true;
2416 }
2417
2418 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2419}
2420
2421#else /* CONFIG_MEMCG */
2422static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2423 struct list_lru *lru,
2424 gfp_t flags, size_t size,
2425 void **p)
2426{
2427 return true;
2428}
2429
2430static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2431 void **p, int objects)
2432{
2433}
2434
2435static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2436{
2437 return true;
2438}
2439#endif /* CONFIG_MEMCG */
2440
2441#ifdef CONFIG_SLUB_RCU_DEBUG
2442static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2443
2444struct rcu_delayed_free {
2445 struct rcu_head head;
2446 void *object;
2447};
2448#endif
2449
2450/*
2451 * Hooks for other subsystems that check memory allocations. In a typical
2452 * production configuration these hooks all should produce no code at all.
2453 *
2454 * Returns true if freeing of the object can proceed, false if its reuse
2455 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2456 * to KFENCE.
2457 */
2458static __always_inline
2459bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2460 bool after_rcu_delay)
2461{
2462 /* Are the object contents still accessible? */
2463 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2464
2465 kmemleak_free_recursive(x, s->flags);
2466 kmsan_slab_free(s, x);
2467
2468 debug_check_no_locks_freed(x, s->object_size);
2469
2470 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2471 debug_check_no_obj_freed(x, s->object_size);
2472
2473 /* Use KCSAN to help debug racy use-after-free. */
2474 if (!still_accessible)
2475 __kcsan_check_access(x, s->object_size,
2476 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2477
2478 if (kfence_free(x))
2479 return false;
2480
2481 /*
2482 * Give KASAN a chance to notice an invalid free operation before we
2483 * modify the object.
2484 */
2485 if (kasan_slab_pre_free(s, x))
2486 return false;
2487
2488#ifdef CONFIG_SLUB_RCU_DEBUG
2489 if (still_accessible) {
2490 struct rcu_delayed_free *delayed_free;
2491
2492 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2493 if (delayed_free) {
2494 /*
2495 * Let KASAN track our call stack as a "related work
2496 * creation", just like if the object had been freed
2497 * normally via kfree_rcu().
2498 * We have to do this manually because the rcu_head is
2499 * not located inside the object.
2500 */
2501 kasan_record_aux_stack(x);
2502
2503 delayed_free->object = x;
2504 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2505 return false;
2506 }
2507 }
2508#endif /* CONFIG_SLUB_RCU_DEBUG */
2509
2510 /*
2511 * As memory initialization might be integrated into KASAN,
2512 * kasan_slab_free and initialization memset's must be
2513 * kept together to avoid discrepancies in behavior.
2514 *
2515 * The initialization memset's clear the object and the metadata,
2516 * but don't touch the SLAB redzone.
2517 *
2518 * The object's freepointer is also avoided if stored outside the
2519 * object.
2520 */
2521 if (unlikely(init)) {
2522 int rsize;
2523 unsigned int inuse, orig_size;
2524
2525 inuse = get_info_end(s);
2526 orig_size = get_orig_size(s, x);
2527 if (!kasan_has_integrated_init())
2528 memset(kasan_reset_tag(x), 0, orig_size);
2529 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2530 memset((char *)kasan_reset_tag(x) + inuse, 0,
2531 s->size - inuse - rsize);
2532 /*
2533 * Restore orig_size, otherwise kmalloc redzone overwritten
2534 * would be reported
2535 */
2536 set_orig_size(s, x, orig_size);
2537
2538 }
2539 /* KASAN might put x into memory quarantine, delaying its reuse. */
2540 return !kasan_slab_free(s, x, init, still_accessible, false);
2541}
2542
2543static __fastpath_inline
2544bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2545 int *cnt)
2546{
2547
2548 void *object;
2549 void *next = *head;
2550 void *old_tail = *tail;
2551 bool init;
2552
2553 if (is_kfence_address(next)) {
2554 slab_free_hook(s, next, false, false);
2555 return false;
2556 }
2557
2558 /* Head and tail of the reconstructed freelist */
2559 *head = NULL;
2560 *tail = NULL;
2561
2562 init = slab_want_init_on_free(s);
2563
2564 do {
2565 object = next;
2566 next = get_freepointer(s, object);
2567
2568 /* If object's reuse doesn't have to be delayed */
2569 if (likely(slab_free_hook(s, object, init, false))) {
2570 /* Move object to the new freelist */
2571 set_freepointer(s, object, *head);
2572 *head = object;
2573 if (!*tail)
2574 *tail = object;
2575 } else {
2576 /*
2577 * Adjust the reconstructed freelist depth
2578 * accordingly if object's reuse is delayed.
2579 */
2580 --(*cnt);
2581 }
2582 } while (object != old_tail);
2583
2584 return *head != NULL;
2585}
2586
2587static void *setup_object(struct kmem_cache *s, void *object)
2588{
2589 setup_object_debug(s, object);
2590 object = kasan_init_slab_obj(s, object);
2591 if (unlikely(s->ctor)) {
2592 kasan_unpoison_new_object(s, object);
2593 s->ctor(object);
2594 kasan_poison_new_object(s, object);
2595 }
2596 return object;
2597}
2598
2599static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
2600{
2601 struct slab_sheaf *sheaf;
2602 size_t sheaf_size;
2603
2604 if (gfp & __GFP_NO_OBJ_EXT)
2605 return NULL;
2606
2607 gfp &= ~OBJCGS_CLEAR_MASK;
2608
2609 /*
2610 * Prevent recursion to the same cache, or a deep stack of kmallocs of
2611 * varying sizes (sheaf capacity might differ for each kmalloc size
2612 * bucket)
2613 */
2614 if (s->flags & SLAB_KMALLOC)
2615 gfp |= __GFP_NO_OBJ_EXT;
2616
2617 sheaf_size = struct_size(sheaf, objects, s->sheaf_capacity);
2618 sheaf = kzalloc(sheaf_size, gfp);
2619
2620 if (unlikely(!sheaf))
2621 return NULL;
2622
2623 sheaf->cache = s;
2624
2625 stat(s, SHEAF_ALLOC);
2626
2627 return sheaf;
2628}
2629
2630static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf)
2631{
2632 kfree(sheaf);
2633
2634 stat(s, SHEAF_FREE);
2635}
2636
2637static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
2638 size_t size, void **p);
2639
2640
2641static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf,
2642 gfp_t gfp)
2643{
2644 int to_fill = s->sheaf_capacity - sheaf->size;
2645 int filled;
2646
2647 if (!to_fill)
2648 return 0;
2649
2650 filled = __kmem_cache_alloc_bulk(s, gfp, to_fill,
2651 &sheaf->objects[sheaf->size]);
2652
2653 sheaf->size += filled;
2654
2655 stat_add(s, SHEAF_REFILL, filled);
2656
2657 if (filled < to_fill)
2658 return -ENOMEM;
2659
2660 return 0;
2661}
2662
2663
2664static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp)
2665{
2666 struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp);
2667
2668 if (!sheaf)
2669 return NULL;
2670
2671 if (refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC)) {
2672 free_empty_sheaf(s, sheaf);
2673 return NULL;
2674 }
2675
2676 return sheaf;
2677}
2678
2679/*
2680 * Maximum number of objects freed during a single flush of main pcs sheaf.
2681 * Translates directly to an on-stack array size.
2682 */
2683#define PCS_BATCH_MAX 32U
2684
2685static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
2686
2687/*
2688 * Free all objects from the main sheaf. In order to perform
2689 * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where
2690 * object pointers are moved to a on-stack array under the lock. To bound the
2691 * stack usage, limit each batch to PCS_BATCH_MAX.
2692 *
2693 * returns true if at least partially flushed
2694 */
2695static bool sheaf_flush_main(struct kmem_cache *s)
2696{
2697 struct slub_percpu_sheaves *pcs;
2698 unsigned int batch, remaining;
2699 void *objects[PCS_BATCH_MAX];
2700 struct slab_sheaf *sheaf;
2701 bool ret = false;
2702
2703next_batch:
2704 if (!local_trylock(&s->cpu_sheaves->lock))
2705 return ret;
2706
2707 pcs = this_cpu_ptr(s->cpu_sheaves);
2708 sheaf = pcs->main;
2709
2710 batch = min(PCS_BATCH_MAX, sheaf->size);
2711
2712 sheaf->size -= batch;
2713 memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *));
2714
2715 remaining = sheaf->size;
2716
2717 local_unlock(&s->cpu_sheaves->lock);
2718
2719 __kmem_cache_free_bulk(s, batch, &objects[0]);
2720
2721 stat_add(s, SHEAF_FLUSH, batch);
2722
2723 ret = true;
2724
2725 if (remaining)
2726 goto next_batch;
2727
2728 return ret;
2729}
2730
2731/*
2732 * Free all objects from a sheaf that's unused, i.e. not linked to any
2733 * cpu_sheaves, so we need no locking and batching. The locking is also not
2734 * necessary when flushing cpu's sheaves (both spare and main) during cpu
2735 * hotremove as the cpu is not executing anymore.
2736 */
2737static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
2738{
2739 if (!sheaf->size)
2740 return;
2741
2742 stat_add(s, SHEAF_FLUSH, sheaf->size);
2743
2744 __kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
2745
2746 sheaf->size = 0;
2747}
2748
2749static bool __rcu_free_sheaf_prepare(struct kmem_cache *s,
2750 struct slab_sheaf *sheaf)
2751{
2752 bool init = slab_want_init_on_free(s);
2753 void **p = &sheaf->objects[0];
2754 unsigned int i = 0;
2755 bool pfmemalloc = false;
2756
2757 while (i < sheaf->size) {
2758 struct slab *slab = virt_to_slab(p[i]);
2759
2760 memcg_slab_free_hook(s, slab, p + i, 1);
2761 alloc_tagging_slab_free_hook(s, slab, p + i, 1);
2762
2763 if (unlikely(!slab_free_hook(s, p[i], init, true))) {
2764 p[i] = p[--sheaf->size];
2765 continue;
2766 }
2767
2768 if (slab_test_pfmemalloc(slab))
2769 pfmemalloc = true;
2770
2771 i++;
2772 }
2773
2774 return pfmemalloc;
2775}
2776
2777static void rcu_free_sheaf_nobarn(struct rcu_head *head)
2778{
2779 struct slab_sheaf *sheaf;
2780 struct kmem_cache *s;
2781
2782 sheaf = container_of(head, struct slab_sheaf, rcu_head);
2783 s = sheaf->cache;
2784
2785 __rcu_free_sheaf_prepare(s, sheaf);
2786
2787 sheaf_flush_unused(s, sheaf);
2788
2789 free_empty_sheaf(s, sheaf);
2790}
2791
2792/*
2793 * Caller needs to make sure migration is disabled in order to fully flush
2794 * single cpu's sheaves
2795 *
2796 * must not be called from an irq
2797 *
2798 * flushing operations are rare so let's keep it simple and flush to slabs
2799 * directly, skipping the barn
2800 */
2801static void pcs_flush_all(struct kmem_cache *s)
2802{
2803 struct slub_percpu_sheaves *pcs;
2804 struct slab_sheaf *spare, *rcu_free;
2805
2806 local_lock(&s->cpu_sheaves->lock);
2807 pcs = this_cpu_ptr(s->cpu_sheaves);
2808
2809 spare = pcs->spare;
2810 pcs->spare = NULL;
2811
2812 rcu_free = pcs->rcu_free;
2813 pcs->rcu_free = NULL;
2814
2815 local_unlock(&s->cpu_sheaves->lock);
2816
2817 if (spare) {
2818 sheaf_flush_unused(s, spare);
2819 free_empty_sheaf(s, spare);
2820 }
2821
2822 if (rcu_free)
2823 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2824
2825 sheaf_flush_main(s);
2826}
2827
2828static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
2829{
2830 struct slub_percpu_sheaves *pcs;
2831
2832 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2833
2834 /* The cpu is not executing anymore so we don't need pcs->lock */
2835 sheaf_flush_unused(s, pcs->main);
2836 if (pcs->spare) {
2837 sheaf_flush_unused(s, pcs->spare);
2838 free_empty_sheaf(s, pcs->spare);
2839 pcs->spare = NULL;
2840 }
2841
2842 if (pcs->rcu_free) {
2843 call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2844 pcs->rcu_free = NULL;
2845 }
2846}
2847
2848static void pcs_destroy(struct kmem_cache *s)
2849{
2850 int cpu;
2851
2852 for_each_possible_cpu(cpu) {
2853 struct slub_percpu_sheaves *pcs;
2854
2855 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2856
2857 /* can happen when unwinding failed create */
2858 if (!pcs->main)
2859 continue;
2860
2861 /*
2862 * We have already passed __kmem_cache_shutdown() so everything
2863 * was flushed and there should be no objects allocated from
2864 * slabs, otherwise kmem_cache_destroy() would have aborted.
2865 * Therefore something would have to be really wrong if the
2866 * warnings here trigger, and we should rather leave objects and
2867 * sheaves to leak in that case.
2868 */
2869
2870 WARN_ON(pcs->spare);
2871 WARN_ON(pcs->rcu_free);
2872
2873 if (!WARN_ON(pcs->main->size)) {
2874 free_empty_sheaf(s, pcs->main);
2875 pcs->main = NULL;
2876 }
2877 }
2878
2879 free_percpu(s->cpu_sheaves);
2880 s->cpu_sheaves = NULL;
2881}
2882
2883static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn)
2884{
2885 struct slab_sheaf *empty = NULL;
2886 unsigned long flags;
2887
2888 if (!data_race(barn->nr_empty))
2889 return NULL;
2890
2891 spin_lock_irqsave(&barn->lock, flags);
2892
2893 if (likely(barn->nr_empty)) {
2894 empty = list_first_entry(&barn->sheaves_empty,
2895 struct slab_sheaf, barn_list);
2896 list_del(&empty->barn_list);
2897 barn->nr_empty--;
2898 }
2899
2900 spin_unlock_irqrestore(&barn->lock, flags);
2901
2902 return empty;
2903}
2904
2905/*
2906 * The following two functions are used mainly in cases where we have to undo an
2907 * intended action due to a race or cpu migration. Thus they do not check the
2908 * empty or full sheaf limits for simplicity.
2909 */
2910
2911static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2912{
2913 unsigned long flags;
2914
2915 spin_lock_irqsave(&barn->lock, flags);
2916
2917 list_add(&sheaf->barn_list, &barn->sheaves_empty);
2918 barn->nr_empty++;
2919
2920 spin_unlock_irqrestore(&barn->lock, flags);
2921}
2922
2923static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2924{
2925 unsigned long flags;
2926
2927 spin_lock_irqsave(&barn->lock, flags);
2928
2929 list_add(&sheaf->barn_list, &barn->sheaves_full);
2930 barn->nr_full++;
2931
2932 spin_unlock_irqrestore(&barn->lock, flags);
2933}
2934
2935static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn)
2936{
2937 struct slab_sheaf *sheaf = NULL;
2938 unsigned long flags;
2939
2940 if (!data_race(barn->nr_full) && !data_race(barn->nr_empty))
2941 return NULL;
2942
2943 spin_lock_irqsave(&barn->lock, flags);
2944
2945 if (barn->nr_full) {
2946 sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2947 barn_list);
2948 list_del(&sheaf->barn_list);
2949 barn->nr_full--;
2950 } else if (barn->nr_empty) {
2951 sheaf = list_first_entry(&barn->sheaves_empty,
2952 struct slab_sheaf, barn_list);
2953 list_del(&sheaf->barn_list);
2954 barn->nr_empty--;
2955 }
2956
2957 spin_unlock_irqrestore(&barn->lock, flags);
2958
2959 return sheaf;
2960}
2961
2962/*
2963 * If a full sheaf is available, return it and put the supplied empty one to
2964 * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't
2965 * change.
2966 */
2967static struct slab_sheaf *
2968barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty)
2969{
2970 struct slab_sheaf *full = NULL;
2971 unsigned long flags;
2972
2973 if (!data_race(barn->nr_full))
2974 return NULL;
2975
2976 spin_lock_irqsave(&barn->lock, flags);
2977
2978 if (likely(barn->nr_full)) {
2979 full = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2980 barn_list);
2981 list_del(&full->barn_list);
2982 list_add(&empty->barn_list, &barn->sheaves_empty);
2983 barn->nr_full--;
2984 barn->nr_empty++;
2985 }
2986
2987 spin_unlock_irqrestore(&barn->lock, flags);
2988
2989 return full;
2990}
2991
2992/*
2993 * If an empty sheaf is available, return it and put the supplied full one to
2994 * barn. But if there are too many full sheaves, reject this with -E2BIG.
2995 */
2996static struct slab_sheaf *
2997barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full)
2998{
2999 struct slab_sheaf *empty;
3000 unsigned long flags;
3001
3002 /* we don't repeat this check under barn->lock as it's not critical */
3003 if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES)
3004 return ERR_PTR(-E2BIG);
3005 if (!data_race(barn->nr_empty))
3006 return ERR_PTR(-ENOMEM);
3007
3008 spin_lock_irqsave(&barn->lock, flags);
3009
3010 if (likely(barn->nr_empty)) {
3011 empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf,
3012 barn_list);
3013 list_del(&empty->barn_list);
3014 list_add(&full->barn_list, &barn->sheaves_full);
3015 barn->nr_empty--;
3016 barn->nr_full++;
3017 } else {
3018 empty = ERR_PTR(-ENOMEM);
3019 }
3020
3021 spin_unlock_irqrestore(&barn->lock, flags);
3022
3023 return empty;
3024}
3025
3026static void barn_init(struct node_barn *barn)
3027{
3028 spin_lock_init(&barn->lock);
3029 INIT_LIST_HEAD(&barn->sheaves_full);
3030 INIT_LIST_HEAD(&barn->sheaves_empty);
3031 barn->nr_full = 0;
3032 barn->nr_empty = 0;
3033}
3034
3035static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
3036{
3037 LIST_HEAD(empty_list);
3038 LIST_HEAD(full_list);
3039 struct slab_sheaf *sheaf, *sheaf2;
3040 unsigned long flags;
3041
3042 spin_lock_irqsave(&barn->lock, flags);
3043
3044 list_splice_init(&barn->sheaves_full, &full_list);
3045 barn->nr_full = 0;
3046 list_splice_init(&barn->sheaves_empty, &empty_list);
3047 barn->nr_empty = 0;
3048
3049 spin_unlock_irqrestore(&barn->lock, flags);
3050
3051 list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) {
3052 sheaf_flush_unused(s, sheaf);
3053 free_empty_sheaf(s, sheaf);
3054 }
3055
3056 list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list)
3057 free_empty_sheaf(s, sheaf);
3058}
3059
3060/*
3061 * Slab allocation and freeing
3062 */
3063static inline struct slab *alloc_slab_page(gfp_t flags, int node,
3064 struct kmem_cache_order_objects oo,
3065 bool allow_spin)
3066{
3067 struct page *page;
3068 struct slab *slab;
3069 unsigned int order = oo_order(oo);
3070
3071 if (unlikely(!allow_spin))
3072 page = alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
3073 node, order);
3074 else if (node == NUMA_NO_NODE)
3075 page = alloc_frozen_pages(flags, order);
3076 else
3077 page = __alloc_frozen_pages(flags, order, node, NULL);
3078
3079 if (!page)
3080 return NULL;
3081
3082 __SetPageSlab(page);
3083 slab = page_slab(page);
3084 if (page_is_pfmemalloc(page))
3085 slab_set_pfmemalloc(slab);
3086
3087 return slab;
3088}
3089
3090#ifdef CONFIG_SLAB_FREELIST_RANDOM
3091/* Pre-initialize the random sequence cache */
3092static int init_cache_random_seq(struct kmem_cache *s)
3093{
3094 unsigned int count = oo_objects(s->oo);
3095 int err;
3096
3097 /* Bailout if already initialised */
3098 if (s->random_seq)
3099 return 0;
3100
3101 err = cache_random_seq_create(s, count, GFP_KERNEL);
3102 if (err) {
3103 pr_err("SLUB: Unable to initialize free list for %s\n",
3104 s->name);
3105 return err;
3106 }
3107
3108 /* Transform to an offset on the set of pages */
3109 if (s->random_seq) {
3110 unsigned int i;
3111
3112 for (i = 0; i < count; i++)
3113 s->random_seq[i] *= s->size;
3114 }
3115 return 0;
3116}
3117
3118/* Initialize each random sequence freelist per cache */
3119static void __init init_freelist_randomization(void)
3120{
3121 struct kmem_cache *s;
3122
3123 mutex_lock(&slab_mutex);
3124
3125 list_for_each_entry(s, &slab_caches, list)
3126 init_cache_random_seq(s);
3127
3128 mutex_unlock(&slab_mutex);
3129}
3130
3131/* Get the next entry on the pre-computed freelist randomized */
3132static void *next_freelist_entry(struct kmem_cache *s,
3133 unsigned long *pos, void *start,
3134 unsigned long page_limit,
3135 unsigned long freelist_count)
3136{
3137 unsigned int idx;
3138
3139 /*
3140 * If the target page allocation failed, the number of objects on the
3141 * page might be smaller than the usual size defined by the cache.
3142 */
3143 do {
3144 idx = s->random_seq[*pos];
3145 *pos += 1;
3146 if (*pos >= freelist_count)
3147 *pos = 0;
3148 } while (unlikely(idx >= page_limit));
3149
3150 return (char *)start + idx;
3151}
3152
3153/* Shuffle the single linked freelist based on a random pre-computed sequence */
3154static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3155{
3156 void *start;
3157 void *cur;
3158 void *next;
3159 unsigned long idx, pos, page_limit, freelist_count;
3160
3161 if (slab->objects < 2 || !s->random_seq)
3162 return false;
3163
3164 freelist_count = oo_objects(s->oo);
3165 pos = get_random_u32_below(freelist_count);
3166
3167 page_limit = slab->objects * s->size;
3168 start = fixup_red_left(s, slab_address(slab));
3169
3170 /* First entry is used as the base of the freelist */
3171 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
3172 cur = setup_object(s, cur);
3173 slab->freelist = cur;
3174
3175 for (idx = 1; idx < slab->objects; idx++) {
3176 next = next_freelist_entry(s, &pos, start, page_limit,
3177 freelist_count);
3178 next = setup_object(s, next);
3179 set_freepointer(s, cur, next);
3180 cur = next;
3181 }
3182 set_freepointer(s, cur, NULL);
3183
3184 return true;
3185}
3186#else
3187static inline int init_cache_random_seq(struct kmem_cache *s)
3188{
3189 return 0;
3190}
3191static inline void init_freelist_randomization(void) { }
3192static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3193{
3194 return false;
3195}
3196#endif /* CONFIG_SLAB_FREELIST_RANDOM */
3197
3198static __always_inline void account_slab(struct slab *slab, int order,
3199 struct kmem_cache *s, gfp_t gfp)
3200{
3201 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
3202 alloc_slab_obj_exts(slab, s, gfp, true);
3203
3204 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3205 PAGE_SIZE << order);
3206}
3207
3208static __always_inline void unaccount_slab(struct slab *slab, int order,
3209 struct kmem_cache *s)
3210{
3211 /*
3212 * The slab object extensions should now be freed regardless of
3213 * whether mem_alloc_profiling_enabled() or not because profiling
3214 * might have been disabled after slab->obj_exts got allocated.
3215 */
3216 free_slab_obj_exts(slab);
3217
3218 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3219 -(PAGE_SIZE << order));
3220}
3221
3222static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
3223{
3224 bool allow_spin = gfpflags_allow_spinning(flags);
3225 struct slab *slab;
3226 struct kmem_cache_order_objects oo = s->oo;
3227 gfp_t alloc_gfp;
3228 void *start, *p, *next;
3229 int idx;
3230 bool shuffle;
3231
3232 flags &= gfp_allowed_mask;
3233
3234 flags |= s->allocflags;
3235
3236 /*
3237 * Let the initial higher-order allocation fail under memory pressure
3238 * so we fall-back to the minimum order allocation.
3239 */
3240 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
3241 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
3242 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
3243
3244 /*
3245 * __GFP_RECLAIM could be cleared on the first allocation attempt,
3246 * so pass allow_spin flag directly.
3247 */
3248 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3249 if (unlikely(!slab)) {
3250 oo = s->min;
3251 alloc_gfp = flags;
3252 /*
3253 * Allocation may have failed due to fragmentation.
3254 * Try a lower order alloc if possible
3255 */
3256 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3257 if (unlikely(!slab))
3258 return NULL;
3259 stat(s, ORDER_FALLBACK);
3260 }
3261
3262 slab->objects = oo_objects(oo);
3263 slab->inuse = 0;
3264 slab->frozen = 0;
3265 init_slab_obj_exts(slab);
3266
3267 account_slab(slab, oo_order(oo), s, flags);
3268
3269 slab->slab_cache = s;
3270
3271 kasan_poison_slab(slab);
3272
3273 start = slab_address(slab);
3274
3275 setup_slab_debug(s, slab, start);
3276
3277 shuffle = shuffle_freelist(s, slab);
3278
3279 if (!shuffle) {
3280 start = fixup_red_left(s, start);
3281 start = setup_object(s, start);
3282 slab->freelist = start;
3283 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
3284 next = p + s->size;
3285 next = setup_object(s, next);
3286 set_freepointer(s, p, next);
3287 p = next;
3288 }
3289 set_freepointer(s, p, NULL);
3290 }
3291
3292 return slab;
3293}
3294
3295static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
3296{
3297 if (unlikely(flags & GFP_SLAB_BUG_MASK))
3298 flags = kmalloc_fix_flags(flags);
3299
3300 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
3301
3302 return allocate_slab(s,
3303 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
3304}
3305
3306static void __free_slab(struct kmem_cache *s, struct slab *slab)
3307{
3308 struct page *page = slab_page(slab);
3309 int order = compound_order(page);
3310 int pages = 1 << order;
3311
3312 __slab_clear_pfmemalloc(slab);
3313 page->mapping = NULL;
3314 __ClearPageSlab(page);
3315 mm_account_reclaimed_pages(pages);
3316 unaccount_slab(slab, order, s);
3317 free_frozen_pages(page, order);
3318}
3319
3320static void rcu_free_slab(struct rcu_head *h)
3321{
3322 struct slab *slab = container_of(h, struct slab, rcu_head);
3323
3324 __free_slab(slab->slab_cache, slab);
3325}
3326
3327static void free_slab(struct kmem_cache *s, struct slab *slab)
3328{
3329 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
3330 void *p;
3331
3332 slab_pad_check(s, slab);
3333 for_each_object(p, s, slab_address(slab), slab->objects)
3334 check_object(s, slab, p, SLUB_RED_INACTIVE);
3335 }
3336
3337 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
3338 call_rcu(&slab->rcu_head, rcu_free_slab);
3339 else
3340 __free_slab(s, slab);
3341}
3342
3343static void discard_slab(struct kmem_cache *s, struct slab *slab)
3344{
3345 dec_slabs_node(s, slab_nid(slab), slab->objects);
3346 free_slab(s, slab);
3347}
3348
3349static inline bool slab_test_node_partial(const struct slab *slab)
3350{
3351 return test_bit(SL_partial, &slab->flags.f);
3352}
3353
3354static inline void slab_set_node_partial(struct slab *slab)
3355{
3356 set_bit(SL_partial, &slab->flags.f);
3357}
3358
3359static inline void slab_clear_node_partial(struct slab *slab)
3360{
3361 clear_bit(SL_partial, &slab->flags.f);
3362}
3363
3364/*
3365 * Management of partially allocated slabs.
3366 */
3367static inline void
3368__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
3369{
3370 n->nr_partial++;
3371 if (tail == DEACTIVATE_TO_TAIL)
3372 list_add_tail(&slab->slab_list, &n->partial);
3373 else
3374 list_add(&slab->slab_list, &n->partial);
3375 slab_set_node_partial(slab);
3376}
3377
3378static inline void add_partial(struct kmem_cache_node *n,
3379 struct slab *slab, int tail)
3380{
3381 lockdep_assert_held(&n->list_lock);
3382 __add_partial(n, slab, tail);
3383}
3384
3385static inline void remove_partial(struct kmem_cache_node *n,
3386 struct slab *slab)
3387{
3388 lockdep_assert_held(&n->list_lock);
3389 list_del(&slab->slab_list);
3390 slab_clear_node_partial(slab);
3391 n->nr_partial--;
3392}
3393
3394/*
3395 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
3396 * slab from the n->partial list. Remove only a single object from the slab, do
3397 * the alloc_debug_processing() checks and leave the slab on the list, or move
3398 * it to full list if it was the last free object.
3399 */
3400static void *alloc_single_from_partial(struct kmem_cache *s,
3401 struct kmem_cache_node *n, struct slab *slab, int orig_size)
3402{
3403 void *object;
3404
3405 lockdep_assert_held(&n->list_lock);
3406
3407#ifdef CONFIG_SLUB_DEBUG
3408 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3409 if (!validate_slab_ptr(slab)) {
3410 slab_err(s, slab, "Not a valid slab page");
3411 return NULL;
3412 }
3413 }
3414#endif
3415
3416 object = slab->freelist;
3417 slab->freelist = get_freepointer(s, object);
3418 slab->inuse++;
3419
3420 if (!alloc_debug_processing(s, slab, object, orig_size)) {
3421 remove_partial(n, slab);
3422 return NULL;
3423 }
3424
3425 if (slab->inuse == slab->objects) {
3426 remove_partial(n, slab);
3427 add_full(s, n, slab);
3428 }
3429
3430 return object;
3431}
3432
3433static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
3434
3435/*
3436 * Called only for kmem_cache_debug() caches to allocate from a freshly
3437 * allocated slab. Allocate a single object instead of whole freelist
3438 * and put the slab to the partial (or full) list.
3439 */
3440static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
3441 int orig_size, gfp_t gfpflags)
3442{
3443 bool allow_spin = gfpflags_allow_spinning(gfpflags);
3444 int nid = slab_nid(slab);
3445 struct kmem_cache_node *n = get_node(s, nid);
3446 unsigned long flags;
3447 void *object;
3448
3449 if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
3450 /* Unlucky, discard newly allocated slab */
3451 defer_deactivate_slab(slab, NULL);
3452 return NULL;
3453 }
3454
3455 object = slab->freelist;
3456 slab->freelist = get_freepointer(s, object);
3457 slab->inuse = 1;
3458
3459 if (!alloc_debug_processing(s, slab, object, orig_size)) {
3460 /*
3461 * It's not really expected that this would fail on a
3462 * freshly allocated slab, but a concurrent memory
3463 * corruption in theory could cause that.
3464 * Leak memory of allocated slab.
3465 */
3466 if (!allow_spin)
3467 spin_unlock_irqrestore(&n->list_lock, flags);
3468 return NULL;
3469 }
3470
3471 if (allow_spin)
3472 spin_lock_irqsave(&n->list_lock, flags);
3473
3474 if (slab->inuse == slab->objects)
3475 add_full(s, n, slab);
3476 else
3477 add_partial(n, slab, DEACTIVATE_TO_HEAD);
3478
3479 inc_slabs_node(s, nid, slab->objects);
3480 spin_unlock_irqrestore(&n->list_lock, flags);
3481
3482 return object;
3483}
3484
3485#ifdef CONFIG_SLUB_CPU_PARTIAL
3486static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
3487#else
3488static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
3489 int drain) { }
3490#endif
3491static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
3492
3493/*
3494 * Try to allocate a partial slab from a specific node.
3495 */
3496static struct slab *get_partial_node(struct kmem_cache *s,
3497 struct kmem_cache_node *n,
3498 struct partial_context *pc)
3499{
3500 struct slab *slab, *slab2, *partial = NULL;
3501 unsigned long flags;
3502 unsigned int partial_slabs = 0;
3503
3504 /*
3505 * Racy check. If we mistakenly see no partial slabs then we
3506 * just allocate an empty slab. If we mistakenly try to get a
3507 * partial slab and there is none available then get_partial()
3508 * will return NULL.
3509 */
3510 if (!n || !n->nr_partial)
3511 return NULL;
3512
3513 if (gfpflags_allow_spinning(pc->flags))
3514 spin_lock_irqsave(&n->list_lock, flags);
3515 else if (!spin_trylock_irqsave(&n->list_lock, flags))
3516 return NULL;
3517 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
3518 if (!pfmemalloc_match(slab, pc->flags))
3519 continue;
3520
3521 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3522 void *object = alloc_single_from_partial(s, n, slab,
3523 pc->orig_size);
3524 if (object) {
3525 partial = slab;
3526 pc->object = object;
3527 break;
3528 }
3529 continue;
3530 }
3531
3532 remove_partial(n, slab);
3533
3534 if (!partial) {
3535 partial = slab;
3536 stat(s, ALLOC_FROM_PARTIAL);
3537
3538 if ((slub_get_cpu_partial(s) == 0)) {
3539 break;
3540 }
3541 } else {
3542 put_cpu_partial(s, slab, 0);
3543 stat(s, CPU_PARTIAL_NODE);
3544
3545 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
3546 break;
3547 }
3548 }
3549 }
3550 spin_unlock_irqrestore(&n->list_lock, flags);
3551 return partial;
3552}
3553
3554/*
3555 * Get a slab from somewhere. Search in increasing NUMA distances.
3556 */
3557static struct slab *get_any_partial(struct kmem_cache *s,
3558 struct partial_context *pc)
3559{
3560#ifdef CONFIG_NUMA
3561 struct zonelist *zonelist;
3562 struct zoneref *z;
3563 struct zone *zone;
3564 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
3565 struct slab *slab;
3566 unsigned int cpuset_mems_cookie;
3567
3568 /*
3569 * The defrag ratio allows a configuration of the tradeoffs between
3570 * inter node defragmentation and node local allocations. A lower
3571 * defrag_ratio increases the tendency to do local allocations
3572 * instead of attempting to obtain partial slabs from other nodes.
3573 *
3574 * If the defrag_ratio is set to 0 then kmalloc() always
3575 * returns node local objects. If the ratio is higher then kmalloc()
3576 * may return off node objects because partial slabs are obtained
3577 * from other nodes and filled up.
3578 *
3579 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
3580 * (which makes defrag_ratio = 1000) then every (well almost)
3581 * allocation will first attempt to defrag slab caches on other nodes.
3582 * This means scanning over all nodes to look for partial slabs which
3583 * may be expensive if we do it every time we are trying to find a slab
3584 * with available objects.
3585 */
3586 if (!s->remote_node_defrag_ratio ||
3587 get_cycles() % 1024 > s->remote_node_defrag_ratio)
3588 return NULL;
3589
3590 do {
3591 cpuset_mems_cookie = read_mems_allowed_begin();
3592 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
3593 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3594 struct kmem_cache_node *n;
3595
3596 n = get_node(s, zone_to_nid(zone));
3597
3598 if (n && cpuset_zone_allowed(zone, pc->flags) &&
3599 n->nr_partial > s->min_partial) {
3600 slab = get_partial_node(s, n, pc);
3601 if (slab) {
3602 /*
3603 * Don't check read_mems_allowed_retry()
3604 * here - if mems_allowed was updated in
3605 * parallel, that was a harmless race
3606 * between allocation and the cpuset
3607 * update
3608 */
3609 return slab;
3610 }
3611 }
3612 }
3613 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3614#endif /* CONFIG_NUMA */
3615 return NULL;
3616}
3617
3618/*
3619 * Get a partial slab, lock it and return it.
3620 */
3621static struct slab *get_partial(struct kmem_cache *s, int node,
3622 struct partial_context *pc)
3623{
3624 struct slab *slab;
3625 int searchnode = node;
3626
3627 if (node == NUMA_NO_NODE)
3628 searchnode = numa_mem_id();
3629
3630 slab = get_partial_node(s, get_node(s, searchnode), pc);
3631 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3632 return slab;
3633
3634 return get_any_partial(s, pc);
3635}
3636
3637#ifdef CONFIG_PREEMPTION
3638/*
3639 * Calculate the next globally unique transaction for disambiguation
3640 * during cmpxchg. The transactions start with the cpu number and are then
3641 * incremented by CONFIG_NR_CPUS.
3642 */
3643#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
3644#else
3645/*
3646 * No preemption supported therefore also no need to check for
3647 * different cpus.
3648 */
3649#define TID_STEP 1
3650#endif /* CONFIG_PREEMPTION */
3651
3652static inline unsigned long next_tid(unsigned long tid)
3653{
3654 return tid + TID_STEP;
3655}
3656
3657#ifdef SLUB_DEBUG_CMPXCHG
3658static inline unsigned int tid_to_cpu(unsigned long tid)
3659{
3660 return tid % TID_STEP;
3661}
3662
3663static inline unsigned long tid_to_event(unsigned long tid)
3664{
3665 return tid / TID_STEP;
3666}
3667#endif
3668
3669static inline unsigned int init_tid(int cpu)
3670{
3671 return cpu;
3672}
3673
3674static inline void note_cmpxchg_failure(const char *n,
3675 const struct kmem_cache *s, unsigned long tid)
3676{
3677#ifdef SLUB_DEBUG_CMPXCHG
3678 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3679
3680 pr_info("%s %s: cmpxchg redo ", n, s->name);
3681
3682 if (IS_ENABLED(CONFIG_PREEMPTION) &&
3683 tid_to_cpu(tid) != tid_to_cpu(actual_tid)) {
3684 pr_warn("due to cpu change %d -> %d\n",
3685 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3686 } else if (tid_to_event(tid) != tid_to_event(actual_tid)) {
3687 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3688 tid_to_event(tid), tid_to_event(actual_tid));
3689 } else {
3690 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3691 actual_tid, tid, next_tid(tid));
3692 }
3693#endif
3694 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3695}
3696
3697static void init_kmem_cache_cpus(struct kmem_cache *s)
3698{
3699#ifdef CONFIG_PREEMPT_RT
3700 /*
3701 * Register lockdep key for non-boot kmem caches to avoid
3702 * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
3703 */
3704 bool finegrain_lockdep = !init_section_contains(s, 1);
3705#else
3706 /*
3707 * Don't bother with different lockdep classes for each
3708 * kmem_cache, since we only use local_trylock_irqsave().
3709 */
3710 bool finegrain_lockdep = false;
3711#endif
3712 int cpu;
3713 struct kmem_cache_cpu *c;
3714
3715 if (finegrain_lockdep)
3716 lockdep_register_key(&s->lock_key);
3717 for_each_possible_cpu(cpu) {
3718 c = per_cpu_ptr(s->cpu_slab, cpu);
3719 local_trylock_init(&c->lock);
3720 if (finegrain_lockdep)
3721 lockdep_set_class(&c->lock, &s->lock_key);
3722 c->tid = init_tid(cpu);
3723 }
3724}
3725
3726/*
3727 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3728 * unfreezes the slabs and puts it on the proper list.
3729 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3730 * by the caller.
3731 */
3732static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3733 void *freelist)
3734{
3735 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3736 int free_delta = 0;
3737 void *nextfree, *freelist_iter, *freelist_tail;
3738 int tail = DEACTIVATE_TO_HEAD;
3739 unsigned long flags = 0;
3740 struct freelist_counters old, new;
3741
3742 if (READ_ONCE(slab->freelist)) {
3743 stat(s, DEACTIVATE_REMOTE_FREES);
3744 tail = DEACTIVATE_TO_TAIL;
3745 }
3746
3747 /*
3748 * Stage one: Count the objects on cpu's freelist as free_delta and
3749 * remember the last object in freelist_tail for later splicing.
3750 */
3751 freelist_tail = NULL;
3752 freelist_iter = freelist;
3753 while (freelist_iter) {
3754 nextfree = get_freepointer(s, freelist_iter);
3755
3756 /*
3757 * If 'nextfree' is invalid, it is possible that the object at
3758 * 'freelist_iter' is already corrupted. So isolate all objects
3759 * starting at 'freelist_iter' by skipping them.
3760 */
3761 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3762 break;
3763
3764 freelist_tail = freelist_iter;
3765 free_delta++;
3766
3767 freelist_iter = nextfree;
3768 }
3769
3770 /*
3771 * Stage two: Unfreeze the slab while splicing the per-cpu
3772 * freelist to the head of slab's freelist.
3773 */
3774 do {
3775 old.freelist = READ_ONCE(slab->freelist);
3776 old.counters = READ_ONCE(slab->counters);
3777 VM_BUG_ON(!old.frozen);
3778
3779 /* Determine target state of the slab */
3780 new.counters = old.counters;
3781 new.frozen = 0;
3782 if (freelist_tail) {
3783 new.inuse -= free_delta;
3784 set_freepointer(s, freelist_tail, old.freelist);
3785 new.freelist = freelist;
3786 } else {
3787 new.freelist = old.freelist;
3788 }
3789 } while (!slab_update_freelist(s, slab, &old, &new, "unfreezing slab"));
3790
3791 /*
3792 * Stage three: Manipulate the slab list based on the updated state.
3793 */
3794 if (!new.inuse && n->nr_partial >= s->min_partial) {
3795 stat(s, DEACTIVATE_EMPTY);
3796 discard_slab(s, slab);
3797 stat(s, FREE_SLAB);
3798 } else if (new.freelist) {
3799 spin_lock_irqsave(&n->list_lock, flags);
3800 add_partial(n, slab, tail);
3801 spin_unlock_irqrestore(&n->list_lock, flags);
3802 stat(s, tail);
3803 } else {
3804 stat(s, DEACTIVATE_FULL);
3805 }
3806}
3807
3808/*
3809 * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
3810 * can be acquired without a deadlock before invoking the function.
3811 *
3812 * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
3813 * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
3814 * and kmalloc() is not used in an unsupported context.
3815 *
3816 * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
3817 * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
3818 * lockdep_assert() will catch a bug in case:
3819 * #1
3820 * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
3821 * or
3822 * #2
3823 * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
3824 *
3825 * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
3826 * disabled context. The lock will always be acquired and if needed it
3827 * block and sleep until the lock is available.
3828 * #1 is possible in !PREEMPT_RT only.
3829 * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
3830 * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
3831 * tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
3832 *
3833 * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
3834 */
3835#if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
3836#define local_lock_cpu_slab(s, flags) \
3837 local_lock_irqsave(&(s)->cpu_slab->lock, flags)
3838#else
3839#define local_lock_cpu_slab(s, flags) \
3840 do { \
3841 bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
3842 lockdep_assert(__l); \
3843 } while (0)
3844#endif
3845
3846#define local_unlock_cpu_slab(s, flags) \
3847 local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
3848
3849#ifdef CONFIG_SLUB_CPU_PARTIAL
3850static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3851{
3852 struct kmem_cache_node *n = NULL, *n2 = NULL;
3853 struct slab *slab, *slab_to_discard = NULL;
3854 unsigned long flags = 0;
3855
3856 while (partial_slab) {
3857 slab = partial_slab;
3858 partial_slab = slab->next;
3859
3860 n2 = get_node(s, slab_nid(slab));
3861 if (n != n2) {
3862 if (n)
3863 spin_unlock_irqrestore(&n->list_lock, flags);
3864
3865 n = n2;
3866 spin_lock_irqsave(&n->list_lock, flags);
3867 }
3868
3869 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3870 slab->next = slab_to_discard;
3871 slab_to_discard = slab;
3872 } else {
3873 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3874 stat(s, FREE_ADD_PARTIAL);
3875 }
3876 }
3877
3878 if (n)
3879 spin_unlock_irqrestore(&n->list_lock, flags);
3880
3881 while (slab_to_discard) {
3882 slab = slab_to_discard;
3883 slab_to_discard = slab_to_discard->next;
3884
3885 stat(s, DEACTIVATE_EMPTY);
3886 discard_slab(s, slab);
3887 stat(s, FREE_SLAB);
3888 }
3889}
3890
3891/*
3892 * Put all the cpu partial slabs to the node partial list.
3893 */
3894static void put_partials(struct kmem_cache *s)
3895{
3896 struct slab *partial_slab;
3897 unsigned long flags;
3898
3899 local_lock_irqsave(&s->cpu_slab->lock, flags);
3900 partial_slab = this_cpu_read(s->cpu_slab->partial);
3901 this_cpu_write(s->cpu_slab->partial, NULL);
3902 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3903
3904 if (partial_slab)
3905 __put_partials(s, partial_slab);
3906}
3907
3908static void put_partials_cpu(struct kmem_cache *s,
3909 struct kmem_cache_cpu *c)
3910{
3911 struct slab *partial_slab;
3912
3913 partial_slab = slub_percpu_partial(c);
3914 c->partial = NULL;
3915
3916 if (partial_slab)
3917 __put_partials(s, partial_slab);
3918}
3919
3920/*
3921 * Put a slab into a partial slab slot if available.
3922 *
3923 * If we did not find a slot then simply move all the partials to the
3924 * per node partial list.
3925 */
3926static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3927{
3928 struct slab *oldslab;
3929 struct slab *slab_to_put = NULL;
3930 unsigned long flags;
3931 int slabs = 0;
3932
3933 local_lock_cpu_slab(s, flags);
3934
3935 oldslab = this_cpu_read(s->cpu_slab->partial);
3936
3937 if (oldslab) {
3938 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3939 /*
3940 * Partial array is full. Move the existing set to the
3941 * per node partial list. Postpone the actual unfreezing
3942 * outside of the critical section.
3943 */
3944 slab_to_put = oldslab;
3945 oldslab = NULL;
3946 } else {
3947 slabs = oldslab->slabs;
3948 }
3949 }
3950
3951 slabs++;
3952
3953 slab->slabs = slabs;
3954 slab->next = oldslab;
3955
3956 this_cpu_write(s->cpu_slab->partial, slab);
3957
3958 local_unlock_cpu_slab(s, flags);
3959
3960 if (slab_to_put) {
3961 __put_partials(s, slab_to_put);
3962 stat(s, CPU_PARTIAL_DRAIN);
3963 }
3964}
3965
3966#else /* CONFIG_SLUB_CPU_PARTIAL */
3967
3968static inline void put_partials(struct kmem_cache *s) { }
3969static inline void put_partials_cpu(struct kmem_cache *s,
3970 struct kmem_cache_cpu *c) { }
3971
3972#endif /* CONFIG_SLUB_CPU_PARTIAL */
3973
3974static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3975{
3976 unsigned long flags;
3977 struct slab *slab;
3978 void *freelist;
3979
3980 local_lock_irqsave(&s->cpu_slab->lock, flags);
3981
3982 slab = c->slab;
3983 freelist = c->freelist;
3984
3985 c->slab = NULL;
3986 c->freelist = NULL;
3987 c->tid = next_tid(c->tid);
3988
3989 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3990
3991 if (slab) {
3992 deactivate_slab(s, slab, freelist);
3993 stat(s, CPUSLAB_FLUSH);
3994 }
3995}
3996
3997static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3998{
3999 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4000 void *freelist = c->freelist;
4001 struct slab *slab = c->slab;
4002
4003 c->slab = NULL;
4004 c->freelist = NULL;
4005 c->tid = next_tid(c->tid);
4006
4007 if (slab) {
4008 deactivate_slab(s, slab, freelist);
4009 stat(s, CPUSLAB_FLUSH);
4010 }
4011
4012 put_partials_cpu(s, c);
4013}
4014
4015static inline void flush_this_cpu_slab(struct kmem_cache *s)
4016{
4017 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
4018
4019 if (c->slab)
4020 flush_slab(s, c);
4021
4022 put_partials(s);
4023}
4024
4025static bool has_cpu_slab(int cpu, struct kmem_cache *s)
4026{
4027 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4028
4029 return c->slab || slub_percpu_partial(c);
4030}
4031
4032static bool has_pcs_used(int cpu, struct kmem_cache *s)
4033{
4034 struct slub_percpu_sheaves *pcs;
4035
4036 if (!s->cpu_sheaves)
4037 return false;
4038
4039 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
4040
4041 return (pcs->spare || pcs->rcu_free || pcs->main->size);
4042}
4043
4044/*
4045 * Flush cpu slab.
4046 *
4047 * Called from CPU work handler with migration disabled.
4048 */
4049static void flush_cpu_slab(struct work_struct *w)
4050{
4051 struct kmem_cache *s;
4052 struct slub_flush_work *sfw;
4053
4054 sfw = container_of(w, struct slub_flush_work, work);
4055
4056 s = sfw->s;
4057
4058 if (s->cpu_sheaves)
4059 pcs_flush_all(s);
4060
4061 flush_this_cpu_slab(s);
4062}
4063
4064static void flush_all_cpus_locked(struct kmem_cache *s)
4065{
4066 struct slub_flush_work *sfw;
4067 unsigned int cpu;
4068
4069 lockdep_assert_cpus_held();
4070 mutex_lock(&flush_lock);
4071
4072 for_each_online_cpu(cpu) {
4073 sfw = &per_cpu(slub_flush, cpu);
4074 if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) {
4075 sfw->skip = true;
4076 continue;
4077 }
4078 INIT_WORK(&sfw->work, flush_cpu_slab);
4079 sfw->skip = false;
4080 sfw->s = s;
4081 queue_work_on(cpu, flushwq, &sfw->work);
4082 }
4083
4084 for_each_online_cpu(cpu) {
4085 sfw = &per_cpu(slub_flush, cpu);
4086 if (sfw->skip)
4087 continue;
4088 flush_work(&sfw->work);
4089 }
4090
4091 mutex_unlock(&flush_lock);
4092}
4093
4094static void flush_all(struct kmem_cache *s)
4095{
4096 cpus_read_lock();
4097 flush_all_cpus_locked(s);
4098 cpus_read_unlock();
4099}
4100
4101static void flush_rcu_sheaf(struct work_struct *w)
4102{
4103 struct slub_percpu_sheaves *pcs;
4104 struct slab_sheaf *rcu_free;
4105 struct slub_flush_work *sfw;
4106 struct kmem_cache *s;
4107
4108 sfw = container_of(w, struct slub_flush_work, work);
4109 s = sfw->s;
4110
4111 local_lock(&s->cpu_sheaves->lock);
4112 pcs = this_cpu_ptr(s->cpu_sheaves);
4113
4114 rcu_free = pcs->rcu_free;
4115 pcs->rcu_free = NULL;
4116
4117 local_unlock(&s->cpu_sheaves->lock);
4118
4119 if (rcu_free)
4120 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
4121}
4122
4123
4124/* needed for kvfree_rcu_barrier() */
4125void flush_rcu_sheaves_on_cache(struct kmem_cache *s)
4126{
4127 struct slub_flush_work *sfw;
4128 unsigned int cpu;
4129
4130 mutex_lock(&flush_lock);
4131
4132 for_each_online_cpu(cpu) {
4133 sfw = &per_cpu(slub_flush, cpu);
4134
4135 /*
4136 * we don't check if rcu_free sheaf exists - racing
4137 * __kfree_rcu_sheaf() might have just removed it.
4138 * by executing flush_rcu_sheaf() on the cpu we make
4139 * sure the __kfree_rcu_sheaf() finished its call_rcu()
4140 */
4141
4142 INIT_WORK(&sfw->work, flush_rcu_sheaf);
4143 sfw->s = s;
4144 queue_work_on(cpu, flushwq, &sfw->work);
4145 }
4146
4147 for_each_online_cpu(cpu) {
4148 sfw = &per_cpu(slub_flush, cpu);
4149 flush_work(&sfw->work);
4150 }
4151
4152 mutex_unlock(&flush_lock);
4153}
4154
4155void flush_all_rcu_sheaves(void)
4156{
4157 struct kmem_cache *s;
4158
4159 cpus_read_lock();
4160 mutex_lock(&slab_mutex);
4161
4162 list_for_each_entry(s, &slab_caches, list) {
4163 if (!s->cpu_sheaves)
4164 continue;
4165 flush_rcu_sheaves_on_cache(s);
4166 }
4167
4168 mutex_unlock(&slab_mutex);
4169 cpus_read_unlock();
4170
4171 rcu_barrier();
4172}
4173
4174/*
4175 * Use the cpu notifier to insure that the cpu slabs are flushed when
4176 * necessary.
4177 */
4178static int slub_cpu_dead(unsigned int cpu)
4179{
4180 struct kmem_cache *s;
4181
4182 mutex_lock(&slab_mutex);
4183 list_for_each_entry(s, &slab_caches, list) {
4184 __flush_cpu_slab(s, cpu);
4185 if (s->cpu_sheaves)
4186 __pcs_flush_all_cpu(s, cpu);
4187 }
4188 mutex_unlock(&slab_mutex);
4189 return 0;
4190}
4191
4192/*
4193 * Check if the objects in a per cpu structure fit numa
4194 * locality expectations.
4195 */
4196static inline int node_match(struct slab *slab, int node)
4197{
4198#ifdef CONFIG_NUMA
4199 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
4200 return 0;
4201#endif
4202 return 1;
4203}
4204
4205#ifdef CONFIG_SLUB_DEBUG
4206static int count_free(struct slab *slab)
4207{
4208 return slab->objects - slab->inuse;
4209}
4210
4211static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
4212{
4213 return atomic_long_read(&n->total_objects);
4214}
4215
4216/* Supports checking bulk free of a constructed freelist */
4217static inline bool free_debug_processing(struct kmem_cache *s,
4218 struct slab *slab, void *head, void *tail, int *bulk_cnt,
4219 unsigned long addr, depot_stack_handle_t handle)
4220{
4221 bool checks_ok = false;
4222 void *object = head;
4223 int cnt = 0;
4224
4225 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4226 if (!check_slab(s, slab))
4227 goto out;
4228 }
4229
4230 if (slab->inuse < *bulk_cnt) {
4231 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
4232 slab->inuse, *bulk_cnt);
4233 goto out;
4234 }
4235
4236next_object:
4237
4238 if (++cnt > *bulk_cnt)
4239 goto out_cnt;
4240
4241 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4242 if (!free_consistency_checks(s, slab, object, addr))
4243 goto out;
4244 }
4245
4246 if (s->flags & SLAB_STORE_USER)
4247 set_track_update(s, object, TRACK_FREE, addr, handle);
4248 trace(s, slab, object, 0);
4249 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
4250 init_object(s, object, SLUB_RED_INACTIVE);
4251
4252 /* Reached end of constructed freelist yet? */
4253 if (object != tail) {
4254 object = get_freepointer(s, object);
4255 goto next_object;
4256 }
4257 checks_ok = true;
4258
4259out_cnt:
4260 if (cnt != *bulk_cnt) {
4261 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
4262 *bulk_cnt, cnt);
4263 *bulk_cnt = cnt;
4264 }
4265
4266out:
4267
4268 if (!checks_ok)
4269 slab_fix(s, "Object at 0x%p not freed", object);
4270
4271 return checks_ok;
4272}
4273#endif /* CONFIG_SLUB_DEBUG */
4274
4275#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
4276static unsigned long count_partial(struct kmem_cache_node *n,
4277 int (*get_count)(struct slab *))
4278{
4279 unsigned long flags;
4280 unsigned long x = 0;
4281 struct slab *slab;
4282
4283 spin_lock_irqsave(&n->list_lock, flags);
4284 list_for_each_entry(slab, &n->partial, slab_list)
4285 x += get_count(slab);
4286 spin_unlock_irqrestore(&n->list_lock, flags);
4287 return x;
4288}
4289#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
4290
4291#ifdef CONFIG_SLUB_DEBUG
4292#define MAX_PARTIAL_TO_SCAN 10000
4293
4294static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
4295{
4296 unsigned long flags;
4297 unsigned long x = 0;
4298 struct slab *slab;
4299
4300 spin_lock_irqsave(&n->list_lock, flags);
4301 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
4302 list_for_each_entry(slab, &n->partial, slab_list)
4303 x += slab->objects - slab->inuse;
4304 } else {
4305 /*
4306 * For a long list, approximate the total count of objects in
4307 * it to meet the limit on the number of slabs to scan.
4308 * Scan from both the list's head and tail for better accuracy.
4309 */
4310 unsigned long scanned = 0;
4311
4312 list_for_each_entry(slab, &n->partial, slab_list) {
4313 x += slab->objects - slab->inuse;
4314 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
4315 break;
4316 }
4317 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
4318 x += slab->objects - slab->inuse;
4319 if (++scanned == MAX_PARTIAL_TO_SCAN)
4320 break;
4321 }
4322 x = mult_frac(x, n->nr_partial, scanned);
4323 x = min(x, node_nr_objs(n));
4324 }
4325 spin_unlock_irqrestore(&n->list_lock, flags);
4326 return x;
4327}
4328
4329static noinline void
4330slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
4331{
4332 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
4333 DEFAULT_RATELIMIT_BURST);
4334 int cpu = raw_smp_processor_id();
4335 int node;
4336 struct kmem_cache_node *n;
4337
4338 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
4339 return;
4340
4341 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
4342 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
4343 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
4344 s->name, s->object_size, s->size, oo_order(s->oo),
4345 oo_order(s->min));
4346
4347 if (oo_order(s->min) > get_order(s->object_size))
4348 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
4349 s->name);
4350
4351 for_each_kmem_cache_node(s, node, n) {
4352 unsigned long nr_slabs;
4353 unsigned long nr_objs;
4354 unsigned long nr_free;
4355
4356 nr_free = count_partial_free_approx(n);
4357 nr_slabs = node_nr_slabs(n);
4358 nr_objs = node_nr_objs(n);
4359
4360 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
4361 node, nr_slabs, nr_objs, nr_free);
4362 }
4363}
4364#else /* CONFIG_SLUB_DEBUG */
4365static inline void
4366slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
4367#endif
4368
4369static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
4370{
4371 if (unlikely(slab_test_pfmemalloc(slab)))
4372 return gfp_pfmemalloc_allowed(gfpflags);
4373
4374 return true;
4375}
4376
4377static inline bool
4378__update_cpu_freelist_fast(struct kmem_cache *s,
4379 void *freelist_old, void *freelist_new,
4380 unsigned long tid)
4381{
4382 struct freelist_tid old = { .freelist = freelist_old, .tid = tid };
4383 struct freelist_tid new = { .freelist = freelist_new, .tid = next_tid(tid) };
4384
4385 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid,
4386 &old.freelist_tid, new.freelist_tid);
4387}
4388
4389/*
4390 * Check the slab->freelist and either transfer the freelist to the
4391 * per cpu freelist or deactivate the slab.
4392 *
4393 * The slab is still frozen if the return value is not NULL.
4394 *
4395 * If this function returns NULL then the slab has been unfrozen.
4396 */
4397static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
4398{
4399 struct freelist_counters old, new;
4400
4401 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4402
4403 do {
4404 old.freelist = slab->freelist;
4405 old.counters = slab->counters;
4406
4407 new.freelist = NULL;
4408 new.counters = old.counters;
4409
4410 new.inuse = old.objects;
4411 new.frozen = old.freelist != NULL;
4412
4413
4414 } while (!__slab_update_freelist(s, slab, &old, &new, "get_freelist"));
4415
4416 return old.freelist;
4417}
4418
4419/*
4420 * Freeze the partial slab and return the pointer to the freelist.
4421 */
4422static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
4423{
4424 struct freelist_counters old, new;
4425
4426 do {
4427 old.freelist = slab->freelist;
4428 old.counters = slab->counters;
4429
4430 new.freelist = NULL;
4431 new.counters = old.counters;
4432 VM_BUG_ON(new.frozen);
4433
4434 new.inuse = old.objects;
4435 new.frozen = 1;
4436
4437 } while (!slab_update_freelist(s, slab, &old, &new, "freeze_slab"));
4438
4439 return old.freelist;
4440}
4441
4442/*
4443 * Slow path. The lockless freelist is empty or we need to perform
4444 * debugging duties.
4445 *
4446 * Processing is still very fast if new objects have been freed to the
4447 * regular freelist. In that case we simply take over the regular freelist
4448 * as the lockless freelist and zap the regular freelist.
4449 *
4450 * If that is not working then we fall back to the partial lists. We take the
4451 * first element of the freelist as the object to allocate now and move the
4452 * rest of the freelist to the lockless freelist.
4453 *
4454 * And if we were unable to get a new slab from the partial slab lists then
4455 * we need to allocate a new slab. This is the slowest path since it involves
4456 * a call to the page allocator and the setup of a new slab.
4457 *
4458 * Version of __slab_alloc to use when we know that preemption is
4459 * already disabled (which is the case for bulk allocation).
4460 */
4461static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4462 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4463{
4464 bool allow_spin = gfpflags_allow_spinning(gfpflags);
4465 void *freelist;
4466 struct slab *slab;
4467 unsigned long flags;
4468 struct partial_context pc;
4469 bool try_thisnode = true;
4470
4471 stat(s, ALLOC_SLOWPATH);
4472
4473reread_slab:
4474
4475 slab = READ_ONCE(c->slab);
4476 if (!slab) {
4477 /*
4478 * if the node is not online or has no normal memory, just
4479 * ignore the node constraint
4480 */
4481 if (unlikely(node != NUMA_NO_NODE &&
4482 !node_isset(node, slab_nodes)))
4483 node = NUMA_NO_NODE;
4484 goto new_slab;
4485 }
4486
4487 if (unlikely(!node_match(slab, node))) {
4488 /*
4489 * same as above but node_match() being false already
4490 * implies node != NUMA_NO_NODE.
4491 *
4492 * We don't strictly honor pfmemalloc and NUMA preferences
4493 * when !allow_spin because:
4494 *
4495 * 1. Most kmalloc() users allocate objects on the local node,
4496 * so kmalloc_nolock() tries not to interfere with them by
4497 * deactivating the cpu slab.
4498 *
4499 * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
4500 * unnecessary slab allocations even when n->partial list
4501 * is not empty.
4502 */
4503 if (!node_isset(node, slab_nodes) ||
4504 !allow_spin) {
4505 node = NUMA_NO_NODE;
4506 } else {
4507 stat(s, ALLOC_NODE_MISMATCH);
4508 goto deactivate_slab;
4509 }
4510 }
4511
4512 /*
4513 * By rights, we should be searching for a slab page that was
4514 * PFMEMALLOC but right now, we are losing the pfmemalloc
4515 * information when the page leaves the per-cpu allocator
4516 */
4517 if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
4518 goto deactivate_slab;
4519
4520 /* must check again c->slab in case we got preempted and it changed */
4521 local_lock_cpu_slab(s, flags);
4522
4523 if (unlikely(slab != c->slab)) {
4524 local_unlock_cpu_slab(s, flags);
4525 goto reread_slab;
4526 }
4527 freelist = c->freelist;
4528 if (freelist)
4529 goto load_freelist;
4530
4531 freelist = get_freelist(s, slab);
4532
4533 if (!freelist) {
4534 c->slab = NULL;
4535 c->tid = next_tid(c->tid);
4536 local_unlock_cpu_slab(s, flags);
4537 stat(s, DEACTIVATE_BYPASS);
4538 goto new_slab;
4539 }
4540
4541 stat(s, ALLOC_REFILL);
4542
4543load_freelist:
4544
4545 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4546
4547 /*
4548 * freelist is pointing to the list of objects to be used.
4549 * slab is pointing to the slab from which the objects are obtained.
4550 * That slab must be frozen for per cpu allocations to work.
4551 */
4552 VM_BUG_ON(!c->slab->frozen);
4553 c->freelist = get_freepointer(s, freelist);
4554 c->tid = next_tid(c->tid);
4555 local_unlock_cpu_slab(s, flags);
4556 return freelist;
4557
4558deactivate_slab:
4559
4560 local_lock_cpu_slab(s, flags);
4561 if (slab != c->slab) {
4562 local_unlock_cpu_slab(s, flags);
4563 goto reread_slab;
4564 }
4565 freelist = c->freelist;
4566 c->slab = NULL;
4567 c->freelist = NULL;
4568 c->tid = next_tid(c->tid);
4569 local_unlock_cpu_slab(s, flags);
4570 deactivate_slab(s, slab, freelist);
4571
4572new_slab:
4573
4574#ifdef CONFIG_SLUB_CPU_PARTIAL
4575 while (slub_percpu_partial(c)) {
4576 local_lock_cpu_slab(s, flags);
4577 if (unlikely(c->slab)) {
4578 local_unlock_cpu_slab(s, flags);
4579 goto reread_slab;
4580 }
4581 if (unlikely(!slub_percpu_partial(c))) {
4582 local_unlock_cpu_slab(s, flags);
4583 /* we were preempted and partial list got empty */
4584 goto new_objects;
4585 }
4586
4587 slab = slub_percpu_partial(c);
4588 slub_set_percpu_partial(c, slab);
4589
4590 if (likely(node_match(slab, node) &&
4591 pfmemalloc_match(slab, gfpflags)) ||
4592 !allow_spin) {
4593 c->slab = slab;
4594 freelist = get_freelist(s, slab);
4595 VM_BUG_ON(!freelist);
4596 stat(s, CPU_PARTIAL_ALLOC);
4597 goto load_freelist;
4598 }
4599
4600 local_unlock_cpu_slab(s, flags);
4601
4602 slab->next = NULL;
4603 __put_partials(s, slab);
4604 }
4605#endif
4606
4607new_objects:
4608
4609 pc.flags = gfpflags;
4610 /*
4611 * When a preferred node is indicated but no __GFP_THISNODE
4612 *
4613 * 1) try to get a partial slab from target node only by having
4614 * __GFP_THISNODE in pc.flags for get_partial()
4615 * 2) if 1) failed, try to allocate a new slab from target node with
4616 * GPF_NOWAIT | __GFP_THISNODE opportunistically
4617 * 3) if 2) failed, retry with original gfpflags which will allow
4618 * get_partial() try partial lists of other nodes before potentially
4619 * allocating new page from other nodes
4620 */
4621 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4622 && try_thisnode)) {
4623 if (unlikely(!allow_spin))
4624 /* Do not upgrade gfp to NOWAIT from more restrictive mode */
4625 pc.flags = gfpflags | __GFP_THISNODE;
4626 else
4627 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
4628 }
4629
4630 pc.orig_size = orig_size;
4631 slab = get_partial(s, node, &pc);
4632 if (slab) {
4633 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4634 freelist = pc.object;
4635 /*
4636 * For debug caches here we had to go through
4637 * alloc_single_from_partial() so just store the
4638 * tracking info and return the object.
4639 *
4640 * Due to disabled preemption we need to disallow
4641 * blocking. The flags are further adjusted by
4642 * gfp_nested_mask() in stack_depot itself.
4643 */
4644 if (s->flags & SLAB_STORE_USER)
4645 set_track(s, freelist, TRACK_ALLOC, addr,
4646 gfpflags & ~(__GFP_DIRECT_RECLAIM));
4647
4648 return freelist;
4649 }
4650
4651 freelist = freeze_slab(s, slab);
4652 goto retry_load_slab;
4653 }
4654
4655 slub_put_cpu_ptr(s->cpu_slab);
4656 slab = new_slab(s, pc.flags, node);
4657 c = slub_get_cpu_ptr(s->cpu_slab);
4658
4659 if (unlikely(!slab)) {
4660 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4661 && try_thisnode) {
4662 try_thisnode = false;
4663 goto new_objects;
4664 }
4665 slab_out_of_memory(s, gfpflags, node);
4666 return NULL;
4667 }
4668
4669 stat(s, ALLOC_SLAB);
4670
4671 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4672 freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4673
4674 if (unlikely(!freelist)) {
4675 /* This could cause an endless loop. Fail instead. */
4676 if (!allow_spin)
4677 return NULL;
4678 goto new_objects;
4679 }
4680
4681 if (s->flags & SLAB_STORE_USER)
4682 set_track(s, freelist, TRACK_ALLOC, addr,
4683 gfpflags & ~(__GFP_DIRECT_RECLAIM));
4684
4685 return freelist;
4686 }
4687
4688 /*
4689 * No other reference to the slab yet so we can
4690 * muck around with it freely without cmpxchg
4691 */
4692 freelist = slab->freelist;
4693 slab->freelist = NULL;
4694 slab->inuse = slab->objects;
4695 slab->frozen = 1;
4696
4697 inc_slabs_node(s, slab_nid(slab), slab->objects);
4698
4699 if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
4700 /*
4701 * For !pfmemalloc_match() case we don't load freelist so that
4702 * we don't make further mismatched allocations easier.
4703 */
4704 deactivate_slab(s, slab, get_freepointer(s, freelist));
4705 return freelist;
4706 }
4707
4708retry_load_slab:
4709
4710 local_lock_cpu_slab(s, flags);
4711 if (unlikely(c->slab)) {
4712 void *flush_freelist = c->freelist;
4713 struct slab *flush_slab = c->slab;
4714
4715 c->slab = NULL;
4716 c->freelist = NULL;
4717 c->tid = next_tid(c->tid);
4718
4719 local_unlock_cpu_slab(s, flags);
4720
4721 if (unlikely(!allow_spin)) {
4722 /* Reentrant slub cannot take locks, defer */
4723 defer_deactivate_slab(flush_slab, flush_freelist);
4724 } else {
4725 deactivate_slab(s, flush_slab, flush_freelist);
4726 }
4727
4728 stat(s, CPUSLAB_FLUSH);
4729
4730 goto retry_load_slab;
4731 }
4732 c->slab = slab;
4733
4734 goto load_freelist;
4735}
4736/*
4737 * We disallow kprobes in ___slab_alloc() to prevent reentrance
4738 *
4739 * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
4740 * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
4741 * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
4742 * manipulating c->freelist without lock.
4743 *
4744 * This does not prevent kprobe in functions called from ___slab_alloc() such as
4745 * local_lock_irqsave() itself, and that is fine, we only need to protect the
4746 * c->freelist manipulation in ___slab_alloc() itself.
4747 */
4748NOKPROBE_SYMBOL(___slab_alloc);
4749
4750/*
4751 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
4752 * disabled. Compensates for possible cpu changes by refetching the per cpu area
4753 * pointer.
4754 */
4755static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4756 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4757{
4758 void *p;
4759
4760#ifdef CONFIG_PREEMPT_COUNT
4761 /*
4762 * We may have been preempted and rescheduled on a different
4763 * cpu before disabling preemption. Need to reload cpu area
4764 * pointer.
4765 */
4766 c = slub_get_cpu_ptr(s->cpu_slab);
4767#endif
4768 if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
4769 if (local_lock_is_locked(&s->cpu_slab->lock)) {
4770 /*
4771 * EBUSY is an internal signal to kmalloc_nolock() to
4772 * retry a different bucket. It's not propagated
4773 * to the caller.
4774 */
4775 p = ERR_PTR(-EBUSY);
4776 goto out;
4777 }
4778 }
4779 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
4780out:
4781#ifdef CONFIG_PREEMPT_COUNT
4782 slub_put_cpu_ptr(s->cpu_slab);
4783#endif
4784 return p;
4785}
4786
4787static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4788 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4789{
4790 struct kmem_cache_cpu *c;
4791 struct slab *slab;
4792 unsigned long tid;
4793 void *object;
4794
4795redo:
4796 /*
4797 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4798 * enabled. We may switch back and forth between cpus while
4799 * reading from one cpu area. That does not matter as long
4800 * as we end up on the original cpu again when doing the cmpxchg.
4801 *
4802 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4803 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4804 * the tid. If we are preempted and switched to another cpu between the
4805 * two reads, it's OK as the two are still associated with the same cpu
4806 * and cmpxchg later will validate the cpu.
4807 */
4808 c = raw_cpu_ptr(s->cpu_slab);
4809 tid = READ_ONCE(c->tid);
4810
4811 /*
4812 * Irqless object alloc/free algorithm used here depends on sequence
4813 * of fetching cpu_slab's data. tid should be fetched before anything
4814 * on c to guarantee that object and slab associated with previous tid
4815 * won't be used with current tid. If we fetch tid first, object and
4816 * slab could be one associated with next tid and our alloc/free
4817 * request will be failed. In this case, we will retry. So, no problem.
4818 */
4819 barrier();
4820
4821 /*
4822 * The transaction ids are globally unique per cpu and per operation on
4823 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4824 * occurs on the right processor and that there was no operation on the
4825 * linked list in between.
4826 */
4827
4828 object = c->freelist;
4829 slab = c->slab;
4830
4831#ifdef CONFIG_NUMA
4832 if (static_branch_unlikely(&strict_numa) &&
4833 node == NUMA_NO_NODE) {
4834
4835 struct mempolicy *mpol = current->mempolicy;
4836
4837 if (mpol) {
4838 /*
4839 * Special BIND rule support. If existing slab
4840 * is in permitted set then do not redirect
4841 * to a particular node.
4842 * Otherwise we apply the memory policy to get
4843 * the node we need to allocate on.
4844 */
4845 if (mpol->mode != MPOL_BIND || !slab ||
4846 !node_isset(slab_nid(slab), mpol->nodes))
4847
4848 node = mempolicy_slab_node();
4849 }
4850 }
4851#endif
4852
4853 if (!USE_LOCKLESS_FAST_PATH() ||
4854 unlikely(!object || !slab || !node_match(slab, node))) {
4855 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4856 } else {
4857 void *next_object = get_freepointer_safe(s, object);
4858
4859 /*
4860 * The cmpxchg will only match if there was no additional
4861 * operation and if we are on the right processor.
4862 *
4863 * The cmpxchg does the following atomically (without lock
4864 * semantics!)
4865 * 1. Relocate first pointer to the current per cpu area.
4866 * 2. Verify that tid and freelist have not been changed
4867 * 3. If they were not changed replace tid and freelist
4868 *
4869 * Since this is without lock semantics the protection is only
4870 * against code executing on this cpu *not* from access by
4871 * other cpus.
4872 */
4873 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4874 note_cmpxchg_failure("slab_alloc", s, tid);
4875 goto redo;
4876 }
4877 prefetch_freepointer(s, next_object);
4878 stat(s, ALLOC_FASTPATH);
4879 }
4880
4881 return object;
4882}
4883
4884/*
4885 * If the object has been wiped upon free, make sure it's fully initialized by
4886 * zeroing out freelist pointer.
4887 *
4888 * Note that we also wipe custom freelist pointers.
4889 */
4890static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4891 void *obj)
4892{
4893 if (unlikely(slab_want_init_on_free(s)) && obj &&
4894 !freeptr_outside_object(s))
4895 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4896 0, sizeof(void *));
4897}
4898
4899static __fastpath_inline
4900struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4901{
4902 flags &= gfp_allowed_mask;
4903
4904 might_alloc(flags);
4905
4906 if (unlikely(should_failslab(s, flags)))
4907 return NULL;
4908
4909 return s;
4910}
4911
4912static __fastpath_inline
4913bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4914 gfp_t flags, size_t size, void **p, bool init,
4915 unsigned int orig_size)
4916{
4917 unsigned int zero_size = s->object_size;
4918 bool kasan_init = init;
4919 size_t i;
4920 gfp_t init_flags = flags & gfp_allowed_mask;
4921
4922 /*
4923 * For kmalloc object, the allocated memory size(object_size) is likely
4924 * larger than the requested size(orig_size). If redzone check is
4925 * enabled for the extra space, don't zero it, as it will be redzoned
4926 * soon. The redzone operation for this extra space could be seen as a
4927 * replacement of current poisoning under certain debug option, and
4928 * won't break other sanity checks.
4929 */
4930 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4931 (s->flags & SLAB_KMALLOC))
4932 zero_size = orig_size;
4933
4934 /*
4935 * When slab_debug is enabled, avoid memory initialization integrated
4936 * into KASAN and instead zero out the memory via the memset below with
4937 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4938 * cause false-positive reports. This does not lead to a performance
4939 * penalty on production builds, as slab_debug is not intended to be
4940 * enabled there.
4941 */
4942 if (__slub_debug_enabled())
4943 kasan_init = false;
4944
4945 /*
4946 * As memory initialization might be integrated into KASAN,
4947 * kasan_slab_alloc and initialization memset must be
4948 * kept together to avoid discrepancies in behavior.
4949 *
4950 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4951 */
4952 for (i = 0; i < size; i++) {
4953 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4954 if (p[i] && init && (!kasan_init ||
4955 !kasan_has_integrated_init()))
4956 memset(p[i], 0, zero_size);
4957 if (gfpflags_allow_spinning(flags))
4958 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4959 s->flags, init_flags);
4960 kmsan_slab_alloc(s, p[i], init_flags);
4961 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4962 }
4963
4964 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4965}
4966
4967/*
4968 * Replace the empty main sheaf with a (at least partially) full sheaf.
4969 *
4970 * Must be called with the cpu_sheaves local lock locked. If successful, returns
4971 * the pcs pointer and the local lock locked (possibly on a different cpu than
4972 * initially called). If not successful, returns NULL and the local lock
4973 * unlocked.
4974 */
4975static struct slub_percpu_sheaves *
4976__pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp)
4977{
4978 struct slab_sheaf *empty = NULL;
4979 struct slab_sheaf *full;
4980 struct node_barn *barn;
4981 bool can_alloc;
4982
4983 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
4984
4985 if (pcs->spare && pcs->spare->size > 0) {
4986 swap(pcs->main, pcs->spare);
4987 return pcs;
4988 }
4989
4990 barn = get_barn(s);
4991 if (!barn) {
4992 local_unlock(&s->cpu_sheaves->lock);
4993 return NULL;
4994 }
4995
4996 full = barn_replace_empty_sheaf(barn, pcs->main);
4997
4998 if (full) {
4999 stat(s, BARN_GET);
5000 pcs->main = full;
5001 return pcs;
5002 }
5003
5004 stat(s, BARN_GET_FAIL);
5005
5006 can_alloc = gfpflags_allow_blocking(gfp);
5007
5008 if (can_alloc) {
5009 if (pcs->spare) {
5010 empty = pcs->spare;
5011 pcs->spare = NULL;
5012 } else {
5013 empty = barn_get_empty_sheaf(barn);
5014 }
5015 }
5016
5017 local_unlock(&s->cpu_sheaves->lock);
5018
5019 if (!can_alloc)
5020 return NULL;
5021
5022 if (empty) {
5023 if (!refill_sheaf(s, empty, gfp | __GFP_NOMEMALLOC)) {
5024 full = empty;
5025 } else {
5026 /*
5027 * we must be very low on memory so don't bother
5028 * with the barn
5029 */
5030 free_empty_sheaf(s, empty);
5031 }
5032 } else {
5033 full = alloc_full_sheaf(s, gfp);
5034 }
5035
5036 if (!full)
5037 return NULL;
5038
5039 /*
5040 * we can reach here only when gfpflags_allow_blocking
5041 * so this must not be an irq
5042 */
5043 local_lock(&s->cpu_sheaves->lock);
5044 pcs = this_cpu_ptr(s->cpu_sheaves);
5045
5046 /*
5047 * If we are returning empty sheaf, we either got it from the
5048 * barn or had to allocate one. If we are returning a full
5049 * sheaf, it's due to racing or being migrated to a different
5050 * cpu. Breaching the barn's sheaf limits should be thus rare
5051 * enough so just ignore them to simplify the recovery.
5052 */
5053
5054 if (pcs->main->size == 0) {
5055 barn_put_empty_sheaf(barn, pcs->main);
5056 pcs->main = full;
5057 return pcs;
5058 }
5059
5060 if (!pcs->spare) {
5061 pcs->spare = full;
5062 return pcs;
5063 }
5064
5065 if (pcs->spare->size == 0) {
5066 barn_put_empty_sheaf(barn, pcs->spare);
5067 pcs->spare = full;
5068 return pcs;
5069 }
5070
5071 barn_put_full_sheaf(barn, full);
5072 stat(s, BARN_PUT);
5073
5074 return pcs;
5075}
5076
5077static __fastpath_inline
5078void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node)
5079{
5080 struct slub_percpu_sheaves *pcs;
5081 bool node_requested;
5082 void *object;
5083
5084#ifdef CONFIG_NUMA
5085 if (static_branch_unlikely(&strict_numa) &&
5086 node == NUMA_NO_NODE) {
5087
5088 struct mempolicy *mpol = current->mempolicy;
5089
5090 if (mpol) {
5091 /*
5092 * Special BIND rule support. If the local node
5093 * is in permitted set then do not redirect
5094 * to a particular node.
5095 * Otherwise we apply the memory policy to get
5096 * the node we need to allocate on.
5097 */
5098 if (mpol->mode != MPOL_BIND ||
5099 !node_isset(numa_mem_id(), mpol->nodes))
5100
5101 node = mempolicy_slab_node();
5102 }
5103 }
5104#endif
5105
5106 node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE;
5107
5108 /*
5109 * We assume the percpu sheaves contain only local objects although it's
5110 * not completely guaranteed, so we verify later.
5111 */
5112 if (unlikely(node_requested && node != numa_mem_id()))
5113 return NULL;
5114
5115 if (!local_trylock(&s->cpu_sheaves->lock))
5116 return NULL;
5117
5118 pcs = this_cpu_ptr(s->cpu_sheaves);
5119
5120 if (unlikely(pcs->main->size == 0)) {
5121 pcs = __pcs_replace_empty_main(s, pcs, gfp);
5122 if (unlikely(!pcs))
5123 return NULL;
5124 }
5125
5126 object = pcs->main->objects[pcs->main->size - 1];
5127
5128 if (unlikely(node_requested)) {
5129 /*
5130 * Verify that the object was from the node we want. This could
5131 * be false because of cpu migration during an unlocked part of
5132 * the current allocation or previous freeing process.
5133 */
5134 if (page_to_nid(virt_to_page(object)) != node) {
5135 local_unlock(&s->cpu_sheaves->lock);
5136 return NULL;
5137 }
5138 }
5139
5140 pcs->main->size--;
5141
5142 local_unlock(&s->cpu_sheaves->lock);
5143
5144 stat(s, ALLOC_PCS);
5145
5146 return object;
5147}
5148
5149static __fastpath_inline
5150unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
5151{
5152 struct slub_percpu_sheaves *pcs;
5153 struct slab_sheaf *main;
5154 unsigned int allocated = 0;
5155 unsigned int batch;
5156
5157next_batch:
5158 if (!local_trylock(&s->cpu_sheaves->lock))
5159 return allocated;
5160
5161 pcs = this_cpu_ptr(s->cpu_sheaves);
5162
5163 if (unlikely(pcs->main->size == 0)) {
5164
5165 struct slab_sheaf *full;
5166 struct node_barn *barn;
5167
5168 if (pcs->spare && pcs->spare->size > 0) {
5169 swap(pcs->main, pcs->spare);
5170 goto do_alloc;
5171 }
5172
5173 barn = get_barn(s);
5174 if (!barn) {
5175 local_unlock(&s->cpu_sheaves->lock);
5176 return allocated;
5177 }
5178
5179 full = barn_replace_empty_sheaf(barn, pcs->main);
5180
5181 if (full) {
5182 stat(s, BARN_GET);
5183 pcs->main = full;
5184 goto do_alloc;
5185 }
5186
5187 stat(s, BARN_GET_FAIL);
5188
5189 local_unlock(&s->cpu_sheaves->lock);
5190
5191 /*
5192 * Once full sheaves in barn are depleted, let the bulk
5193 * allocation continue from slab pages, otherwise we would just
5194 * be copying arrays of pointers twice.
5195 */
5196 return allocated;
5197 }
5198
5199do_alloc:
5200
5201 main = pcs->main;
5202 batch = min(size, main->size);
5203
5204 main->size -= batch;
5205 memcpy(p, main->objects + main->size, batch * sizeof(void *));
5206
5207 local_unlock(&s->cpu_sheaves->lock);
5208
5209 stat_add(s, ALLOC_PCS, batch);
5210
5211 allocated += batch;
5212
5213 if (batch < size) {
5214 p += batch;
5215 size -= batch;
5216 goto next_batch;
5217 }
5218
5219 return allocated;
5220}
5221
5222
5223/*
5224 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
5225 * have the fastpath folded into their functions. So no function call
5226 * overhead for requests that can be satisfied on the fastpath.
5227 *
5228 * The fastpath works by first checking if the lockless freelist can be used.
5229 * If not then __slab_alloc is called for slow processing.
5230 *
5231 * Otherwise we can simply pick the next object from the lockless free list.
5232 */
5233static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
5234 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
5235{
5236 void *object;
5237 bool init = false;
5238
5239 s = slab_pre_alloc_hook(s, gfpflags);
5240 if (unlikely(!s))
5241 return NULL;
5242
5243 object = kfence_alloc(s, orig_size, gfpflags);
5244 if (unlikely(object))
5245 goto out;
5246
5247 if (s->cpu_sheaves)
5248 object = alloc_from_pcs(s, gfpflags, node);
5249
5250 if (!object)
5251 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
5252
5253 maybe_wipe_obj_freeptr(s, object);
5254 init = slab_want_init_on_alloc(gfpflags, s);
5255
5256out:
5257 /*
5258 * When init equals 'true', like for kzalloc() family, only
5259 * @orig_size bytes might be zeroed instead of s->object_size
5260 * In case this fails due to memcg_slab_post_alloc_hook(),
5261 * object is set to NULL
5262 */
5263 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5264
5265 return object;
5266}
5267
5268void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
5269{
5270 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
5271 s->object_size);
5272
5273 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5274
5275 return ret;
5276}
5277EXPORT_SYMBOL(kmem_cache_alloc_noprof);
5278
5279void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
5280 gfp_t gfpflags)
5281{
5282 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
5283 s->object_size);
5284
5285 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5286
5287 return ret;
5288}
5289EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
5290
5291bool kmem_cache_charge(void *objp, gfp_t gfpflags)
5292{
5293 if (!memcg_kmem_online())
5294 return true;
5295
5296 return memcg_slab_post_charge(objp, gfpflags);
5297}
5298EXPORT_SYMBOL(kmem_cache_charge);
5299
5300/**
5301 * kmem_cache_alloc_node - Allocate an object on the specified node
5302 * @s: The cache to allocate from.
5303 * @gfpflags: See kmalloc().
5304 * @node: node number of the target node.
5305 *
5306 * Identical to kmem_cache_alloc but it will allocate memory on the given
5307 * node, which can improve the performance for cpu bound structures.
5308 *
5309 * Fallback to other node is possible if __GFP_THISNODE is not set.
5310 *
5311 * Return: pointer to the new object or %NULL in case of error
5312 */
5313void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
5314{
5315 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5316
5317 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5318
5319 return ret;
5320}
5321EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
5322
5323static int __prefill_sheaf_pfmemalloc(struct kmem_cache *s,
5324 struct slab_sheaf *sheaf, gfp_t gfp)
5325{
5326 int ret = 0;
5327
5328 ret = refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC);
5329
5330 if (likely(!ret || !gfp_pfmemalloc_allowed(gfp)))
5331 return ret;
5332
5333 /*
5334 * if we are allowed to, refill sheaf with pfmemalloc but then remember
5335 * it for when it's returned
5336 */
5337 ret = refill_sheaf(s, sheaf, gfp);
5338 sheaf->pfmemalloc = true;
5339
5340 return ret;
5341}
5342
5343/*
5344 * returns a sheaf that has at least the requested size
5345 * when prefilling is needed, do so with given gfp flags
5346 *
5347 * return NULL if sheaf allocation or prefilling failed
5348 */
5349struct slab_sheaf *
5350kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
5351{
5352 struct slub_percpu_sheaves *pcs;
5353 struct slab_sheaf *sheaf = NULL;
5354 struct node_barn *barn;
5355
5356 if (unlikely(size > s->sheaf_capacity)) {
5357
5358 /*
5359 * slab_debug disables cpu sheaves intentionally so all
5360 * prefilled sheaves become "oversize" and we give up on
5361 * performance for the debugging. Same with SLUB_TINY.
5362 * Creating a cache without sheaves and then requesting a
5363 * prefilled sheaf is however not expected, so warn.
5364 */
5365 WARN_ON_ONCE(s->sheaf_capacity == 0 &&
5366 !IS_ENABLED(CONFIG_SLUB_TINY) &&
5367 !(s->flags & SLAB_DEBUG_FLAGS));
5368
5369 sheaf = kzalloc(struct_size(sheaf, objects, size), gfp);
5370 if (!sheaf)
5371 return NULL;
5372
5373 stat(s, SHEAF_PREFILL_OVERSIZE);
5374 sheaf->cache = s;
5375 sheaf->capacity = size;
5376
5377 /*
5378 * we do not need to care about pfmemalloc here because oversize
5379 * sheaves area always flushed and freed when returned
5380 */
5381 if (!__kmem_cache_alloc_bulk(s, gfp, size,
5382 &sheaf->objects[0])) {
5383 kfree(sheaf);
5384 return NULL;
5385 }
5386
5387 sheaf->size = size;
5388
5389 return sheaf;
5390 }
5391
5392 local_lock(&s->cpu_sheaves->lock);
5393 pcs = this_cpu_ptr(s->cpu_sheaves);
5394
5395 if (pcs->spare) {
5396 sheaf = pcs->spare;
5397 pcs->spare = NULL;
5398 stat(s, SHEAF_PREFILL_FAST);
5399 } else {
5400 barn = get_barn(s);
5401
5402 stat(s, SHEAF_PREFILL_SLOW);
5403 if (barn)
5404 sheaf = barn_get_full_or_empty_sheaf(barn);
5405 if (sheaf && sheaf->size)
5406 stat(s, BARN_GET);
5407 else
5408 stat(s, BARN_GET_FAIL);
5409 }
5410
5411 local_unlock(&s->cpu_sheaves->lock);
5412
5413
5414 if (!sheaf)
5415 sheaf = alloc_empty_sheaf(s, gfp);
5416
5417 if (sheaf) {
5418 sheaf->capacity = s->sheaf_capacity;
5419 sheaf->pfmemalloc = false;
5420
5421 if (sheaf->size < size &&
5422 __prefill_sheaf_pfmemalloc(s, sheaf, gfp)) {
5423 sheaf_flush_unused(s, sheaf);
5424 free_empty_sheaf(s, sheaf);
5425 sheaf = NULL;
5426 }
5427 }
5428
5429 return sheaf;
5430}
5431
5432/*
5433 * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf()
5434 *
5435 * If the sheaf cannot simply become the percpu spare sheaf, but there's space
5436 * for a full sheaf in the barn, we try to refill the sheaf back to the cache's
5437 * sheaf_capacity to avoid handling partially full sheaves.
5438 *
5439 * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the
5440 * sheaf is instead flushed and freed.
5441 */
5442void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
5443 struct slab_sheaf *sheaf)
5444{
5445 struct slub_percpu_sheaves *pcs;
5446 struct node_barn *barn;
5447
5448 if (unlikely((sheaf->capacity != s->sheaf_capacity)
5449 || sheaf->pfmemalloc)) {
5450 sheaf_flush_unused(s, sheaf);
5451 kfree(sheaf);
5452 return;
5453 }
5454
5455 local_lock(&s->cpu_sheaves->lock);
5456 pcs = this_cpu_ptr(s->cpu_sheaves);
5457 barn = get_barn(s);
5458
5459 if (!pcs->spare) {
5460 pcs->spare = sheaf;
5461 sheaf = NULL;
5462 stat(s, SHEAF_RETURN_FAST);
5463 }
5464
5465 local_unlock(&s->cpu_sheaves->lock);
5466
5467 if (!sheaf)
5468 return;
5469
5470 stat(s, SHEAF_RETURN_SLOW);
5471
5472 /*
5473 * If the barn has too many full sheaves or we fail to refill the sheaf,
5474 * simply flush and free it.
5475 */
5476 if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES ||
5477 refill_sheaf(s, sheaf, gfp)) {
5478 sheaf_flush_unused(s, sheaf);
5479 free_empty_sheaf(s, sheaf);
5480 return;
5481 }
5482
5483 barn_put_full_sheaf(barn, sheaf);
5484 stat(s, BARN_PUT);
5485}
5486
5487/*
5488 * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least
5489 * the given size
5490 *
5491 * the sheaf might be replaced by a new one when requesting more than
5492 * s->sheaf_capacity objects if such replacement is necessary, but the refill
5493 * fails (returning -ENOMEM), the existing sheaf is left intact
5494 *
5495 * In practice we always refill to full sheaf's capacity.
5496 */
5497int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
5498 struct slab_sheaf **sheafp, unsigned int size)
5499{
5500 struct slab_sheaf *sheaf;
5501
5502 /*
5503 * TODO: do we want to support *sheaf == NULL to be equivalent of
5504 * kmem_cache_prefill_sheaf() ?
5505 */
5506 if (!sheafp || !(*sheafp))
5507 return -EINVAL;
5508
5509 sheaf = *sheafp;
5510 if (sheaf->size >= size)
5511 return 0;
5512
5513 if (likely(sheaf->capacity >= size)) {
5514 if (likely(sheaf->capacity == s->sheaf_capacity))
5515 return __prefill_sheaf_pfmemalloc(s, sheaf, gfp);
5516
5517 if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size,
5518 &sheaf->objects[sheaf->size])) {
5519 return -ENOMEM;
5520 }
5521 sheaf->size = sheaf->capacity;
5522
5523 return 0;
5524 }
5525
5526 /*
5527 * We had a regular sized sheaf and need an oversize one, or we had an
5528 * oversize one already but need a larger one now.
5529 * This should be a very rare path so let's not complicate it.
5530 */
5531 sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
5532 if (!sheaf)
5533 return -ENOMEM;
5534
5535 kmem_cache_return_sheaf(s, gfp, *sheafp);
5536 *sheafp = sheaf;
5537 return 0;
5538}
5539
5540/*
5541 * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf()
5542 *
5543 * Guaranteed not to fail as many allocations as was the requested size.
5544 * After the sheaf is emptied, it fails - no fallback to the slab cache itself.
5545 *
5546 * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT
5547 * memcg charging is forced over limit if necessary, to avoid failure.
5548 *
5549 * It is possible that the allocation comes from kfence and then the sheaf
5550 * size is not decreased.
5551 */
5552void *
5553kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp,
5554 struct slab_sheaf *sheaf)
5555{
5556 void *ret = NULL;
5557 bool init;
5558
5559 if (sheaf->size == 0)
5560 goto out;
5561
5562 ret = kfence_alloc(s, s->object_size, gfp);
5563
5564 if (likely(!ret))
5565 ret = sheaf->objects[--sheaf->size];
5566
5567 init = slab_want_init_on_alloc(gfp, s);
5568
5569 /* add __GFP_NOFAIL to force successful memcg charging */
5570 slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size);
5571out:
5572 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE);
5573
5574 return ret;
5575}
5576
5577unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf)
5578{
5579 return sheaf->size;
5580}
5581/*
5582 * To avoid unnecessary overhead, we pass through large allocation requests
5583 * directly to the page allocator. We use __GFP_COMP, because we will need to
5584 * know the allocation order to free the pages properly in kfree.
5585 */
5586static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
5587{
5588 struct page *page;
5589 void *ptr = NULL;
5590 unsigned int order = get_order(size);
5591
5592 if (unlikely(flags & GFP_SLAB_BUG_MASK))
5593 flags = kmalloc_fix_flags(flags);
5594
5595 flags |= __GFP_COMP;
5596
5597 if (node == NUMA_NO_NODE)
5598 page = alloc_frozen_pages_noprof(flags, order);
5599 else
5600 page = __alloc_frozen_pages_noprof(flags, order, node, NULL);
5601
5602 if (page) {
5603 ptr = page_address(page);
5604 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
5605 PAGE_SIZE << order);
5606 __SetPageLargeKmalloc(page);
5607 }
5608
5609 ptr = kasan_kmalloc_large(ptr, size, flags);
5610 /* As ptr might get tagged, call kmemleak hook after KASAN. */
5611 kmemleak_alloc(ptr, size, 1, flags);
5612 kmsan_kmalloc_large(ptr, size, flags);
5613
5614 return ptr;
5615}
5616
5617void *__kmalloc_large_noprof(size_t size, gfp_t flags)
5618{
5619 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
5620
5621 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5622 flags, NUMA_NO_NODE);
5623 return ret;
5624}
5625EXPORT_SYMBOL(__kmalloc_large_noprof);
5626
5627void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
5628{
5629 void *ret = ___kmalloc_large_node(size, flags, node);
5630
5631 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5632 flags, node);
5633 return ret;
5634}
5635EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5636
5637static __always_inline
5638void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
5639 unsigned long caller)
5640{
5641 struct kmem_cache *s;
5642 void *ret;
5643
5644 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5645 ret = __kmalloc_large_node_noprof(size, flags, node);
5646 trace_kmalloc(caller, ret, size,
5647 PAGE_SIZE << get_order(size), flags, node);
5648 return ret;
5649 }
5650
5651 if (unlikely(!size))
5652 return ZERO_SIZE_PTR;
5653
5654 s = kmalloc_slab(size, b, flags, caller);
5655
5656 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
5657 ret = kasan_kmalloc(s, ret, size, flags);
5658 trace_kmalloc(caller, ret, size, s->size, flags, node);
5659 return ret;
5660}
5661void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5662{
5663 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
5664}
5665EXPORT_SYMBOL(__kmalloc_node_noprof);
5666
5667void *__kmalloc_noprof(size_t size, gfp_t flags)
5668{
5669 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
5670}
5671EXPORT_SYMBOL(__kmalloc_noprof);
5672
5673/**
5674 * kmalloc_nolock - Allocate an object of given size from any context.
5675 * @size: size to allocate
5676 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
5677 * allowed.
5678 * @node: node number of the target node.
5679 *
5680 * Return: pointer to the new object or NULL in case of error.
5681 * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
5682 * There is no reason to call it again and expect !NULL.
5683 */
5684void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
5685{
5686 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
5687 struct kmem_cache *s;
5688 bool can_retry = true;
5689 void *ret = ERR_PTR(-EBUSY);
5690
5691 VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
5692 __GFP_NO_OBJ_EXT));
5693
5694 if (unlikely(!size))
5695 return ZERO_SIZE_PTR;
5696
5697 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
5698 /* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
5699 return NULL;
5700retry:
5701 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
5702 return NULL;
5703 s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
5704
5705 if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
5706 /*
5707 * kmalloc_nolock() is not supported on architectures that
5708 * don't implement cmpxchg16b, but debug caches don't use
5709 * per-cpu slab and per-cpu partial slabs. They rely on
5710 * kmem_cache_node->list_lock, so kmalloc_nolock() can
5711 * attempt to allocate from debug caches by
5712 * spin_trylock_irqsave(&n->list_lock, ...)
5713 */
5714 return NULL;
5715
5716 /*
5717 * Do not call slab_alloc_node(), since trylock mode isn't
5718 * compatible with slab_pre_alloc_hook/should_failslab and
5719 * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
5720 * and slab_post_alloc_hook() directly.
5721 *
5722 * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
5723 * in irq saved region. It assumes that the same cpu will not
5724 * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
5725 * Therefore use in_nmi() to check whether particular bucket is in
5726 * irq protected section.
5727 *
5728 * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
5729 * this cpu was interrupted somewhere inside ___slab_alloc() after
5730 * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
5731 * In this case fast path with __update_cpu_freelist_fast() is not safe.
5732 */
5733 if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
5734 ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
5735
5736 if (PTR_ERR(ret) == -EBUSY) {
5737 if (can_retry) {
5738 /* pick the next kmalloc bucket */
5739 size = s->object_size + 1;
5740 /*
5741 * Another alternative is to
5742 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
5743 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
5744 * to retry from bucket of the same size.
5745 */
5746 can_retry = false;
5747 goto retry;
5748 }
5749 ret = NULL;
5750 }
5751
5752 maybe_wipe_obj_freeptr(s, ret);
5753 slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
5754 slab_want_init_on_alloc(alloc_gfp, s), size);
5755
5756 ret = kasan_kmalloc(s, ret, size, alloc_gfp);
5757 return ret;
5758}
5759EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
5760
5761void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
5762 int node, unsigned long caller)
5763{
5764 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
5765
5766}
5767EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
5768
5769void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5770{
5771 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
5772 _RET_IP_, size);
5773
5774 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
5775
5776 ret = kasan_kmalloc(s, ret, size, gfpflags);
5777 return ret;
5778}
5779EXPORT_SYMBOL(__kmalloc_cache_noprof);
5780
5781void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
5782 int node, size_t size)
5783{
5784 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
5785
5786 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
5787
5788 ret = kasan_kmalloc(s, ret, size, gfpflags);
5789 return ret;
5790}
5791EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
5792
5793static noinline void free_to_partial_list(
5794 struct kmem_cache *s, struct slab *slab,
5795 void *head, void *tail, int bulk_cnt,
5796 unsigned long addr)
5797{
5798 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
5799 struct slab *slab_free = NULL;
5800 int cnt = bulk_cnt;
5801 unsigned long flags;
5802 depot_stack_handle_t handle = 0;
5803
5804 /*
5805 * We cannot use GFP_NOWAIT as there are callsites where waking up
5806 * kswapd could deadlock
5807 */
5808 if (s->flags & SLAB_STORE_USER)
5809 handle = set_track_prepare(__GFP_NOWARN);
5810
5811 spin_lock_irqsave(&n->list_lock, flags);
5812
5813 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
5814 void *prior = slab->freelist;
5815
5816 /* Perform the actual freeing while we still hold the locks */
5817 slab->inuse -= cnt;
5818 set_freepointer(s, tail, prior);
5819 slab->freelist = head;
5820
5821 /*
5822 * If the slab is empty, and node's partial list is full,
5823 * it should be discarded anyway no matter it's on full or
5824 * partial list.
5825 */
5826 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
5827 slab_free = slab;
5828
5829 if (!prior) {
5830 /* was on full list */
5831 remove_full(s, n, slab);
5832 if (!slab_free) {
5833 add_partial(n, slab, DEACTIVATE_TO_TAIL);
5834 stat(s, FREE_ADD_PARTIAL);
5835 }
5836 } else if (slab_free) {
5837 remove_partial(n, slab);
5838 stat(s, FREE_REMOVE_PARTIAL);
5839 }
5840 }
5841
5842 if (slab_free) {
5843 /*
5844 * Update the counters while still holding n->list_lock to
5845 * prevent spurious validation warnings
5846 */
5847 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
5848 }
5849
5850 spin_unlock_irqrestore(&n->list_lock, flags);
5851
5852 if (slab_free) {
5853 stat(s, FREE_SLAB);
5854 free_slab(s, slab_free);
5855 }
5856}
5857
5858/*
5859 * Slow path handling. This may still be called frequently since objects
5860 * have a longer lifetime than the cpu slabs in most processing loads.
5861 *
5862 * So we still attempt to reduce cache line usage. Just take the slab
5863 * lock and free the item. If there is no additional partial slab
5864 * handling required then we can return immediately.
5865 */
5866static void __slab_free(struct kmem_cache *s, struct slab *slab,
5867 void *head, void *tail, int cnt,
5868 unsigned long addr)
5869
5870{
5871 bool was_frozen, was_full;
5872 struct freelist_counters old, new;
5873 struct kmem_cache_node *n = NULL;
5874 unsigned long flags;
5875 bool on_node_partial;
5876
5877 stat(s, FREE_SLOWPATH);
5878
5879 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
5880 free_to_partial_list(s, slab, head, tail, cnt, addr);
5881 return;
5882 }
5883
5884 /*
5885 * It is enough to test IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) below
5886 * instead of kmem_cache_has_cpu_partial(s), because kmem_cache_debug(s)
5887 * is the only other reason it can be false, and it is already handled
5888 * above.
5889 */
5890
5891 do {
5892 if (unlikely(n)) {
5893 spin_unlock_irqrestore(&n->list_lock, flags);
5894 n = NULL;
5895 }
5896
5897 old.freelist = slab->freelist;
5898 old.counters = slab->counters;
5899
5900 was_full = (old.freelist == NULL);
5901 was_frozen = old.frozen;
5902
5903 set_freepointer(s, tail, old.freelist);
5904
5905 new.freelist = head;
5906 new.counters = old.counters;
5907 new.inuse -= cnt;
5908
5909 /*
5910 * Might need to be taken off (due to becoming empty) or added
5911 * to (due to not being full anymore) the partial list.
5912 * Unless it's frozen.
5913 */
5914 if ((!new.inuse || was_full) && !was_frozen) {
5915 /*
5916 * If slab becomes non-full and we have cpu partial
5917 * lists, we put it there unconditionally to avoid
5918 * taking the list_lock. Otherwise we need it.
5919 */
5920 if (!(IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && was_full)) {
5921
5922 n = get_node(s, slab_nid(slab));
5923 /*
5924 * Speculatively acquire the list_lock.
5925 * If the cmpxchg does not succeed then we may
5926 * drop the list_lock without any processing.
5927 *
5928 * Otherwise the list_lock will synchronize with
5929 * other processors updating the list of slabs.
5930 */
5931 spin_lock_irqsave(&n->list_lock, flags);
5932
5933 on_node_partial = slab_test_node_partial(slab);
5934 }
5935 }
5936
5937 } while (!slab_update_freelist(s, slab, &old, &new, "__slab_free"));
5938
5939 if (likely(!n)) {
5940
5941 if (likely(was_frozen)) {
5942 /*
5943 * The list lock was not taken therefore no list
5944 * activity can be necessary.
5945 */
5946 stat(s, FREE_FROZEN);
5947 } else if (IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && was_full) {
5948 /*
5949 * If we started with a full slab then put it onto the
5950 * per cpu partial list.
5951 */
5952 put_cpu_partial(s, slab, 1);
5953 stat(s, CPU_PARTIAL_FREE);
5954 }
5955
5956 /*
5957 * In other cases we didn't take the list_lock because the slab
5958 * was already on the partial list and will remain there.
5959 */
5960
5961 return;
5962 }
5963
5964 /*
5965 * This slab was partially empty but not on the per-node partial list,
5966 * in which case we shouldn't manipulate its list, just return.
5967 */
5968 if (!was_full && !on_node_partial) {
5969 spin_unlock_irqrestore(&n->list_lock, flags);
5970 return;
5971 }
5972
5973 /*
5974 * If slab became empty, should we add/keep it on the partial list or we
5975 * have enough?
5976 */
5977 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
5978 goto slab_empty;
5979
5980 /*
5981 * Objects left in the slab. If it was not on the partial list before
5982 * then add it. This can only happen when cache has no per cpu partial
5983 * list otherwise we would have put it there.
5984 */
5985 if (!IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && unlikely(was_full)) {
5986 add_partial(n, slab, DEACTIVATE_TO_TAIL);
5987 stat(s, FREE_ADD_PARTIAL);
5988 }
5989 spin_unlock_irqrestore(&n->list_lock, flags);
5990 return;
5991
5992slab_empty:
5993 /*
5994 * The slab could have a single object and thus go from full to empty in
5995 * a single free, but more likely it was on the partial list. Remove it.
5996 */
5997 if (likely(!was_full)) {
5998 remove_partial(n, slab);
5999 stat(s, FREE_REMOVE_PARTIAL);
6000 }
6001
6002 spin_unlock_irqrestore(&n->list_lock, flags);
6003 stat(s, FREE_SLAB);
6004 discard_slab(s, slab);
6005}
6006
6007/*
6008 * pcs is locked. We should have get rid of the spare sheaf and obtained an
6009 * empty sheaf, while the main sheaf is full. We want to install the empty sheaf
6010 * as a main sheaf, and make the current main sheaf a spare sheaf.
6011 *
6012 * However due to having relinquished the cpu_sheaves lock when obtaining
6013 * the empty sheaf, we need to handle some unlikely but possible cases.
6014 *
6015 * If we put any sheaf to barn here, it's because we were interrupted or have
6016 * been migrated to a different cpu, which should be rare enough so just ignore
6017 * the barn's limits to simplify the handling.
6018 *
6019 * An alternative scenario that gets us here is when we fail
6020 * barn_replace_full_sheaf(), because there's no empty sheaf available in the
6021 * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the
6022 * limit on full sheaves was not exceeded, we assume it didn't change and just
6023 * put the full sheaf there.
6024 */
6025static void __pcs_install_empty_sheaf(struct kmem_cache *s,
6026 struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty,
6027 struct node_barn *barn)
6028{
6029 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6030
6031 /* This is what we expect to find if nobody interrupted us. */
6032 if (likely(!pcs->spare)) {
6033 pcs->spare = pcs->main;
6034 pcs->main = empty;
6035 return;
6036 }
6037
6038 /*
6039 * Unlikely because if the main sheaf had space, we would have just
6040 * freed to it. Get rid of our empty sheaf.
6041 */
6042 if (pcs->main->size < s->sheaf_capacity) {
6043 barn_put_empty_sheaf(barn, empty);
6044 return;
6045 }
6046
6047 /* Also unlikely for the same reason */
6048 if (pcs->spare->size < s->sheaf_capacity) {
6049 swap(pcs->main, pcs->spare);
6050 barn_put_empty_sheaf(barn, empty);
6051 return;
6052 }
6053
6054 /*
6055 * We probably failed barn_replace_full_sheaf() due to no empty sheaf
6056 * available there, but we allocated one, so finish the job.
6057 */
6058 barn_put_full_sheaf(barn, pcs->main);
6059 stat(s, BARN_PUT);
6060 pcs->main = empty;
6061}
6062
6063/*
6064 * Replace the full main sheaf with a (at least partially) empty sheaf.
6065 *
6066 * Must be called with the cpu_sheaves local lock locked. If successful, returns
6067 * the pcs pointer and the local lock locked (possibly on a different cpu than
6068 * initially called). If not successful, returns NULL and the local lock
6069 * unlocked.
6070 */
6071static struct slub_percpu_sheaves *
6072__pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs)
6073{
6074 struct slab_sheaf *empty;
6075 struct node_barn *barn;
6076 bool put_fail;
6077
6078restart:
6079 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6080
6081 barn = get_barn(s);
6082 if (!barn) {
6083 local_unlock(&s->cpu_sheaves->lock);
6084 return NULL;
6085 }
6086
6087 put_fail = false;
6088
6089 if (!pcs->spare) {
6090 empty = barn_get_empty_sheaf(barn);
6091 if (empty) {
6092 pcs->spare = pcs->main;
6093 pcs->main = empty;
6094 return pcs;
6095 }
6096 goto alloc_empty;
6097 }
6098
6099 if (pcs->spare->size < s->sheaf_capacity) {
6100 swap(pcs->main, pcs->spare);
6101 return pcs;
6102 }
6103
6104 empty = barn_replace_full_sheaf(barn, pcs->main);
6105
6106 if (!IS_ERR(empty)) {
6107 stat(s, BARN_PUT);
6108 pcs->main = empty;
6109 return pcs;
6110 }
6111
6112 if (PTR_ERR(empty) == -E2BIG) {
6113 /* Since we got here, spare exists and is full */
6114 struct slab_sheaf *to_flush = pcs->spare;
6115
6116 stat(s, BARN_PUT_FAIL);
6117
6118 pcs->spare = NULL;
6119 local_unlock(&s->cpu_sheaves->lock);
6120
6121 sheaf_flush_unused(s, to_flush);
6122 empty = to_flush;
6123 goto got_empty;
6124 }
6125
6126 /*
6127 * We could not replace full sheaf because barn had no empty
6128 * sheaves. We can still allocate it and put the full sheaf in
6129 * __pcs_install_empty_sheaf(), but if we fail to allocate it,
6130 * make sure to count the fail.
6131 */
6132 put_fail = true;
6133
6134alloc_empty:
6135 local_unlock(&s->cpu_sheaves->lock);
6136
6137 empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6138 if (empty)
6139 goto got_empty;
6140
6141 if (put_fail)
6142 stat(s, BARN_PUT_FAIL);
6143
6144 if (!sheaf_flush_main(s))
6145 return NULL;
6146
6147 if (!local_trylock(&s->cpu_sheaves->lock))
6148 return NULL;
6149
6150 pcs = this_cpu_ptr(s->cpu_sheaves);
6151
6152 /*
6153 * we flushed the main sheaf so it should be empty now,
6154 * but in case we got preempted or migrated, we need to
6155 * check again
6156 */
6157 if (pcs->main->size == s->sheaf_capacity)
6158 goto restart;
6159
6160 return pcs;
6161
6162got_empty:
6163 if (!local_trylock(&s->cpu_sheaves->lock)) {
6164 barn_put_empty_sheaf(barn, empty);
6165 return NULL;
6166 }
6167
6168 pcs = this_cpu_ptr(s->cpu_sheaves);
6169 __pcs_install_empty_sheaf(s, pcs, empty, barn);
6170
6171 return pcs;
6172}
6173
6174/*
6175 * Free an object to the percpu sheaves.
6176 * The object is expected to have passed slab_free_hook() already.
6177 */
6178static __fastpath_inline
6179bool free_to_pcs(struct kmem_cache *s, void *object)
6180{
6181 struct slub_percpu_sheaves *pcs;
6182
6183 if (!local_trylock(&s->cpu_sheaves->lock))
6184 return false;
6185
6186 pcs = this_cpu_ptr(s->cpu_sheaves);
6187
6188 if (unlikely(pcs->main->size == s->sheaf_capacity)) {
6189
6190 pcs = __pcs_replace_full_main(s, pcs);
6191 if (unlikely(!pcs))
6192 return false;
6193 }
6194
6195 pcs->main->objects[pcs->main->size++] = object;
6196
6197 local_unlock(&s->cpu_sheaves->lock);
6198
6199 stat(s, FREE_PCS);
6200
6201 return true;
6202}
6203
6204static void rcu_free_sheaf(struct rcu_head *head)
6205{
6206 struct kmem_cache_node *n;
6207 struct slab_sheaf *sheaf;
6208 struct node_barn *barn = NULL;
6209 struct kmem_cache *s;
6210
6211 sheaf = container_of(head, struct slab_sheaf, rcu_head);
6212
6213 s = sheaf->cache;
6214
6215 /*
6216 * This may remove some objects due to slab_free_hook() returning false,
6217 * so that the sheaf might no longer be completely full. But it's easier
6218 * to handle it as full (unless it became completely empty), as the code
6219 * handles it fine. The only downside is that sheaf will serve fewer
6220 * allocations when reused. It only happens due to debugging, which is a
6221 * performance hit anyway.
6222 *
6223 * If it returns true, there was at least one object from pfmemalloc
6224 * slab so simply flush everything.
6225 */
6226 if (__rcu_free_sheaf_prepare(s, sheaf))
6227 goto flush;
6228
6229 n = get_node(s, sheaf->node);
6230 if (!n)
6231 goto flush;
6232
6233 barn = n->barn;
6234
6235 /* due to slab_free_hook() */
6236 if (unlikely(sheaf->size == 0))
6237 goto empty;
6238
6239 /*
6240 * Checking nr_full/nr_empty outside lock avoids contention in case the
6241 * barn is at the respective limit. Due to the race we might go over the
6242 * limit but that should be rare and harmless.
6243 */
6244
6245 if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
6246 stat(s, BARN_PUT);
6247 barn_put_full_sheaf(barn, sheaf);
6248 return;
6249 }
6250
6251flush:
6252 stat(s, BARN_PUT_FAIL);
6253 sheaf_flush_unused(s, sheaf);
6254
6255empty:
6256 if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
6257 barn_put_empty_sheaf(barn, sheaf);
6258 return;
6259 }
6260
6261 free_empty_sheaf(s, sheaf);
6262}
6263
6264bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
6265{
6266 struct slub_percpu_sheaves *pcs;
6267 struct slab_sheaf *rcu_sheaf;
6268
6269 if (!local_trylock(&s->cpu_sheaves->lock))
6270 goto fail;
6271
6272 pcs = this_cpu_ptr(s->cpu_sheaves);
6273
6274 if (unlikely(!pcs->rcu_free)) {
6275
6276 struct slab_sheaf *empty;
6277 struct node_barn *barn;
6278
6279 if (pcs->spare && pcs->spare->size == 0) {
6280 pcs->rcu_free = pcs->spare;
6281 pcs->spare = NULL;
6282 goto do_free;
6283 }
6284
6285 barn = get_barn(s);
6286 if (!barn) {
6287 local_unlock(&s->cpu_sheaves->lock);
6288 goto fail;
6289 }
6290
6291 empty = barn_get_empty_sheaf(barn);
6292
6293 if (empty) {
6294 pcs->rcu_free = empty;
6295 goto do_free;
6296 }
6297
6298 local_unlock(&s->cpu_sheaves->lock);
6299
6300 empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6301
6302 if (!empty)
6303 goto fail;
6304
6305 if (!local_trylock(&s->cpu_sheaves->lock)) {
6306 barn_put_empty_sheaf(barn, empty);
6307 goto fail;
6308 }
6309
6310 pcs = this_cpu_ptr(s->cpu_sheaves);
6311
6312 if (unlikely(pcs->rcu_free))
6313 barn_put_empty_sheaf(barn, empty);
6314 else
6315 pcs->rcu_free = empty;
6316 }
6317
6318do_free:
6319
6320 rcu_sheaf = pcs->rcu_free;
6321
6322 /*
6323 * Since we flush immediately when size reaches capacity, we never reach
6324 * this with size already at capacity, so no OOB write is possible.
6325 */
6326 rcu_sheaf->objects[rcu_sheaf->size++] = obj;
6327
6328 if (likely(rcu_sheaf->size < s->sheaf_capacity)) {
6329 rcu_sheaf = NULL;
6330 } else {
6331 pcs->rcu_free = NULL;
6332 rcu_sheaf->node = numa_mem_id();
6333 }
6334
6335 /*
6336 * we flush before local_unlock to make sure a racing
6337 * flush_all_rcu_sheaves() doesn't miss this sheaf
6338 */
6339 if (rcu_sheaf)
6340 call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
6341
6342 local_unlock(&s->cpu_sheaves->lock);
6343
6344 stat(s, FREE_RCU_SHEAF);
6345 return true;
6346
6347fail:
6348 stat(s, FREE_RCU_SHEAF_FAIL);
6349 return false;
6350}
6351
6352/*
6353 * Bulk free objects to the percpu sheaves.
6354 * Unlike free_to_pcs() this includes the calls to all necessary hooks
6355 * and the fallback to freeing to slab pages.
6356 */
6357static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
6358{
6359 struct slub_percpu_sheaves *pcs;
6360 struct slab_sheaf *main, *empty;
6361 bool init = slab_want_init_on_free(s);
6362 unsigned int batch, i = 0;
6363 struct node_barn *barn;
6364 void *remote_objects[PCS_BATCH_MAX];
6365 unsigned int remote_nr = 0;
6366 int node = numa_mem_id();
6367
6368next_remote_batch:
6369 while (i < size) {
6370 struct slab *slab = virt_to_slab(p[i]);
6371
6372 memcg_slab_free_hook(s, slab, p + i, 1);
6373 alloc_tagging_slab_free_hook(s, slab, p + i, 1);
6374
6375 if (unlikely(!slab_free_hook(s, p[i], init, false))) {
6376 p[i] = p[--size];
6377 continue;
6378 }
6379
6380 if (unlikely((IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)
6381 || slab_test_pfmemalloc(slab))) {
6382 remote_objects[remote_nr] = p[i];
6383 p[i] = p[--size];
6384 if (++remote_nr >= PCS_BATCH_MAX)
6385 goto flush_remote;
6386 continue;
6387 }
6388
6389 i++;
6390 }
6391
6392 if (!size)
6393 goto flush_remote;
6394
6395next_batch:
6396 if (!local_trylock(&s->cpu_sheaves->lock))
6397 goto fallback;
6398
6399 pcs = this_cpu_ptr(s->cpu_sheaves);
6400
6401 if (likely(pcs->main->size < s->sheaf_capacity))
6402 goto do_free;
6403
6404 barn = get_barn(s);
6405 if (!barn)
6406 goto no_empty;
6407
6408 if (!pcs->spare) {
6409 empty = barn_get_empty_sheaf(barn);
6410 if (!empty)
6411 goto no_empty;
6412
6413 pcs->spare = pcs->main;
6414 pcs->main = empty;
6415 goto do_free;
6416 }
6417
6418 if (pcs->spare->size < s->sheaf_capacity) {
6419 swap(pcs->main, pcs->spare);
6420 goto do_free;
6421 }
6422
6423 empty = barn_replace_full_sheaf(barn, pcs->main);
6424 if (IS_ERR(empty)) {
6425 stat(s, BARN_PUT_FAIL);
6426 goto no_empty;
6427 }
6428
6429 stat(s, BARN_PUT);
6430 pcs->main = empty;
6431
6432do_free:
6433 main = pcs->main;
6434 batch = min(size, s->sheaf_capacity - main->size);
6435
6436 memcpy(main->objects + main->size, p, batch * sizeof(void *));
6437 main->size += batch;
6438
6439 local_unlock(&s->cpu_sheaves->lock);
6440
6441 stat_add(s, FREE_PCS, batch);
6442
6443 if (batch < size) {
6444 p += batch;
6445 size -= batch;
6446 goto next_batch;
6447 }
6448
6449 if (remote_nr)
6450 goto flush_remote;
6451
6452 return;
6453
6454no_empty:
6455 local_unlock(&s->cpu_sheaves->lock);
6456
6457 /*
6458 * if we depleted all empty sheaves in the barn or there are too
6459 * many full sheaves, free the rest to slab pages
6460 */
6461fallback:
6462 __kmem_cache_free_bulk(s, size, p);
6463
6464flush_remote:
6465 if (remote_nr) {
6466 __kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]);
6467 if (i < size) {
6468 remote_nr = 0;
6469 goto next_remote_batch;
6470 }
6471 }
6472}
6473
6474struct defer_free {
6475 struct llist_head objects;
6476 struct llist_head slabs;
6477 struct irq_work work;
6478};
6479
6480static void free_deferred_objects(struct irq_work *work);
6481
6482static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
6483 .objects = LLIST_HEAD_INIT(objects),
6484 .slabs = LLIST_HEAD_INIT(slabs),
6485 .work = IRQ_WORK_INIT(free_deferred_objects),
6486};
6487
6488/*
6489 * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
6490 * to take sleeping spin_locks from __slab_free() and deactivate_slab().
6491 * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
6492 */
6493static void free_deferred_objects(struct irq_work *work)
6494{
6495 struct defer_free *df = container_of(work, struct defer_free, work);
6496 struct llist_head *objs = &df->objects;
6497 struct llist_head *slabs = &df->slabs;
6498 struct llist_node *llnode, *pos, *t;
6499
6500 if (llist_empty(objs) && llist_empty(slabs))
6501 return;
6502
6503 llnode = llist_del_all(objs);
6504 llist_for_each_safe(pos, t, llnode) {
6505 struct kmem_cache *s;
6506 struct slab *slab;
6507 void *x = pos;
6508
6509 slab = virt_to_slab(x);
6510 s = slab->slab_cache;
6511
6512 /* Point 'x' back to the beginning of allocated object */
6513 x -= s->offset;
6514
6515 /*
6516 * We used freepointer in 'x' to link 'x' into df->objects.
6517 * Clear it to NULL to avoid false positive detection
6518 * of "Freepointer corruption".
6519 */
6520 set_freepointer(s, x, NULL);
6521
6522 __slab_free(s, slab, x, x, 1, _THIS_IP_);
6523 }
6524
6525 llnode = llist_del_all(slabs);
6526 llist_for_each_safe(pos, t, llnode) {
6527 struct slab *slab = container_of(pos, struct slab, llnode);
6528
6529 if (slab->frozen)
6530 deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
6531 else
6532 free_slab(slab->slab_cache, slab);
6533 }
6534}
6535
6536static void defer_free(struct kmem_cache *s, void *head)
6537{
6538 struct defer_free *df;
6539
6540 guard(preempt)();
6541
6542 head = kasan_reset_tag(head);
6543
6544 df = this_cpu_ptr(&defer_free_objects);
6545 if (llist_add(head + s->offset, &df->objects))
6546 irq_work_queue(&df->work);
6547}
6548
6549static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
6550{
6551 struct defer_free *df;
6552
6553 slab->flush_freelist = flush_freelist;
6554
6555 guard(preempt)();
6556
6557 df = this_cpu_ptr(&defer_free_objects);
6558 if (llist_add(&slab->llnode, &df->slabs))
6559 irq_work_queue(&df->work);
6560}
6561
6562void defer_free_barrier(void)
6563{
6564 int cpu;
6565
6566 for_each_possible_cpu(cpu)
6567 irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
6568}
6569
6570/*
6571 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
6572 * can perform fastpath freeing without additional function calls.
6573 *
6574 * The fastpath is only possible if we are freeing to the current cpu slab
6575 * of this processor. This typically the case if we have just allocated
6576 * the item before.
6577 *
6578 * If fastpath is not possible then fall back to __slab_free where we deal
6579 * with all sorts of special processing.
6580 *
6581 * Bulk free of a freelist with several objects (all pointing to the
6582 * same slab) possible by specifying head and tail ptr, plus objects
6583 * count (cnt). Bulk free indicated by tail pointer being set.
6584 */
6585static __always_inline void do_slab_free(struct kmem_cache *s,
6586 struct slab *slab, void *head, void *tail,
6587 int cnt, unsigned long addr)
6588{
6589 /* cnt == 0 signals that it's called from kfree_nolock() */
6590 bool allow_spin = cnt;
6591 struct kmem_cache_cpu *c;
6592 unsigned long tid;
6593 void **freelist;
6594
6595redo:
6596 /*
6597 * Determine the currently cpus per cpu slab.
6598 * The cpu may change afterward. However that does not matter since
6599 * data is retrieved via this pointer. If we are on the same cpu
6600 * during the cmpxchg then the free will succeed.
6601 */
6602 c = raw_cpu_ptr(s->cpu_slab);
6603 tid = READ_ONCE(c->tid);
6604
6605 /* Same with comment on barrier() in __slab_alloc_node() */
6606 barrier();
6607
6608 if (unlikely(slab != c->slab)) {
6609 if (unlikely(!allow_spin)) {
6610 /*
6611 * __slab_free() can locklessly cmpxchg16 into a slab,
6612 * but then it might need to take spin_lock or local_lock
6613 * in put_cpu_partial() for further processing.
6614 * Avoid the complexity and simply add to a deferred list.
6615 */
6616 defer_free(s, head);
6617 } else {
6618 __slab_free(s, slab, head, tail, cnt, addr);
6619 }
6620 return;
6621 }
6622
6623 if (unlikely(!allow_spin)) {
6624 if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
6625 local_lock_is_locked(&s->cpu_slab->lock)) {
6626 defer_free(s, head);
6627 return;
6628 }
6629 cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
6630 }
6631
6632 if (USE_LOCKLESS_FAST_PATH()) {
6633 freelist = READ_ONCE(c->freelist);
6634
6635 set_freepointer(s, tail, freelist);
6636
6637 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
6638 note_cmpxchg_failure("slab_free", s, tid);
6639 goto redo;
6640 }
6641 } else {
6642 __maybe_unused unsigned long flags = 0;
6643
6644 /* Update the free list under the local lock */
6645 local_lock_cpu_slab(s, flags);
6646 c = this_cpu_ptr(s->cpu_slab);
6647 if (unlikely(slab != c->slab)) {
6648 local_unlock_cpu_slab(s, flags);
6649 goto redo;
6650 }
6651 tid = c->tid;
6652 freelist = c->freelist;
6653
6654 set_freepointer(s, tail, freelist);
6655 c->freelist = head;
6656 c->tid = next_tid(tid);
6657
6658 local_unlock_cpu_slab(s, flags);
6659 }
6660 stat_add(s, FREE_FASTPATH, cnt);
6661}
6662
6663static __fastpath_inline
6664void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
6665 unsigned long addr)
6666{
6667 memcg_slab_free_hook(s, slab, &object, 1);
6668 alloc_tagging_slab_free_hook(s, slab, &object, 1);
6669
6670 if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6671 return;
6672
6673 if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) ||
6674 slab_nid(slab) == numa_mem_id())
6675 && likely(!slab_test_pfmemalloc(slab))) {
6676 if (likely(free_to_pcs(s, object)))
6677 return;
6678 }
6679
6680 do_slab_free(s, slab, object, object, 1, addr);
6681}
6682
6683#ifdef CONFIG_MEMCG
6684/* Do not inline the rare memcg charging failed path into the allocation path */
6685static noinline
6686void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
6687{
6688 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6689 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
6690}
6691#endif
6692
6693static __fastpath_inline
6694void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
6695 void *tail, void **p, int cnt, unsigned long addr)
6696{
6697 memcg_slab_free_hook(s, slab, p, cnt);
6698 alloc_tagging_slab_free_hook(s, slab, p, cnt);
6699 /*
6700 * With KASAN enabled slab_free_freelist_hook modifies the freelist
6701 * to remove objects, whose reuse must be delayed.
6702 */
6703 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
6704 do_slab_free(s, slab, head, tail, cnt, addr);
6705}
6706
6707#ifdef CONFIG_SLUB_RCU_DEBUG
6708static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
6709{
6710 struct rcu_delayed_free *delayed_free =
6711 container_of(rcu_head, struct rcu_delayed_free, head);
6712 void *object = delayed_free->object;
6713 struct slab *slab = virt_to_slab(object);
6714 struct kmem_cache *s;
6715
6716 kfree(delayed_free);
6717
6718 if (WARN_ON(is_kfence_address(object)))
6719 return;
6720
6721 /* find the object and the cache again */
6722 if (WARN_ON(!slab))
6723 return;
6724 s = slab->slab_cache;
6725 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
6726 return;
6727
6728 /* resume freeing */
6729 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
6730 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
6731}
6732#endif /* CONFIG_SLUB_RCU_DEBUG */
6733
6734#ifdef CONFIG_KASAN_GENERIC
6735void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
6736{
6737 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
6738}
6739#endif
6740
6741static inline struct kmem_cache *virt_to_cache(const void *obj)
6742{
6743 struct slab *slab;
6744
6745 slab = virt_to_slab(obj);
6746 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
6747 return NULL;
6748 return slab->slab_cache;
6749}
6750
6751static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
6752{
6753 struct kmem_cache *cachep;
6754
6755 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
6756 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
6757 return s;
6758
6759 cachep = virt_to_cache(x);
6760 if (WARN(cachep && cachep != s,
6761 "%s: Wrong slab cache. %s but object is from %s\n",
6762 __func__, s->name, cachep->name))
6763 print_tracking(cachep, x);
6764 return cachep;
6765}
6766
6767/**
6768 * kmem_cache_free - Deallocate an object
6769 * @s: The cache the allocation was from.
6770 * @x: The previously allocated object.
6771 *
6772 * Free an object which was previously allocated from this
6773 * cache.
6774 */
6775void kmem_cache_free(struct kmem_cache *s, void *x)
6776{
6777 s = cache_from_obj(s, x);
6778 if (!s)
6779 return;
6780 trace_kmem_cache_free(_RET_IP_, x, s);
6781 slab_free(s, virt_to_slab(x), x, _RET_IP_);
6782}
6783EXPORT_SYMBOL(kmem_cache_free);
6784
6785static void free_large_kmalloc(struct page *page, void *object)
6786{
6787 unsigned int order = compound_order(page);
6788
6789 if (WARN_ON_ONCE(!PageLargeKmalloc(page))) {
6790 dump_page(page, "Not a kmalloc allocation");
6791 return;
6792 }
6793
6794 if (WARN_ON_ONCE(order == 0))
6795 pr_warn_once("object pointer: 0x%p\n", object);
6796
6797 kmemleak_free(object);
6798 kasan_kfree_large(object);
6799 kmsan_kfree_large(object);
6800
6801 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
6802 -(PAGE_SIZE << order));
6803 __ClearPageLargeKmalloc(page);
6804 free_frozen_pages(page, order);
6805}
6806
6807/*
6808 * Given an rcu_head embedded within an object obtained from kvmalloc at an
6809 * offset < 4k, free the object in question.
6810 */
6811void kvfree_rcu_cb(struct rcu_head *head)
6812{
6813 void *obj = head;
6814 struct page *page;
6815 struct slab *slab;
6816 struct kmem_cache *s;
6817 void *slab_addr;
6818
6819 if (is_vmalloc_addr(obj)) {
6820 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6821 vfree(obj);
6822 return;
6823 }
6824
6825 page = virt_to_page(obj);
6826 slab = page_slab(page);
6827 if (!slab) {
6828 /*
6829 * rcu_head offset can be only less than page size so no need to
6830 * consider allocation order
6831 */
6832 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6833 free_large_kmalloc(page, obj);
6834 return;
6835 }
6836
6837 s = slab->slab_cache;
6838 slab_addr = slab_address(slab);
6839
6840 if (is_kfence_address(obj)) {
6841 obj = kfence_object_start(obj);
6842 } else {
6843 unsigned int idx = __obj_to_index(s, slab_addr, obj);
6844
6845 obj = slab_addr + s->size * idx;
6846 obj = fixup_red_left(s, obj);
6847 }
6848
6849 slab_free(s, slab, obj, _RET_IP_);
6850}
6851
6852/**
6853 * kfree - free previously allocated memory
6854 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
6855 *
6856 * If @object is NULL, no operation is performed.
6857 */
6858void kfree(const void *object)
6859{
6860 struct page *page;
6861 struct slab *slab;
6862 struct kmem_cache *s;
6863 void *x = (void *)object;
6864
6865 trace_kfree(_RET_IP_, object);
6866
6867 if (unlikely(ZERO_OR_NULL_PTR(object)))
6868 return;
6869
6870 page = virt_to_page(object);
6871 slab = page_slab(page);
6872 if (!slab) {
6873 free_large_kmalloc(page, (void *)object);
6874 return;
6875 }
6876
6877 s = slab->slab_cache;
6878 slab_free(s, slab, x, _RET_IP_);
6879}
6880EXPORT_SYMBOL(kfree);
6881
6882/*
6883 * Can be called while holding raw_spinlock_t or from IRQ and NMI,
6884 * but ONLY for objects allocated by kmalloc_nolock().
6885 * Debug checks (like kmemleak and kfence) were skipped on allocation,
6886 * hence
6887 * obj = kmalloc(); kfree_nolock(obj);
6888 * will miss kmemleak/kfence book keeping and will cause false positives.
6889 * large_kmalloc is not supported either.
6890 */
6891void kfree_nolock(const void *object)
6892{
6893 struct slab *slab;
6894 struct kmem_cache *s;
6895 void *x = (void *)object;
6896
6897 if (unlikely(ZERO_OR_NULL_PTR(object)))
6898 return;
6899
6900 slab = virt_to_slab(object);
6901 if (unlikely(!slab)) {
6902 WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
6903 return;
6904 }
6905
6906 s = slab->slab_cache;
6907
6908 memcg_slab_free_hook(s, slab, &x, 1);
6909 alloc_tagging_slab_free_hook(s, slab, &x, 1);
6910 /*
6911 * Unlike slab_free() do NOT call the following:
6912 * kmemleak_free_recursive(x, s->flags);
6913 * debug_check_no_locks_freed(x, s->object_size);
6914 * debug_check_no_obj_freed(x, s->object_size);
6915 * __kcsan_check_access(x, s->object_size, ..);
6916 * kfence_free(x);
6917 * since they take spinlocks or not safe from any context.
6918 */
6919 kmsan_slab_free(s, x);
6920 /*
6921 * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
6922 * which will call raw_spin_lock_irqsave() which is technically
6923 * unsafe from NMI, but take chance and report kernel bug.
6924 * The sequence of
6925 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
6926 * -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
6927 * is double buggy and deserves to deadlock.
6928 */
6929 if (kasan_slab_pre_free(s, x))
6930 return;
6931 /*
6932 * memcg, kasan_slab_pre_free are done for 'x'.
6933 * The only thing left is kasan_poison without quarantine,
6934 * since kasan quarantine takes locks and not supported from NMI.
6935 */
6936 kasan_slab_free(s, x, false, false, /* skip quarantine */true);
6937 do_slab_free(s, slab, x, x, 0, _RET_IP_);
6938}
6939EXPORT_SYMBOL_GPL(kfree_nolock);
6940
6941static __always_inline __realloc_size(2) void *
6942__do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid)
6943{
6944 void *ret;
6945 size_t ks = 0;
6946 int orig_size = 0;
6947 struct kmem_cache *s = NULL;
6948
6949 if (unlikely(ZERO_OR_NULL_PTR(p)))
6950 goto alloc_new;
6951
6952 /* Check for double-free. */
6953 if (!kasan_check_byte(p))
6954 return NULL;
6955
6956 /*
6957 * If reallocation is not necessary (e. g. the new size is less
6958 * than the current allocated size), the current allocation will be
6959 * preserved unless __GFP_THISNODE is set. In the latter case a new
6960 * allocation on the requested node will be attempted.
6961 */
6962 if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
6963 nid != page_to_nid(virt_to_page(p)))
6964 goto alloc_new;
6965
6966 if (is_kfence_address(p)) {
6967 ks = orig_size = kfence_ksize(p);
6968 } else {
6969 struct page *page = virt_to_page(p);
6970 struct slab *slab = page_slab(page);
6971
6972 if (!slab) {
6973 /* Big kmalloc object */
6974 ks = page_size(page);
6975 WARN_ON(ks <= KMALLOC_MAX_CACHE_SIZE);
6976 WARN_ON(p != page_address(page));
6977 } else {
6978 s = slab->slab_cache;
6979 orig_size = get_orig_size(s, (void *)p);
6980 ks = s->object_size;
6981 }
6982 }
6983
6984 /* If the old object doesn't fit, allocate a bigger one */
6985 if (new_size > ks)
6986 goto alloc_new;
6987
6988 /* If the old object doesn't satisfy the new alignment, allocate a new one */
6989 if (!IS_ALIGNED((unsigned long)p, align))
6990 goto alloc_new;
6991
6992 /* Zero out spare memory. */
6993 if (want_init_on_alloc(flags)) {
6994 kasan_disable_current();
6995 if (orig_size && orig_size < new_size)
6996 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
6997 else
6998 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
6999 kasan_enable_current();
7000 }
7001
7002 /* Setup kmalloc redzone when needed */
7003 if (s && slub_debug_orig_size(s)) {
7004 set_orig_size(s, (void *)p, new_size);
7005 if (s->flags & SLAB_RED_ZONE && new_size < ks)
7006 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
7007 SLUB_RED_ACTIVE, ks - new_size);
7008 }
7009
7010 p = kasan_krealloc(p, new_size, flags);
7011 return (void *)p;
7012
7013alloc_new:
7014 ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_);
7015 if (ret && p) {
7016 /* Disable KASAN checks as the object's redzone is accessed. */
7017 kasan_disable_current();
7018 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
7019 kasan_enable_current();
7020 }
7021
7022 return ret;
7023}
7024
7025/**
7026 * krealloc_node_align - reallocate memory. The contents will remain unchanged.
7027 * @p: object to reallocate memory for.
7028 * @new_size: how many bytes of memory are required.
7029 * @align: desired alignment.
7030 * @flags: the type of memory to allocate.
7031 * @nid: NUMA node or NUMA_NO_NODE
7032 *
7033 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
7034 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
7035 *
7036 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7037 * Documentation/core-api/memory-allocation.rst for more details.
7038 *
7039 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7040 * initial memory allocation, every subsequent call to this API for the same
7041 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7042 * __GFP_ZERO is not fully honored by this API.
7043 *
7044 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
7045 * size of an allocation (but not the exact size it was allocated with) and
7046 * hence implements the following semantics for shrinking and growing buffers
7047 * with __GFP_ZERO::
7048 *
7049 * new bucket
7050 * 0 size size
7051 * |--------|----------------|
7052 * | keep | zero |
7053 *
7054 * Otherwise, the original allocation size 'orig_size' could be used to
7055 * precisely clear the requested size, and the new size will also be stored
7056 * as the new 'orig_size'.
7057 *
7058 * In any case, the contents of the object pointed to are preserved up to the
7059 * lesser of the new and old sizes.
7060 *
7061 * Return: pointer to the allocated memory or %NULL in case of error
7062 */
7063void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align,
7064 gfp_t flags, int nid)
7065{
7066 void *ret;
7067
7068 if (unlikely(!new_size)) {
7069 kfree(p);
7070 return ZERO_SIZE_PTR;
7071 }
7072
7073 ret = __do_krealloc(p, new_size, align, flags, nid);
7074 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
7075 kfree(p);
7076
7077 return ret;
7078}
7079EXPORT_SYMBOL(krealloc_node_align_noprof);
7080
7081static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
7082{
7083 /*
7084 * We want to attempt a large physically contiguous block first because
7085 * it is less likely to fragment multiple larger blocks and therefore
7086 * contribute to a long term fragmentation less than vmalloc fallback.
7087 * However make sure that larger requests are not too disruptive - i.e.
7088 * do not direct reclaim unless physically continuous memory is preferred
7089 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
7090 * start working in the background
7091 */
7092 if (size > PAGE_SIZE) {
7093 flags |= __GFP_NOWARN;
7094
7095 if (!(flags & __GFP_RETRY_MAYFAIL))
7096 flags &= ~__GFP_DIRECT_RECLAIM;
7097
7098 /* nofail semantic is implemented by the vmalloc fallback */
7099 flags &= ~__GFP_NOFAIL;
7100 }
7101
7102 return flags;
7103}
7104
7105/**
7106 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
7107 * failure, fall back to non-contiguous (vmalloc) allocation.
7108 * @size: size of the request.
7109 * @b: which set of kmalloc buckets to allocate from.
7110 * @align: desired alignment.
7111 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
7112 * @node: numa node to allocate from
7113 *
7114 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7115 * Documentation/core-api/memory-allocation.rst for more details.
7116 *
7117 * Uses kmalloc to get the memory but if the allocation fails then falls back
7118 * to the vmalloc allocator. Use kvfree for freeing the memory.
7119 *
7120 * GFP_NOWAIT and GFP_ATOMIC are supported, the __GFP_NORETRY modifier is not.
7121 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
7122 * preferable to the vmalloc fallback, due to visible performance drawbacks.
7123 *
7124 * Return: pointer to the allocated memory of %NULL in case of failure
7125 */
7126void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align,
7127 gfp_t flags, int node)
7128{
7129 bool allow_block;
7130 void *ret;
7131
7132 /*
7133 * It doesn't really make sense to fallback to vmalloc for sub page
7134 * requests
7135 */
7136 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
7137 kmalloc_gfp_adjust(flags, size),
7138 node, _RET_IP_);
7139 if (ret || size <= PAGE_SIZE)
7140 return ret;
7141
7142 /* Don't even allow crazy sizes */
7143 if (unlikely(size > INT_MAX)) {
7144 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7145 return NULL;
7146 }
7147
7148 /*
7149 * For non-blocking the VM_ALLOW_HUGE_VMAP is not used
7150 * because the huge-mapping path in vmalloc contains at
7151 * least one might_sleep() call.
7152 *
7153 * TODO: Revise huge-mapping path to support non-blocking
7154 * flags.
7155 */
7156 allow_block = gfpflags_allow_blocking(flags);
7157
7158 /*
7159 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
7160 * since the callers already cannot assume anything
7161 * about the resulting pointer, and cannot play
7162 * protection games.
7163 */
7164 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
7165 flags, PAGE_KERNEL, allow_block ? VM_ALLOW_HUGE_VMAP:0,
7166 node, __builtin_return_address(0));
7167}
7168EXPORT_SYMBOL(__kvmalloc_node_noprof);
7169
7170/**
7171 * kvfree() - Free memory.
7172 * @addr: Pointer to allocated memory.
7173 *
7174 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
7175 * It is slightly more efficient to use kfree() or vfree() if you are certain
7176 * that you know which one to use.
7177 *
7178 * Context: Either preemptible task context or not-NMI interrupt.
7179 */
7180void kvfree(const void *addr)
7181{
7182 if (is_vmalloc_addr(addr))
7183 vfree(addr);
7184 else
7185 kfree(addr);
7186}
7187EXPORT_SYMBOL(kvfree);
7188
7189/**
7190 * kvfree_sensitive - Free a data object containing sensitive information.
7191 * @addr: address of the data object to be freed.
7192 * @len: length of the data object.
7193 *
7194 * Use the special memzero_explicit() function to clear the content of a
7195 * kvmalloc'ed object containing sensitive data to make sure that the
7196 * compiler won't optimize out the data clearing.
7197 */
7198void kvfree_sensitive(const void *addr, size_t len)
7199{
7200 if (likely(!ZERO_OR_NULL_PTR(addr))) {
7201 memzero_explicit((void *)addr, len);
7202 kvfree(addr);
7203 }
7204}
7205EXPORT_SYMBOL(kvfree_sensitive);
7206
7207/**
7208 * kvrealloc_node_align - reallocate memory; contents remain unchanged
7209 * @p: object to reallocate memory for
7210 * @size: the size to reallocate
7211 * @align: desired alignment
7212 * @flags: the flags for the page level allocator
7213 * @nid: NUMA node id
7214 *
7215 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
7216 * and @p is not a %NULL pointer, the object pointed to is freed.
7217 *
7218 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7219 * Documentation/core-api/memory-allocation.rst for more details.
7220 *
7221 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7222 * initial memory allocation, every subsequent call to this API for the same
7223 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7224 * __GFP_ZERO is not fully honored by this API.
7225 *
7226 * In any case, the contents of the object pointed to are preserved up to the
7227 * lesser of the new and old sizes.
7228 *
7229 * This function must not be called concurrently with itself or kvfree() for the
7230 * same memory allocation.
7231 *
7232 * Return: pointer to the allocated memory or %NULL in case of error
7233 */
7234void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
7235 gfp_t flags, int nid)
7236{
7237 void *n;
7238
7239 if (is_vmalloc_addr(p))
7240 return vrealloc_node_align_noprof(p, size, align, flags, nid);
7241
7242 n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid);
7243 if (!n) {
7244 /* We failed to krealloc(), fall back to kvmalloc(). */
7245 n = kvmalloc_node_align_noprof(size, align, flags, nid);
7246 if (!n)
7247 return NULL;
7248
7249 if (p) {
7250 /* We already know that `p` is not a vmalloc address. */
7251 kasan_disable_current();
7252 memcpy(n, kasan_reset_tag(p), ksize(p));
7253 kasan_enable_current();
7254
7255 kfree(p);
7256 }
7257 }
7258
7259 return n;
7260}
7261EXPORT_SYMBOL(kvrealloc_node_align_noprof);
7262
7263struct detached_freelist {
7264 struct slab *slab;
7265 void *tail;
7266 void *freelist;
7267 int cnt;
7268 struct kmem_cache *s;
7269};
7270
7271/*
7272 * This function progressively scans the array with free objects (with
7273 * a limited look ahead) and extract objects belonging to the same
7274 * slab. It builds a detached freelist directly within the given
7275 * slab/objects. This can happen without any need for
7276 * synchronization, because the objects are owned by running process.
7277 * The freelist is build up as a single linked list in the objects.
7278 * The idea is, that this detached freelist can then be bulk
7279 * transferred to the real freelist(s), but only requiring a single
7280 * synchronization primitive. Look ahead in the array is limited due
7281 * to performance reasons.
7282 */
7283static inline
7284int build_detached_freelist(struct kmem_cache *s, size_t size,
7285 void **p, struct detached_freelist *df)
7286{
7287 int lookahead = 3;
7288 void *object;
7289 struct page *page;
7290 struct slab *slab;
7291 size_t same;
7292
7293 object = p[--size];
7294 page = virt_to_page(object);
7295 slab = page_slab(page);
7296 if (!s) {
7297 /* Handle kalloc'ed objects */
7298 if (!slab) {
7299 free_large_kmalloc(page, object);
7300 df->slab = NULL;
7301 return size;
7302 }
7303 /* Derive kmem_cache from object */
7304 df->slab = slab;
7305 df->s = slab->slab_cache;
7306 } else {
7307 df->slab = slab;
7308 df->s = cache_from_obj(s, object); /* Support for memcg */
7309 }
7310
7311 /* Start new detached freelist */
7312 df->tail = object;
7313 df->freelist = object;
7314 df->cnt = 1;
7315
7316 if (is_kfence_address(object))
7317 return size;
7318
7319 set_freepointer(df->s, object, NULL);
7320
7321 same = size;
7322 while (size) {
7323 object = p[--size];
7324 /* df->slab is always set at this point */
7325 if (df->slab == virt_to_slab(object)) {
7326 /* Opportunity build freelist */
7327 set_freepointer(df->s, object, df->freelist);
7328 df->freelist = object;
7329 df->cnt++;
7330 same--;
7331 if (size != same)
7332 swap(p[size], p[same]);
7333 continue;
7334 }
7335
7336 /* Limit look ahead search */
7337 if (!--lookahead)
7338 break;
7339 }
7340
7341 return same;
7342}
7343
7344/*
7345 * Internal bulk free of objects that were not initialised by the post alloc
7346 * hooks and thus should not be processed by the free hooks
7347 */
7348static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7349{
7350 if (!size)
7351 return;
7352
7353 do {
7354 struct detached_freelist df;
7355
7356 size = build_detached_freelist(s, size, p, &df);
7357 if (!df.slab)
7358 continue;
7359
7360 if (kfence_free(df.freelist))
7361 continue;
7362
7363 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
7364 _RET_IP_);
7365 } while (likely(size));
7366}
7367
7368/* Note that interrupts must be enabled when calling this function. */
7369void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7370{
7371 if (!size)
7372 return;
7373
7374 /*
7375 * freeing to sheaves is so incompatible with the detached freelist so
7376 * once we go that way, we have to do everything differently
7377 */
7378 if (s && s->cpu_sheaves) {
7379 free_to_pcs_bulk(s, size, p);
7380 return;
7381 }
7382
7383 do {
7384 struct detached_freelist df;
7385
7386 size = build_detached_freelist(s, size, p, &df);
7387 if (!df.slab)
7388 continue;
7389
7390 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
7391 df.cnt, _RET_IP_);
7392 } while (likely(size));
7393}
7394EXPORT_SYMBOL(kmem_cache_free_bulk);
7395
7396static inline
7397int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
7398 void **p)
7399{
7400 struct kmem_cache_cpu *c;
7401 unsigned long irqflags;
7402 int i;
7403
7404 /*
7405 * Drain objects in the per cpu slab, while disabling local
7406 * IRQs, which protects against PREEMPT and interrupts
7407 * handlers invoking normal fastpath.
7408 */
7409 c = slub_get_cpu_ptr(s->cpu_slab);
7410 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7411
7412 for (i = 0; i < size; i++) {
7413 void *object = c->freelist;
7414
7415 if (unlikely(!object)) {
7416 /*
7417 * We may have removed an object from c->freelist using
7418 * the fastpath in the previous iteration; in that case,
7419 * c->tid has not been bumped yet.
7420 * Since ___slab_alloc() may reenable interrupts while
7421 * allocating memory, we should bump c->tid now.
7422 */
7423 c->tid = next_tid(c->tid);
7424
7425 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7426
7427 /*
7428 * Invoking slow path likely have side-effect
7429 * of re-populating per CPU c->freelist
7430 */
7431 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
7432 _RET_IP_, c, s->object_size);
7433 if (unlikely(!p[i]))
7434 goto error;
7435
7436 c = this_cpu_ptr(s->cpu_slab);
7437 maybe_wipe_obj_freeptr(s, p[i]);
7438
7439 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7440
7441 continue; /* goto for-loop */
7442 }
7443 c->freelist = get_freepointer(s, object);
7444 p[i] = object;
7445 maybe_wipe_obj_freeptr(s, p[i]);
7446 stat(s, ALLOC_FASTPATH);
7447 }
7448 c->tid = next_tid(c->tid);
7449 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7450 slub_put_cpu_ptr(s->cpu_slab);
7451
7452 return i;
7453
7454error:
7455 slub_put_cpu_ptr(s->cpu_slab);
7456 __kmem_cache_free_bulk(s, i, p);
7457 return 0;
7458
7459}
7460
7461/* Note that interrupts must be enabled when calling this function. */
7462int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
7463 void **p)
7464{
7465 unsigned int i = 0;
7466 void *kfence_obj;
7467
7468 if (!size)
7469 return 0;
7470
7471 s = slab_pre_alloc_hook(s, flags);
7472 if (unlikely(!s))
7473 return 0;
7474
7475 /*
7476 * to make things simpler, only assume at most once kfence allocated
7477 * object per bulk allocation and choose its index randomly
7478 */
7479 kfence_obj = kfence_alloc(s, s->object_size, flags);
7480
7481 if (unlikely(kfence_obj)) {
7482 if (unlikely(size == 1)) {
7483 p[0] = kfence_obj;
7484 goto out;
7485 }
7486 size--;
7487 }
7488
7489 if (s->cpu_sheaves)
7490 i = alloc_from_pcs_bulk(s, size, p);
7491
7492 if (i < size) {
7493 /*
7494 * If we ran out of memory, don't bother with freeing back to
7495 * the percpu sheaves, we have bigger problems.
7496 */
7497 if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) {
7498 if (i > 0)
7499 __kmem_cache_free_bulk(s, i, p);
7500 if (kfence_obj)
7501 __kfence_free(kfence_obj);
7502 return 0;
7503 }
7504 }
7505
7506 if (unlikely(kfence_obj)) {
7507 int idx = get_random_u32_below(size + 1);
7508
7509 if (idx != size)
7510 p[size] = p[idx];
7511 p[idx] = kfence_obj;
7512
7513 size++;
7514 }
7515
7516out:
7517 /*
7518 * memcg and kmem_cache debug support and memory initialization.
7519 * Done outside of the IRQ disabled fastpath loop.
7520 */
7521 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
7522 slab_want_init_on_alloc(flags, s), s->object_size))) {
7523 return 0;
7524 }
7525
7526 return size;
7527}
7528EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
7529
7530/*
7531 * Object placement in a slab is made very easy because we always start at
7532 * offset 0. If we tune the size of the object to the alignment then we can
7533 * get the required alignment by putting one properly sized object after
7534 * another.
7535 *
7536 * Notice that the allocation order determines the sizes of the per cpu
7537 * caches. Each processor has always one slab available for allocations.
7538 * Increasing the allocation order reduces the number of times that slabs
7539 * must be moved on and off the partial lists and is therefore a factor in
7540 * locking overhead.
7541 */
7542
7543/*
7544 * Minimum / Maximum order of slab pages. This influences locking overhead
7545 * and slab fragmentation. A higher order reduces the number of partial slabs
7546 * and increases the number of allocations possible without having to
7547 * take the list_lock.
7548 */
7549static unsigned int slub_min_order;
7550static unsigned int slub_max_order =
7551 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
7552static unsigned int slub_min_objects;
7553
7554/*
7555 * Calculate the order of allocation given an slab object size.
7556 *
7557 * The order of allocation has significant impact on performance and other
7558 * system components. Generally order 0 allocations should be preferred since
7559 * order 0 does not cause fragmentation in the page allocator. Larger objects
7560 * be problematic to put into order 0 slabs because there may be too much
7561 * unused space left. We go to a higher order if more than 1/16th of the slab
7562 * would be wasted.
7563 *
7564 * In order to reach satisfactory performance we must ensure that a minimum
7565 * number of objects is in one slab. Otherwise we may generate too much
7566 * activity on the partial lists which requires taking the list_lock. This is
7567 * less a concern for large slabs though which are rarely used.
7568 *
7569 * slab_max_order specifies the order where we begin to stop considering the
7570 * number of objects in a slab as critical. If we reach slab_max_order then
7571 * we try to keep the page order as low as possible. So we accept more waste
7572 * of space in favor of a small page order.
7573 *
7574 * Higher order allocations also allow the placement of more objects in a
7575 * slab and thereby reduce object handling overhead. If the user has
7576 * requested a higher minimum order then we start with that one instead of
7577 * the smallest order which will fit the object.
7578 */
7579static inline unsigned int calc_slab_order(unsigned int size,
7580 unsigned int min_order, unsigned int max_order,
7581 unsigned int fract_leftover)
7582{
7583 unsigned int order;
7584
7585 for (order = min_order; order <= max_order; order++) {
7586
7587 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
7588 unsigned int rem;
7589
7590 rem = slab_size % size;
7591
7592 if (rem <= slab_size / fract_leftover)
7593 break;
7594 }
7595
7596 return order;
7597}
7598
7599static inline int calculate_order(unsigned int size)
7600{
7601 unsigned int order;
7602 unsigned int min_objects;
7603 unsigned int max_objects;
7604 unsigned int min_order;
7605
7606 min_objects = slub_min_objects;
7607 if (!min_objects) {
7608 /*
7609 * Some architectures will only update present cpus when
7610 * onlining them, so don't trust the number if it's just 1. But
7611 * we also don't want to use nr_cpu_ids always, as on some other
7612 * architectures, there can be many possible cpus, but never
7613 * onlined. Here we compromise between trying to avoid too high
7614 * order on systems that appear larger than they are, and too
7615 * low order on systems that appear smaller than they are.
7616 */
7617 unsigned int nr_cpus = num_present_cpus();
7618 if (nr_cpus <= 1)
7619 nr_cpus = nr_cpu_ids;
7620 min_objects = 4 * (fls(nr_cpus) + 1);
7621 }
7622 /* min_objects can't be 0 because get_order(0) is undefined */
7623 max_objects = max(order_objects(slub_max_order, size), 1U);
7624 min_objects = min(min_objects, max_objects);
7625
7626 min_order = max_t(unsigned int, slub_min_order,
7627 get_order(min_objects * size));
7628 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
7629 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
7630
7631 /*
7632 * Attempt to find best configuration for a slab. This works by first
7633 * attempting to generate a layout with the best possible configuration
7634 * and backing off gradually.
7635 *
7636 * We start with accepting at most 1/16 waste and try to find the
7637 * smallest order from min_objects-derived/slab_min_order up to
7638 * slab_max_order that will satisfy the constraint. Note that increasing
7639 * the order can only result in same or less fractional waste, not more.
7640 *
7641 * If that fails, we increase the acceptable fraction of waste and try
7642 * again. The last iteration with fraction of 1/2 would effectively
7643 * accept any waste and give us the order determined by min_objects, as
7644 * long as at least single object fits within slab_max_order.
7645 */
7646 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
7647 order = calc_slab_order(size, min_order, slub_max_order,
7648 fraction);
7649 if (order <= slub_max_order)
7650 return order;
7651 }
7652
7653 /*
7654 * Doh this slab cannot be placed using slab_max_order.
7655 */
7656 order = get_order(size);
7657 if (order <= MAX_PAGE_ORDER)
7658 return order;
7659 return -ENOSYS;
7660}
7661
7662static void
7663init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn)
7664{
7665 n->nr_partial = 0;
7666 spin_lock_init(&n->list_lock);
7667 INIT_LIST_HEAD(&n->partial);
7668#ifdef CONFIG_SLUB_DEBUG
7669 atomic_long_set(&n->nr_slabs, 0);
7670 atomic_long_set(&n->total_objects, 0);
7671 INIT_LIST_HEAD(&n->full);
7672#endif
7673 n->barn = barn;
7674 if (barn)
7675 barn_init(barn);
7676}
7677
7678static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7679{
7680 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
7681 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
7682 sizeof(struct kmem_cache_cpu));
7683
7684 /*
7685 * Must align to double word boundary for the double cmpxchg
7686 * instructions to work; see __pcpu_double_call_return_bool().
7687 */
7688 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
7689 2 * sizeof(void *));
7690
7691 if (!s->cpu_slab)
7692 return 0;
7693
7694 init_kmem_cache_cpus(s);
7695
7696 return 1;
7697}
7698
7699static int init_percpu_sheaves(struct kmem_cache *s)
7700{
7701 int cpu;
7702
7703 for_each_possible_cpu(cpu) {
7704 struct slub_percpu_sheaves *pcs;
7705
7706 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
7707
7708 local_trylock_init(&pcs->lock);
7709
7710 pcs->main = alloc_empty_sheaf(s, GFP_KERNEL);
7711
7712 if (!pcs->main)
7713 return -ENOMEM;
7714 }
7715
7716 return 0;
7717}
7718
7719static struct kmem_cache *kmem_cache_node;
7720
7721/*
7722 * No kmalloc_node yet so do it by hand. We know that this is the first
7723 * slab on the node for this slabcache. There are no concurrent accesses
7724 * possible.
7725 *
7726 * Note that this function only works on the kmem_cache_node
7727 * when allocating for the kmem_cache_node. This is used for bootstrapping
7728 * memory on a fresh node that has no slab structures yet.
7729 */
7730static void early_kmem_cache_node_alloc(int node)
7731{
7732 struct slab *slab;
7733 struct kmem_cache_node *n;
7734
7735 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
7736
7737 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
7738
7739 BUG_ON(!slab);
7740 if (slab_nid(slab) != node) {
7741 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
7742 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
7743 }
7744
7745 n = slab->freelist;
7746 BUG_ON(!n);
7747#ifdef CONFIG_SLUB_DEBUG
7748 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
7749#endif
7750 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
7751 slab->freelist = get_freepointer(kmem_cache_node, n);
7752 slab->inuse = 1;
7753 kmem_cache_node->node[node] = n;
7754 init_kmem_cache_node(n, NULL);
7755 inc_slabs_node(kmem_cache_node, node, slab->objects);
7756
7757 /*
7758 * No locks need to be taken here as it has just been
7759 * initialized and there is no concurrent access.
7760 */
7761 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
7762}
7763
7764static void free_kmem_cache_nodes(struct kmem_cache *s)
7765{
7766 int node;
7767 struct kmem_cache_node *n;
7768
7769 for_each_kmem_cache_node(s, node, n) {
7770 if (n->barn) {
7771 WARN_ON(n->barn->nr_full);
7772 WARN_ON(n->barn->nr_empty);
7773 kfree(n->barn);
7774 n->barn = NULL;
7775 }
7776
7777 s->node[node] = NULL;
7778 kmem_cache_free(kmem_cache_node, n);
7779 }
7780}
7781
7782void __kmem_cache_release(struct kmem_cache *s)
7783{
7784 cache_random_seq_destroy(s);
7785 if (s->cpu_sheaves)
7786 pcs_destroy(s);
7787#ifdef CONFIG_PREEMPT_RT
7788 if (s->cpu_slab)
7789 lockdep_unregister_key(&s->lock_key);
7790#endif
7791 free_percpu(s->cpu_slab);
7792 free_kmem_cache_nodes(s);
7793}
7794
7795static int init_kmem_cache_nodes(struct kmem_cache *s)
7796{
7797 int node;
7798
7799 for_each_node_mask(node, slab_nodes) {
7800 struct kmem_cache_node *n;
7801 struct node_barn *barn = NULL;
7802
7803 if (slab_state == DOWN) {
7804 early_kmem_cache_node_alloc(node);
7805 continue;
7806 }
7807
7808 if (s->cpu_sheaves) {
7809 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node);
7810
7811 if (!barn)
7812 return 0;
7813 }
7814
7815 n = kmem_cache_alloc_node(kmem_cache_node,
7816 GFP_KERNEL, node);
7817 if (!n) {
7818 kfree(barn);
7819 return 0;
7820 }
7821
7822 init_kmem_cache_node(n, barn);
7823
7824 s->node[node] = n;
7825 }
7826 return 1;
7827}
7828
7829static void set_cpu_partial(struct kmem_cache *s)
7830{
7831#ifdef CONFIG_SLUB_CPU_PARTIAL
7832 unsigned int nr_objects;
7833
7834 /*
7835 * cpu_partial determined the maximum number of objects kept in the
7836 * per cpu partial lists of a processor.
7837 *
7838 * Per cpu partial lists mainly contain slabs that just have one
7839 * object freed. If they are used for allocation then they can be
7840 * filled up again with minimal effort. The slab will never hit the
7841 * per node partial lists and therefore no locking will be required.
7842 *
7843 * For backwards compatibility reasons, this is determined as number
7844 * of objects, even though we now limit maximum number of pages, see
7845 * slub_set_cpu_partial()
7846 */
7847 if (!kmem_cache_has_cpu_partial(s))
7848 nr_objects = 0;
7849 else if (s->size >= PAGE_SIZE)
7850 nr_objects = 6;
7851 else if (s->size >= 1024)
7852 nr_objects = 24;
7853 else if (s->size >= 256)
7854 nr_objects = 52;
7855 else
7856 nr_objects = 120;
7857
7858 slub_set_cpu_partial(s, nr_objects);
7859#endif
7860}
7861
7862/*
7863 * calculate_sizes() determines the order and the distribution of data within
7864 * a slab object.
7865 */
7866static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
7867{
7868 slab_flags_t flags = s->flags;
7869 unsigned int size = s->object_size;
7870 unsigned int order;
7871
7872 /*
7873 * Round up object size to the next word boundary. We can only
7874 * place the free pointer at word boundaries and this determines
7875 * the possible location of the free pointer.
7876 */
7877 size = ALIGN(size, sizeof(void *));
7878
7879#ifdef CONFIG_SLUB_DEBUG
7880 /*
7881 * Determine if we can poison the object itself. If the user of
7882 * the slab may touch the object after free or before allocation
7883 * then we should never poison the object itself.
7884 */
7885 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
7886 !s->ctor)
7887 s->flags |= __OBJECT_POISON;
7888 else
7889 s->flags &= ~__OBJECT_POISON;
7890
7891
7892 /*
7893 * If we are Redzoning then check if there is some space between the
7894 * end of the object and the free pointer. If not then add an
7895 * additional word to have some bytes to store Redzone information.
7896 */
7897 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
7898 size += sizeof(void *);
7899#endif
7900
7901 /*
7902 * With that we have determined the number of bytes in actual use
7903 * by the object and redzoning.
7904 */
7905 s->inuse = size;
7906
7907 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
7908 (flags & SLAB_POISON) || s->ctor ||
7909 ((flags & SLAB_RED_ZONE) &&
7910 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
7911 /*
7912 * Relocate free pointer after the object if it is not
7913 * permitted to overwrite the first word of the object on
7914 * kmem_cache_free.
7915 *
7916 * This is the case if we do RCU, have a constructor, are
7917 * poisoning the objects, or are redzoning an object smaller
7918 * than sizeof(void *) or are redzoning an object with
7919 * slub_debug_orig_size() enabled, in which case the right
7920 * redzone may be extended.
7921 *
7922 * The assumption that s->offset >= s->inuse means free
7923 * pointer is outside of the object is used in the
7924 * freeptr_outside_object() function. If that is no
7925 * longer true, the function needs to be modified.
7926 */
7927 s->offset = size;
7928 size += sizeof(void *);
7929 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
7930 s->offset = args->freeptr_offset;
7931 } else {
7932 /*
7933 * Store freelist pointer near middle of object to keep
7934 * it away from the edges of the object to avoid small
7935 * sized over/underflows from neighboring allocations.
7936 */
7937 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
7938 }
7939
7940#ifdef CONFIG_SLUB_DEBUG
7941 if (flags & SLAB_STORE_USER) {
7942 /*
7943 * Need to store information about allocs and frees after
7944 * the object.
7945 */
7946 size += 2 * sizeof(struct track);
7947
7948 /* Save the original kmalloc request size */
7949 if (flags & SLAB_KMALLOC)
7950 size += sizeof(unsigned int);
7951 }
7952#endif
7953
7954 kasan_cache_create(s, &size, &s->flags);
7955#ifdef CONFIG_SLUB_DEBUG
7956 if (flags & SLAB_RED_ZONE) {
7957 /*
7958 * Add some empty padding so that we can catch
7959 * overwrites from earlier objects rather than let
7960 * tracking information or the free pointer be
7961 * corrupted if a user writes before the start
7962 * of the object.
7963 */
7964 size += sizeof(void *);
7965
7966 s->red_left_pad = sizeof(void *);
7967 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
7968 size += s->red_left_pad;
7969 }
7970#endif
7971
7972 /*
7973 * SLUB stores one object immediately after another beginning from
7974 * offset 0. In order to align the objects we have to simply size
7975 * each object to conform to the alignment.
7976 */
7977 size = ALIGN(size, s->align);
7978 s->size = size;
7979 s->reciprocal_size = reciprocal_value(size);
7980 order = calculate_order(size);
7981
7982 if ((int)order < 0)
7983 return 0;
7984
7985 s->allocflags = __GFP_COMP;
7986
7987 if (s->flags & SLAB_CACHE_DMA)
7988 s->allocflags |= GFP_DMA;
7989
7990 if (s->flags & SLAB_CACHE_DMA32)
7991 s->allocflags |= GFP_DMA32;
7992
7993 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7994 s->allocflags |= __GFP_RECLAIMABLE;
7995
7996 /*
7997 * Determine the number of objects per slab
7998 */
7999 s->oo = oo_make(order, size);
8000 s->min = oo_make(get_order(size), size);
8001
8002 return !!oo_objects(s->oo);
8003}
8004
8005static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
8006{
8007#ifdef CONFIG_SLUB_DEBUG
8008 void *addr = slab_address(slab);
8009 void *p;
8010
8011 if (!slab_add_kunit_errors())
8012 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
8013
8014 spin_lock(&object_map_lock);
8015 __fill_map(object_map, s, slab);
8016
8017 for_each_object(p, s, addr, slab->objects) {
8018
8019 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
8020 if (slab_add_kunit_errors())
8021 continue;
8022 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
8023 print_tracking(s, p);
8024 }
8025 }
8026 spin_unlock(&object_map_lock);
8027
8028 __slab_err(slab);
8029#endif
8030}
8031
8032/*
8033 * Attempt to free all partial slabs on a node.
8034 * This is called from __kmem_cache_shutdown(). We must take list_lock
8035 * because sysfs file might still access partial list after the shutdowning.
8036 */
8037static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
8038{
8039 LIST_HEAD(discard);
8040 struct slab *slab, *h;
8041
8042 BUG_ON(irqs_disabled());
8043 spin_lock_irq(&n->list_lock);
8044 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
8045 if (!slab->inuse) {
8046 remove_partial(n, slab);
8047 list_add(&slab->slab_list, &discard);
8048 } else {
8049 list_slab_objects(s, slab);
8050 }
8051 }
8052 spin_unlock_irq(&n->list_lock);
8053
8054 list_for_each_entry_safe(slab, h, &discard, slab_list)
8055 discard_slab(s, slab);
8056}
8057
8058bool __kmem_cache_empty(struct kmem_cache *s)
8059{
8060 int node;
8061 struct kmem_cache_node *n;
8062
8063 for_each_kmem_cache_node(s, node, n)
8064 if (n->nr_partial || node_nr_slabs(n))
8065 return false;
8066 return true;
8067}
8068
8069/*
8070 * Release all resources used by a slab cache.
8071 */
8072int __kmem_cache_shutdown(struct kmem_cache *s)
8073{
8074 int node;
8075 struct kmem_cache_node *n;
8076
8077 flush_all_cpus_locked(s);
8078
8079 /* we might have rcu sheaves in flight */
8080 if (s->cpu_sheaves)
8081 rcu_barrier();
8082
8083 /* Attempt to free all objects */
8084 for_each_kmem_cache_node(s, node, n) {
8085 if (n->barn)
8086 barn_shrink(s, n->barn);
8087 free_partial(s, n);
8088 if (n->nr_partial || node_nr_slabs(n))
8089 return 1;
8090 }
8091 return 0;
8092}
8093
8094#ifdef CONFIG_PRINTK
8095void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8096{
8097 void *base;
8098 int __maybe_unused i;
8099 unsigned int objnr;
8100 void *objp;
8101 void *objp0;
8102 struct kmem_cache *s = slab->slab_cache;
8103 struct track __maybe_unused *trackp;
8104
8105 kpp->kp_ptr = object;
8106 kpp->kp_slab = slab;
8107 kpp->kp_slab_cache = s;
8108 base = slab_address(slab);
8109 objp0 = kasan_reset_tag(object);
8110#ifdef CONFIG_SLUB_DEBUG
8111 objp = restore_red_left(s, objp0);
8112#else
8113 objp = objp0;
8114#endif
8115 objnr = obj_to_index(s, slab, objp);
8116 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
8117 objp = base + s->size * objnr;
8118 kpp->kp_objp = objp;
8119 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
8120 || (objp - base) % s->size) ||
8121 !(s->flags & SLAB_STORE_USER))
8122 return;
8123#ifdef CONFIG_SLUB_DEBUG
8124 objp = fixup_red_left(s, objp);
8125 trackp = get_track(s, objp, TRACK_ALLOC);
8126 kpp->kp_ret = (void *)trackp->addr;
8127#ifdef CONFIG_STACKDEPOT
8128 {
8129 depot_stack_handle_t handle;
8130 unsigned long *entries;
8131 unsigned int nr_entries;
8132
8133 handle = READ_ONCE(trackp->handle);
8134 if (handle) {
8135 nr_entries = stack_depot_fetch(handle, &entries);
8136 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8137 kpp->kp_stack[i] = (void *)entries[i];
8138 }
8139
8140 trackp = get_track(s, objp, TRACK_FREE);
8141 handle = READ_ONCE(trackp->handle);
8142 if (handle) {
8143 nr_entries = stack_depot_fetch(handle, &entries);
8144 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8145 kpp->kp_free_stack[i] = (void *)entries[i];
8146 }
8147 }
8148#endif
8149#endif
8150}
8151#endif
8152
8153/********************************************************************
8154 * Kmalloc subsystem
8155 *******************************************************************/
8156
8157static int __init setup_slub_min_order(const char *str, const struct kernel_param *kp)
8158{
8159 int ret;
8160
8161 ret = kstrtouint(str, 0, &slub_min_order);
8162 if (ret)
8163 return ret;
8164
8165 if (slub_min_order > slub_max_order)
8166 slub_max_order = slub_min_order;
8167
8168 return 0;
8169}
8170
8171static const struct kernel_param_ops param_ops_slab_min_order __initconst = {
8172 .set = setup_slub_min_order,
8173};
8174__core_param_cb(slab_min_order, ¶m_ops_slab_min_order, &slub_min_order, 0);
8175__core_param_cb(slub_min_order, ¶m_ops_slab_min_order, &slub_min_order, 0);
8176
8177static int __init setup_slub_max_order(const char *str, const struct kernel_param *kp)
8178{
8179 int ret;
8180
8181 ret = kstrtouint(str, 0, &slub_max_order);
8182 if (ret)
8183 return ret;
8184
8185 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
8186
8187 if (slub_min_order > slub_max_order)
8188 slub_min_order = slub_max_order;
8189
8190 return 0;
8191}
8192
8193static const struct kernel_param_ops param_ops_slab_max_order __initconst = {
8194 .set = setup_slub_max_order,
8195};
8196__core_param_cb(slab_max_order, ¶m_ops_slab_max_order, &slub_max_order, 0);
8197__core_param_cb(slub_max_order, ¶m_ops_slab_max_order, &slub_max_order, 0);
8198
8199core_param(slab_min_objects, slub_min_objects, uint, 0);
8200core_param(slub_min_objects, slub_min_objects, uint, 0);
8201
8202#ifdef CONFIG_NUMA
8203static int __init setup_slab_strict_numa(const char *str, const struct kernel_param *kp)
8204{
8205 if (nr_node_ids > 1) {
8206 static_branch_enable(&strict_numa);
8207 pr_info("SLUB: Strict NUMA enabled.\n");
8208 } else {
8209 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
8210 }
8211
8212 return 0;
8213}
8214
8215static const struct kernel_param_ops param_ops_slab_strict_numa __initconst = {
8216 .flags = KERNEL_PARAM_OPS_FL_NOARG,
8217 .set = setup_slab_strict_numa,
8218};
8219__core_param_cb(slab_strict_numa, ¶m_ops_slab_strict_numa, NULL, 0);
8220#endif
8221
8222
8223#ifdef CONFIG_HARDENED_USERCOPY
8224/*
8225 * Rejects incorrectly sized objects and objects that are to be copied
8226 * to/from userspace but do not fall entirely within the containing slab
8227 * cache's usercopy region.
8228 *
8229 * Returns NULL if check passes, otherwise const char * to name of cache
8230 * to indicate an error.
8231 */
8232void __check_heap_object(const void *ptr, unsigned long n,
8233 const struct slab *slab, bool to_user)
8234{
8235 struct kmem_cache *s;
8236 unsigned int offset;
8237 bool is_kfence = is_kfence_address(ptr);
8238
8239 ptr = kasan_reset_tag(ptr);
8240
8241 /* Find object and usable object size. */
8242 s = slab->slab_cache;
8243
8244 /* Reject impossible pointers. */
8245 if (ptr < slab_address(slab))
8246 usercopy_abort("SLUB object not in SLUB page?!", NULL,
8247 to_user, 0, n);
8248
8249 /* Find offset within object. */
8250 if (is_kfence)
8251 offset = ptr - kfence_object_start(ptr);
8252 else
8253 offset = (ptr - slab_address(slab)) % s->size;
8254
8255 /* Adjust for redzone and reject if within the redzone. */
8256 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
8257 if (offset < s->red_left_pad)
8258 usercopy_abort("SLUB object in left red zone",
8259 s->name, to_user, offset, n);
8260 offset -= s->red_left_pad;
8261 }
8262
8263 /* Allow address range falling entirely within usercopy region. */
8264 if (offset >= s->useroffset &&
8265 offset - s->useroffset <= s->usersize &&
8266 n <= s->useroffset - offset + s->usersize)
8267 return;
8268
8269 usercopy_abort("SLUB object", s->name, to_user, offset, n);
8270}
8271#endif /* CONFIG_HARDENED_USERCOPY */
8272
8273#define SHRINK_PROMOTE_MAX 32
8274
8275/*
8276 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
8277 * up most to the head of the partial lists. New allocations will then
8278 * fill those up and thus they can be removed from the partial lists.
8279 *
8280 * The slabs with the least items are placed last. This results in them
8281 * being allocated from last increasing the chance that the last objects
8282 * are freed in them.
8283 */
8284static int __kmem_cache_do_shrink(struct kmem_cache *s)
8285{
8286 int node;
8287 int i;
8288 struct kmem_cache_node *n;
8289 struct slab *slab;
8290 struct slab *t;
8291 struct list_head discard;
8292 struct list_head promote[SHRINK_PROMOTE_MAX];
8293 unsigned long flags;
8294 int ret = 0;
8295
8296 for_each_kmem_cache_node(s, node, n) {
8297 INIT_LIST_HEAD(&discard);
8298 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
8299 INIT_LIST_HEAD(promote + i);
8300
8301 if (n->barn)
8302 barn_shrink(s, n->barn);
8303
8304 spin_lock_irqsave(&n->list_lock, flags);
8305
8306 /*
8307 * Build lists of slabs to discard or promote.
8308 *
8309 * Note that concurrent frees may occur while we hold the
8310 * list_lock. slab->inuse here is the upper limit.
8311 */
8312 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
8313 int free = slab->objects - slab->inuse;
8314
8315 /* Do not reread slab->inuse */
8316 barrier();
8317
8318 /* We do not keep full slabs on the list */
8319 BUG_ON(free <= 0);
8320
8321 if (free == slab->objects) {
8322 list_move(&slab->slab_list, &discard);
8323 slab_clear_node_partial(slab);
8324 n->nr_partial--;
8325 dec_slabs_node(s, node, slab->objects);
8326 } else if (free <= SHRINK_PROMOTE_MAX)
8327 list_move(&slab->slab_list, promote + free - 1);
8328 }
8329
8330 /*
8331 * Promote the slabs filled up most to the head of the
8332 * partial list.
8333 */
8334 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
8335 list_splice(promote + i, &n->partial);
8336
8337 spin_unlock_irqrestore(&n->list_lock, flags);
8338
8339 /* Release empty slabs */
8340 list_for_each_entry_safe(slab, t, &discard, slab_list)
8341 free_slab(s, slab);
8342
8343 if (node_nr_slabs(n))
8344 ret = 1;
8345 }
8346
8347 return ret;
8348}
8349
8350int __kmem_cache_shrink(struct kmem_cache *s)
8351{
8352 flush_all(s);
8353 return __kmem_cache_do_shrink(s);
8354}
8355
8356static int slab_mem_going_offline_callback(void)
8357{
8358 struct kmem_cache *s;
8359
8360 mutex_lock(&slab_mutex);
8361 list_for_each_entry(s, &slab_caches, list) {
8362 flush_all_cpus_locked(s);
8363 __kmem_cache_do_shrink(s);
8364 }
8365 mutex_unlock(&slab_mutex);
8366
8367 return 0;
8368}
8369
8370static int slab_mem_going_online_callback(int nid)
8371{
8372 struct kmem_cache_node *n;
8373 struct kmem_cache *s;
8374 int ret = 0;
8375
8376 /*
8377 * We are bringing a node online. No memory is available yet. We must
8378 * allocate a kmem_cache_node structure in order to bring the node
8379 * online.
8380 */
8381 mutex_lock(&slab_mutex);
8382 list_for_each_entry(s, &slab_caches, list) {
8383 struct node_barn *barn = NULL;
8384
8385 /*
8386 * The structure may already exist if the node was previously
8387 * onlined and offlined.
8388 */
8389 if (get_node(s, nid))
8390 continue;
8391
8392 if (s->cpu_sheaves) {
8393 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid);
8394
8395 if (!barn) {
8396 ret = -ENOMEM;
8397 goto out;
8398 }
8399 }
8400
8401 /*
8402 * XXX: kmem_cache_alloc_node will fallback to other nodes
8403 * since memory is not yet available from the node that
8404 * is brought up.
8405 */
8406 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
8407 if (!n) {
8408 kfree(barn);
8409 ret = -ENOMEM;
8410 goto out;
8411 }
8412
8413 init_kmem_cache_node(n, barn);
8414
8415 s->node[nid] = n;
8416 }
8417 /*
8418 * Any cache created after this point will also have kmem_cache_node
8419 * initialized for the new node.
8420 */
8421 node_set(nid, slab_nodes);
8422out:
8423 mutex_unlock(&slab_mutex);
8424 return ret;
8425}
8426
8427static int slab_memory_callback(struct notifier_block *self,
8428 unsigned long action, void *arg)
8429{
8430 struct node_notify *nn = arg;
8431 int nid = nn->nid;
8432 int ret = 0;
8433
8434 switch (action) {
8435 case NODE_ADDING_FIRST_MEMORY:
8436 ret = slab_mem_going_online_callback(nid);
8437 break;
8438 case NODE_REMOVING_LAST_MEMORY:
8439 ret = slab_mem_going_offline_callback();
8440 break;
8441 }
8442 if (ret)
8443 ret = notifier_from_errno(ret);
8444 else
8445 ret = NOTIFY_OK;
8446 return ret;
8447}
8448
8449/********************************************************************
8450 * Basic setup of slabs
8451 *******************************************************************/
8452
8453/*
8454 * Used for early kmem_cache structures that were allocated using
8455 * the page allocator. Allocate them properly then fix up the pointers
8456 * that may be pointing to the wrong kmem_cache structure.
8457 */
8458
8459static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
8460{
8461 int node;
8462 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8463 struct kmem_cache_node *n;
8464
8465 memcpy(s, static_cache, kmem_cache->object_size);
8466
8467 /*
8468 * This runs very early, and only the boot processor is supposed to be
8469 * up. Even if it weren't true, IRQs are not up so we couldn't fire
8470 * IPIs around.
8471 */
8472 __flush_cpu_slab(s, smp_processor_id());
8473 for_each_kmem_cache_node(s, node, n) {
8474 struct slab *p;
8475
8476 list_for_each_entry(p, &n->partial, slab_list)
8477 p->slab_cache = s;
8478
8479#ifdef CONFIG_SLUB_DEBUG
8480 list_for_each_entry(p, &n->full, slab_list)
8481 p->slab_cache = s;
8482#endif
8483 }
8484 list_add(&s->list, &slab_caches);
8485 return s;
8486}
8487
8488void __init kmem_cache_init(void)
8489{
8490 static __initdata struct kmem_cache boot_kmem_cache,
8491 boot_kmem_cache_node;
8492 int node;
8493
8494 if (debug_guardpage_minorder())
8495 slub_max_order = 0;
8496
8497 /* Inform pointer hashing choice about slub debugging state. */
8498 hash_pointers_finalize(__slub_debug_enabled());
8499
8500 kmem_cache_node = &boot_kmem_cache_node;
8501 kmem_cache = &boot_kmem_cache;
8502
8503 /*
8504 * Initialize the nodemask for which we will allocate per node
8505 * structures. Here we don't need taking slab_mutex yet.
8506 */
8507 for_each_node_state(node, N_MEMORY)
8508 node_set(node, slab_nodes);
8509
8510 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8511 sizeof(struct kmem_cache_node),
8512 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8513
8514 hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
8515
8516 /* Able to allocate the per node structures */
8517 slab_state = PARTIAL;
8518
8519 create_boot_cache(kmem_cache, "kmem_cache",
8520 offsetof(struct kmem_cache, node) +
8521 nr_node_ids * sizeof(struct kmem_cache_node *),
8522 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8523
8524 kmem_cache = bootstrap(&boot_kmem_cache);
8525 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
8526
8527 /* Now we can use the kmem_cache to allocate kmalloc slabs */
8528 setup_kmalloc_cache_index_table();
8529 create_kmalloc_caches();
8530
8531 /* Setup random freelists for each cache */
8532 init_freelist_randomization();
8533
8534 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
8535 slub_cpu_dead);
8536
8537 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
8538 cache_line_size(),
8539 slub_min_order, slub_max_order, slub_min_objects,
8540 nr_cpu_ids, nr_node_ids);
8541}
8542
8543void __init kmem_cache_init_late(void)
8544{
8545 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
8546 WARN_ON(!flushwq);
8547}
8548
8549struct kmem_cache *
8550__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
8551 slab_flags_t flags, void (*ctor)(void *))
8552{
8553 struct kmem_cache *s;
8554
8555 s = find_mergeable(size, align, flags, name, ctor);
8556 if (s) {
8557 if (sysfs_slab_alias(s, name))
8558 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
8559 name);
8560
8561 s->refcount++;
8562
8563 /*
8564 * Adjust the object sizes so that we clear
8565 * the complete object on kzalloc.
8566 */
8567 s->object_size = max(s->object_size, size);
8568 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
8569 }
8570
8571 return s;
8572}
8573
8574int do_kmem_cache_create(struct kmem_cache *s, const char *name,
8575 unsigned int size, struct kmem_cache_args *args,
8576 slab_flags_t flags)
8577{
8578 int err = -EINVAL;
8579
8580 s->name = name;
8581 s->size = s->object_size = size;
8582
8583 s->flags = kmem_cache_flags(flags, s->name);
8584#ifdef CONFIG_SLAB_FREELIST_HARDENED
8585 s->random = get_random_long();
8586#endif
8587 s->align = args->align;
8588 s->ctor = args->ctor;
8589#ifdef CONFIG_HARDENED_USERCOPY
8590 s->useroffset = args->useroffset;
8591 s->usersize = args->usersize;
8592#endif
8593
8594 if (!calculate_sizes(args, s))
8595 goto out;
8596 if (disable_higher_order_debug) {
8597 /*
8598 * Disable debugging flags that store metadata if the min slab
8599 * order increased.
8600 */
8601 if (get_order(s->size) > get_order(s->object_size)) {
8602 s->flags &= ~DEBUG_METADATA_FLAGS;
8603 s->offset = 0;
8604 if (!calculate_sizes(args, s))
8605 goto out;
8606 }
8607 }
8608
8609#ifdef system_has_freelist_aba
8610 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
8611 /* Enable fast mode */
8612 s->flags |= __CMPXCHG_DOUBLE;
8613 }
8614#endif
8615
8616 /*
8617 * The larger the object size is, the more slabs we want on the partial
8618 * list to avoid pounding the page allocator excessively.
8619 */
8620 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
8621 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
8622
8623 set_cpu_partial(s);
8624
8625 if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY)
8626 && !(s->flags & SLAB_DEBUG_FLAGS)) {
8627 s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves);
8628 if (!s->cpu_sheaves) {
8629 err = -ENOMEM;
8630 goto out;
8631 }
8632 // TODO: increase capacity to grow slab_sheaf up to next kmalloc size?
8633 s->sheaf_capacity = args->sheaf_capacity;
8634 }
8635
8636#ifdef CONFIG_NUMA
8637 s->remote_node_defrag_ratio = 1000;
8638#endif
8639
8640 /* Initialize the pre-computed randomized freelist if slab is up */
8641 if (slab_state >= UP) {
8642 if (init_cache_random_seq(s))
8643 goto out;
8644 }
8645
8646 if (!init_kmem_cache_nodes(s))
8647 goto out;
8648
8649 if (!alloc_kmem_cache_cpus(s))
8650 goto out;
8651
8652 if (s->cpu_sheaves) {
8653 err = init_percpu_sheaves(s);
8654 if (err)
8655 goto out;
8656 }
8657
8658 err = 0;
8659
8660 /* Mutex is not taken during early boot */
8661 if (slab_state <= UP)
8662 goto out;
8663
8664 /*
8665 * Failing to create sysfs files is not critical to SLUB functionality.
8666 * If it fails, proceed with cache creation without these files.
8667 */
8668 if (sysfs_slab_add(s))
8669 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
8670
8671 if (s->flags & SLAB_STORE_USER)
8672 debugfs_slab_add(s);
8673
8674out:
8675 if (err)
8676 __kmem_cache_release(s);
8677 return err;
8678}
8679
8680#ifdef SLAB_SUPPORTS_SYSFS
8681static int count_inuse(struct slab *slab)
8682{
8683 return slab->inuse;
8684}
8685
8686static int count_total(struct slab *slab)
8687{
8688 return slab->objects;
8689}
8690#endif
8691
8692#ifdef CONFIG_SLUB_DEBUG
8693static void validate_slab(struct kmem_cache *s, struct slab *slab,
8694 unsigned long *obj_map)
8695{
8696 void *p;
8697 void *addr = slab_address(slab);
8698
8699 if (!validate_slab_ptr(slab)) {
8700 slab_err(s, slab, "Not a valid slab page");
8701 return;
8702 }
8703
8704 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
8705 return;
8706
8707 /* Now we know that a valid freelist exists */
8708 __fill_map(obj_map, s, slab);
8709 for_each_object(p, s, addr, slab->objects) {
8710 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
8711 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
8712
8713 if (!check_object(s, slab, p, val))
8714 break;
8715 }
8716}
8717
8718static int validate_slab_node(struct kmem_cache *s,
8719 struct kmem_cache_node *n, unsigned long *obj_map)
8720{
8721 unsigned long count = 0;
8722 struct slab *slab;
8723 unsigned long flags;
8724
8725 spin_lock_irqsave(&n->list_lock, flags);
8726
8727 list_for_each_entry(slab, &n->partial, slab_list) {
8728 validate_slab(s, slab, obj_map);
8729 count++;
8730 }
8731 if (count != n->nr_partial) {
8732 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
8733 s->name, count, n->nr_partial);
8734 slab_add_kunit_errors();
8735 }
8736
8737 if (!(s->flags & SLAB_STORE_USER))
8738 goto out;
8739
8740 list_for_each_entry(slab, &n->full, slab_list) {
8741 validate_slab(s, slab, obj_map);
8742 count++;
8743 }
8744 if (count != node_nr_slabs(n)) {
8745 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8746 s->name, count, node_nr_slabs(n));
8747 slab_add_kunit_errors();
8748 }
8749
8750out:
8751 spin_unlock_irqrestore(&n->list_lock, flags);
8752 return count;
8753}
8754
8755long validate_slab_cache(struct kmem_cache *s)
8756{
8757 int node;
8758 unsigned long count = 0;
8759 struct kmem_cache_node *n;
8760 unsigned long *obj_map;
8761
8762 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
8763 if (!obj_map)
8764 return -ENOMEM;
8765
8766 flush_all(s);
8767 for_each_kmem_cache_node(s, node, n)
8768 count += validate_slab_node(s, n, obj_map);
8769
8770 bitmap_free(obj_map);
8771
8772 return count;
8773}
8774EXPORT_SYMBOL(validate_slab_cache);
8775
8776#ifdef CONFIG_DEBUG_FS
8777/*
8778 * Generate lists of code addresses where slabcache objects are allocated
8779 * and freed.
8780 */
8781
8782struct location {
8783 depot_stack_handle_t handle;
8784 unsigned long count;
8785 unsigned long addr;
8786 unsigned long waste;
8787 long long sum_time;
8788 long min_time;
8789 long max_time;
8790 long min_pid;
8791 long max_pid;
8792 DECLARE_BITMAP(cpus, NR_CPUS);
8793 nodemask_t nodes;
8794};
8795
8796struct loc_track {
8797 unsigned long max;
8798 unsigned long count;
8799 struct location *loc;
8800 loff_t idx;
8801};
8802
8803static struct dentry *slab_debugfs_root;
8804
8805static void free_loc_track(struct loc_track *t)
8806{
8807 if (t->max)
8808 free_pages((unsigned long)t->loc,
8809 get_order(sizeof(struct location) * t->max));
8810}
8811
8812static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
8813{
8814 struct location *l;
8815 int order;
8816
8817 order = get_order(sizeof(struct location) * max);
8818
8819 l = (void *)__get_free_pages(flags, order);
8820 if (!l)
8821 return 0;
8822
8823 if (t->count) {
8824 memcpy(l, t->loc, sizeof(struct location) * t->count);
8825 free_loc_track(t);
8826 }
8827 t->max = max;
8828 t->loc = l;
8829 return 1;
8830}
8831
8832static int add_location(struct loc_track *t, struct kmem_cache *s,
8833 const struct track *track,
8834 unsigned int orig_size)
8835{
8836 long start, end, pos;
8837 struct location *l;
8838 unsigned long caddr, chandle, cwaste;
8839 unsigned long age = jiffies - track->when;
8840 depot_stack_handle_t handle = 0;
8841 unsigned int waste = s->object_size - orig_size;
8842
8843#ifdef CONFIG_STACKDEPOT
8844 handle = READ_ONCE(track->handle);
8845#endif
8846 start = -1;
8847 end = t->count;
8848
8849 for ( ; ; ) {
8850 pos = start + (end - start + 1) / 2;
8851
8852 /*
8853 * There is nothing at "end". If we end up there
8854 * we need to add something to before end.
8855 */
8856 if (pos == end)
8857 break;
8858
8859 l = &t->loc[pos];
8860 caddr = l->addr;
8861 chandle = l->handle;
8862 cwaste = l->waste;
8863 if ((track->addr == caddr) && (handle == chandle) &&
8864 (waste == cwaste)) {
8865
8866 l->count++;
8867 if (track->when) {
8868 l->sum_time += age;
8869 if (age < l->min_time)
8870 l->min_time = age;
8871 if (age > l->max_time)
8872 l->max_time = age;
8873
8874 if (track->pid < l->min_pid)
8875 l->min_pid = track->pid;
8876 if (track->pid > l->max_pid)
8877 l->max_pid = track->pid;
8878
8879 cpumask_set_cpu(track->cpu,
8880 to_cpumask(l->cpus));
8881 }
8882 node_set(page_to_nid(virt_to_page(track)), l->nodes);
8883 return 1;
8884 }
8885
8886 if (track->addr < caddr)
8887 end = pos;
8888 else if (track->addr == caddr && handle < chandle)
8889 end = pos;
8890 else if (track->addr == caddr && handle == chandle &&
8891 waste < cwaste)
8892 end = pos;
8893 else
8894 start = pos;
8895 }
8896
8897 /*
8898 * Not found. Insert new tracking element.
8899 */
8900 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
8901 return 0;
8902
8903 l = t->loc + pos;
8904 if (pos < t->count)
8905 memmove(l + 1, l,
8906 (t->count - pos) * sizeof(struct location));
8907 t->count++;
8908 l->count = 1;
8909 l->addr = track->addr;
8910 l->sum_time = age;
8911 l->min_time = age;
8912 l->max_time = age;
8913 l->min_pid = track->pid;
8914 l->max_pid = track->pid;
8915 l->handle = handle;
8916 l->waste = waste;
8917 cpumask_clear(to_cpumask(l->cpus));
8918 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
8919 nodes_clear(l->nodes);
8920 node_set(page_to_nid(virt_to_page(track)), l->nodes);
8921 return 1;
8922}
8923
8924static void process_slab(struct loc_track *t, struct kmem_cache *s,
8925 struct slab *slab, enum track_item alloc,
8926 unsigned long *obj_map)
8927{
8928 void *addr = slab_address(slab);
8929 bool is_alloc = (alloc == TRACK_ALLOC);
8930 void *p;
8931
8932 __fill_map(obj_map, s, slab);
8933
8934 for_each_object(p, s, addr, slab->objects)
8935 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
8936 add_location(t, s, get_track(s, p, alloc),
8937 is_alloc ? get_orig_size(s, p) :
8938 s->object_size);
8939}
8940#endif /* CONFIG_DEBUG_FS */
8941#endif /* CONFIG_SLUB_DEBUG */
8942
8943#ifdef SLAB_SUPPORTS_SYSFS
8944enum slab_stat_type {
8945 SL_ALL, /* All slabs */
8946 SL_PARTIAL, /* Only partially allocated slabs */
8947 SL_CPU, /* Only slabs used for cpu caches */
8948 SL_OBJECTS, /* Determine allocated objects not slabs */
8949 SL_TOTAL /* Determine object capacity not slabs */
8950};
8951
8952#define SO_ALL (1 << SL_ALL)
8953#define SO_PARTIAL (1 << SL_PARTIAL)
8954#define SO_CPU (1 << SL_CPU)
8955#define SO_OBJECTS (1 << SL_OBJECTS)
8956#define SO_TOTAL (1 << SL_TOTAL)
8957
8958static ssize_t show_slab_objects(struct kmem_cache *s,
8959 char *buf, unsigned long flags)
8960{
8961 unsigned long total = 0;
8962 int node;
8963 int x;
8964 unsigned long *nodes;
8965 int len = 0;
8966
8967 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
8968 if (!nodes)
8969 return -ENOMEM;
8970
8971 if (flags & SO_CPU) {
8972 int cpu;
8973
8974 for_each_possible_cpu(cpu) {
8975 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
8976 cpu);
8977 int node;
8978 struct slab *slab;
8979
8980 slab = READ_ONCE(c->slab);
8981 if (!slab)
8982 continue;
8983
8984 node = slab_nid(slab);
8985 if (flags & SO_TOTAL)
8986 x = slab->objects;
8987 else if (flags & SO_OBJECTS)
8988 x = slab->inuse;
8989 else
8990 x = 1;
8991
8992 total += x;
8993 nodes[node] += x;
8994
8995#ifdef CONFIG_SLUB_CPU_PARTIAL
8996 slab = slub_percpu_partial_read_once(c);
8997 if (slab) {
8998 node = slab_nid(slab);
8999 if (flags & SO_TOTAL)
9000 WARN_ON_ONCE(1);
9001 else if (flags & SO_OBJECTS)
9002 WARN_ON_ONCE(1);
9003 else
9004 x = data_race(slab->slabs);
9005 total += x;
9006 nodes[node] += x;
9007 }
9008#endif
9009 }
9010 }
9011
9012 /*
9013 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
9014 * already held which will conflict with an existing lock order:
9015 *
9016 * mem_hotplug_lock->slab_mutex->kernfs_mutex
9017 *
9018 * We don't really need mem_hotplug_lock (to hold off
9019 * slab_mem_going_offline_callback) here because slab's memory hot
9020 * unplug code doesn't destroy the kmem_cache->node[] data.
9021 */
9022
9023#ifdef CONFIG_SLUB_DEBUG
9024 if (flags & SO_ALL) {
9025 struct kmem_cache_node *n;
9026
9027 for_each_kmem_cache_node(s, node, n) {
9028
9029 if (flags & SO_TOTAL)
9030 x = node_nr_objs(n);
9031 else if (flags & SO_OBJECTS)
9032 x = node_nr_objs(n) - count_partial(n, count_free);
9033 else
9034 x = node_nr_slabs(n);
9035 total += x;
9036 nodes[node] += x;
9037 }
9038
9039 } else
9040#endif
9041 if (flags & SO_PARTIAL) {
9042 struct kmem_cache_node *n;
9043
9044 for_each_kmem_cache_node(s, node, n) {
9045 if (flags & SO_TOTAL)
9046 x = count_partial(n, count_total);
9047 else if (flags & SO_OBJECTS)
9048 x = count_partial(n, count_inuse);
9049 else
9050 x = n->nr_partial;
9051 total += x;
9052 nodes[node] += x;
9053 }
9054 }
9055
9056 len += sysfs_emit_at(buf, len, "%lu", total);
9057#ifdef CONFIG_NUMA
9058 for (node = 0; node < nr_node_ids; node++) {
9059 if (nodes[node])
9060 len += sysfs_emit_at(buf, len, " N%d=%lu",
9061 node, nodes[node]);
9062 }
9063#endif
9064 len += sysfs_emit_at(buf, len, "\n");
9065 kfree(nodes);
9066
9067 return len;
9068}
9069
9070#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
9071#define to_slab(n) container_of(n, struct kmem_cache, kobj)
9072
9073struct slab_attribute {
9074 struct attribute attr;
9075 ssize_t (*show)(struct kmem_cache *s, char *buf);
9076 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
9077};
9078
9079#define SLAB_ATTR_RO(_name) \
9080 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
9081
9082#define SLAB_ATTR(_name) \
9083 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
9084
9085static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
9086{
9087 return sysfs_emit(buf, "%u\n", s->size);
9088}
9089SLAB_ATTR_RO(slab_size);
9090
9091static ssize_t align_show(struct kmem_cache *s, char *buf)
9092{
9093 return sysfs_emit(buf, "%u\n", s->align);
9094}
9095SLAB_ATTR_RO(align);
9096
9097static ssize_t object_size_show(struct kmem_cache *s, char *buf)
9098{
9099 return sysfs_emit(buf, "%u\n", s->object_size);
9100}
9101SLAB_ATTR_RO(object_size);
9102
9103static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
9104{
9105 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
9106}
9107SLAB_ATTR_RO(objs_per_slab);
9108
9109static ssize_t order_show(struct kmem_cache *s, char *buf)
9110{
9111 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
9112}
9113SLAB_ATTR_RO(order);
9114
9115static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf)
9116{
9117 return sysfs_emit(buf, "%u\n", s->sheaf_capacity);
9118}
9119SLAB_ATTR_RO(sheaf_capacity);
9120
9121static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
9122{
9123 return sysfs_emit(buf, "%lu\n", s->min_partial);
9124}
9125
9126static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
9127 size_t length)
9128{
9129 unsigned long min;
9130 int err;
9131
9132 err = kstrtoul(buf, 10, &min);
9133 if (err)
9134 return err;
9135
9136 s->min_partial = min;
9137 return length;
9138}
9139SLAB_ATTR(min_partial);
9140
9141static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
9142{
9143 unsigned int nr_partial = 0;
9144#ifdef CONFIG_SLUB_CPU_PARTIAL
9145 nr_partial = s->cpu_partial;
9146#endif
9147
9148 return sysfs_emit(buf, "%u\n", nr_partial);
9149}
9150
9151static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
9152 size_t length)
9153{
9154 unsigned int objects;
9155 int err;
9156
9157 err = kstrtouint(buf, 10, &objects);
9158 if (err)
9159 return err;
9160 if (objects && !kmem_cache_has_cpu_partial(s))
9161 return -EINVAL;
9162
9163 slub_set_cpu_partial(s, objects);
9164 flush_all(s);
9165 return length;
9166}
9167SLAB_ATTR(cpu_partial);
9168
9169static ssize_t ctor_show(struct kmem_cache *s, char *buf)
9170{
9171 if (!s->ctor)
9172 return 0;
9173 return sysfs_emit(buf, "%pS\n", s->ctor);
9174}
9175SLAB_ATTR_RO(ctor);
9176
9177static ssize_t aliases_show(struct kmem_cache *s, char *buf)
9178{
9179 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
9180}
9181SLAB_ATTR_RO(aliases);
9182
9183static ssize_t partial_show(struct kmem_cache *s, char *buf)
9184{
9185 return show_slab_objects(s, buf, SO_PARTIAL);
9186}
9187SLAB_ATTR_RO(partial);
9188
9189static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
9190{
9191 return show_slab_objects(s, buf, SO_CPU);
9192}
9193SLAB_ATTR_RO(cpu_slabs);
9194
9195static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
9196{
9197 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
9198}
9199SLAB_ATTR_RO(objects_partial);
9200
9201static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
9202{
9203 int objects = 0;
9204 int slabs = 0;
9205 int cpu __maybe_unused;
9206 int len = 0;
9207
9208#ifdef CONFIG_SLUB_CPU_PARTIAL
9209 for_each_online_cpu(cpu) {
9210 struct slab *slab;
9211
9212 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9213
9214 if (slab)
9215 slabs += data_race(slab->slabs);
9216 }
9217#endif
9218
9219 /* Approximate half-full slabs, see slub_set_cpu_partial() */
9220 objects = (slabs * oo_objects(s->oo)) / 2;
9221 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
9222
9223#ifdef CONFIG_SLUB_CPU_PARTIAL
9224 for_each_online_cpu(cpu) {
9225 struct slab *slab;
9226
9227 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9228 if (slab) {
9229 slabs = data_race(slab->slabs);
9230 objects = (slabs * oo_objects(s->oo)) / 2;
9231 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
9232 cpu, objects, slabs);
9233 }
9234 }
9235#endif
9236 len += sysfs_emit_at(buf, len, "\n");
9237
9238 return len;
9239}
9240SLAB_ATTR_RO(slabs_cpu_partial);
9241
9242static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
9243{
9244 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
9245}
9246SLAB_ATTR_RO(reclaim_account);
9247
9248static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
9249{
9250 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
9251}
9252SLAB_ATTR_RO(hwcache_align);
9253
9254#ifdef CONFIG_ZONE_DMA
9255static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
9256{
9257 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
9258}
9259SLAB_ATTR_RO(cache_dma);
9260#endif
9261
9262#ifdef CONFIG_HARDENED_USERCOPY
9263static ssize_t usersize_show(struct kmem_cache *s, char *buf)
9264{
9265 return sysfs_emit(buf, "%u\n", s->usersize);
9266}
9267SLAB_ATTR_RO(usersize);
9268#endif
9269
9270static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
9271{
9272 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
9273}
9274SLAB_ATTR_RO(destroy_by_rcu);
9275
9276#ifdef CONFIG_SLUB_DEBUG
9277static ssize_t slabs_show(struct kmem_cache *s, char *buf)
9278{
9279 return show_slab_objects(s, buf, SO_ALL);
9280}
9281SLAB_ATTR_RO(slabs);
9282
9283static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
9284{
9285 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
9286}
9287SLAB_ATTR_RO(total_objects);
9288
9289static ssize_t objects_show(struct kmem_cache *s, char *buf)
9290{
9291 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
9292}
9293SLAB_ATTR_RO(objects);
9294
9295static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
9296{
9297 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
9298}
9299SLAB_ATTR_RO(sanity_checks);
9300
9301static ssize_t trace_show(struct kmem_cache *s, char *buf)
9302{
9303 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
9304}
9305SLAB_ATTR_RO(trace);
9306
9307static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
9308{
9309 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
9310}
9311
9312SLAB_ATTR_RO(red_zone);
9313
9314static ssize_t poison_show(struct kmem_cache *s, char *buf)
9315{
9316 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
9317}
9318
9319SLAB_ATTR_RO(poison);
9320
9321static ssize_t store_user_show(struct kmem_cache *s, char *buf)
9322{
9323 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
9324}
9325
9326SLAB_ATTR_RO(store_user);
9327
9328static ssize_t validate_show(struct kmem_cache *s, char *buf)
9329{
9330 return 0;
9331}
9332
9333static ssize_t validate_store(struct kmem_cache *s,
9334 const char *buf, size_t length)
9335{
9336 int ret = -EINVAL;
9337
9338 if (buf[0] == '1' && kmem_cache_debug(s)) {
9339 ret = validate_slab_cache(s);
9340 if (ret >= 0)
9341 ret = length;
9342 }
9343 return ret;
9344}
9345SLAB_ATTR(validate);
9346
9347#endif /* CONFIG_SLUB_DEBUG */
9348
9349#ifdef CONFIG_FAILSLAB
9350static ssize_t failslab_show(struct kmem_cache *s, char *buf)
9351{
9352 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
9353}
9354
9355static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
9356 size_t length)
9357{
9358 if (s->refcount > 1)
9359 return -EINVAL;
9360
9361 if (buf[0] == '1')
9362 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
9363 else
9364 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
9365
9366 return length;
9367}
9368SLAB_ATTR(failslab);
9369#endif
9370
9371static ssize_t shrink_show(struct kmem_cache *s, char *buf)
9372{
9373 return 0;
9374}
9375
9376static ssize_t shrink_store(struct kmem_cache *s,
9377 const char *buf, size_t length)
9378{
9379 if (buf[0] == '1')
9380 kmem_cache_shrink(s);
9381 else
9382 return -EINVAL;
9383 return length;
9384}
9385SLAB_ATTR(shrink);
9386
9387#ifdef CONFIG_NUMA
9388static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
9389{
9390 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
9391}
9392
9393static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
9394 const char *buf, size_t length)
9395{
9396 unsigned int ratio;
9397 int err;
9398
9399 err = kstrtouint(buf, 10, &ratio);
9400 if (err)
9401 return err;
9402 if (ratio > 100)
9403 return -ERANGE;
9404
9405 s->remote_node_defrag_ratio = ratio * 10;
9406
9407 return length;
9408}
9409SLAB_ATTR(remote_node_defrag_ratio);
9410#endif
9411
9412#ifdef CONFIG_SLUB_STATS
9413static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
9414{
9415 unsigned long sum = 0;
9416 int cpu;
9417 int len = 0;
9418 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
9419
9420 if (!data)
9421 return -ENOMEM;
9422
9423 for_each_online_cpu(cpu) {
9424 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
9425
9426 data[cpu] = x;
9427 sum += x;
9428 }
9429
9430 len += sysfs_emit_at(buf, len, "%lu", sum);
9431
9432#ifdef CONFIG_SMP
9433 for_each_online_cpu(cpu) {
9434 if (data[cpu])
9435 len += sysfs_emit_at(buf, len, " C%d=%u",
9436 cpu, data[cpu]);
9437 }
9438#endif
9439 kfree(data);
9440 len += sysfs_emit_at(buf, len, "\n");
9441
9442 return len;
9443}
9444
9445static void clear_stat(struct kmem_cache *s, enum stat_item si)
9446{
9447 int cpu;
9448
9449 for_each_online_cpu(cpu)
9450 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
9451}
9452
9453#define STAT_ATTR(si, text) \
9454static ssize_t text##_show(struct kmem_cache *s, char *buf) \
9455{ \
9456 return show_stat(s, buf, si); \
9457} \
9458static ssize_t text##_store(struct kmem_cache *s, \
9459 const char *buf, size_t length) \
9460{ \
9461 if (buf[0] != '0') \
9462 return -EINVAL; \
9463 clear_stat(s, si); \
9464 return length; \
9465} \
9466SLAB_ATTR(text); \
9467
9468STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
9469STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
9470STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
9471STAT_ATTR(FREE_PCS, free_cpu_sheaf);
9472STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
9473STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
9474STAT_ATTR(FREE_FASTPATH, free_fastpath);
9475STAT_ATTR(FREE_SLOWPATH, free_slowpath);
9476STAT_ATTR(FREE_FROZEN, free_frozen);
9477STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
9478STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
9479STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
9480STAT_ATTR(ALLOC_SLAB, alloc_slab);
9481STAT_ATTR(ALLOC_REFILL, alloc_refill);
9482STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
9483STAT_ATTR(FREE_SLAB, free_slab);
9484STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
9485STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
9486STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
9487STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
9488STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
9489STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
9490STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
9491STAT_ATTR(ORDER_FALLBACK, order_fallback);
9492STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
9493STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
9494STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
9495STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
9496STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
9497STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
9498STAT_ATTR(SHEAF_FLUSH, sheaf_flush);
9499STAT_ATTR(SHEAF_REFILL, sheaf_refill);
9500STAT_ATTR(SHEAF_ALLOC, sheaf_alloc);
9501STAT_ATTR(SHEAF_FREE, sheaf_free);
9502STAT_ATTR(BARN_GET, barn_get);
9503STAT_ATTR(BARN_GET_FAIL, barn_get_fail);
9504STAT_ATTR(BARN_PUT, barn_put);
9505STAT_ATTR(BARN_PUT_FAIL, barn_put_fail);
9506STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast);
9507STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow);
9508STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize);
9509STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast);
9510STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow);
9511#endif /* CONFIG_SLUB_STATS */
9512
9513#ifdef CONFIG_KFENCE
9514static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
9515{
9516 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
9517}
9518
9519static ssize_t skip_kfence_store(struct kmem_cache *s,
9520 const char *buf, size_t length)
9521{
9522 int ret = length;
9523
9524 if (buf[0] == '0')
9525 s->flags &= ~SLAB_SKIP_KFENCE;
9526 else if (buf[0] == '1')
9527 s->flags |= SLAB_SKIP_KFENCE;
9528 else
9529 ret = -EINVAL;
9530
9531 return ret;
9532}
9533SLAB_ATTR(skip_kfence);
9534#endif
9535
9536static struct attribute *slab_attrs[] = {
9537 &slab_size_attr.attr,
9538 &object_size_attr.attr,
9539 &objs_per_slab_attr.attr,
9540 &order_attr.attr,
9541 &sheaf_capacity_attr.attr,
9542 &min_partial_attr.attr,
9543 &cpu_partial_attr.attr,
9544 &objects_partial_attr.attr,
9545 &partial_attr.attr,
9546 &cpu_slabs_attr.attr,
9547 &ctor_attr.attr,
9548 &aliases_attr.attr,
9549 &align_attr.attr,
9550 &hwcache_align_attr.attr,
9551 &reclaim_account_attr.attr,
9552 &destroy_by_rcu_attr.attr,
9553 &shrink_attr.attr,
9554 &slabs_cpu_partial_attr.attr,
9555#ifdef CONFIG_SLUB_DEBUG
9556 &total_objects_attr.attr,
9557 &objects_attr.attr,
9558 &slabs_attr.attr,
9559 &sanity_checks_attr.attr,
9560 &trace_attr.attr,
9561 &red_zone_attr.attr,
9562 &poison_attr.attr,
9563 &store_user_attr.attr,
9564 &validate_attr.attr,
9565#endif
9566#ifdef CONFIG_ZONE_DMA
9567 &cache_dma_attr.attr,
9568#endif
9569#ifdef CONFIG_NUMA
9570 &remote_node_defrag_ratio_attr.attr,
9571#endif
9572#ifdef CONFIG_SLUB_STATS
9573 &alloc_cpu_sheaf_attr.attr,
9574 &alloc_fastpath_attr.attr,
9575 &alloc_slowpath_attr.attr,
9576 &free_cpu_sheaf_attr.attr,
9577 &free_rcu_sheaf_attr.attr,
9578 &free_rcu_sheaf_fail_attr.attr,
9579 &free_fastpath_attr.attr,
9580 &free_slowpath_attr.attr,
9581 &free_frozen_attr.attr,
9582 &free_add_partial_attr.attr,
9583 &free_remove_partial_attr.attr,
9584 &alloc_from_partial_attr.attr,
9585 &alloc_slab_attr.attr,
9586 &alloc_refill_attr.attr,
9587 &alloc_node_mismatch_attr.attr,
9588 &free_slab_attr.attr,
9589 &cpuslab_flush_attr.attr,
9590 &deactivate_full_attr.attr,
9591 &deactivate_empty_attr.attr,
9592 &deactivate_to_head_attr.attr,
9593 &deactivate_to_tail_attr.attr,
9594 &deactivate_remote_frees_attr.attr,
9595 &deactivate_bypass_attr.attr,
9596 &order_fallback_attr.attr,
9597 &cmpxchg_double_fail_attr.attr,
9598 &cmpxchg_double_cpu_fail_attr.attr,
9599 &cpu_partial_alloc_attr.attr,
9600 &cpu_partial_free_attr.attr,
9601 &cpu_partial_node_attr.attr,
9602 &cpu_partial_drain_attr.attr,
9603 &sheaf_flush_attr.attr,
9604 &sheaf_refill_attr.attr,
9605 &sheaf_alloc_attr.attr,
9606 &sheaf_free_attr.attr,
9607 &barn_get_attr.attr,
9608 &barn_get_fail_attr.attr,
9609 &barn_put_attr.attr,
9610 &barn_put_fail_attr.attr,
9611 &sheaf_prefill_fast_attr.attr,
9612 &sheaf_prefill_slow_attr.attr,
9613 &sheaf_prefill_oversize_attr.attr,
9614 &sheaf_return_fast_attr.attr,
9615 &sheaf_return_slow_attr.attr,
9616#endif
9617#ifdef CONFIG_FAILSLAB
9618 &failslab_attr.attr,
9619#endif
9620#ifdef CONFIG_HARDENED_USERCOPY
9621 &usersize_attr.attr,
9622#endif
9623#ifdef CONFIG_KFENCE
9624 &skip_kfence_attr.attr,
9625#endif
9626
9627 NULL
9628};
9629
9630static const struct attribute_group slab_attr_group = {
9631 .attrs = slab_attrs,
9632};
9633
9634static ssize_t slab_attr_show(struct kobject *kobj,
9635 struct attribute *attr,
9636 char *buf)
9637{
9638 struct slab_attribute *attribute;
9639 struct kmem_cache *s;
9640
9641 attribute = to_slab_attr(attr);
9642 s = to_slab(kobj);
9643
9644 if (!attribute->show)
9645 return -EIO;
9646
9647 return attribute->show(s, buf);
9648}
9649
9650static ssize_t slab_attr_store(struct kobject *kobj,
9651 struct attribute *attr,
9652 const char *buf, size_t len)
9653{
9654 struct slab_attribute *attribute;
9655 struct kmem_cache *s;
9656
9657 attribute = to_slab_attr(attr);
9658 s = to_slab(kobj);
9659
9660 if (!attribute->store)
9661 return -EIO;
9662
9663 return attribute->store(s, buf, len);
9664}
9665
9666static void kmem_cache_release(struct kobject *k)
9667{
9668 slab_kmem_cache_release(to_slab(k));
9669}
9670
9671static const struct sysfs_ops slab_sysfs_ops = {
9672 .show = slab_attr_show,
9673 .store = slab_attr_store,
9674};
9675
9676static const struct kobj_type slab_ktype = {
9677 .sysfs_ops = &slab_sysfs_ops,
9678 .release = kmem_cache_release,
9679};
9680
9681static struct kset *slab_kset;
9682
9683static inline struct kset *cache_kset(struct kmem_cache *s)
9684{
9685 return slab_kset;
9686}
9687
9688#define ID_STR_LENGTH 32
9689
9690/* Create a unique string id for a slab cache:
9691 *
9692 * Format :[flags-]size
9693 */
9694static char *create_unique_id(struct kmem_cache *s)
9695{
9696 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
9697 char *p = name;
9698
9699 if (!name)
9700 return ERR_PTR(-ENOMEM);
9701
9702 *p++ = ':';
9703 /*
9704 * First flags affecting slabcache operations. We will only
9705 * get here for aliasable slabs so we do not need to support
9706 * too many flags. The flags here must cover all flags that
9707 * are matched during merging to guarantee that the id is
9708 * unique.
9709 */
9710 if (s->flags & SLAB_CACHE_DMA)
9711 *p++ = 'd';
9712 if (s->flags & SLAB_CACHE_DMA32)
9713 *p++ = 'D';
9714 if (s->flags & SLAB_RECLAIM_ACCOUNT)
9715 *p++ = 'a';
9716 if (s->flags & SLAB_CONSISTENCY_CHECKS)
9717 *p++ = 'F';
9718 if (s->flags & SLAB_ACCOUNT)
9719 *p++ = 'A';
9720 if (p != name + 1)
9721 *p++ = '-';
9722 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
9723
9724 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
9725 kfree(name);
9726 return ERR_PTR(-EINVAL);
9727 }
9728 kmsan_unpoison_memory(name, p - name);
9729 return name;
9730}
9731
9732static int sysfs_slab_add(struct kmem_cache *s)
9733{
9734 int err;
9735 const char *name;
9736 struct kset *kset = cache_kset(s);
9737 int unmergeable = slab_unmergeable(s);
9738
9739 if (!unmergeable && disable_higher_order_debug &&
9740 (slub_debug & DEBUG_METADATA_FLAGS))
9741 unmergeable = 1;
9742
9743 if (unmergeable) {
9744 /*
9745 * Slabcache can never be merged so we can use the name proper.
9746 * This is typically the case for debug situations. In that
9747 * case we can catch duplicate names easily.
9748 */
9749 sysfs_remove_link(&slab_kset->kobj, s->name);
9750 name = s->name;
9751 } else {
9752 /*
9753 * Create a unique name for the slab as a target
9754 * for the symlinks.
9755 */
9756 name = create_unique_id(s);
9757 if (IS_ERR(name))
9758 return PTR_ERR(name);
9759 }
9760
9761 s->kobj.kset = kset;
9762 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
9763 if (err)
9764 goto out;
9765
9766 err = sysfs_create_group(&s->kobj, &slab_attr_group);
9767 if (err)
9768 goto out_del_kobj;
9769
9770 if (!unmergeable) {
9771 /* Setup first alias */
9772 sysfs_slab_alias(s, s->name);
9773 }
9774out:
9775 if (!unmergeable)
9776 kfree(name);
9777 return err;
9778out_del_kobj:
9779 kobject_del(&s->kobj);
9780 goto out;
9781}
9782
9783void sysfs_slab_unlink(struct kmem_cache *s)
9784{
9785 if (s->kobj.state_in_sysfs)
9786 kobject_del(&s->kobj);
9787}
9788
9789void sysfs_slab_release(struct kmem_cache *s)
9790{
9791 kobject_put(&s->kobj);
9792}
9793
9794/*
9795 * Need to buffer aliases during bootup until sysfs becomes
9796 * available lest we lose that information.
9797 */
9798struct saved_alias {
9799 struct kmem_cache *s;
9800 const char *name;
9801 struct saved_alias *next;
9802};
9803
9804static struct saved_alias *alias_list;
9805
9806static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
9807{
9808 struct saved_alias *al;
9809
9810 if (slab_state == FULL) {
9811 /*
9812 * If we have a leftover link then remove it.
9813 */
9814 sysfs_remove_link(&slab_kset->kobj, name);
9815 /*
9816 * The original cache may have failed to generate sysfs file.
9817 * In that case, sysfs_create_link() returns -ENOENT and
9818 * symbolic link creation is skipped.
9819 */
9820 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
9821 }
9822
9823 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
9824 if (!al)
9825 return -ENOMEM;
9826
9827 al->s = s;
9828 al->name = name;
9829 al->next = alias_list;
9830 alias_list = al;
9831 kmsan_unpoison_memory(al, sizeof(*al));
9832 return 0;
9833}
9834
9835static int __init slab_sysfs_init(void)
9836{
9837 struct kmem_cache *s;
9838 int err;
9839
9840 mutex_lock(&slab_mutex);
9841
9842 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
9843 if (!slab_kset) {
9844 mutex_unlock(&slab_mutex);
9845 pr_err("Cannot register slab subsystem.\n");
9846 return -ENOMEM;
9847 }
9848
9849 slab_state = FULL;
9850
9851 list_for_each_entry(s, &slab_caches, list) {
9852 err = sysfs_slab_add(s);
9853 if (err)
9854 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
9855 s->name);
9856 }
9857
9858 while (alias_list) {
9859 struct saved_alias *al = alias_list;
9860
9861 alias_list = alias_list->next;
9862 err = sysfs_slab_alias(al->s, al->name);
9863 if (err)
9864 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
9865 al->name);
9866 kfree(al);
9867 }
9868
9869 mutex_unlock(&slab_mutex);
9870 return 0;
9871}
9872late_initcall(slab_sysfs_init);
9873#endif /* SLAB_SUPPORTS_SYSFS */
9874
9875#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
9876static int slab_debugfs_show(struct seq_file *seq, void *v)
9877{
9878 struct loc_track *t = seq->private;
9879 struct location *l;
9880 unsigned long idx;
9881
9882 idx = (unsigned long) t->idx;
9883 if (idx < t->count) {
9884 l = &t->loc[idx];
9885
9886 seq_printf(seq, "%7ld ", l->count);
9887
9888 if (l->addr)
9889 seq_printf(seq, "%pS", (void *)l->addr);
9890 else
9891 seq_puts(seq, "<not-available>");
9892
9893 if (l->waste)
9894 seq_printf(seq, " waste=%lu/%lu",
9895 l->count * l->waste, l->waste);
9896
9897 if (l->sum_time != l->min_time) {
9898 seq_printf(seq, " age=%ld/%llu/%ld",
9899 l->min_time, div_u64(l->sum_time, l->count),
9900 l->max_time);
9901 } else
9902 seq_printf(seq, " age=%ld", l->min_time);
9903
9904 if (l->min_pid != l->max_pid)
9905 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
9906 else
9907 seq_printf(seq, " pid=%ld",
9908 l->min_pid);
9909
9910 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
9911 seq_printf(seq, " cpus=%*pbl",
9912 cpumask_pr_args(to_cpumask(l->cpus)));
9913
9914 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
9915 seq_printf(seq, " nodes=%*pbl",
9916 nodemask_pr_args(&l->nodes));
9917
9918#ifdef CONFIG_STACKDEPOT
9919 {
9920 depot_stack_handle_t handle;
9921 unsigned long *entries;
9922 unsigned int nr_entries, j;
9923
9924 handle = READ_ONCE(l->handle);
9925 if (handle) {
9926 nr_entries = stack_depot_fetch(handle, &entries);
9927 seq_puts(seq, "\n");
9928 for (j = 0; j < nr_entries; j++)
9929 seq_printf(seq, " %pS\n", (void *)entries[j]);
9930 }
9931 }
9932#endif
9933 seq_puts(seq, "\n");
9934 }
9935
9936 if (!idx && !t->count)
9937 seq_puts(seq, "No data\n");
9938
9939 return 0;
9940}
9941
9942static void slab_debugfs_stop(struct seq_file *seq, void *v)
9943{
9944}
9945
9946static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
9947{
9948 struct loc_track *t = seq->private;
9949
9950 t->idx = ++(*ppos);
9951 if (*ppos <= t->count)
9952 return ppos;
9953
9954 return NULL;
9955}
9956
9957static int cmp_loc_by_count(const void *a, const void *b)
9958{
9959 struct location *loc1 = (struct location *)a;
9960 struct location *loc2 = (struct location *)b;
9961
9962 return cmp_int(loc2->count, loc1->count);
9963}
9964
9965static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
9966{
9967 struct loc_track *t = seq->private;
9968
9969 t->idx = *ppos;
9970 return ppos;
9971}
9972
9973static const struct seq_operations slab_debugfs_sops = {
9974 .start = slab_debugfs_start,
9975 .next = slab_debugfs_next,
9976 .stop = slab_debugfs_stop,
9977 .show = slab_debugfs_show,
9978};
9979
9980static int slab_debug_trace_open(struct inode *inode, struct file *filep)
9981{
9982
9983 struct kmem_cache_node *n;
9984 enum track_item alloc;
9985 int node;
9986 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
9987 sizeof(struct loc_track));
9988 struct kmem_cache *s = file_inode(filep)->i_private;
9989 unsigned long *obj_map;
9990
9991 if (!t)
9992 return -ENOMEM;
9993
9994 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
9995 if (!obj_map) {
9996 seq_release_private(inode, filep);
9997 return -ENOMEM;
9998 }
9999
10000 alloc = debugfs_get_aux_num(filep);
10001
10002 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
10003 bitmap_free(obj_map);
10004 seq_release_private(inode, filep);
10005 return -ENOMEM;
10006 }
10007
10008 for_each_kmem_cache_node(s, node, n) {
10009 unsigned long flags;
10010 struct slab *slab;
10011
10012 if (!node_nr_slabs(n))
10013 continue;
10014
10015 spin_lock_irqsave(&n->list_lock, flags);
10016 list_for_each_entry(slab, &n->partial, slab_list)
10017 process_slab(t, s, slab, alloc, obj_map);
10018 list_for_each_entry(slab, &n->full, slab_list)
10019 process_slab(t, s, slab, alloc, obj_map);
10020 spin_unlock_irqrestore(&n->list_lock, flags);
10021 }
10022
10023 /* Sort locations by count */
10024 sort(t->loc, t->count, sizeof(struct location),
10025 cmp_loc_by_count, NULL);
10026
10027 bitmap_free(obj_map);
10028 return 0;
10029}
10030
10031static int slab_debug_trace_release(struct inode *inode, struct file *file)
10032{
10033 struct seq_file *seq = file->private_data;
10034 struct loc_track *t = seq->private;
10035
10036 free_loc_track(t);
10037 return seq_release_private(inode, file);
10038}
10039
10040static const struct file_operations slab_debugfs_fops = {
10041 .open = slab_debug_trace_open,
10042 .read = seq_read,
10043 .llseek = seq_lseek,
10044 .release = slab_debug_trace_release,
10045};
10046
10047static void debugfs_slab_add(struct kmem_cache *s)
10048{
10049 struct dentry *slab_cache_dir;
10050
10051 if (unlikely(!slab_debugfs_root))
10052 return;
10053
10054 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
10055
10056 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
10057 TRACK_ALLOC, &slab_debugfs_fops);
10058
10059 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
10060 TRACK_FREE, &slab_debugfs_fops);
10061}
10062
10063void debugfs_slab_release(struct kmem_cache *s)
10064{
10065 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
10066}
10067
10068static int __init slab_debugfs_init(void)
10069{
10070 struct kmem_cache *s;
10071
10072 slab_debugfs_root = debugfs_create_dir("slab", NULL);
10073
10074 list_for_each_entry(s, &slab_caches, list)
10075 if (s->flags & SLAB_STORE_USER)
10076 debugfs_slab_add(s);
10077
10078 return 0;
10079
10080}
10081__initcall(slab_debugfs_init);
10082#endif
10083/*
10084 * The /proc/slabinfo ABI
10085 */
10086#ifdef CONFIG_SLUB_DEBUG
10087void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
10088{
10089 unsigned long nr_slabs = 0;
10090 unsigned long nr_objs = 0;
10091 unsigned long nr_free = 0;
10092 int node;
10093 struct kmem_cache_node *n;
10094
10095 for_each_kmem_cache_node(s, node, n) {
10096 nr_slabs += node_nr_slabs(n);
10097 nr_objs += node_nr_objs(n);
10098 nr_free += count_partial_free_approx(n);
10099 }
10100
10101 sinfo->active_objs = nr_objs - nr_free;
10102 sinfo->num_objs = nr_objs;
10103 sinfo->active_slabs = nr_slabs;
10104 sinfo->num_slabs = nr_slabs;
10105 sinfo->objects_per_slab = oo_objects(s->oo);
10106 sinfo->cache_order = oo_order(s->oo);
10107}
10108#endif /* CONFIG_SLUB_DEBUG */