Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/fileattr.h>
32#include <linux/mm.h>
33#include <linux/random.h>
34#include <linux/sched/signal.h>
35#include <linux/export.h>
36#include <linux/shmem_fs.h>
37#include <linux/swap.h>
38#include <linux/uio.h>
39#include <linux/hugetlb.h>
40#include <linux/fs_parser.h>
41#include <linux/swapfile.h>
42#include <linux/iversion.h>
43#include <linux/unicode.h>
44#include "swap.h"
45
46static struct vfsmount *shm_mnt __ro_after_init;
47
48#ifdef CONFIG_SHMEM
49/*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55#include <linux/xattr.h>
56#include <linux/exportfs.h>
57#include <linux/posix_acl.h>
58#include <linux/posix_acl_xattr.h>
59#include <linux/mman.h>
60#include <linux/string.h>
61#include <linux/slab.h>
62#include <linux/backing-dev.h>
63#include <linux/writeback.h>
64#include <linux/pagevec.h>
65#include <linux/percpu_counter.h>
66#include <linux/falloc.h>
67#include <linux/splice.h>
68#include <linux/security.h>
69#include <linux/leafops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
72#include <linux/ctype.h>
73#include <linux/migrate.h>
74#include <linux/highmem.h>
75#include <linux/seq_file.h>
76#include <linux/magic.h>
77#include <linux/syscalls.h>
78#include <linux/fcntl.h>
79#include <uapi/linux/memfd.h>
80#include <linux/rmap.h>
81#include <linux/uuid.h>
82#include <linux/quotaops.h>
83#include <linux/rcupdate_wait.h>
84
85#include <linux/uaccess.h>
86
87#include "internal.h"
88
89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
94/* Pretend that one inode + its dentry occupy this much memory */
95#define BOGO_INODE_SIZE 1024
96
97/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98#define SHORT_SYMLINK_LEN 128
99
100/*
101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105struct shmem_falloc {
106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 pgoff_t start; /* start of range currently being fallocated */
108 pgoff_t next; /* the next page offset to be fallocated */
109 pgoff_t nr_falloced; /* how many new pages have been fallocated */
110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */
111};
112
113struct shmem_options {
114 unsigned long long blocks;
115 unsigned long long inodes;
116 struct mempolicy *mpol;
117 kuid_t uid;
118 kgid_t gid;
119 umode_t mode;
120 bool full_inums;
121 int huge;
122 int seen;
123 bool noswap;
124 unsigned short quota_types;
125 struct shmem_quota_limits qlimits;
126#if IS_ENABLED(CONFIG_UNICODE)
127 struct unicode_map *encoding;
128 bool strict_encoding;
129#endif
130#define SHMEM_SEEN_BLOCKS 1
131#define SHMEM_SEEN_INODES 2
132#define SHMEM_SEEN_HUGE 4
133#define SHMEM_SEEN_INUMS 8
134#define SHMEM_SEEN_QUOTA 16
135};
136
137#ifdef CONFIG_TRANSPARENT_HUGEPAGE
138static unsigned long huge_shmem_orders_always __read_mostly;
139static unsigned long huge_shmem_orders_madvise __read_mostly;
140static unsigned long huge_shmem_orders_inherit __read_mostly;
141static unsigned long huge_shmem_orders_within_size __read_mostly;
142static bool shmem_orders_configured __initdata;
143#endif
144
145#ifdef CONFIG_TMPFS
146static unsigned long shmem_default_max_blocks(void)
147{
148 return totalram_pages() / 2;
149}
150
151static unsigned long shmem_default_max_inodes(void)
152{
153 unsigned long nr_pages = totalram_pages();
154
155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
156 ULONG_MAX / BOGO_INODE_SIZE);
157}
158#endif
159
160static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
162 struct vm_area_struct *vma, vm_fault_t *fault_type);
163
164static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
165{
166 return sb->s_fs_info;
167}
168
169/*
170 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
171 * for shared memory and for shared anonymous (/dev/zero) mappings
172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
173 * consistent with the pre-accounting of private mappings ...
174 */
175static inline int shmem_acct_size(unsigned long flags, loff_t size)
176{
177 return (flags & SHMEM_F_NORESERVE) ?
178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
179}
180
181static inline void shmem_unacct_size(unsigned long flags, loff_t size)
182{
183 if (!(flags & SHMEM_F_NORESERVE))
184 vm_unacct_memory(VM_ACCT(size));
185}
186
187static inline int shmem_reacct_size(unsigned long flags,
188 loff_t oldsize, loff_t newsize)
189{
190 if (!(flags & SHMEM_F_NORESERVE)) {
191 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
192 return security_vm_enough_memory_mm(current->mm,
193 VM_ACCT(newsize) - VM_ACCT(oldsize));
194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
196 }
197 return 0;
198}
199
200/*
201 * ... whereas tmpfs objects are accounted incrementally as
202 * pages are allocated, in order to allow large sparse files.
203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
205 */
206static inline int shmem_acct_blocks(unsigned long flags, long pages)
207{
208 if (!(flags & SHMEM_F_NORESERVE))
209 return 0;
210
211 return security_vm_enough_memory_mm(current->mm,
212 pages * VM_ACCT(PAGE_SIZE));
213}
214
215static inline void shmem_unacct_blocks(unsigned long flags, long pages)
216{
217 if (flags & SHMEM_F_NORESERVE)
218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
219}
220
221int shmem_inode_acct_blocks(struct inode *inode, long pages)
222{
223 struct shmem_inode_info *info = SHMEM_I(inode);
224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
225 int err = -ENOSPC;
226
227 if (shmem_acct_blocks(info->flags, pages))
228 return err;
229
230 might_sleep(); /* when quotas */
231 if (sbinfo->max_blocks) {
232 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
233 sbinfo->max_blocks, pages))
234 goto unacct;
235
236 err = dquot_alloc_block_nodirty(inode, pages);
237 if (err) {
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 goto unacct;
240 }
241 } else {
242 err = dquot_alloc_block_nodirty(inode, pages);
243 if (err)
244 goto unacct;
245 }
246
247 return 0;
248
249unacct:
250 shmem_unacct_blocks(info->flags, pages);
251 return err;
252}
253
254static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
255{
256 struct shmem_inode_info *info = SHMEM_I(inode);
257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
258
259 might_sleep(); /* when quotas */
260 dquot_free_block_nodirty(inode, pages);
261
262 if (sbinfo->max_blocks)
263 percpu_counter_sub(&sbinfo->used_blocks, pages);
264 shmem_unacct_blocks(info->flags, pages);
265}
266
267static const struct super_operations shmem_ops;
268static const struct address_space_operations shmem_aops;
269static const struct file_operations shmem_file_operations;
270static const struct inode_operations shmem_inode_operations;
271static const struct inode_operations shmem_dir_inode_operations;
272static const struct inode_operations shmem_special_inode_operations;
273static const struct vm_operations_struct shmem_vm_ops;
274static const struct vm_operations_struct shmem_anon_vm_ops;
275static struct file_system_type shmem_fs_type;
276
277bool shmem_mapping(const struct address_space *mapping)
278{
279 return mapping->a_ops == &shmem_aops;
280}
281EXPORT_SYMBOL_GPL(shmem_mapping);
282
283bool vma_is_anon_shmem(const struct vm_area_struct *vma)
284{
285 return vma->vm_ops == &shmem_anon_vm_ops;
286}
287
288bool vma_is_shmem(const struct vm_area_struct *vma)
289{
290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
291}
292
293static LIST_HEAD(shmem_swaplist);
294static DEFINE_SPINLOCK(shmem_swaplist_lock);
295
296#ifdef CONFIG_TMPFS_QUOTA
297
298static int shmem_enable_quotas(struct super_block *sb,
299 unsigned short quota_types)
300{
301 int type, err = 0;
302
303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
305 if (!(quota_types & (1 << type)))
306 continue;
307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
308 DQUOT_USAGE_ENABLED |
309 DQUOT_LIMITS_ENABLED);
310 if (err)
311 goto out_err;
312 }
313 return 0;
314
315out_err:
316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
317 type, err);
318 for (type--; type >= 0; type--)
319 dquot_quota_off(sb, type);
320 return err;
321}
322
323static void shmem_disable_quotas(struct super_block *sb)
324{
325 int type;
326
327 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
328 dquot_quota_off(sb, type);
329}
330
331static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
332{
333 return SHMEM_I(inode)->i_dquot;
334}
335#endif /* CONFIG_TMPFS_QUOTA */
336
337/*
338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
339 * produces a novel ino for the newly allocated inode.
340 *
341 * It may also be called when making a hard link to permit the space needed by
342 * each dentry. However, in that case, no new inode number is needed since that
343 * internally draws from another pool of inode numbers (currently global
344 * get_next_ino()). This case is indicated by passing NULL as inop.
345 */
346#define SHMEM_INO_BATCH 1024
347static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
348{
349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 ino_t ino;
351
352 if (!(sb->s_flags & SB_KERNMOUNT)) {
353 raw_spin_lock(&sbinfo->stat_lock);
354 if (sbinfo->max_inodes) {
355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
356 raw_spin_unlock(&sbinfo->stat_lock);
357 return -ENOSPC;
358 }
359 sbinfo->free_ispace -= BOGO_INODE_SIZE;
360 }
361 if (inop) {
362 ino = sbinfo->next_ino++;
363 if (unlikely(is_zero_ino(ino)))
364 ino = sbinfo->next_ino++;
365 if (unlikely(!sbinfo->full_inums &&
366 ino > UINT_MAX)) {
367 /*
368 * Emulate get_next_ino uint wraparound for
369 * compatibility
370 */
371 if (IS_ENABLED(CONFIG_64BIT))
372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
373 __func__, MINOR(sb->s_dev));
374 sbinfo->next_ino = 1;
375 ino = sbinfo->next_ino++;
376 }
377 *inop = ino;
378 }
379 raw_spin_unlock(&sbinfo->stat_lock);
380 } else if (inop) {
381 /*
382 * __shmem_file_setup, one of our callers, is lock-free: it
383 * doesn't hold stat_lock in shmem_reserve_inode since
384 * max_inodes is always 0, and is called from potentially
385 * unknown contexts. As such, use a per-cpu batched allocator
386 * which doesn't require the per-sb stat_lock unless we are at
387 * the batch boundary.
388 *
389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
390 * shmem mounts are not exposed to userspace, so we don't need
391 * to worry about things like glibc compatibility.
392 */
393 ino_t *next_ino;
394
395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
396 ino = *next_ino;
397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
398 raw_spin_lock(&sbinfo->stat_lock);
399 ino = sbinfo->next_ino;
400 sbinfo->next_ino += SHMEM_INO_BATCH;
401 raw_spin_unlock(&sbinfo->stat_lock);
402 if (unlikely(is_zero_ino(ino)))
403 ino++;
404 }
405 *inop = ino;
406 *next_ino = ++ino;
407 put_cpu();
408 }
409
410 return 0;
411}
412
413static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
414{
415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
416 if (sbinfo->max_inodes) {
417 raw_spin_lock(&sbinfo->stat_lock);
418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
419 raw_spin_unlock(&sbinfo->stat_lock);
420 }
421}
422
423/**
424 * shmem_recalc_inode - recalculate the block usage of an inode
425 * @inode: inode to recalc
426 * @alloced: the change in number of pages allocated to inode
427 * @swapped: the change in number of pages swapped from inode
428 *
429 * We have to calculate the free blocks since the mm can drop
430 * undirtied hole pages behind our back.
431 *
432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
434 *
435 * Return: true if swapped was incremented from 0, for shmem_writeout().
436 */
437bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438{
439 struct shmem_inode_info *info = SHMEM_I(inode);
440 bool first_swapped = false;
441 long freed;
442
443 spin_lock(&info->lock);
444 info->alloced += alloced;
445 info->swapped += swapped;
446 freed = info->alloced - info->swapped -
447 READ_ONCE(inode->i_mapping->nrpages);
448 /*
449 * Special case: whereas normally shmem_recalc_inode() is called
450 * after i_mapping->nrpages has already been adjusted (up or down),
451 * shmem_writeout() has to raise swapped before nrpages is lowered -
452 * to stop a racing shmem_recalc_inode() from thinking that a page has
453 * been freed. Compensate here, to avoid the need for a followup call.
454 */
455 if (swapped > 0) {
456 if (info->swapped == swapped)
457 first_swapped = true;
458 freed += swapped;
459 }
460 if (freed > 0)
461 info->alloced -= freed;
462 spin_unlock(&info->lock);
463
464 /* The quota case may block */
465 if (freed > 0)
466 shmem_inode_unacct_blocks(inode, freed);
467 return first_swapped;
468}
469
470bool shmem_charge(struct inode *inode, long pages)
471{
472 struct address_space *mapping = inode->i_mapping;
473
474 if (shmem_inode_acct_blocks(inode, pages))
475 return false;
476
477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
478 xa_lock_irq(&mapping->i_pages);
479 mapping->nrpages += pages;
480 xa_unlock_irq(&mapping->i_pages);
481
482 shmem_recalc_inode(inode, pages, 0);
483 return true;
484}
485
486void shmem_uncharge(struct inode *inode, long pages)
487{
488 /* pages argument is currently unused: keep it to help debugging */
489 /* nrpages adjustment done by __filemap_remove_folio() or caller */
490
491 shmem_recalc_inode(inode, 0, 0);
492}
493
494/*
495 * Replace item expected in xarray by a new item, while holding xa_lock.
496 */
497static int shmem_replace_entry(struct address_space *mapping,
498 pgoff_t index, void *expected, void *replacement)
499{
500 XA_STATE(xas, &mapping->i_pages, index);
501 void *item;
502
503 VM_BUG_ON(!expected);
504 VM_BUG_ON(!replacement);
505 item = xas_load(&xas);
506 if (item != expected)
507 return -ENOENT;
508 xas_store(&xas, replacement);
509 return 0;
510}
511
512/*
513 * Sometimes, before we decide whether to proceed or to fail, we must check
514 * that an entry was not already brought back or split by a racing thread.
515 *
516 * Checking folio is not enough: by the time a swapcache folio is locked, it
517 * might be reused, and again be swapcache, using the same swap as before.
518 * Returns the swap entry's order if it still presents, else returns -1.
519 */
520static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index,
521 swp_entry_t swap)
522{
523 XA_STATE(xas, &mapping->i_pages, index);
524 int ret = -1;
525 void *entry;
526
527 rcu_read_lock();
528 do {
529 entry = xas_load(&xas);
530 if (entry == swp_to_radix_entry(swap))
531 ret = xas_get_order(&xas);
532 } while (xas_retry(&xas, entry));
533 rcu_read_unlock();
534 return ret;
535}
536
537/*
538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
539 *
540 * SHMEM_HUGE_NEVER:
541 * disables huge pages for the mount;
542 * SHMEM_HUGE_ALWAYS:
543 * enables huge pages for the mount;
544 * SHMEM_HUGE_WITHIN_SIZE:
545 * only allocate huge pages if the page will be fully within i_size,
546 * also respect madvise() hints;
547 * SHMEM_HUGE_ADVISE:
548 * only allocate huge pages if requested with madvise();
549 */
550
551#define SHMEM_HUGE_NEVER 0
552#define SHMEM_HUGE_ALWAYS 1
553#define SHMEM_HUGE_WITHIN_SIZE 2
554#define SHMEM_HUGE_ADVISE 3
555
556/*
557 * Special values.
558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
559 *
560 * SHMEM_HUGE_DENY:
561 * disables huge on shm_mnt and all mounts, for emergency use;
562 * SHMEM_HUGE_FORCE:
563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
564 *
565 */
566#define SHMEM_HUGE_DENY (-1)
567#define SHMEM_HUGE_FORCE (-2)
568
569#ifdef CONFIG_TRANSPARENT_HUGEPAGE
570/* ifdef here to avoid bloating shmem.o when not necessary */
571
572#if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER)
573#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
574#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS)
575#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
576#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE)
577#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
578#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE)
579#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE
580#else
581#define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
582#endif
583
584static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT;
585
586#undef SHMEM_HUGE_DEFAULT
587
588#if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER)
589#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
590#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS)
591#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
592#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE)
593#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
594#elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE)
595#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE
596#else
597#define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
598#endif
599
600static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT;
601
602#undef TMPFS_HUGE_DEFAULT
603
604static unsigned int shmem_get_orders_within_size(struct inode *inode,
605 unsigned long within_size_orders, pgoff_t index,
606 loff_t write_end)
607{
608 pgoff_t aligned_index;
609 unsigned long order;
610 loff_t i_size;
611
612 order = highest_order(within_size_orders);
613 while (within_size_orders) {
614 aligned_index = round_up(index + 1, 1 << order);
615 i_size = max(write_end, i_size_read(inode));
616 i_size = round_up(i_size, PAGE_SIZE);
617 if (i_size >> PAGE_SHIFT >= aligned_index)
618 return within_size_orders;
619
620 order = next_order(&within_size_orders, order);
621 }
622
623 return 0;
624}
625
626static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
627 loff_t write_end, bool shmem_huge_force,
628 struct vm_area_struct *vma,
629 vm_flags_t vm_flags)
630{
631 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
632 0 : BIT(HPAGE_PMD_ORDER);
633 unsigned long within_size_orders;
634
635 if (!S_ISREG(inode->i_mode))
636 return 0;
637 if (shmem_huge == SHMEM_HUGE_DENY)
638 return 0;
639 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
640 return maybe_pmd_order;
641
642 /*
643 * The huge order allocation for anon shmem is controlled through
644 * the mTHP interface, so we still use PMD-sized huge order to
645 * check whether global control is enabled.
646 *
647 * For tmpfs with 'huge=always' or 'huge=within_size' mount option,
648 * we will always try PMD-sized order first. If that failed, it will
649 * fall back to small large folios.
650 */
651 switch (SHMEM_SB(inode->i_sb)->huge) {
652 case SHMEM_HUGE_ALWAYS:
653 return THP_ORDERS_ALL_FILE_DEFAULT;
654 case SHMEM_HUGE_WITHIN_SIZE:
655 within_size_orders = shmem_get_orders_within_size(inode,
656 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end);
657 if (within_size_orders > 0)
658 return within_size_orders;
659
660 fallthrough;
661 case SHMEM_HUGE_ADVISE:
662 if (vm_flags & VM_HUGEPAGE)
663 return THP_ORDERS_ALL_FILE_DEFAULT;
664 fallthrough;
665 default:
666 return 0;
667 }
668}
669
670static int shmem_parse_huge(const char *str)
671{
672 int huge;
673
674 if (!str)
675 return -EINVAL;
676
677 if (!strcmp(str, "never"))
678 huge = SHMEM_HUGE_NEVER;
679 else if (!strcmp(str, "always"))
680 huge = SHMEM_HUGE_ALWAYS;
681 else if (!strcmp(str, "within_size"))
682 huge = SHMEM_HUGE_WITHIN_SIZE;
683 else if (!strcmp(str, "advise"))
684 huge = SHMEM_HUGE_ADVISE;
685 else if (!strcmp(str, "deny"))
686 huge = SHMEM_HUGE_DENY;
687 else if (!strcmp(str, "force"))
688 huge = SHMEM_HUGE_FORCE;
689 else
690 return -EINVAL;
691
692 if (!has_transparent_hugepage() &&
693 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
694 return -EINVAL;
695
696 /* Do not override huge allocation policy with non-PMD sized mTHP */
697 if (huge == SHMEM_HUGE_FORCE &&
698 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
699 return -EINVAL;
700
701 return huge;
702}
703
704#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
705static const char *shmem_format_huge(int huge)
706{
707 switch (huge) {
708 case SHMEM_HUGE_NEVER:
709 return "never";
710 case SHMEM_HUGE_ALWAYS:
711 return "always";
712 case SHMEM_HUGE_WITHIN_SIZE:
713 return "within_size";
714 case SHMEM_HUGE_ADVISE:
715 return "advise";
716 case SHMEM_HUGE_DENY:
717 return "deny";
718 case SHMEM_HUGE_FORCE:
719 return "force";
720 default:
721 VM_BUG_ON(1);
722 return "bad_val";
723 }
724}
725#endif
726
727static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
728 struct shrink_control *sc, unsigned long nr_to_free)
729{
730 LIST_HEAD(list), *pos, *next;
731 struct inode *inode;
732 struct shmem_inode_info *info;
733 struct folio *folio;
734 unsigned long batch = sc ? sc->nr_to_scan : 128;
735 unsigned long split = 0, freed = 0;
736
737 if (list_empty(&sbinfo->shrinklist))
738 return SHRINK_STOP;
739
740 spin_lock(&sbinfo->shrinklist_lock);
741 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
742 info = list_entry(pos, struct shmem_inode_info, shrinklist);
743
744 /* pin the inode */
745 inode = igrab(&info->vfs_inode);
746
747 /* inode is about to be evicted */
748 if (!inode) {
749 list_del_init(&info->shrinklist);
750 goto next;
751 }
752
753 list_move(&info->shrinklist, &list);
754next:
755 sbinfo->shrinklist_len--;
756 if (!--batch)
757 break;
758 }
759 spin_unlock(&sbinfo->shrinklist_lock);
760
761 list_for_each_safe(pos, next, &list) {
762 pgoff_t next, end;
763 loff_t i_size;
764 int ret;
765
766 info = list_entry(pos, struct shmem_inode_info, shrinklist);
767 inode = &info->vfs_inode;
768
769 if (nr_to_free && freed >= nr_to_free)
770 goto move_back;
771
772 i_size = i_size_read(inode);
773 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
774 if (!folio || xa_is_value(folio))
775 goto drop;
776
777 /* No large folio at the end of the file: nothing to split */
778 if (!folio_test_large(folio)) {
779 folio_put(folio);
780 goto drop;
781 }
782
783 /* Check if there is anything to gain from splitting */
784 next = folio_next_index(folio);
785 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
786 if (end <= folio->index || end >= next) {
787 folio_put(folio);
788 goto drop;
789 }
790
791 /*
792 * Move the inode on the list back to shrinklist if we failed
793 * to lock the page at this time.
794 *
795 * Waiting for the lock may lead to deadlock in the
796 * reclaim path.
797 */
798 if (!folio_trylock(folio)) {
799 folio_put(folio);
800 goto move_back;
801 }
802
803 ret = split_folio(folio);
804 folio_unlock(folio);
805 folio_put(folio);
806
807 /* If split failed move the inode on the list back to shrinklist */
808 if (ret)
809 goto move_back;
810
811 freed += next - end;
812 split++;
813drop:
814 list_del_init(&info->shrinklist);
815 goto put;
816move_back:
817 /*
818 * Make sure the inode is either on the global list or deleted
819 * from any local list before iput() since it could be deleted
820 * in another thread once we put the inode (then the local list
821 * is corrupted).
822 */
823 spin_lock(&sbinfo->shrinklist_lock);
824 list_move(&info->shrinklist, &sbinfo->shrinklist);
825 sbinfo->shrinklist_len++;
826 spin_unlock(&sbinfo->shrinklist_lock);
827put:
828 iput(inode);
829 }
830
831 return split;
832}
833
834static long shmem_unused_huge_scan(struct super_block *sb,
835 struct shrink_control *sc)
836{
837 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
838
839 if (!READ_ONCE(sbinfo->shrinklist_len))
840 return SHRINK_STOP;
841
842 return shmem_unused_huge_shrink(sbinfo, sc, 0);
843}
844
845static long shmem_unused_huge_count(struct super_block *sb,
846 struct shrink_control *sc)
847{
848 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
849 return READ_ONCE(sbinfo->shrinklist_len);
850}
851#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
852
853#define shmem_huge SHMEM_HUGE_DENY
854
855static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
856 struct shrink_control *sc, unsigned long nr_to_free)
857{
858 return 0;
859}
860
861static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
862 loff_t write_end, bool shmem_huge_force,
863 struct vm_area_struct *vma,
864 vm_flags_t vm_flags)
865{
866 return 0;
867}
868#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869
870static void shmem_update_stats(struct folio *folio, int nr_pages)
871{
872 if (folio_test_pmd_mappable(folio))
873 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
874 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
875 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
876}
877
878/*
879 * Somewhat like filemap_add_folio, but error if expected item has gone.
880 */
881int shmem_add_to_page_cache(struct folio *folio,
882 struct address_space *mapping,
883 pgoff_t index, void *expected, gfp_t gfp)
884{
885 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
886 unsigned long nr = folio_nr_pages(folio);
887 swp_entry_t iter, swap;
888 void *entry;
889
890 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
891 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
892 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
893
894 folio_ref_add(folio, nr);
895 folio->mapping = mapping;
896 folio->index = index;
897
898 gfp &= GFP_RECLAIM_MASK;
899 folio_throttle_swaprate(folio, gfp);
900 swap = radix_to_swp_entry(expected);
901
902 do {
903 iter = swap;
904 xas_lock_irq(&xas);
905 xas_for_each_conflict(&xas, entry) {
906 /*
907 * The range must either be empty, or filled with
908 * expected swap entries. Shmem swap entries are never
909 * partially freed without split of both entry and
910 * folio, so there shouldn't be any holes.
911 */
912 if (!expected || entry != swp_to_radix_entry(iter)) {
913 xas_set_err(&xas, -EEXIST);
914 goto unlock;
915 }
916 iter.val += 1 << xas_get_order(&xas);
917 }
918 if (expected && iter.val - nr != swap.val) {
919 xas_set_err(&xas, -EEXIST);
920 goto unlock;
921 }
922 xas_store(&xas, folio);
923 if (xas_error(&xas))
924 goto unlock;
925 shmem_update_stats(folio, nr);
926 mapping->nrpages += nr;
927unlock:
928 xas_unlock_irq(&xas);
929 } while (xas_nomem(&xas, gfp));
930
931 if (xas_error(&xas)) {
932 folio->mapping = NULL;
933 folio_ref_sub(folio, nr);
934 return xas_error(&xas);
935 }
936
937 return 0;
938}
939
940/*
941 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
942 */
943static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
944{
945 struct address_space *mapping = folio->mapping;
946 long nr = folio_nr_pages(folio);
947 int error;
948
949 xa_lock_irq(&mapping->i_pages);
950 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
951 folio->mapping = NULL;
952 mapping->nrpages -= nr;
953 shmem_update_stats(folio, -nr);
954 xa_unlock_irq(&mapping->i_pages);
955 folio_put_refs(folio, nr);
956 BUG_ON(error);
957}
958
959/*
960 * Remove swap entry from page cache, free the swap and its page cache. Returns
961 * the number of pages being freed. 0 means entry not found in XArray (0 pages
962 * being freed).
963 */
964static long shmem_free_swap(struct address_space *mapping,
965 pgoff_t index, void *radswap)
966{
967 int order = xa_get_order(&mapping->i_pages, index);
968 void *old;
969
970 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
971 if (old != radswap)
972 return 0;
973 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
974
975 return 1 << order;
976}
977
978/*
979 * Determine (in bytes) how many of the shmem object's pages mapped by the
980 * given offsets are swapped out.
981 *
982 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
983 * as long as the inode doesn't go away and racy results are not a problem.
984 */
985unsigned long shmem_partial_swap_usage(struct address_space *mapping,
986 pgoff_t start, pgoff_t end)
987{
988 XA_STATE(xas, &mapping->i_pages, start);
989 struct folio *folio;
990 unsigned long swapped = 0;
991 unsigned long max = end - 1;
992
993 rcu_read_lock();
994 xas_for_each(&xas, folio, max) {
995 if (xas_retry(&xas, folio))
996 continue;
997 if (xa_is_value(folio))
998 swapped += 1 << xas_get_order(&xas);
999 if (xas.xa_index == max)
1000 break;
1001 if (need_resched()) {
1002 xas_pause(&xas);
1003 cond_resched_rcu();
1004 }
1005 }
1006 rcu_read_unlock();
1007
1008 return swapped << PAGE_SHIFT;
1009}
1010
1011/*
1012 * Determine (in bytes) how many of the shmem object's pages mapped by the
1013 * given vma is swapped out.
1014 *
1015 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1016 * as long as the inode doesn't go away and racy results are not a problem.
1017 */
1018unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1019{
1020 struct inode *inode = file_inode(vma->vm_file);
1021 struct shmem_inode_info *info = SHMEM_I(inode);
1022 struct address_space *mapping = inode->i_mapping;
1023 unsigned long swapped;
1024
1025 /* Be careful as we don't hold info->lock */
1026 swapped = READ_ONCE(info->swapped);
1027
1028 /*
1029 * The easier cases are when the shmem object has nothing in swap, or
1030 * the vma maps it whole. Then we can simply use the stats that we
1031 * already track.
1032 */
1033 if (!swapped)
1034 return 0;
1035
1036 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1037 return swapped << PAGE_SHIFT;
1038
1039 /* Here comes the more involved part */
1040 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1041 vma->vm_pgoff + vma_pages(vma));
1042}
1043
1044/*
1045 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1046 */
1047void shmem_unlock_mapping(struct address_space *mapping)
1048{
1049 struct folio_batch fbatch;
1050 pgoff_t index = 0;
1051
1052 folio_batch_init(&fbatch);
1053 /*
1054 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1055 */
1056 while (!mapping_unevictable(mapping) &&
1057 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1058 check_move_unevictable_folios(&fbatch);
1059 folio_batch_release(&fbatch);
1060 cond_resched();
1061 }
1062}
1063
1064static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1065{
1066 struct folio *folio;
1067
1068 /*
1069 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1070 * beyond i_size, and reports fallocated folios as holes.
1071 */
1072 folio = filemap_get_entry(inode->i_mapping, index);
1073 if (!folio)
1074 return folio;
1075 if (!xa_is_value(folio)) {
1076 folio_lock(folio);
1077 if (folio->mapping == inode->i_mapping)
1078 return folio;
1079 /* The folio has been swapped out */
1080 folio_unlock(folio);
1081 folio_put(folio);
1082 }
1083 /*
1084 * But read a folio back from swap if any of it is within i_size
1085 * (although in some cases this is just a waste of time).
1086 */
1087 folio = NULL;
1088 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1089 return folio;
1090}
1091
1092/*
1093 * Remove range of pages and swap entries from page cache, and free them.
1094 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1095 */
1096static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend,
1097 bool unfalloc)
1098{
1099 struct address_space *mapping = inode->i_mapping;
1100 struct shmem_inode_info *info = SHMEM_I(inode);
1101 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1102 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1103 struct folio_batch fbatch;
1104 pgoff_t indices[PAGEVEC_SIZE];
1105 struct folio *folio;
1106 bool same_folio;
1107 long nr_swaps_freed = 0;
1108 pgoff_t index;
1109 int i;
1110
1111 if (lend == -1)
1112 end = -1; /* unsigned, so actually very big */
1113
1114 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1115 info->fallocend = start;
1116
1117 folio_batch_init(&fbatch);
1118 index = start;
1119 while (index < end && find_lock_entries(mapping, &index, end - 1,
1120 &fbatch, indices)) {
1121 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1122 folio = fbatch.folios[i];
1123
1124 if (xa_is_value(folio)) {
1125 if (unfalloc)
1126 continue;
1127 nr_swaps_freed += shmem_free_swap(mapping,
1128 indices[i], folio);
1129 continue;
1130 }
1131
1132 if (!unfalloc || !folio_test_uptodate(folio))
1133 truncate_inode_folio(mapping, folio);
1134 folio_unlock(folio);
1135 }
1136 folio_batch_remove_exceptionals(&fbatch);
1137 folio_batch_release(&fbatch);
1138 cond_resched();
1139 }
1140
1141 /*
1142 * When undoing a failed fallocate, we want none of the partial folio
1143 * zeroing and splitting below, but shall want to truncate the whole
1144 * folio when !uptodate indicates that it was added by this fallocate,
1145 * even when [lstart, lend] covers only a part of the folio.
1146 */
1147 if (unfalloc)
1148 goto whole_folios;
1149
1150 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1151 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1152 if (folio) {
1153 same_folio = lend < folio_next_pos(folio);
1154 folio_mark_dirty(folio);
1155 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1156 start = folio_next_index(folio);
1157 if (same_folio)
1158 end = folio->index;
1159 }
1160 folio_unlock(folio);
1161 folio_put(folio);
1162 folio = NULL;
1163 }
1164
1165 if (!same_folio)
1166 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1167 if (folio) {
1168 folio_mark_dirty(folio);
1169 if (!truncate_inode_partial_folio(folio, lstart, lend))
1170 end = folio->index;
1171 folio_unlock(folio);
1172 folio_put(folio);
1173 }
1174
1175whole_folios:
1176
1177 index = start;
1178 while (index < end) {
1179 cond_resched();
1180
1181 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1182 indices)) {
1183 /* If all gone or hole-punch or unfalloc, we're done */
1184 if (index == start || end != -1)
1185 break;
1186 /* But if truncating, restart to make sure all gone */
1187 index = start;
1188 continue;
1189 }
1190 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1191 folio = fbatch.folios[i];
1192
1193 if (xa_is_value(folio)) {
1194 long swaps_freed;
1195
1196 if (unfalloc)
1197 continue;
1198 swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1199 if (!swaps_freed) {
1200 /* Swap was replaced by page: retry */
1201 index = indices[i];
1202 break;
1203 }
1204 nr_swaps_freed += swaps_freed;
1205 continue;
1206 }
1207
1208 folio_lock(folio);
1209
1210 if (!unfalloc || !folio_test_uptodate(folio)) {
1211 if (folio_mapping(folio) != mapping) {
1212 /* Page was replaced by swap: retry */
1213 folio_unlock(folio);
1214 index = indices[i];
1215 break;
1216 }
1217 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1218 folio);
1219
1220 if (!folio_test_large(folio)) {
1221 truncate_inode_folio(mapping, folio);
1222 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1223 /*
1224 * If we split a page, reset the loop so
1225 * that we pick up the new sub pages.
1226 * Otherwise the THP was entirely
1227 * dropped or the target range was
1228 * zeroed, so just continue the loop as
1229 * is.
1230 */
1231 if (!folio_test_large(folio)) {
1232 folio_unlock(folio);
1233 index = start;
1234 break;
1235 }
1236 }
1237 }
1238 folio_unlock(folio);
1239 }
1240 folio_batch_remove_exceptionals(&fbatch);
1241 folio_batch_release(&fbatch);
1242 }
1243
1244 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1245}
1246
1247void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
1248{
1249 shmem_undo_range(inode, lstart, lend, false);
1250 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1251 inode_inc_iversion(inode);
1252}
1253EXPORT_SYMBOL_GPL(shmem_truncate_range);
1254
1255static int shmem_getattr(struct mnt_idmap *idmap,
1256 const struct path *path, struct kstat *stat,
1257 u32 request_mask, unsigned int query_flags)
1258{
1259 struct inode *inode = path->dentry->d_inode;
1260 struct shmem_inode_info *info = SHMEM_I(inode);
1261
1262 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1263 shmem_recalc_inode(inode, 0, 0);
1264
1265 if (info->fsflags & FS_APPEND_FL)
1266 stat->attributes |= STATX_ATTR_APPEND;
1267 if (info->fsflags & FS_IMMUTABLE_FL)
1268 stat->attributes |= STATX_ATTR_IMMUTABLE;
1269 if (info->fsflags & FS_NODUMP_FL)
1270 stat->attributes |= STATX_ATTR_NODUMP;
1271 stat->attributes_mask |= (STATX_ATTR_APPEND |
1272 STATX_ATTR_IMMUTABLE |
1273 STATX_ATTR_NODUMP);
1274 generic_fillattr(idmap, request_mask, inode, stat);
1275
1276 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1277 stat->blksize = HPAGE_PMD_SIZE;
1278
1279 if (request_mask & STATX_BTIME) {
1280 stat->result_mask |= STATX_BTIME;
1281 stat->btime.tv_sec = info->i_crtime.tv_sec;
1282 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1283 }
1284
1285 return 0;
1286}
1287
1288static int shmem_setattr(struct mnt_idmap *idmap,
1289 struct dentry *dentry, struct iattr *attr)
1290{
1291 struct inode *inode = d_inode(dentry);
1292 struct shmem_inode_info *info = SHMEM_I(inode);
1293 int error;
1294 bool update_mtime = false;
1295 bool update_ctime = true;
1296
1297 error = setattr_prepare(idmap, dentry, attr);
1298 if (error)
1299 return error;
1300
1301 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1302 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1303 return -EPERM;
1304 }
1305 }
1306
1307 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1308 loff_t oldsize = inode->i_size;
1309 loff_t newsize = attr->ia_size;
1310
1311 /* protected by i_rwsem */
1312 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1313 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1314 return -EPERM;
1315
1316 if (newsize != oldsize) {
1317 if (info->flags & SHMEM_F_MAPPING_FROZEN)
1318 return -EPERM;
1319 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1320 oldsize, newsize);
1321 if (error)
1322 return error;
1323 i_size_write(inode, newsize);
1324 update_mtime = true;
1325 } else {
1326 update_ctime = false;
1327 }
1328 if (newsize <= oldsize) {
1329 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1330 if (oldsize > holebegin)
1331 unmap_mapping_range(inode->i_mapping,
1332 holebegin, 0, 1);
1333 if (info->alloced)
1334 shmem_truncate_range(inode,
1335 newsize, (loff_t)-1);
1336 /* unmap again to remove racily COWed private pages */
1337 if (oldsize > holebegin)
1338 unmap_mapping_range(inode->i_mapping,
1339 holebegin, 0, 1);
1340 }
1341 }
1342
1343 if (is_quota_modification(idmap, inode, attr)) {
1344 error = dquot_initialize(inode);
1345 if (error)
1346 return error;
1347 }
1348
1349 /* Transfer quota accounting */
1350 if (i_uid_needs_update(idmap, attr, inode) ||
1351 i_gid_needs_update(idmap, attr, inode)) {
1352 error = dquot_transfer(idmap, inode, attr);
1353 if (error)
1354 return error;
1355 }
1356
1357 setattr_copy(idmap, inode, attr);
1358 if (attr->ia_valid & ATTR_MODE)
1359 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1360 if (!error && update_ctime) {
1361 inode_set_ctime_current(inode);
1362 if (update_mtime)
1363 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1364 inode_inc_iversion(inode);
1365 }
1366 return error;
1367}
1368
1369static void shmem_evict_inode(struct inode *inode)
1370{
1371 struct shmem_inode_info *info = SHMEM_I(inode);
1372 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1373 size_t freed = 0;
1374
1375 if (shmem_mapping(inode->i_mapping)) {
1376 shmem_unacct_size(info->flags, inode->i_size);
1377 inode->i_size = 0;
1378 mapping_set_exiting(inode->i_mapping);
1379 shmem_truncate_range(inode, 0, (loff_t)-1);
1380 if (!list_empty(&info->shrinklist)) {
1381 spin_lock(&sbinfo->shrinklist_lock);
1382 if (!list_empty(&info->shrinklist)) {
1383 list_del_init(&info->shrinklist);
1384 sbinfo->shrinklist_len--;
1385 }
1386 spin_unlock(&sbinfo->shrinklist_lock);
1387 }
1388 while (!list_empty(&info->swaplist)) {
1389 /* Wait while shmem_unuse() is scanning this inode... */
1390 wait_var_event(&info->stop_eviction,
1391 !atomic_read(&info->stop_eviction));
1392 spin_lock(&shmem_swaplist_lock);
1393 /* ...but beware of the race if we peeked too early */
1394 if (!atomic_read(&info->stop_eviction))
1395 list_del_init(&info->swaplist);
1396 spin_unlock(&shmem_swaplist_lock);
1397 }
1398 }
1399
1400 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1401 shmem_free_inode(inode->i_sb, freed);
1402 WARN_ON(inode->i_blocks);
1403 clear_inode(inode);
1404#ifdef CONFIG_TMPFS_QUOTA
1405 dquot_free_inode(inode);
1406 dquot_drop(inode);
1407#endif
1408}
1409
1410static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1411 pgoff_t start, struct folio_batch *fbatch,
1412 pgoff_t *indices, unsigned int type)
1413{
1414 XA_STATE(xas, &mapping->i_pages, start);
1415 struct folio *folio;
1416 swp_entry_t entry;
1417
1418 rcu_read_lock();
1419 xas_for_each(&xas, folio, ULONG_MAX) {
1420 if (xas_retry(&xas, folio))
1421 continue;
1422
1423 if (!xa_is_value(folio))
1424 continue;
1425
1426 entry = radix_to_swp_entry(folio);
1427 /*
1428 * swapin error entries can be found in the mapping. But they're
1429 * deliberately ignored here as we've done everything we can do.
1430 */
1431 if (swp_type(entry) != type)
1432 continue;
1433
1434 indices[folio_batch_count(fbatch)] = xas.xa_index;
1435 if (!folio_batch_add(fbatch, folio))
1436 break;
1437
1438 if (need_resched()) {
1439 xas_pause(&xas);
1440 cond_resched_rcu();
1441 }
1442 }
1443 rcu_read_unlock();
1444
1445 return folio_batch_count(fbatch);
1446}
1447
1448/*
1449 * Move the swapped pages for an inode to page cache. Returns the count
1450 * of pages swapped in, or the error in case of failure.
1451 */
1452static int shmem_unuse_swap_entries(struct inode *inode,
1453 struct folio_batch *fbatch, pgoff_t *indices)
1454{
1455 int i = 0;
1456 int ret = 0;
1457 int error = 0;
1458 struct address_space *mapping = inode->i_mapping;
1459
1460 for (i = 0; i < folio_batch_count(fbatch); i++) {
1461 struct folio *folio = fbatch->folios[i];
1462
1463 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1464 mapping_gfp_mask(mapping), NULL, NULL);
1465 if (error == 0) {
1466 folio_unlock(folio);
1467 folio_put(folio);
1468 ret++;
1469 }
1470 if (error == -ENOMEM)
1471 break;
1472 error = 0;
1473 }
1474 return error ? error : ret;
1475}
1476
1477/*
1478 * If swap found in inode, free it and move page from swapcache to filecache.
1479 */
1480static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1481{
1482 struct address_space *mapping = inode->i_mapping;
1483 pgoff_t start = 0;
1484 struct folio_batch fbatch;
1485 pgoff_t indices[PAGEVEC_SIZE];
1486 int ret = 0;
1487
1488 do {
1489 folio_batch_init(&fbatch);
1490 if (!shmem_find_swap_entries(mapping, start, &fbatch,
1491 indices, type)) {
1492 ret = 0;
1493 break;
1494 }
1495
1496 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1497 if (ret < 0)
1498 break;
1499
1500 start = indices[folio_batch_count(&fbatch) - 1];
1501 } while (true);
1502
1503 return ret;
1504}
1505
1506/*
1507 * Read all the shared memory data that resides in the swap
1508 * device 'type' back into memory, so the swap device can be
1509 * unused.
1510 */
1511int shmem_unuse(unsigned int type)
1512{
1513 struct shmem_inode_info *info, *next;
1514 int error = 0;
1515
1516 if (list_empty(&shmem_swaplist))
1517 return 0;
1518
1519 spin_lock(&shmem_swaplist_lock);
1520start_over:
1521 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1522 if (!info->swapped) {
1523 list_del_init(&info->swaplist);
1524 continue;
1525 }
1526 /*
1527 * Drop the swaplist mutex while searching the inode for swap;
1528 * but before doing so, make sure shmem_evict_inode() will not
1529 * remove placeholder inode from swaplist, nor let it be freed
1530 * (igrab() would protect from unlink, but not from unmount).
1531 */
1532 atomic_inc(&info->stop_eviction);
1533 spin_unlock(&shmem_swaplist_lock);
1534
1535 error = shmem_unuse_inode(&info->vfs_inode, type);
1536 cond_resched();
1537
1538 spin_lock(&shmem_swaplist_lock);
1539 if (atomic_dec_and_test(&info->stop_eviction))
1540 wake_up_var(&info->stop_eviction);
1541 if (error)
1542 break;
1543 if (list_empty(&info->swaplist))
1544 goto start_over;
1545 next = list_next_entry(info, swaplist);
1546 if (!info->swapped)
1547 list_del_init(&info->swaplist);
1548 }
1549 spin_unlock(&shmem_swaplist_lock);
1550
1551 return error;
1552}
1553
1554/**
1555 * shmem_writeout - Write the folio to swap
1556 * @folio: The folio to write
1557 * @plug: swap plug
1558 * @folio_list: list to put back folios on split
1559 *
1560 * Move the folio from the page cache to the swap cache.
1561 */
1562int shmem_writeout(struct folio *folio, struct swap_iocb **plug,
1563 struct list_head *folio_list)
1564{
1565 struct address_space *mapping = folio->mapping;
1566 struct inode *inode = mapping->host;
1567 struct shmem_inode_info *info = SHMEM_I(inode);
1568 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1569 pgoff_t index;
1570 int nr_pages;
1571 bool split = false;
1572
1573 if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap)
1574 goto redirty;
1575
1576 if (!total_swap_pages)
1577 goto redirty;
1578
1579 /*
1580 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1581 * split when swapping.
1582 *
1583 * And shrinkage of pages beyond i_size does not split swap, so
1584 * swapout of a large folio crossing i_size needs to split too
1585 * (unless fallocate has been used to preallocate beyond EOF).
1586 */
1587 if (folio_test_large(folio)) {
1588 index = shmem_fallocend(inode,
1589 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1590 if ((index > folio->index && index < folio_next_index(folio)) ||
1591 !IS_ENABLED(CONFIG_THP_SWAP))
1592 split = true;
1593 }
1594
1595 if (split) {
1596try_split:
1597 /* Ensure the subpages are still dirty */
1598 folio_test_set_dirty(folio);
1599 if (split_folio_to_list(folio, folio_list))
1600 goto redirty;
1601 folio_clear_dirty(folio);
1602 }
1603
1604 index = folio->index;
1605 nr_pages = folio_nr_pages(folio);
1606
1607 /*
1608 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1609 * value into swapfile.c, the only way we can correctly account for a
1610 * fallocated folio arriving here is now to initialize it and write it.
1611 *
1612 * That's okay for a folio already fallocated earlier, but if we have
1613 * not yet completed the fallocation, then (a) we want to keep track
1614 * of this folio in case we have to undo it, and (b) it may not be a
1615 * good idea to continue anyway, once we're pushing into swap. So
1616 * reactivate the folio, and let shmem_fallocate() quit when too many.
1617 */
1618 if (!folio_test_uptodate(folio)) {
1619 if (inode->i_private) {
1620 struct shmem_falloc *shmem_falloc;
1621 spin_lock(&inode->i_lock);
1622 shmem_falloc = inode->i_private;
1623 if (shmem_falloc &&
1624 !shmem_falloc->waitq &&
1625 index >= shmem_falloc->start &&
1626 index < shmem_falloc->next)
1627 shmem_falloc->nr_unswapped += nr_pages;
1628 else
1629 shmem_falloc = NULL;
1630 spin_unlock(&inode->i_lock);
1631 if (shmem_falloc)
1632 goto redirty;
1633 }
1634 folio_zero_range(folio, 0, folio_size(folio));
1635 flush_dcache_folio(folio);
1636 folio_mark_uptodate(folio);
1637 }
1638
1639 if (!folio_alloc_swap(folio)) {
1640 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages);
1641 int error;
1642
1643 /*
1644 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1645 * if it's not already there. Do it now before the folio is
1646 * removed from page cache, when its pagelock no longer
1647 * protects the inode from eviction. And do it now, after
1648 * we've incremented swapped, because shmem_unuse() will
1649 * prune a !swapped inode from the swaplist.
1650 */
1651 if (first_swapped) {
1652 spin_lock(&shmem_swaplist_lock);
1653 if (list_empty(&info->swaplist))
1654 list_add(&info->swaplist, &shmem_swaplist);
1655 spin_unlock(&shmem_swaplist_lock);
1656 }
1657
1658 swap_shmem_alloc(folio->swap, nr_pages);
1659 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1660
1661 BUG_ON(folio_mapped(folio));
1662 error = swap_writeout(folio, plug);
1663 if (error != AOP_WRITEPAGE_ACTIVATE) {
1664 /* folio has been unlocked */
1665 return error;
1666 }
1667
1668 /*
1669 * The intention here is to avoid holding on to the swap when
1670 * zswap was unable to compress and unable to writeback; but
1671 * it will be appropriate if other reactivate cases are added.
1672 */
1673 error = shmem_add_to_page_cache(folio, mapping, index,
1674 swp_to_radix_entry(folio->swap),
1675 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
1676 /* Swap entry might be erased by racing shmem_free_swap() */
1677 if (!error) {
1678 shmem_recalc_inode(inode, 0, -nr_pages);
1679 swap_free_nr(folio->swap, nr_pages);
1680 }
1681
1682 /*
1683 * The swap_cache_del_folio() below could be left for
1684 * shrink_folio_list()'s folio_free_swap() to dispose of;
1685 * but I'm a little nervous about letting this folio out of
1686 * shmem_writeout() in a hybrid half-tmpfs-half-swap state
1687 * e.g. folio_mapping(folio) might give an unexpected answer.
1688 */
1689 swap_cache_del_folio(folio);
1690 goto redirty;
1691 }
1692 if (nr_pages > 1)
1693 goto try_split;
1694redirty:
1695 folio_mark_dirty(folio);
1696 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1697}
1698EXPORT_SYMBOL_GPL(shmem_writeout);
1699
1700#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1701static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1702{
1703 char buffer[64];
1704
1705 if (!mpol || mpol->mode == MPOL_DEFAULT)
1706 return; /* show nothing */
1707
1708 mpol_to_str(buffer, sizeof(buffer), mpol);
1709
1710 seq_printf(seq, ",mpol=%s", buffer);
1711}
1712
1713static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1714{
1715 struct mempolicy *mpol = NULL;
1716 if (sbinfo->mpol) {
1717 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1718 mpol = sbinfo->mpol;
1719 mpol_get(mpol);
1720 raw_spin_unlock(&sbinfo->stat_lock);
1721 }
1722 return mpol;
1723}
1724#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1725static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1726{
1727}
1728static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1729{
1730 return NULL;
1731}
1732#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1733
1734static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1735 pgoff_t index, unsigned int order, pgoff_t *ilx);
1736
1737static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1738 struct shmem_inode_info *info, pgoff_t index)
1739{
1740 struct mempolicy *mpol;
1741 pgoff_t ilx;
1742 struct folio *folio;
1743
1744 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1745 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1746 mpol_cond_put(mpol);
1747
1748 return folio;
1749}
1750
1751/*
1752 * Make sure huge_gfp is always more limited than limit_gfp.
1753 * Some of the flags set permissions, while others set limitations.
1754 */
1755static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1756{
1757 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1758 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1759 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1760 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1761
1762 /* Allow allocations only from the originally specified zones. */
1763 result |= zoneflags;
1764
1765 /*
1766 * Minimize the result gfp by taking the union with the deny flags,
1767 * and the intersection of the allow flags.
1768 */
1769 result |= (limit_gfp & denyflags);
1770 result |= (huge_gfp & limit_gfp) & allowflags;
1771
1772 return result;
1773}
1774
1775#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1776bool shmem_hpage_pmd_enabled(void)
1777{
1778 if (shmem_huge == SHMEM_HUGE_DENY)
1779 return false;
1780 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1781 return true;
1782 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1783 return true;
1784 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1785 return true;
1786 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1787 shmem_huge != SHMEM_HUGE_NEVER)
1788 return true;
1789
1790 return false;
1791}
1792
1793unsigned long shmem_allowable_huge_orders(struct inode *inode,
1794 struct vm_area_struct *vma, pgoff_t index,
1795 loff_t write_end, bool shmem_huge_force)
1796{
1797 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1798 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1799 vm_flags_t vm_flags = vma ? vma->vm_flags : 0;
1800 unsigned int global_orders;
1801
1802 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force)))
1803 return 0;
1804
1805 global_orders = shmem_huge_global_enabled(inode, index, write_end,
1806 shmem_huge_force, vma, vm_flags);
1807 /* Tmpfs huge pages allocation */
1808 if (!vma || !vma_is_anon_shmem(vma))
1809 return global_orders;
1810
1811 /*
1812 * Following the 'deny' semantics of the top level, force the huge
1813 * option off from all mounts.
1814 */
1815 if (shmem_huge == SHMEM_HUGE_DENY)
1816 return 0;
1817
1818 /*
1819 * Only allow inherit orders if the top-level value is 'force', which
1820 * means non-PMD sized THP can not override 'huge' mount option now.
1821 */
1822 if (shmem_huge == SHMEM_HUGE_FORCE)
1823 return READ_ONCE(huge_shmem_orders_inherit);
1824
1825 /* Allow mTHP that will be fully within i_size. */
1826 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1827
1828 if (vm_flags & VM_HUGEPAGE)
1829 mask |= READ_ONCE(huge_shmem_orders_madvise);
1830
1831 if (global_orders > 0)
1832 mask |= READ_ONCE(huge_shmem_orders_inherit);
1833
1834 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1835}
1836
1837static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1838 struct address_space *mapping, pgoff_t index,
1839 unsigned long orders)
1840{
1841 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1842 pgoff_t aligned_index;
1843 unsigned long pages;
1844 int order;
1845
1846 if (vma) {
1847 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1848 if (!orders)
1849 return 0;
1850 }
1851
1852 /* Find the highest order that can add into the page cache */
1853 order = highest_order(orders);
1854 while (orders) {
1855 pages = 1UL << order;
1856 aligned_index = round_down(index, pages);
1857 /*
1858 * Check for conflict before waiting on a huge allocation.
1859 * Conflict might be that a huge page has just been allocated
1860 * and added to page cache by a racing thread, or that there
1861 * is already at least one small page in the huge extent.
1862 * Be careful to retry when appropriate, but not forever!
1863 * Elsewhere -EEXIST would be the right code, but not here.
1864 */
1865 if (!xa_find(&mapping->i_pages, &aligned_index,
1866 aligned_index + pages - 1, XA_PRESENT))
1867 break;
1868 order = next_order(&orders, order);
1869 }
1870
1871 return orders;
1872}
1873#else
1874static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1875 struct address_space *mapping, pgoff_t index,
1876 unsigned long orders)
1877{
1878 return 0;
1879}
1880#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1881
1882static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1883 struct shmem_inode_info *info, pgoff_t index)
1884{
1885 struct mempolicy *mpol;
1886 pgoff_t ilx;
1887 struct folio *folio;
1888
1889 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1890 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1891 mpol_cond_put(mpol);
1892
1893 return folio;
1894}
1895
1896static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1897 gfp_t gfp, struct inode *inode, pgoff_t index,
1898 struct mm_struct *fault_mm, unsigned long orders)
1899{
1900 struct address_space *mapping = inode->i_mapping;
1901 struct shmem_inode_info *info = SHMEM_I(inode);
1902 unsigned long suitable_orders = 0;
1903 struct folio *folio = NULL;
1904 pgoff_t aligned_index;
1905 long pages;
1906 int error, order;
1907
1908 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1909 orders = 0;
1910
1911 if (orders > 0) {
1912 suitable_orders = shmem_suitable_orders(inode, vmf,
1913 mapping, index, orders);
1914
1915 order = highest_order(suitable_orders);
1916 while (suitable_orders) {
1917 pages = 1UL << order;
1918 aligned_index = round_down(index, pages);
1919 folio = shmem_alloc_folio(gfp, order, info, aligned_index);
1920 if (folio) {
1921 index = aligned_index;
1922 goto allocated;
1923 }
1924
1925 if (pages == HPAGE_PMD_NR)
1926 count_vm_event(THP_FILE_FALLBACK);
1927 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1928 order = next_order(&suitable_orders, order);
1929 }
1930 } else {
1931 pages = 1;
1932 folio = shmem_alloc_folio(gfp, 0, info, index);
1933 }
1934 if (!folio)
1935 return ERR_PTR(-ENOMEM);
1936
1937allocated:
1938 __folio_set_locked(folio);
1939 __folio_set_swapbacked(folio);
1940
1941 gfp &= GFP_RECLAIM_MASK;
1942 error = mem_cgroup_charge(folio, fault_mm, gfp);
1943 if (error) {
1944 if (xa_find(&mapping->i_pages, &index,
1945 index + pages - 1, XA_PRESENT)) {
1946 error = -EEXIST;
1947 } else if (pages > 1) {
1948 if (pages == HPAGE_PMD_NR) {
1949 count_vm_event(THP_FILE_FALLBACK);
1950 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1951 }
1952 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1953 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1954 }
1955 goto unlock;
1956 }
1957
1958 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1959 if (error)
1960 goto unlock;
1961
1962 error = shmem_inode_acct_blocks(inode, pages);
1963 if (error) {
1964 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1965 long freed;
1966 /*
1967 * Try to reclaim some space by splitting a few
1968 * large folios beyond i_size on the filesystem.
1969 */
1970 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1971 /*
1972 * And do a shmem_recalc_inode() to account for freed pages:
1973 * except our folio is there in cache, so not quite balanced.
1974 */
1975 spin_lock(&info->lock);
1976 freed = pages + info->alloced - info->swapped -
1977 READ_ONCE(mapping->nrpages);
1978 if (freed > 0)
1979 info->alloced -= freed;
1980 spin_unlock(&info->lock);
1981 if (freed > 0)
1982 shmem_inode_unacct_blocks(inode, freed);
1983 error = shmem_inode_acct_blocks(inode, pages);
1984 if (error) {
1985 filemap_remove_folio(folio);
1986 goto unlock;
1987 }
1988 }
1989
1990 shmem_recalc_inode(inode, pages, 0);
1991 folio_add_lru(folio);
1992 return folio;
1993
1994unlock:
1995 folio_unlock(folio);
1996 folio_put(folio);
1997 return ERR_PTR(error);
1998}
1999
2000static struct folio *shmem_swap_alloc_folio(struct inode *inode,
2001 struct vm_area_struct *vma, pgoff_t index,
2002 swp_entry_t entry, int order, gfp_t gfp)
2003{
2004 struct shmem_inode_info *info = SHMEM_I(inode);
2005 int nr_pages = 1 << order;
2006 struct folio *new;
2007 gfp_t alloc_gfp;
2008 void *shadow;
2009
2010 /*
2011 * We have arrived here because our zones are constrained, so don't
2012 * limit chance of success with further cpuset and node constraints.
2013 */
2014 gfp &= ~GFP_CONSTRAINT_MASK;
2015 alloc_gfp = gfp;
2016 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
2017 if (WARN_ON_ONCE(order))
2018 return ERR_PTR(-EINVAL);
2019 } else if (order) {
2020 /*
2021 * If uffd is active for the vma, we need per-page fault
2022 * fidelity to maintain the uffd semantics, then fallback
2023 * to swapin order-0 folio, as well as for zswap case.
2024 * Any existing sub folio in the swap cache also blocks
2025 * mTHP swapin.
2026 */
2027 if ((vma && unlikely(userfaultfd_armed(vma))) ||
2028 !zswap_never_enabled() ||
2029 non_swapcache_batch(entry, nr_pages) != nr_pages)
2030 goto fallback;
2031
2032 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp);
2033 }
2034retry:
2035 new = shmem_alloc_folio(alloc_gfp, order, info, index);
2036 if (!new) {
2037 new = ERR_PTR(-ENOMEM);
2038 goto fallback;
2039 }
2040
2041 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
2042 alloc_gfp, entry)) {
2043 folio_put(new);
2044 new = ERR_PTR(-ENOMEM);
2045 goto fallback;
2046 }
2047
2048 /*
2049 * Prevent parallel swapin from proceeding with the swap cache flag.
2050 *
2051 * Of course there is another possible concurrent scenario as well,
2052 * that is to say, the swap cache flag of a large folio has already
2053 * been set by swapcache_prepare(), while another thread may have
2054 * already split the large swap entry stored in the shmem mapping.
2055 * In this case, shmem_add_to_page_cache() will help identify the
2056 * concurrent swapin and return -EEXIST.
2057 */
2058 if (swapcache_prepare(entry, nr_pages)) {
2059 folio_put(new);
2060 new = ERR_PTR(-EEXIST);
2061 /* Try smaller folio to avoid cache conflict */
2062 goto fallback;
2063 }
2064
2065 __folio_set_locked(new);
2066 __folio_set_swapbacked(new);
2067 new->swap = entry;
2068
2069 memcg1_swapin(entry, nr_pages);
2070 shadow = swap_cache_get_shadow(entry);
2071 if (shadow)
2072 workingset_refault(new, shadow);
2073 folio_add_lru(new);
2074 swap_read_folio(new, NULL);
2075 return new;
2076fallback:
2077 /* Order 0 swapin failed, nothing to fallback to, abort */
2078 if (!order)
2079 return new;
2080 entry.val += index - round_down(index, nr_pages);
2081 alloc_gfp = gfp;
2082 nr_pages = 1;
2083 order = 0;
2084 goto retry;
2085}
2086
2087/*
2088 * When a page is moved from swapcache to shmem filecache (either by the
2089 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2090 * shmem_unuse_inode()), it may have been read in earlier from swap, in
2091 * ignorance of the mapping it belongs to. If that mapping has special
2092 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2093 * we may need to copy to a suitable page before moving to filecache.
2094 *
2095 * In a future release, this may well be extended to respect cpuset and
2096 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2097 * but for now it is a simple matter of zone.
2098 */
2099static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2100{
2101 return folio_zonenum(folio) > gfp_zone(gfp);
2102}
2103
2104static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2105 struct shmem_inode_info *info, pgoff_t index,
2106 struct vm_area_struct *vma)
2107{
2108 struct swap_cluster_info *ci;
2109 struct folio *new, *old = *foliop;
2110 swp_entry_t entry = old->swap;
2111 int nr_pages = folio_nr_pages(old);
2112 int error = 0;
2113
2114 /*
2115 * We have arrived here because our zones are constrained, so don't
2116 * limit chance of success by further cpuset and node constraints.
2117 */
2118 gfp &= ~GFP_CONSTRAINT_MASK;
2119#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2120 if (nr_pages > 1) {
2121 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2122
2123 gfp = limit_gfp_mask(huge_gfp, gfp);
2124 }
2125#endif
2126
2127 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2128 if (!new)
2129 return -ENOMEM;
2130
2131 folio_ref_add(new, nr_pages);
2132 folio_copy(new, old);
2133 flush_dcache_folio(new);
2134
2135 __folio_set_locked(new);
2136 __folio_set_swapbacked(new);
2137 folio_mark_uptodate(new);
2138 new->swap = entry;
2139 folio_set_swapcache(new);
2140
2141 ci = swap_cluster_get_and_lock_irq(old);
2142 __swap_cache_replace_folio(ci, old, new);
2143 mem_cgroup_replace_folio(old, new);
2144 shmem_update_stats(new, nr_pages);
2145 shmem_update_stats(old, -nr_pages);
2146 swap_cluster_unlock_irq(ci);
2147
2148 folio_add_lru(new);
2149 *foliop = new;
2150
2151 folio_clear_swapcache(old);
2152 old->private = NULL;
2153
2154 folio_unlock(old);
2155 /*
2156 * The old folio are removed from swap cache, drop the 'nr_pages'
2157 * reference, as well as one temporary reference getting from swap
2158 * cache.
2159 */
2160 folio_put_refs(old, nr_pages + 1);
2161 return error;
2162}
2163
2164static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2165 struct folio *folio, swp_entry_t swap,
2166 bool skip_swapcache)
2167{
2168 struct address_space *mapping = inode->i_mapping;
2169 swp_entry_t swapin_error;
2170 void *old;
2171 int nr_pages;
2172
2173 swapin_error = make_poisoned_swp_entry();
2174 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2175 swp_to_radix_entry(swap),
2176 swp_to_radix_entry(swapin_error), 0);
2177 if (old != swp_to_radix_entry(swap))
2178 return;
2179
2180 nr_pages = folio_nr_pages(folio);
2181 folio_wait_writeback(folio);
2182 if (!skip_swapcache)
2183 swap_cache_del_folio(folio);
2184 /*
2185 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2186 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2187 * in shmem_evict_inode().
2188 */
2189 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2190 swap_free_nr(swap, nr_pages);
2191}
2192
2193static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2194 swp_entry_t swap, gfp_t gfp)
2195{
2196 struct address_space *mapping = inode->i_mapping;
2197 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2198 int split_order = 0;
2199 int i;
2200
2201 /* Convert user data gfp flags to xarray node gfp flags */
2202 gfp &= GFP_RECLAIM_MASK;
2203
2204 for (;;) {
2205 void *old = NULL;
2206 int cur_order;
2207 pgoff_t swap_index;
2208
2209 xas_lock_irq(&xas);
2210 old = xas_load(&xas);
2211 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2212 xas_set_err(&xas, -EEXIST);
2213 goto unlock;
2214 }
2215
2216 cur_order = xas_get_order(&xas);
2217 if (!cur_order)
2218 goto unlock;
2219
2220 /* Try to split large swap entry in pagecache */
2221 swap_index = round_down(index, 1 << cur_order);
2222 split_order = xas_try_split_min_order(cur_order);
2223
2224 while (cur_order > 0) {
2225 pgoff_t aligned_index =
2226 round_down(index, 1 << cur_order);
2227 pgoff_t swap_offset = aligned_index - swap_index;
2228
2229 xas_set_order(&xas, index, split_order);
2230 xas_try_split(&xas, old, cur_order);
2231 if (xas_error(&xas))
2232 goto unlock;
2233
2234 /*
2235 * Re-set the swap entry after splitting, and the swap
2236 * offset of the original large entry must be continuous.
2237 */
2238 for (i = 0; i < 1 << cur_order;
2239 i += (1 << split_order)) {
2240 swp_entry_t tmp;
2241
2242 tmp = swp_entry(swp_type(swap),
2243 swp_offset(swap) + swap_offset +
2244 i);
2245 __xa_store(&mapping->i_pages, aligned_index + i,
2246 swp_to_radix_entry(tmp), 0);
2247 }
2248 cur_order = split_order;
2249 split_order = xas_try_split_min_order(split_order);
2250 }
2251
2252unlock:
2253 xas_unlock_irq(&xas);
2254
2255 if (!xas_nomem(&xas, gfp))
2256 break;
2257 }
2258
2259 if (xas_error(&xas))
2260 return xas_error(&xas);
2261
2262 return 0;
2263}
2264
2265/*
2266 * Swap in the folio pointed to by *foliop.
2267 * Caller has to make sure that *foliop contains a valid swapped folio.
2268 * Returns 0 and the folio in foliop if success. On failure, returns the
2269 * error code and NULL in *foliop.
2270 */
2271static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2272 struct folio **foliop, enum sgp_type sgp,
2273 gfp_t gfp, struct vm_area_struct *vma,
2274 vm_fault_t *fault_type)
2275{
2276 struct address_space *mapping = inode->i_mapping;
2277 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2278 struct shmem_inode_info *info = SHMEM_I(inode);
2279 swp_entry_t swap;
2280 softleaf_t index_entry;
2281 struct swap_info_struct *si;
2282 struct folio *folio = NULL;
2283 bool skip_swapcache = false;
2284 int error, nr_pages, order;
2285 pgoff_t offset;
2286
2287 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2288 index_entry = radix_to_swp_entry(*foliop);
2289 swap = index_entry;
2290 *foliop = NULL;
2291
2292 if (softleaf_is_poison_marker(index_entry))
2293 return -EIO;
2294
2295 si = get_swap_device(index_entry);
2296 order = shmem_confirm_swap(mapping, index, index_entry);
2297 if (unlikely(!si)) {
2298 if (order < 0)
2299 return -EEXIST;
2300 else
2301 return -EINVAL;
2302 }
2303 if (unlikely(order < 0)) {
2304 put_swap_device(si);
2305 return -EEXIST;
2306 }
2307
2308 /* index may point to the middle of a large entry, get the sub entry */
2309 if (order) {
2310 offset = index - round_down(index, 1 << order);
2311 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2312 }
2313
2314 /* Look it up and read it in.. */
2315 folio = swap_cache_get_folio(swap);
2316 if (!folio) {
2317 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2318 /* Direct swapin skipping swap cache & readahead */
2319 folio = shmem_swap_alloc_folio(inode, vma, index,
2320 index_entry, order, gfp);
2321 if (IS_ERR(folio)) {
2322 error = PTR_ERR(folio);
2323 folio = NULL;
2324 goto failed;
2325 }
2326 skip_swapcache = true;
2327 } else {
2328 /* Cached swapin only supports order 0 folio */
2329 folio = shmem_swapin_cluster(swap, gfp, info, index);
2330 if (!folio) {
2331 error = -ENOMEM;
2332 goto failed;
2333 }
2334 }
2335 if (fault_type) {
2336 *fault_type |= VM_FAULT_MAJOR;
2337 count_vm_event(PGMAJFAULT);
2338 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2339 }
2340 } else {
2341 swap_update_readahead(folio, NULL, 0);
2342 }
2343
2344 if (order > folio_order(folio)) {
2345 /*
2346 * Swapin may get smaller folios due to various reasons:
2347 * It may fallback to order 0 due to memory pressure or race,
2348 * swap readahead may swap in order 0 folios into swapcache
2349 * asynchronously, while the shmem mapping can still stores
2350 * large swap entries. In such cases, we should split the
2351 * large swap entry to prevent possible data corruption.
2352 */
2353 error = shmem_split_large_entry(inode, index, index_entry, gfp);
2354 if (error)
2355 goto failed_nolock;
2356 }
2357
2358 /*
2359 * If the folio is large, round down swap and index by folio size.
2360 * No matter what race occurs, the swap layer ensures we either get
2361 * a valid folio that has its swap entry aligned by size, or a
2362 * temporarily invalid one which we'll abort very soon and retry.
2363 *
2364 * shmem_add_to_page_cache ensures the whole range contains expected
2365 * entries and prevents any corruption, so any race split is fine
2366 * too, it will succeed as long as the entries are still there.
2367 */
2368 nr_pages = folio_nr_pages(folio);
2369 if (nr_pages > 1) {
2370 swap.val = round_down(swap.val, nr_pages);
2371 index = round_down(index, nr_pages);
2372 }
2373
2374 /*
2375 * We have to do this with the folio locked to prevent races.
2376 * The shmem_confirm_swap below only checks if the first swap
2377 * entry matches the folio, that's enough to ensure the folio
2378 * is not used outside of shmem, as shmem swap entries
2379 * and swap cache folios are never partially freed.
2380 */
2381 folio_lock(folio);
2382 if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2383 shmem_confirm_swap(mapping, index, swap) < 0 ||
2384 folio->swap.val != swap.val) {
2385 error = -EEXIST;
2386 goto unlock;
2387 }
2388 if (!folio_test_uptodate(folio)) {
2389 error = -EIO;
2390 goto failed;
2391 }
2392 folio_wait_writeback(folio);
2393
2394 /*
2395 * Some architectures may have to restore extra metadata to the
2396 * folio after reading from swap.
2397 */
2398 arch_swap_restore(folio_swap(swap, folio), folio);
2399
2400 if (shmem_should_replace_folio(folio, gfp)) {
2401 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2402 if (error)
2403 goto failed;
2404 }
2405
2406 error = shmem_add_to_page_cache(folio, mapping, index,
2407 swp_to_radix_entry(swap), gfp);
2408 if (error)
2409 goto failed;
2410
2411 shmem_recalc_inode(inode, 0, -nr_pages);
2412
2413 if (sgp == SGP_WRITE)
2414 folio_mark_accessed(folio);
2415
2416 if (skip_swapcache) {
2417 folio->swap.val = 0;
2418 swapcache_clear(si, swap, nr_pages);
2419 } else {
2420 swap_cache_del_folio(folio);
2421 }
2422 folio_mark_dirty(folio);
2423 swap_free_nr(swap, nr_pages);
2424 put_swap_device(si);
2425
2426 *foliop = folio;
2427 return 0;
2428failed:
2429 if (shmem_confirm_swap(mapping, index, swap) < 0)
2430 error = -EEXIST;
2431 if (error == -EIO)
2432 shmem_set_folio_swapin_error(inode, index, folio, swap,
2433 skip_swapcache);
2434unlock:
2435 if (folio)
2436 folio_unlock(folio);
2437failed_nolock:
2438 if (skip_swapcache)
2439 swapcache_clear(si, folio->swap, folio_nr_pages(folio));
2440 if (folio)
2441 folio_put(folio);
2442 put_swap_device(si);
2443
2444 return error;
2445}
2446
2447/*
2448 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2449 *
2450 * If we allocate a new one we do not mark it dirty. That's up to the
2451 * vm. If we swap it in we mark it dirty since we also free the swap
2452 * entry since a page cannot live in both the swap and page cache.
2453 *
2454 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2455 */
2456static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2457 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2458 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2459{
2460 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2461 struct mm_struct *fault_mm;
2462 struct folio *folio;
2463 int error;
2464 bool alloced;
2465 unsigned long orders = 0;
2466
2467 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2468 return -EINVAL;
2469
2470 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2471 return -EFBIG;
2472repeat:
2473 if (sgp <= SGP_CACHE &&
2474 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2475 return -EINVAL;
2476
2477 alloced = false;
2478 fault_mm = vma ? vma->vm_mm : NULL;
2479
2480 folio = filemap_get_entry(inode->i_mapping, index);
2481 if (folio && vma && userfaultfd_minor(vma)) {
2482 if (!xa_is_value(folio))
2483 folio_put(folio);
2484 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2485 return 0;
2486 }
2487
2488 if (xa_is_value(folio)) {
2489 error = shmem_swapin_folio(inode, index, &folio,
2490 sgp, gfp, vma, fault_type);
2491 if (error == -EEXIST)
2492 goto repeat;
2493
2494 *foliop = folio;
2495 return error;
2496 }
2497
2498 if (folio) {
2499 folio_lock(folio);
2500
2501 /* Has the folio been truncated or swapped out? */
2502 if (unlikely(folio->mapping != inode->i_mapping)) {
2503 folio_unlock(folio);
2504 folio_put(folio);
2505 goto repeat;
2506 }
2507 if (sgp == SGP_WRITE)
2508 folio_mark_accessed(folio);
2509 if (folio_test_uptodate(folio))
2510 goto out;
2511 /* fallocated folio */
2512 if (sgp != SGP_READ)
2513 goto clear;
2514 folio_unlock(folio);
2515 folio_put(folio);
2516 }
2517
2518 /*
2519 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2520 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2521 */
2522 *foliop = NULL;
2523 if (sgp == SGP_READ)
2524 return 0;
2525 if (sgp == SGP_NOALLOC)
2526 return -ENOENT;
2527
2528 /*
2529 * Fast cache lookup and swap lookup did not find it: allocate.
2530 */
2531
2532 if (vma && userfaultfd_missing(vma)) {
2533 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2534 return 0;
2535 }
2536
2537 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2538 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2539 if (orders > 0) {
2540 gfp_t huge_gfp;
2541
2542 huge_gfp = vma_thp_gfp_mask(vma);
2543 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2544 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2545 inode, index, fault_mm, orders);
2546 if (!IS_ERR(folio)) {
2547 if (folio_test_pmd_mappable(folio))
2548 count_vm_event(THP_FILE_ALLOC);
2549 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2550 goto alloced;
2551 }
2552 if (PTR_ERR(folio) == -EEXIST)
2553 goto repeat;
2554 }
2555
2556 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2557 if (IS_ERR(folio)) {
2558 error = PTR_ERR(folio);
2559 if (error == -EEXIST)
2560 goto repeat;
2561 folio = NULL;
2562 goto unlock;
2563 }
2564
2565alloced:
2566 alloced = true;
2567 if (folio_test_large(folio) &&
2568 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2569 folio_next_index(folio)) {
2570 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2571 struct shmem_inode_info *info = SHMEM_I(inode);
2572 /*
2573 * Part of the large folio is beyond i_size: subject
2574 * to shrink under memory pressure.
2575 */
2576 spin_lock(&sbinfo->shrinklist_lock);
2577 /*
2578 * _careful to defend against unlocked access to
2579 * ->shrink_list in shmem_unused_huge_shrink()
2580 */
2581 if (list_empty_careful(&info->shrinklist)) {
2582 list_add_tail(&info->shrinklist,
2583 &sbinfo->shrinklist);
2584 sbinfo->shrinklist_len++;
2585 }
2586 spin_unlock(&sbinfo->shrinklist_lock);
2587 }
2588
2589 if (sgp == SGP_WRITE)
2590 folio_set_referenced(folio);
2591 /*
2592 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2593 */
2594 if (sgp == SGP_FALLOC)
2595 sgp = SGP_WRITE;
2596clear:
2597 /*
2598 * Let SGP_WRITE caller clear ends if write does not fill folio;
2599 * but SGP_FALLOC on a folio fallocated earlier must initialize
2600 * it now, lest undo on failure cancel our earlier guarantee.
2601 */
2602 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2603 long i, n = folio_nr_pages(folio);
2604
2605 for (i = 0; i < n; i++)
2606 clear_highpage(folio_page(folio, i));
2607 flush_dcache_folio(folio);
2608 folio_mark_uptodate(folio);
2609 }
2610
2611 /* Perhaps the file has been truncated since we checked */
2612 if (sgp <= SGP_CACHE &&
2613 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2614 error = -EINVAL;
2615 goto unlock;
2616 }
2617out:
2618 *foliop = folio;
2619 return 0;
2620
2621 /*
2622 * Error recovery.
2623 */
2624unlock:
2625 if (alloced)
2626 filemap_remove_folio(folio);
2627 shmem_recalc_inode(inode, 0, 0);
2628 if (folio) {
2629 folio_unlock(folio);
2630 folio_put(folio);
2631 }
2632 return error;
2633}
2634
2635/**
2636 * shmem_get_folio - find, and lock a shmem folio.
2637 * @inode: inode to search
2638 * @index: the page index.
2639 * @write_end: end of a write, could extend inode size
2640 * @foliop: pointer to the folio if found
2641 * @sgp: SGP_* flags to control behavior
2642 *
2643 * Looks up the page cache entry at @inode & @index. If a folio is
2644 * present, it is returned locked with an increased refcount.
2645 *
2646 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2647 * before unlocking the folio to ensure that the folio is not reclaimed.
2648 * There is no need to reserve space before calling folio_mark_dirty().
2649 *
2650 * When no folio is found, the behavior depends on @sgp:
2651 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2652 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2653 * - for all other flags a new folio is allocated, inserted into the
2654 * page cache and returned locked in @foliop.
2655 *
2656 * Context: May sleep.
2657 * Return: 0 if successful, else a negative error code.
2658 */
2659int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2660 struct folio **foliop, enum sgp_type sgp)
2661{
2662 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2663 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2664}
2665EXPORT_SYMBOL_GPL(shmem_get_folio);
2666
2667/*
2668 * This is like autoremove_wake_function, but it removes the wait queue
2669 * entry unconditionally - even if something else had already woken the
2670 * target.
2671 */
2672static int synchronous_wake_function(wait_queue_entry_t *wait,
2673 unsigned int mode, int sync, void *key)
2674{
2675 int ret = default_wake_function(wait, mode, sync, key);
2676 list_del_init(&wait->entry);
2677 return ret;
2678}
2679
2680/*
2681 * Trinity finds that probing a hole which tmpfs is punching can
2682 * prevent the hole-punch from ever completing: which in turn
2683 * locks writers out with its hold on i_rwsem. So refrain from
2684 * faulting pages into the hole while it's being punched. Although
2685 * shmem_undo_range() does remove the additions, it may be unable to
2686 * keep up, as each new page needs its own unmap_mapping_range() call,
2687 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2688 *
2689 * It does not matter if we sometimes reach this check just before the
2690 * hole-punch begins, so that one fault then races with the punch:
2691 * we just need to make racing faults a rare case.
2692 *
2693 * The implementation below would be much simpler if we just used a
2694 * standard mutex or completion: but we cannot take i_rwsem in fault,
2695 * and bloating every shmem inode for this unlikely case would be sad.
2696 */
2697static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2698{
2699 struct shmem_falloc *shmem_falloc;
2700 struct file *fpin = NULL;
2701 vm_fault_t ret = 0;
2702
2703 spin_lock(&inode->i_lock);
2704 shmem_falloc = inode->i_private;
2705 if (shmem_falloc &&
2706 shmem_falloc->waitq &&
2707 vmf->pgoff >= shmem_falloc->start &&
2708 vmf->pgoff < shmem_falloc->next) {
2709 wait_queue_head_t *shmem_falloc_waitq;
2710 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2711
2712 ret = VM_FAULT_NOPAGE;
2713 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2714 shmem_falloc_waitq = shmem_falloc->waitq;
2715 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2716 TASK_UNINTERRUPTIBLE);
2717 spin_unlock(&inode->i_lock);
2718 schedule();
2719
2720 /*
2721 * shmem_falloc_waitq points into the shmem_fallocate()
2722 * stack of the hole-punching task: shmem_falloc_waitq
2723 * is usually invalid by the time we reach here, but
2724 * finish_wait() does not dereference it in that case;
2725 * though i_lock needed lest racing with wake_up_all().
2726 */
2727 spin_lock(&inode->i_lock);
2728 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2729 }
2730 spin_unlock(&inode->i_lock);
2731 if (fpin) {
2732 fput(fpin);
2733 ret = VM_FAULT_RETRY;
2734 }
2735 return ret;
2736}
2737
2738static vm_fault_t shmem_fault(struct vm_fault *vmf)
2739{
2740 struct inode *inode = file_inode(vmf->vma->vm_file);
2741 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2742 struct folio *folio = NULL;
2743 vm_fault_t ret = 0;
2744 int err;
2745
2746 /*
2747 * Trinity finds that probing a hole which tmpfs is punching can
2748 * prevent the hole-punch from ever completing: noted in i_private.
2749 */
2750 if (unlikely(inode->i_private)) {
2751 ret = shmem_falloc_wait(vmf, inode);
2752 if (ret)
2753 return ret;
2754 }
2755
2756 WARN_ON_ONCE(vmf->page != NULL);
2757 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2758 gfp, vmf, &ret);
2759 if (err)
2760 return vmf_error(err);
2761 if (folio) {
2762 vmf->page = folio_file_page(folio, vmf->pgoff);
2763 ret |= VM_FAULT_LOCKED;
2764 }
2765 return ret;
2766}
2767
2768unsigned long shmem_get_unmapped_area(struct file *file,
2769 unsigned long uaddr, unsigned long len,
2770 unsigned long pgoff, unsigned long flags)
2771{
2772 unsigned long addr;
2773 unsigned long offset;
2774 unsigned long inflated_len;
2775 unsigned long inflated_addr;
2776 unsigned long inflated_offset;
2777 unsigned long hpage_size;
2778
2779 if (len > TASK_SIZE)
2780 return -ENOMEM;
2781
2782 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags);
2783
2784 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2785 return addr;
2786 if (IS_ERR_VALUE(addr))
2787 return addr;
2788 if (addr & ~PAGE_MASK)
2789 return addr;
2790 if (addr > TASK_SIZE - len)
2791 return addr;
2792
2793 if (shmem_huge == SHMEM_HUGE_DENY)
2794 return addr;
2795 if (flags & MAP_FIXED)
2796 return addr;
2797 /*
2798 * Our priority is to support MAP_SHARED mapped hugely;
2799 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2800 * But if caller specified an address hint and we allocated area there
2801 * successfully, respect that as before.
2802 */
2803 if (uaddr == addr)
2804 return addr;
2805
2806 hpage_size = HPAGE_PMD_SIZE;
2807 if (shmem_huge != SHMEM_HUGE_FORCE) {
2808 struct super_block *sb;
2809 unsigned long __maybe_unused hpage_orders;
2810 int order = 0;
2811
2812 if (file) {
2813 VM_BUG_ON(file->f_op != &shmem_file_operations);
2814 sb = file_inode(file)->i_sb;
2815 } else {
2816 /*
2817 * Called directly from mm/mmap.c, or drivers/char/mem.c
2818 * for "/dev/zero", to create a shared anonymous object.
2819 */
2820 if (IS_ERR(shm_mnt))
2821 return addr;
2822 sb = shm_mnt->mnt_sb;
2823
2824 /*
2825 * Find the highest mTHP order used for anonymous shmem to
2826 * provide a suitable alignment address.
2827 */
2828#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2829 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2830 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2831 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2832 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2833 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2834
2835 if (hpage_orders > 0) {
2836 order = highest_order(hpage_orders);
2837 hpage_size = PAGE_SIZE << order;
2838 }
2839#endif
2840 }
2841 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2842 return addr;
2843 }
2844
2845 if (len < hpage_size)
2846 return addr;
2847
2848 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2849 if (offset && offset + len < 2 * hpage_size)
2850 return addr;
2851 if ((addr & (hpage_size - 1)) == offset)
2852 return addr;
2853
2854 inflated_len = len + hpage_size - PAGE_SIZE;
2855 if (inflated_len > TASK_SIZE)
2856 return addr;
2857 if (inflated_len < len)
2858 return addr;
2859
2860 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags);
2861 if (IS_ERR_VALUE(inflated_addr))
2862 return addr;
2863 if (inflated_addr & ~PAGE_MASK)
2864 return addr;
2865
2866 inflated_offset = inflated_addr & (hpage_size - 1);
2867 inflated_addr += offset - inflated_offset;
2868 if (inflated_offset > offset)
2869 inflated_addr += hpage_size;
2870
2871 if (inflated_addr > TASK_SIZE - len)
2872 return addr;
2873 return inflated_addr;
2874}
2875
2876#ifdef CONFIG_NUMA
2877static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2878{
2879 struct inode *inode = file_inode(vma->vm_file);
2880 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2881}
2882
2883static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2884 unsigned long addr, pgoff_t *ilx)
2885{
2886 struct inode *inode = file_inode(vma->vm_file);
2887 pgoff_t index;
2888
2889 /*
2890 * Bias interleave by inode number to distribute better across nodes;
2891 * but this interface is independent of which page order is used, so
2892 * supplies only that bias, letting caller apply the offset (adjusted
2893 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2894 */
2895 *ilx = inode->i_ino;
2896 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2897 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2898}
2899
2900static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2901 pgoff_t index, unsigned int order, pgoff_t *ilx)
2902{
2903 struct mempolicy *mpol;
2904
2905 /* Bias interleave by inode number to distribute better across nodes */
2906 *ilx = info->vfs_inode.i_ino + (index >> order);
2907
2908 mpol = mpol_shared_policy_lookup(&info->policy, index);
2909 return mpol ? mpol : get_task_policy(current);
2910}
2911#else
2912static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2913 pgoff_t index, unsigned int order, pgoff_t *ilx)
2914{
2915 *ilx = 0;
2916 return NULL;
2917}
2918#endif /* CONFIG_NUMA */
2919
2920int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2921{
2922 struct inode *inode = file_inode(file);
2923 struct shmem_inode_info *info = SHMEM_I(inode);
2924 int retval = -ENOMEM;
2925
2926 /*
2927 * What serializes the accesses to info->flags?
2928 * ipc_lock_object() when called from shmctl_do_lock(),
2929 * no serialization needed when called from shm_destroy().
2930 */
2931 if (lock && !(info->flags & SHMEM_F_LOCKED)) {
2932 if (!user_shm_lock(inode->i_size, ucounts))
2933 goto out_nomem;
2934 info->flags |= SHMEM_F_LOCKED;
2935 mapping_set_unevictable(file->f_mapping);
2936 }
2937 if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) {
2938 user_shm_unlock(inode->i_size, ucounts);
2939 info->flags &= ~SHMEM_F_LOCKED;
2940 mapping_clear_unevictable(file->f_mapping);
2941 }
2942 retval = 0;
2943
2944out_nomem:
2945 return retval;
2946}
2947
2948static int shmem_mmap_prepare(struct vm_area_desc *desc)
2949{
2950 struct file *file = desc->file;
2951 struct inode *inode = file_inode(file);
2952
2953 file_accessed(file);
2954 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2955 if (inode->i_nlink)
2956 desc->vm_ops = &shmem_vm_ops;
2957 else
2958 desc->vm_ops = &shmem_anon_vm_ops;
2959 return 0;
2960}
2961
2962static int shmem_file_open(struct inode *inode, struct file *file)
2963{
2964 file->f_mode |= FMODE_CAN_ODIRECT;
2965 return generic_file_open(inode, file);
2966}
2967
2968#ifdef CONFIG_TMPFS_XATTR
2969static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2970
2971#if IS_ENABLED(CONFIG_UNICODE)
2972/*
2973 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2974 *
2975 * The casefold file attribute needs some special checks. I can just be added to
2976 * an empty dir, and can't be removed from a non-empty dir.
2977 */
2978static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2979 struct dentry *dentry, unsigned int *i_flags)
2980{
2981 unsigned int old = inode->i_flags;
2982 struct super_block *sb = inode->i_sb;
2983
2984 if (fsflags & FS_CASEFOLD_FL) {
2985 if (!(old & S_CASEFOLD)) {
2986 if (!sb->s_encoding)
2987 return -EOPNOTSUPP;
2988
2989 if (!S_ISDIR(inode->i_mode))
2990 return -ENOTDIR;
2991
2992 if (dentry && !simple_empty(dentry))
2993 return -ENOTEMPTY;
2994 }
2995
2996 *i_flags = *i_flags | S_CASEFOLD;
2997 } else if (old & S_CASEFOLD) {
2998 if (dentry && !simple_empty(dentry))
2999 return -ENOTEMPTY;
3000 }
3001
3002 return 0;
3003}
3004#else
3005static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3006 struct dentry *dentry, unsigned int *i_flags)
3007{
3008 if (fsflags & FS_CASEFOLD_FL)
3009 return -EOPNOTSUPP;
3010
3011 return 0;
3012}
3013#endif
3014
3015/*
3016 * chattr's fsflags are unrelated to extended attributes,
3017 * but tmpfs has chosen to enable them under the same config option.
3018 */
3019static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3020{
3021 unsigned int i_flags = 0;
3022 int ret;
3023
3024 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3025 if (ret)
3026 return ret;
3027
3028 if (fsflags & FS_NOATIME_FL)
3029 i_flags |= S_NOATIME;
3030 if (fsflags & FS_APPEND_FL)
3031 i_flags |= S_APPEND;
3032 if (fsflags & FS_IMMUTABLE_FL)
3033 i_flags |= S_IMMUTABLE;
3034 /*
3035 * But FS_NODUMP_FL does not require any action in i_flags.
3036 */
3037 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3038
3039 return 0;
3040}
3041#else
3042static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3043{
3044}
3045#define shmem_initxattrs NULL
3046#endif
3047
3048static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3049{
3050 return &SHMEM_I(inode)->dir_offsets;
3051}
3052
3053static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3054 struct super_block *sb,
3055 struct inode *dir, umode_t mode,
3056 dev_t dev, unsigned long flags)
3057{
3058 struct inode *inode;
3059 struct shmem_inode_info *info;
3060 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3061 ino_t ino;
3062 int err;
3063
3064 err = shmem_reserve_inode(sb, &ino);
3065 if (err)
3066 return ERR_PTR(err);
3067
3068 inode = new_inode(sb);
3069 if (!inode) {
3070 shmem_free_inode(sb, 0);
3071 return ERR_PTR(-ENOSPC);
3072 }
3073
3074 inode->i_ino = ino;
3075 inode_init_owner(idmap, inode, dir, mode);
3076 inode->i_blocks = 0;
3077 simple_inode_init_ts(inode);
3078 inode->i_generation = get_random_u32();
3079 info = SHMEM_I(inode);
3080 memset(info, 0, (char *)inode - (char *)info);
3081 spin_lock_init(&info->lock);
3082 atomic_set(&info->stop_eviction, 0);
3083 info->seals = F_SEAL_SEAL;
3084 info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
3085 info->i_crtime = inode_get_mtime(inode);
3086 info->fsflags = (dir == NULL) ? 0 :
3087 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3088 if (info->fsflags)
3089 shmem_set_inode_flags(inode, info->fsflags, NULL);
3090 INIT_LIST_HEAD(&info->shrinklist);
3091 INIT_LIST_HEAD(&info->swaplist);
3092 simple_xattrs_init(&info->xattrs);
3093 cache_no_acl(inode);
3094 if (sbinfo->noswap)
3095 mapping_set_unevictable(inode->i_mapping);
3096
3097 /* Don't consider 'deny' for emergencies and 'force' for testing */
3098 if (sbinfo->huge)
3099 mapping_set_large_folios(inode->i_mapping);
3100
3101 switch (mode & S_IFMT) {
3102 default:
3103 inode->i_op = &shmem_special_inode_operations;
3104 init_special_inode(inode, mode, dev);
3105 break;
3106 case S_IFREG:
3107 inode->i_mapping->a_ops = &shmem_aops;
3108 inode->i_op = &shmem_inode_operations;
3109 inode->i_fop = &shmem_file_operations;
3110 mpol_shared_policy_init(&info->policy,
3111 shmem_get_sbmpol(sbinfo));
3112 break;
3113 case S_IFDIR:
3114 inc_nlink(inode);
3115 /* Some things misbehave if size == 0 on a directory */
3116 inode->i_size = 2 * BOGO_DIRENT_SIZE;
3117 inode->i_op = &shmem_dir_inode_operations;
3118 inode->i_fop = &simple_offset_dir_operations;
3119 simple_offset_init(shmem_get_offset_ctx(inode));
3120 break;
3121 case S_IFLNK:
3122 /*
3123 * Must not load anything in the rbtree,
3124 * mpol_free_shared_policy will not be called.
3125 */
3126 mpol_shared_policy_init(&info->policy, NULL);
3127 break;
3128 }
3129
3130 lockdep_annotate_inode_mutex_key(inode);
3131 return inode;
3132}
3133
3134#ifdef CONFIG_TMPFS_QUOTA
3135static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3136 struct super_block *sb, struct inode *dir,
3137 umode_t mode, dev_t dev, unsigned long flags)
3138{
3139 int err;
3140 struct inode *inode;
3141
3142 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3143 if (IS_ERR(inode))
3144 return inode;
3145
3146 err = dquot_initialize(inode);
3147 if (err)
3148 goto errout;
3149
3150 err = dquot_alloc_inode(inode);
3151 if (err) {
3152 dquot_drop(inode);
3153 goto errout;
3154 }
3155 return inode;
3156
3157errout:
3158 inode->i_flags |= S_NOQUOTA;
3159 iput(inode);
3160 return ERR_PTR(err);
3161}
3162#else
3163static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3164 struct super_block *sb, struct inode *dir,
3165 umode_t mode, dev_t dev, unsigned long flags)
3166{
3167 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3168}
3169#endif /* CONFIG_TMPFS_QUOTA */
3170
3171#ifdef CONFIG_USERFAULTFD
3172int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3173 struct vm_area_struct *dst_vma,
3174 unsigned long dst_addr,
3175 unsigned long src_addr,
3176 uffd_flags_t flags,
3177 struct folio **foliop)
3178{
3179 struct inode *inode = file_inode(dst_vma->vm_file);
3180 struct shmem_inode_info *info = SHMEM_I(inode);
3181 struct address_space *mapping = inode->i_mapping;
3182 gfp_t gfp = mapping_gfp_mask(mapping);
3183 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3184 void *page_kaddr;
3185 struct folio *folio;
3186 int ret;
3187 pgoff_t max_off;
3188
3189 if (shmem_inode_acct_blocks(inode, 1)) {
3190 /*
3191 * We may have got a page, returned -ENOENT triggering a retry,
3192 * and now we find ourselves with -ENOMEM. Release the page, to
3193 * avoid a BUG_ON in our caller.
3194 */
3195 if (unlikely(*foliop)) {
3196 folio_put(*foliop);
3197 *foliop = NULL;
3198 }
3199 return -ENOMEM;
3200 }
3201
3202 if (!*foliop) {
3203 ret = -ENOMEM;
3204 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3205 if (!folio)
3206 goto out_unacct_blocks;
3207
3208 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3209 page_kaddr = kmap_local_folio(folio, 0);
3210 /*
3211 * The read mmap_lock is held here. Despite the
3212 * mmap_lock being read recursive a deadlock is still
3213 * possible if a writer has taken a lock. For example:
3214 *
3215 * process A thread 1 takes read lock on own mmap_lock
3216 * process A thread 2 calls mmap, blocks taking write lock
3217 * process B thread 1 takes page fault, read lock on own mmap lock
3218 * process B thread 2 calls mmap, blocks taking write lock
3219 * process A thread 1 blocks taking read lock on process B
3220 * process B thread 1 blocks taking read lock on process A
3221 *
3222 * Disable page faults to prevent potential deadlock
3223 * and retry the copy outside the mmap_lock.
3224 */
3225 pagefault_disable();
3226 ret = copy_from_user(page_kaddr,
3227 (const void __user *)src_addr,
3228 PAGE_SIZE);
3229 pagefault_enable();
3230 kunmap_local(page_kaddr);
3231
3232 /* fallback to copy_from_user outside mmap_lock */
3233 if (unlikely(ret)) {
3234 *foliop = folio;
3235 ret = -ENOENT;
3236 /* don't free the page */
3237 goto out_unacct_blocks;
3238 }
3239
3240 flush_dcache_folio(folio);
3241 } else { /* ZEROPAGE */
3242 clear_user_highpage(&folio->page, dst_addr);
3243 }
3244 } else {
3245 folio = *foliop;
3246 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3247 *foliop = NULL;
3248 }
3249
3250 VM_BUG_ON(folio_test_locked(folio));
3251 VM_BUG_ON(folio_test_swapbacked(folio));
3252 __folio_set_locked(folio);
3253 __folio_set_swapbacked(folio);
3254 __folio_mark_uptodate(folio);
3255
3256 ret = -EFAULT;
3257 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3258 if (unlikely(pgoff >= max_off))
3259 goto out_release;
3260
3261 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3262 if (ret)
3263 goto out_release;
3264 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3265 if (ret)
3266 goto out_release;
3267
3268 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3269 &folio->page, true, flags);
3270 if (ret)
3271 goto out_delete_from_cache;
3272
3273 shmem_recalc_inode(inode, 1, 0);
3274 folio_unlock(folio);
3275 return 0;
3276out_delete_from_cache:
3277 filemap_remove_folio(folio);
3278out_release:
3279 folio_unlock(folio);
3280 folio_put(folio);
3281out_unacct_blocks:
3282 shmem_inode_unacct_blocks(inode, 1);
3283 return ret;
3284}
3285#endif /* CONFIG_USERFAULTFD */
3286
3287#ifdef CONFIG_TMPFS
3288static const struct inode_operations shmem_symlink_inode_operations;
3289static const struct inode_operations shmem_short_symlink_operations;
3290
3291static int
3292shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping,
3293 loff_t pos, unsigned len,
3294 struct folio **foliop, void **fsdata)
3295{
3296 struct inode *inode = mapping->host;
3297 struct shmem_inode_info *info = SHMEM_I(inode);
3298 pgoff_t index = pos >> PAGE_SHIFT;
3299 struct folio *folio;
3300 int ret = 0;
3301
3302 /* i_rwsem is held by caller */
3303 if (unlikely(info->seals & (F_SEAL_GROW |
3304 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3305 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3306 return -EPERM;
3307 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3308 return -EPERM;
3309 }
3310
3311 if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) &&
3312 pos + len > inode->i_size))
3313 return -EPERM;
3314
3315 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3316 if (ret)
3317 return ret;
3318
3319 if (folio_contain_hwpoisoned_page(folio)) {
3320 folio_unlock(folio);
3321 folio_put(folio);
3322 return -EIO;
3323 }
3324
3325 *foliop = folio;
3326 return 0;
3327}
3328
3329static int
3330shmem_write_end(const struct kiocb *iocb, struct address_space *mapping,
3331 loff_t pos, unsigned len, unsigned copied,
3332 struct folio *folio, void *fsdata)
3333{
3334 struct inode *inode = mapping->host;
3335
3336 if (pos + copied > inode->i_size)
3337 i_size_write(inode, pos + copied);
3338
3339 if (!folio_test_uptodate(folio)) {
3340 if (copied < folio_size(folio)) {
3341 size_t from = offset_in_folio(folio, pos);
3342 folio_zero_segments(folio, 0, from,
3343 from + copied, folio_size(folio));
3344 }
3345 folio_mark_uptodate(folio);
3346 }
3347 folio_mark_dirty(folio);
3348 folio_unlock(folio);
3349 folio_put(folio);
3350
3351 return copied;
3352}
3353
3354static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3355{
3356 struct file *file = iocb->ki_filp;
3357 struct inode *inode = file_inode(file);
3358 struct address_space *mapping = inode->i_mapping;
3359 pgoff_t index;
3360 unsigned long offset;
3361 int error = 0;
3362 ssize_t retval = 0;
3363
3364 for (;;) {
3365 struct folio *folio = NULL;
3366 struct page *page = NULL;
3367 unsigned long nr, ret;
3368 loff_t end_offset, i_size = i_size_read(inode);
3369 bool fallback_page_copy = false;
3370 size_t fsize;
3371
3372 if (unlikely(iocb->ki_pos >= i_size))
3373 break;
3374
3375 index = iocb->ki_pos >> PAGE_SHIFT;
3376 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3377 if (error) {
3378 if (error == -EINVAL)
3379 error = 0;
3380 break;
3381 }
3382 if (folio) {
3383 folio_unlock(folio);
3384
3385 page = folio_file_page(folio, index);
3386 if (PageHWPoison(page)) {
3387 folio_put(folio);
3388 error = -EIO;
3389 break;
3390 }
3391
3392 if (folio_test_large(folio) &&
3393 folio_test_has_hwpoisoned(folio))
3394 fallback_page_copy = true;
3395 }
3396
3397 /*
3398 * We must evaluate after, since reads (unlike writes)
3399 * are called without i_rwsem protection against truncate
3400 */
3401 i_size = i_size_read(inode);
3402 if (unlikely(iocb->ki_pos >= i_size)) {
3403 if (folio)
3404 folio_put(folio);
3405 break;
3406 }
3407 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3408 if (folio && likely(!fallback_page_copy))
3409 fsize = folio_size(folio);
3410 else
3411 fsize = PAGE_SIZE;
3412 offset = iocb->ki_pos & (fsize - 1);
3413 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3414
3415 if (folio) {
3416 /*
3417 * If users can be writing to this page using arbitrary
3418 * virtual addresses, take care about potential aliasing
3419 * before reading the page on the kernel side.
3420 */
3421 if (mapping_writably_mapped(mapping)) {
3422 if (likely(!fallback_page_copy))
3423 flush_dcache_folio(folio);
3424 else
3425 flush_dcache_page(page);
3426 }
3427
3428 /*
3429 * Mark the folio accessed if we read the beginning.
3430 */
3431 if (!offset)
3432 folio_mark_accessed(folio);
3433 /*
3434 * Ok, we have the page, and it's up-to-date, so
3435 * now we can copy it to user space...
3436 */
3437 if (likely(!fallback_page_copy))
3438 ret = copy_folio_to_iter(folio, offset, nr, to);
3439 else
3440 ret = copy_page_to_iter(page, offset, nr, to);
3441 folio_put(folio);
3442 } else if (user_backed_iter(to)) {
3443 /*
3444 * Copy to user tends to be so well optimized, but
3445 * clear_user() not so much, that it is noticeably
3446 * faster to copy the zero page instead of clearing.
3447 */
3448 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3449 } else {
3450 /*
3451 * But submitting the same page twice in a row to
3452 * splice() - or others? - can result in confusion:
3453 * so don't attempt that optimization on pipes etc.
3454 */
3455 ret = iov_iter_zero(nr, to);
3456 }
3457
3458 retval += ret;
3459 iocb->ki_pos += ret;
3460
3461 if (!iov_iter_count(to))
3462 break;
3463 if (ret < nr) {
3464 error = -EFAULT;
3465 break;
3466 }
3467 cond_resched();
3468 }
3469
3470 file_accessed(file);
3471 return retval ? retval : error;
3472}
3473
3474static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3475{
3476 struct file *file = iocb->ki_filp;
3477 struct inode *inode = file->f_mapping->host;
3478 ssize_t ret;
3479
3480 inode_lock(inode);
3481 ret = generic_write_checks(iocb, from);
3482 if (ret <= 0)
3483 goto unlock;
3484 ret = file_remove_privs(file);
3485 if (ret)
3486 goto unlock;
3487 ret = file_update_time(file);
3488 if (ret)
3489 goto unlock;
3490 ret = generic_perform_write(iocb, from);
3491unlock:
3492 inode_unlock(inode);
3493 return ret;
3494}
3495
3496static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3497 struct pipe_buffer *buf)
3498{
3499 return true;
3500}
3501
3502static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3503 struct pipe_buffer *buf)
3504{
3505}
3506
3507static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3508 struct pipe_buffer *buf)
3509{
3510 return false;
3511}
3512
3513static const struct pipe_buf_operations zero_pipe_buf_ops = {
3514 .release = zero_pipe_buf_release,
3515 .try_steal = zero_pipe_buf_try_steal,
3516 .get = zero_pipe_buf_get,
3517};
3518
3519static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3520 loff_t fpos, size_t size)
3521{
3522 size_t offset = fpos & ~PAGE_MASK;
3523
3524 size = min_t(size_t, size, PAGE_SIZE - offset);
3525
3526 if (!pipe_is_full(pipe)) {
3527 struct pipe_buffer *buf = pipe_head_buf(pipe);
3528
3529 *buf = (struct pipe_buffer) {
3530 .ops = &zero_pipe_buf_ops,
3531 .page = ZERO_PAGE(0),
3532 .offset = offset,
3533 .len = size,
3534 };
3535 pipe->head++;
3536 }
3537
3538 return size;
3539}
3540
3541static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3542 struct pipe_inode_info *pipe,
3543 size_t len, unsigned int flags)
3544{
3545 struct inode *inode = file_inode(in);
3546 struct address_space *mapping = inode->i_mapping;
3547 struct folio *folio = NULL;
3548 size_t total_spliced = 0, used, npages, n, part;
3549 loff_t isize;
3550 int error = 0;
3551
3552 /* Work out how much data we can actually add into the pipe */
3553 used = pipe_buf_usage(pipe);
3554 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3555 len = min_t(size_t, len, npages * PAGE_SIZE);
3556
3557 do {
3558 bool fallback_page_splice = false;
3559 struct page *page = NULL;
3560 pgoff_t index;
3561 size_t size;
3562
3563 if (*ppos >= i_size_read(inode))
3564 break;
3565
3566 index = *ppos >> PAGE_SHIFT;
3567 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3568 if (error) {
3569 if (error == -EINVAL)
3570 error = 0;
3571 break;
3572 }
3573 if (folio) {
3574 folio_unlock(folio);
3575
3576 page = folio_file_page(folio, index);
3577 if (PageHWPoison(page)) {
3578 error = -EIO;
3579 break;
3580 }
3581
3582 if (folio_test_large(folio) &&
3583 folio_test_has_hwpoisoned(folio))
3584 fallback_page_splice = true;
3585 }
3586
3587 /*
3588 * i_size must be checked after we know the pages are Uptodate.
3589 *
3590 * Checking i_size after the check allows us to calculate
3591 * the correct value for "nr", which means the zero-filled
3592 * part of the page is not copied back to userspace (unless
3593 * another truncate extends the file - this is desired though).
3594 */
3595 isize = i_size_read(inode);
3596 if (unlikely(*ppos >= isize))
3597 break;
3598 /*
3599 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3600 * pages.
3601 */
3602 size = len;
3603 if (unlikely(fallback_page_splice)) {
3604 size_t offset = *ppos & ~PAGE_MASK;
3605
3606 size = umin(size, PAGE_SIZE - offset);
3607 }
3608 part = min_t(loff_t, isize - *ppos, size);
3609
3610 if (folio) {
3611 /*
3612 * If users can be writing to this page using arbitrary
3613 * virtual addresses, take care about potential aliasing
3614 * before reading the page on the kernel side.
3615 */
3616 if (mapping_writably_mapped(mapping)) {
3617 if (likely(!fallback_page_splice))
3618 flush_dcache_folio(folio);
3619 else
3620 flush_dcache_page(page);
3621 }
3622 folio_mark_accessed(folio);
3623 /*
3624 * Ok, we have the page, and it's up-to-date, so we can
3625 * now splice it into the pipe.
3626 */
3627 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3628 folio_put(folio);
3629 folio = NULL;
3630 } else {
3631 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3632 }
3633
3634 if (!n)
3635 break;
3636 len -= n;
3637 total_spliced += n;
3638 *ppos += n;
3639 in->f_ra.prev_pos = *ppos;
3640 if (pipe_is_full(pipe))
3641 break;
3642
3643 cond_resched();
3644 } while (len);
3645
3646 if (folio)
3647 folio_put(folio);
3648
3649 file_accessed(in);
3650 return total_spliced ? total_spliced : error;
3651}
3652
3653static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3654{
3655 struct address_space *mapping = file->f_mapping;
3656 struct inode *inode = mapping->host;
3657
3658 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3659 return generic_file_llseek_size(file, offset, whence,
3660 MAX_LFS_FILESIZE, i_size_read(inode));
3661 if (offset < 0)
3662 return -ENXIO;
3663
3664 inode_lock(inode);
3665 /* We're holding i_rwsem so we can access i_size directly */
3666 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3667 if (offset >= 0)
3668 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3669 inode_unlock(inode);
3670 return offset;
3671}
3672
3673static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3674 loff_t len)
3675{
3676 struct inode *inode = file_inode(file);
3677 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3678 struct shmem_inode_info *info = SHMEM_I(inode);
3679 struct shmem_falloc shmem_falloc;
3680 pgoff_t start, index, end, undo_fallocend;
3681 int error;
3682
3683 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3684 return -EOPNOTSUPP;
3685
3686 inode_lock(inode);
3687
3688 if (info->flags & SHMEM_F_MAPPING_FROZEN) {
3689 error = -EPERM;
3690 goto out;
3691 }
3692
3693 if (mode & FALLOC_FL_PUNCH_HOLE) {
3694 struct address_space *mapping = file->f_mapping;
3695 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3696 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3697 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3698
3699 /* protected by i_rwsem */
3700 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3701 error = -EPERM;
3702 goto out;
3703 }
3704
3705 shmem_falloc.waitq = &shmem_falloc_waitq;
3706 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3707 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3708 spin_lock(&inode->i_lock);
3709 inode->i_private = &shmem_falloc;
3710 spin_unlock(&inode->i_lock);
3711
3712 if ((u64)unmap_end > (u64)unmap_start)
3713 unmap_mapping_range(mapping, unmap_start,
3714 1 + unmap_end - unmap_start, 0);
3715 shmem_truncate_range(inode, offset, offset + len - 1);
3716 /* No need to unmap again: hole-punching leaves COWed pages */
3717
3718 spin_lock(&inode->i_lock);
3719 inode->i_private = NULL;
3720 wake_up_all(&shmem_falloc_waitq);
3721 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3722 spin_unlock(&inode->i_lock);
3723 error = 0;
3724 goto out;
3725 }
3726
3727 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3728 error = inode_newsize_ok(inode, offset + len);
3729 if (error)
3730 goto out;
3731
3732 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3733 error = -EPERM;
3734 goto out;
3735 }
3736
3737 start = offset >> PAGE_SHIFT;
3738 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3739 /* Try to avoid a swapstorm if len is impossible to satisfy */
3740 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3741 error = -ENOSPC;
3742 goto out;
3743 }
3744
3745 shmem_falloc.waitq = NULL;
3746 shmem_falloc.start = start;
3747 shmem_falloc.next = start;
3748 shmem_falloc.nr_falloced = 0;
3749 shmem_falloc.nr_unswapped = 0;
3750 spin_lock(&inode->i_lock);
3751 inode->i_private = &shmem_falloc;
3752 spin_unlock(&inode->i_lock);
3753
3754 /*
3755 * info->fallocend is only relevant when huge pages might be
3756 * involved: to prevent split_huge_page() freeing fallocated
3757 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3758 */
3759 undo_fallocend = info->fallocend;
3760 if (info->fallocend < end)
3761 info->fallocend = end;
3762
3763 for (index = start; index < end; ) {
3764 struct folio *folio;
3765
3766 /*
3767 * Check for fatal signal so that we abort early in OOM
3768 * situations. We don't want to abort in case of non-fatal
3769 * signals as large fallocate can take noticeable time and
3770 * e.g. periodic timers may result in fallocate constantly
3771 * restarting.
3772 */
3773 if (fatal_signal_pending(current))
3774 error = -EINTR;
3775 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3776 error = -ENOMEM;
3777 else
3778 error = shmem_get_folio(inode, index, offset + len,
3779 &folio, SGP_FALLOC);
3780 if (error) {
3781 info->fallocend = undo_fallocend;
3782 /* Remove the !uptodate folios we added */
3783 if (index > start) {
3784 shmem_undo_range(inode,
3785 (loff_t)start << PAGE_SHIFT,
3786 ((loff_t)index << PAGE_SHIFT) - 1, true);
3787 }
3788 goto undone;
3789 }
3790
3791 /*
3792 * Here is a more important optimization than it appears:
3793 * a second SGP_FALLOC on the same large folio will clear it,
3794 * making it uptodate and un-undoable if we fail later.
3795 */
3796 index = folio_next_index(folio);
3797 /* Beware 32-bit wraparound */
3798 if (!index)
3799 index--;
3800
3801 /*
3802 * Inform shmem_writeout() how far we have reached.
3803 * No need for lock or barrier: we have the page lock.
3804 */
3805 if (!folio_test_uptodate(folio))
3806 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3807 shmem_falloc.next = index;
3808
3809 /*
3810 * If !uptodate, leave it that way so that freeable folios
3811 * can be recognized if we need to rollback on error later.
3812 * But mark it dirty so that memory pressure will swap rather
3813 * than free the folios we are allocating (and SGP_CACHE folios
3814 * might still be clean: we now need to mark those dirty too).
3815 */
3816 folio_mark_dirty(folio);
3817 folio_unlock(folio);
3818 folio_put(folio);
3819 cond_resched();
3820 }
3821
3822 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3823 i_size_write(inode, offset + len);
3824undone:
3825 spin_lock(&inode->i_lock);
3826 inode->i_private = NULL;
3827 spin_unlock(&inode->i_lock);
3828out:
3829 if (!error)
3830 file_modified(file);
3831 inode_unlock(inode);
3832 return error;
3833}
3834
3835static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3836{
3837 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3838
3839 buf->f_type = TMPFS_MAGIC;
3840 buf->f_bsize = PAGE_SIZE;
3841 buf->f_namelen = NAME_MAX;
3842 if (sbinfo->max_blocks) {
3843 buf->f_blocks = sbinfo->max_blocks;
3844 buf->f_bavail =
3845 buf->f_bfree = sbinfo->max_blocks -
3846 percpu_counter_sum(&sbinfo->used_blocks);
3847 }
3848 if (sbinfo->max_inodes) {
3849 buf->f_files = sbinfo->max_inodes;
3850 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3851 }
3852 /* else leave those fields 0 like simple_statfs */
3853
3854 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3855
3856 return 0;
3857}
3858
3859/*
3860 * File creation. Allocate an inode, and we're done..
3861 */
3862static int
3863shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3864 struct dentry *dentry, umode_t mode, dev_t dev)
3865{
3866 struct inode *inode;
3867 int error;
3868
3869 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3870 return -EINVAL;
3871
3872 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3873 if (IS_ERR(inode))
3874 return PTR_ERR(inode);
3875
3876 error = simple_acl_create(dir, inode);
3877 if (error)
3878 goto out_iput;
3879 error = security_inode_init_security(inode, dir, &dentry->d_name,
3880 shmem_initxattrs, NULL);
3881 if (error && error != -EOPNOTSUPP)
3882 goto out_iput;
3883
3884 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3885 if (error)
3886 goto out_iput;
3887
3888 dir->i_size += BOGO_DIRENT_SIZE;
3889 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3890 inode_inc_iversion(dir);
3891
3892 d_make_persistent(dentry, inode);
3893 return error;
3894
3895out_iput:
3896 iput(inode);
3897 return error;
3898}
3899
3900static int
3901shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3902 struct file *file, umode_t mode)
3903{
3904 struct inode *inode;
3905 int error;
3906
3907 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3908 if (IS_ERR(inode)) {
3909 error = PTR_ERR(inode);
3910 goto err_out;
3911 }
3912 error = security_inode_init_security(inode, dir, NULL,
3913 shmem_initxattrs, NULL);
3914 if (error && error != -EOPNOTSUPP)
3915 goto out_iput;
3916 error = simple_acl_create(dir, inode);
3917 if (error)
3918 goto out_iput;
3919 d_tmpfile(file, inode);
3920
3921err_out:
3922 return finish_open_simple(file, error);
3923out_iput:
3924 iput(inode);
3925 return error;
3926}
3927
3928static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3929 struct dentry *dentry, umode_t mode)
3930{
3931 int error;
3932
3933 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3934 if (error)
3935 return ERR_PTR(error);
3936 inc_nlink(dir);
3937 return NULL;
3938}
3939
3940static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3941 struct dentry *dentry, umode_t mode, bool excl)
3942{
3943 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3944}
3945
3946/*
3947 * Link a file..
3948 */
3949static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3950 struct dentry *dentry)
3951{
3952 struct inode *inode = d_inode(old_dentry);
3953 int ret;
3954
3955 /*
3956 * No ordinary (disk based) filesystem counts links as inodes;
3957 * but each new link needs a new dentry, pinning lowmem, and
3958 * tmpfs dentries cannot be pruned until they are unlinked.
3959 * But if an O_TMPFILE file is linked into the tmpfs, the
3960 * first link must skip that, to get the accounting right.
3961 */
3962 if (inode->i_nlink) {
3963 ret = shmem_reserve_inode(inode->i_sb, NULL);
3964 if (ret)
3965 return ret;
3966 }
3967
3968 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3969 if (ret) {
3970 if (inode->i_nlink)
3971 shmem_free_inode(inode->i_sb, 0);
3972 return ret;
3973 }
3974
3975 dir->i_size += BOGO_DIRENT_SIZE;
3976 inode_inc_iversion(dir);
3977 return simple_link(old_dentry, dir, dentry);
3978}
3979
3980static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3981{
3982 struct inode *inode = d_inode(dentry);
3983
3984 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3985 shmem_free_inode(inode->i_sb, 0);
3986
3987 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3988
3989 dir->i_size -= BOGO_DIRENT_SIZE;
3990 inode_inc_iversion(dir);
3991 simple_unlink(dir, dentry);
3992
3993 /*
3994 * For now, VFS can't deal with case-insensitive negative dentries, so
3995 * we invalidate them
3996 */
3997 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3998 d_invalidate(dentry);
3999
4000 return 0;
4001}
4002
4003static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
4004{
4005 if (!simple_empty(dentry))
4006 return -ENOTEMPTY;
4007
4008 drop_nlink(d_inode(dentry));
4009 drop_nlink(dir);
4010 return shmem_unlink(dir, dentry);
4011}
4012
4013static int shmem_whiteout(struct mnt_idmap *idmap,
4014 struct inode *old_dir, struct dentry *old_dentry)
4015{
4016 struct dentry *whiteout;
4017 int error;
4018
4019 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4020 if (!whiteout)
4021 return -ENOMEM;
4022 error = shmem_mknod(idmap, old_dir, whiteout,
4023 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4024 dput(whiteout);
4025 return error;
4026}
4027
4028/*
4029 * The VFS layer already does all the dentry stuff for rename,
4030 * we just have to decrement the usage count for the target if
4031 * it exists so that the VFS layer correctly free's it when it
4032 * gets overwritten.
4033 */
4034static int shmem_rename2(struct mnt_idmap *idmap,
4035 struct inode *old_dir, struct dentry *old_dentry,
4036 struct inode *new_dir, struct dentry *new_dentry,
4037 unsigned int flags)
4038{
4039 struct inode *inode = d_inode(old_dentry);
4040 int they_are_dirs = S_ISDIR(inode->i_mode);
4041 bool had_offset = false;
4042 int error;
4043
4044 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4045 return -EINVAL;
4046
4047 if (flags & RENAME_EXCHANGE)
4048 return simple_offset_rename_exchange(old_dir, old_dentry,
4049 new_dir, new_dentry);
4050
4051 if (!simple_empty(new_dentry))
4052 return -ENOTEMPTY;
4053
4054 error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry);
4055 if (error == -EBUSY)
4056 had_offset = true;
4057 else if (unlikely(error))
4058 return error;
4059
4060 if (flags & RENAME_WHITEOUT) {
4061 error = shmem_whiteout(idmap, old_dir, old_dentry);
4062 if (error) {
4063 if (!had_offset)
4064 simple_offset_remove(shmem_get_offset_ctx(new_dir),
4065 new_dentry);
4066 return error;
4067 }
4068 }
4069
4070 simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4071 if (d_really_is_positive(new_dentry)) {
4072 (void) shmem_unlink(new_dir, new_dentry);
4073 if (they_are_dirs) {
4074 drop_nlink(d_inode(new_dentry));
4075 drop_nlink(old_dir);
4076 }
4077 } else if (they_are_dirs) {
4078 drop_nlink(old_dir);
4079 inc_nlink(new_dir);
4080 }
4081
4082 old_dir->i_size -= BOGO_DIRENT_SIZE;
4083 new_dir->i_size += BOGO_DIRENT_SIZE;
4084 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4085 inode_inc_iversion(old_dir);
4086 inode_inc_iversion(new_dir);
4087 return 0;
4088}
4089
4090static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4091 struct dentry *dentry, const char *symname)
4092{
4093 int error;
4094 int len;
4095 struct inode *inode;
4096 struct folio *folio;
4097 char *link;
4098
4099 len = strlen(symname) + 1;
4100 if (len > PAGE_SIZE)
4101 return -ENAMETOOLONG;
4102
4103 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4104 VM_NORESERVE);
4105 if (IS_ERR(inode))
4106 return PTR_ERR(inode);
4107
4108 error = security_inode_init_security(inode, dir, &dentry->d_name,
4109 shmem_initxattrs, NULL);
4110 if (error && error != -EOPNOTSUPP)
4111 goto out_iput;
4112
4113 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4114 if (error)
4115 goto out_iput;
4116
4117 inode->i_size = len-1;
4118 if (len <= SHORT_SYMLINK_LEN) {
4119 link = kmemdup(symname, len, GFP_KERNEL);
4120 if (!link) {
4121 error = -ENOMEM;
4122 goto out_remove_offset;
4123 }
4124 inode->i_op = &shmem_short_symlink_operations;
4125 inode_set_cached_link(inode, link, len - 1);
4126 } else {
4127 inode_nohighmem(inode);
4128 inode->i_mapping->a_ops = &shmem_aops;
4129 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4130 if (error)
4131 goto out_remove_offset;
4132 inode->i_op = &shmem_symlink_inode_operations;
4133 memcpy(folio_address(folio), symname, len);
4134 folio_mark_uptodate(folio);
4135 folio_mark_dirty(folio);
4136 folio_unlock(folio);
4137 folio_put(folio);
4138 }
4139 dir->i_size += BOGO_DIRENT_SIZE;
4140 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4141 inode_inc_iversion(dir);
4142 d_make_persistent(dentry, inode);
4143 return 0;
4144
4145out_remove_offset:
4146 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4147out_iput:
4148 iput(inode);
4149 return error;
4150}
4151
4152static void shmem_put_link(void *arg)
4153{
4154 folio_mark_accessed(arg);
4155 folio_put(arg);
4156}
4157
4158static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4159 struct delayed_call *done)
4160{
4161 struct folio *folio = NULL;
4162 int error;
4163
4164 if (!dentry) {
4165 folio = filemap_get_folio(inode->i_mapping, 0);
4166 if (IS_ERR(folio))
4167 return ERR_PTR(-ECHILD);
4168 if (PageHWPoison(folio_page(folio, 0)) ||
4169 !folio_test_uptodate(folio)) {
4170 folio_put(folio);
4171 return ERR_PTR(-ECHILD);
4172 }
4173 } else {
4174 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4175 if (error)
4176 return ERR_PTR(error);
4177 if (!folio)
4178 return ERR_PTR(-ECHILD);
4179 if (PageHWPoison(folio_page(folio, 0))) {
4180 folio_unlock(folio);
4181 folio_put(folio);
4182 return ERR_PTR(-ECHILD);
4183 }
4184 folio_unlock(folio);
4185 }
4186 set_delayed_call(done, shmem_put_link, folio);
4187 return folio_address(folio);
4188}
4189
4190#ifdef CONFIG_TMPFS_XATTR
4191
4192static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
4193{
4194 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4195
4196 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4197
4198 return 0;
4199}
4200
4201static int shmem_fileattr_set(struct mnt_idmap *idmap,
4202 struct dentry *dentry, struct file_kattr *fa)
4203{
4204 struct inode *inode = d_inode(dentry);
4205 struct shmem_inode_info *info = SHMEM_I(inode);
4206 int ret, flags;
4207
4208 if (fileattr_has_fsx(fa))
4209 return -EOPNOTSUPP;
4210 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4211 return -EOPNOTSUPP;
4212
4213 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4214 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4215
4216 ret = shmem_set_inode_flags(inode, flags, dentry);
4217
4218 if (ret)
4219 return ret;
4220
4221 info->fsflags = flags;
4222
4223 inode_set_ctime_current(inode);
4224 inode_inc_iversion(inode);
4225 return 0;
4226}
4227
4228/*
4229 * Superblocks without xattr inode operations may get some security.* xattr
4230 * support from the LSM "for free". As soon as we have any other xattrs
4231 * like ACLs, we also need to implement the security.* handlers at
4232 * filesystem level, though.
4233 */
4234
4235/*
4236 * Callback for security_inode_init_security() for acquiring xattrs.
4237 */
4238static int shmem_initxattrs(struct inode *inode,
4239 const struct xattr *xattr_array, void *fs_info)
4240{
4241 struct shmem_inode_info *info = SHMEM_I(inode);
4242 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4243 const struct xattr *xattr;
4244 struct simple_xattr *new_xattr;
4245 size_t ispace = 0;
4246 size_t len;
4247
4248 if (sbinfo->max_inodes) {
4249 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4250 ispace += simple_xattr_space(xattr->name,
4251 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4252 }
4253 if (ispace) {
4254 raw_spin_lock(&sbinfo->stat_lock);
4255 if (sbinfo->free_ispace < ispace)
4256 ispace = 0;
4257 else
4258 sbinfo->free_ispace -= ispace;
4259 raw_spin_unlock(&sbinfo->stat_lock);
4260 if (!ispace)
4261 return -ENOSPC;
4262 }
4263 }
4264
4265 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4266 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4267 if (!new_xattr)
4268 break;
4269
4270 len = strlen(xattr->name) + 1;
4271 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4272 GFP_KERNEL_ACCOUNT);
4273 if (!new_xattr->name) {
4274 kvfree(new_xattr);
4275 break;
4276 }
4277
4278 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4279 XATTR_SECURITY_PREFIX_LEN);
4280 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4281 xattr->name, len);
4282
4283 simple_xattr_add(&info->xattrs, new_xattr);
4284 }
4285
4286 if (xattr->name != NULL) {
4287 if (ispace) {
4288 raw_spin_lock(&sbinfo->stat_lock);
4289 sbinfo->free_ispace += ispace;
4290 raw_spin_unlock(&sbinfo->stat_lock);
4291 }
4292 simple_xattrs_free(&info->xattrs, NULL);
4293 return -ENOMEM;
4294 }
4295
4296 return 0;
4297}
4298
4299static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4300 struct dentry *unused, struct inode *inode,
4301 const char *name, void *buffer, size_t size)
4302{
4303 struct shmem_inode_info *info = SHMEM_I(inode);
4304
4305 name = xattr_full_name(handler, name);
4306 return simple_xattr_get(&info->xattrs, name, buffer, size);
4307}
4308
4309static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4310 struct mnt_idmap *idmap,
4311 struct dentry *unused, struct inode *inode,
4312 const char *name, const void *value,
4313 size_t size, int flags)
4314{
4315 struct shmem_inode_info *info = SHMEM_I(inode);
4316 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4317 struct simple_xattr *old_xattr;
4318 size_t ispace = 0;
4319
4320 name = xattr_full_name(handler, name);
4321 if (value && sbinfo->max_inodes) {
4322 ispace = simple_xattr_space(name, size);
4323 raw_spin_lock(&sbinfo->stat_lock);
4324 if (sbinfo->free_ispace < ispace)
4325 ispace = 0;
4326 else
4327 sbinfo->free_ispace -= ispace;
4328 raw_spin_unlock(&sbinfo->stat_lock);
4329 if (!ispace)
4330 return -ENOSPC;
4331 }
4332
4333 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4334 if (!IS_ERR(old_xattr)) {
4335 ispace = 0;
4336 if (old_xattr && sbinfo->max_inodes)
4337 ispace = simple_xattr_space(old_xattr->name,
4338 old_xattr->size);
4339 simple_xattr_free(old_xattr);
4340 old_xattr = NULL;
4341 inode_set_ctime_current(inode);
4342 inode_inc_iversion(inode);
4343 }
4344 if (ispace) {
4345 raw_spin_lock(&sbinfo->stat_lock);
4346 sbinfo->free_ispace += ispace;
4347 raw_spin_unlock(&sbinfo->stat_lock);
4348 }
4349 return PTR_ERR(old_xattr);
4350}
4351
4352static const struct xattr_handler shmem_security_xattr_handler = {
4353 .prefix = XATTR_SECURITY_PREFIX,
4354 .get = shmem_xattr_handler_get,
4355 .set = shmem_xattr_handler_set,
4356};
4357
4358static const struct xattr_handler shmem_trusted_xattr_handler = {
4359 .prefix = XATTR_TRUSTED_PREFIX,
4360 .get = shmem_xattr_handler_get,
4361 .set = shmem_xattr_handler_set,
4362};
4363
4364static const struct xattr_handler shmem_user_xattr_handler = {
4365 .prefix = XATTR_USER_PREFIX,
4366 .get = shmem_xattr_handler_get,
4367 .set = shmem_xattr_handler_set,
4368};
4369
4370static const struct xattr_handler * const shmem_xattr_handlers[] = {
4371 &shmem_security_xattr_handler,
4372 &shmem_trusted_xattr_handler,
4373 &shmem_user_xattr_handler,
4374 NULL
4375};
4376
4377static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4378{
4379 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4380 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4381}
4382#endif /* CONFIG_TMPFS_XATTR */
4383
4384static const struct inode_operations shmem_short_symlink_operations = {
4385 .getattr = shmem_getattr,
4386 .setattr = shmem_setattr,
4387 .get_link = simple_get_link,
4388#ifdef CONFIG_TMPFS_XATTR
4389 .listxattr = shmem_listxattr,
4390#endif
4391};
4392
4393static const struct inode_operations shmem_symlink_inode_operations = {
4394 .getattr = shmem_getattr,
4395 .setattr = shmem_setattr,
4396 .get_link = shmem_get_link,
4397#ifdef CONFIG_TMPFS_XATTR
4398 .listxattr = shmem_listxattr,
4399#endif
4400};
4401
4402static struct dentry *shmem_get_parent(struct dentry *child)
4403{
4404 return ERR_PTR(-ESTALE);
4405}
4406
4407static int shmem_match(struct inode *ino, void *vfh)
4408{
4409 __u32 *fh = vfh;
4410 __u64 inum = fh[2];
4411 inum = (inum << 32) | fh[1];
4412 return ino->i_ino == inum && fh[0] == ino->i_generation;
4413}
4414
4415/* Find any alias of inode, but prefer a hashed alias */
4416static struct dentry *shmem_find_alias(struct inode *inode)
4417{
4418 struct dentry *alias = d_find_alias(inode);
4419
4420 return alias ?: d_find_any_alias(inode);
4421}
4422
4423static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4424 struct fid *fid, int fh_len, int fh_type)
4425{
4426 struct inode *inode;
4427 struct dentry *dentry = NULL;
4428 u64 inum;
4429
4430 if (fh_len < 3)
4431 return NULL;
4432
4433 inum = fid->raw[2];
4434 inum = (inum << 32) | fid->raw[1];
4435
4436 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4437 shmem_match, fid->raw);
4438 if (inode) {
4439 dentry = shmem_find_alias(inode);
4440 iput(inode);
4441 }
4442
4443 return dentry;
4444}
4445
4446static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4447 struct inode *parent)
4448{
4449 if (*len < 3) {
4450 *len = 3;
4451 return FILEID_INVALID;
4452 }
4453
4454 if (inode_unhashed(inode)) {
4455 /* Unfortunately insert_inode_hash is not idempotent,
4456 * so as we hash inodes here rather than at creation
4457 * time, we need a lock to ensure we only try
4458 * to do it once
4459 */
4460 static DEFINE_SPINLOCK(lock);
4461 spin_lock(&lock);
4462 if (inode_unhashed(inode))
4463 __insert_inode_hash(inode,
4464 inode->i_ino + inode->i_generation);
4465 spin_unlock(&lock);
4466 }
4467
4468 fh[0] = inode->i_generation;
4469 fh[1] = inode->i_ino;
4470 fh[2] = ((__u64)inode->i_ino) >> 32;
4471
4472 *len = 3;
4473 return 1;
4474}
4475
4476static const struct export_operations shmem_export_ops = {
4477 .get_parent = shmem_get_parent,
4478 .encode_fh = shmem_encode_fh,
4479 .fh_to_dentry = shmem_fh_to_dentry,
4480};
4481
4482enum shmem_param {
4483 Opt_gid,
4484 Opt_huge,
4485 Opt_mode,
4486 Opt_mpol,
4487 Opt_nr_blocks,
4488 Opt_nr_inodes,
4489 Opt_size,
4490 Opt_uid,
4491 Opt_inode32,
4492 Opt_inode64,
4493 Opt_noswap,
4494 Opt_quota,
4495 Opt_usrquota,
4496 Opt_grpquota,
4497 Opt_usrquota_block_hardlimit,
4498 Opt_usrquota_inode_hardlimit,
4499 Opt_grpquota_block_hardlimit,
4500 Opt_grpquota_inode_hardlimit,
4501 Opt_casefold_version,
4502 Opt_casefold,
4503 Opt_strict_encoding,
4504};
4505
4506static const struct constant_table shmem_param_enums_huge[] = {
4507 {"never", SHMEM_HUGE_NEVER },
4508 {"always", SHMEM_HUGE_ALWAYS },
4509 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4510 {"advise", SHMEM_HUGE_ADVISE },
4511 {}
4512};
4513
4514const struct fs_parameter_spec shmem_fs_parameters[] = {
4515 fsparam_gid ("gid", Opt_gid),
4516 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4517 fsparam_u32oct("mode", Opt_mode),
4518 fsparam_string("mpol", Opt_mpol),
4519 fsparam_string("nr_blocks", Opt_nr_blocks),
4520 fsparam_string("nr_inodes", Opt_nr_inodes),
4521 fsparam_string("size", Opt_size),
4522 fsparam_uid ("uid", Opt_uid),
4523 fsparam_flag ("inode32", Opt_inode32),
4524 fsparam_flag ("inode64", Opt_inode64),
4525 fsparam_flag ("noswap", Opt_noswap),
4526#ifdef CONFIG_TMPFS_QUOTA
4527 fsparam_flag ("quota", Opt_quota),
4528 fsparam_flag ("usrquota", Opt_usrquota),
4529 fsparam_flag ("grpquota", Opt_grpquota),
4530 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4531 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4532 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4533 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4534#endif
4535 fsparam_string("casefold", Opt_casefold_version),
4536 fsparam_flag ("casefold", Opt_casefold),
4537 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4538 {}
4539};
4540
4541#if IS_ENABLED(CONFIG_UNICODE)
4542static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4543 bool latest_version)
4544{
4545 struct shmem_options *ctx = fc->fs_private;
4546 int version = UTF8_LATEST;
4547 struct unicode_map *encoding;
4548 char *version_str = param->string + 5;
4549
4550 if (!latest_version) {
4551 if (strncmp(param->string, "utf8-", 5))
4552 return invalfc(fc, "Only UTF-8 encodings are supported "
4553 "in the format: utf8-<version number>");
4554
4555 version = utf8_parse_version(version_str);
4556 if (version < 0)
4557 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4558 }
4559
4560 encoding = utf8_load(version);
4561
4562 if (IS_ERR(encoding)) {
4563 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4564 unicode_major(version), unicode_minor(version),
4565 unicode_rev(version));
4566 }
4567
4568 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4569 unicode_major(version), unicode_minor(version), unicode_rev(version));
4570
4571 ctx->encoding = encoding;
4572
4573 return 0;
4574}
4575#else
4576static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4577 bool latest_version)
4578{
4579 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4580}
4581#endif
4582
4583static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4584{
4585 struct shmem_options *ctx = fc->fs_private;
4586 struct fs_parse_result result;
4587 unsigned long long size;
4588 char *rest;
4589 int opt;
4590 kuid_t kuid;
4591 kgid_t kgid;
4592
4593 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4594 if (opt < 0)
4595 return opt;
4596
4597 switch (opt) {
4598 case Opt_size:
4599 size = memparse(param->string, &rest);
4600 if (*rest == '%') {
4601 size <<= PAGE_SHIFT;
4602 size *= totalram_pages();
4603 do_div(size, 100);
4604 rest++;
4605 }
4606 if (*rest)
4607 goto bad_value;
4608 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4609 ctx->seen |= SHMEM_SEEN_BLOCKS;
4610 break;
4611 case Opt_nr_blocks:
4612 ctx->blocks = memparse(param->string, &rest);
4613 if (*rest || ctx->blocks > LONG_MAX)
4614 goto bad_value;
4615 ctx->seen |= SHMEM_SEEN_BLOCKS;
4616 break;
4617 case Opt_nr_inodes:
4618 ctx->inodes = memparse(param->string, &rest);
4619 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4620 goto bad_value;
4621 ctx->seen |= SHMEM_SEEN_INODES;
4622 break;
4623 case Opt_mode:
4624 ctx->mode = result.uint_32 & 07777;
4625 break;
4626 case Opt_uid:
4627 kuid = result.uid;
4628
4629 /*
4630 * The requested uid must be representable in the
4631 * filesystem's idmapping.
4632 */
4633 if (!kuid_has_mapping(fc->user_ns, kuid))
4634 goto bad_value;
4635
4636 ctx->uid = kuid;
4637 break;
4638 case Opt_gid:
4639 kgid = result.gid;
4640
4641 /*
4642 * The requested gid must be representable in the
4643 * filesystem's idmapping.
4644 */
4645 if (!kgid_has_mapping(fc->user_ns, kgid))
4646 goto bad_value;
4647
4648 ctx->gid = kgid;
4649 break;
4650 case Opt_huge:
4651 ctx->huge = result.uint_32;
4652 if (ctx->huge != SHMEM_HUGE_NEVER &&
4653 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4654 has_transparent_hugepage()))
4655 goto unsupported_parameter;
4656 ctx->seen |= SHMEM_SEEN_HUGE;
4657 break;
4658 case Opt_mpol:
4659 if (IS_ENABLED(CONFIG_NUMA)) {
4660 mpol_put(ctx->mpol);
4661 ctx->mpol = NULL;
4662 if (mpol_parse_str(param->string, &ctx->mpol))
4663 goto bad_value;
4664 break;
4665 }
4666 goto unsupported_parameter;
4667 case Opt_inode32:
4668 ctx->full_inums = false;
4669 ctx->seen |= SHMEM_SEEN_INUMS;
4670 break;
4671 case Opt_inode64:
4672 if (sizeof(ino_t) < 8) {
4673 return invalfc(fc,
4674 "Cannot use inode64 with <64bit inums in kernel\n");
4675 }
4676 ctx->full_inums = true;
4677 ctx->seen |= SHMEM_SEEN_INUMS;
4678 break;
4679 case Opt_noswap:
4680 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4681 return invalfc(fc,
4682 "Turning off swap in unprivileged tmpfs mounts unsupported");
4683 }
4684 ctx->noswap = true;
4685 break;
4686 case Opt_quota:
4687 if (fc->user_ns != &init_user_ns)
4688 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4689 ctx->seen |= SHMEM_SEEN_QUOTA;
4690 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4691 break;
4692 case Opt_usrquota:
4693 if (fc->user_ns != &init_user_ns)
4694 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4695 ctx->seen |= SHMEM_SEEN_QUOTA;
4696 ctx->quota_types |= QTYPE_MASK_USR;
4697 break;
4698 case Opt_grpquota:
4699 if (fc->user_ns != &init_user_ns)
4700 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4701 ctx->seen |= SHMEM_SEEN_QUOTA;
4702 ctx->quota_types |= QTYPE_MASK_GRP;
4703 break;
4704 case Opt_usrquota_block_hardlimit:
4705 size = memparse(param->string, &rest);
4706 if (*rest || !size)
4707 goto bad_value;
4708 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4709 return invalfc(fc,
4710 "User quota block hardlimit too large.");
4711 ctx->qlimits.usrquota_bhardlimit = size;
4712 break;
4713 case Opt_grpquota_block_hardlimit:
4714 size = memparse(param->string, &rest);
4715 if (*rest || !size)
4716 goto bad_value;
4717 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4718 return invalfc(fc,
4719 "Group quota block hardlimit too large.");
4720 ctx->qlimits.grpquota_bhardlimit = size;
4721 break;
4722 case Opt_usrquota_inode_hardlimit:
4723 size = memparse(param->string, &rest);
4724 if (*rest || !size)
4725 goto bad_value;
4726 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4727 return invalfc(fc,
4728 "User quota inode hardlimit too large.");
4729 ctx->qlimits.usrquota_ihardlimit = size;
4730 break;
4731 case Opt_grpquota_inode_hardlimit:
4732 size = memparse(param->string, &rest);
4733 if (*rest || !size)
4734 goto bad_value;
4735 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4736 return invalfc(fc,
4737 "Group quota inode hardlimit too large.");
4738 ctx->qlimits.grpquota_ihardlimit = size;
4739 break;
4740 case Opt_casefold_version:
4741 return shmem_parse_opt_casefold(fc, param, false);
4742 case Opt_casefold:
4743 return shmem_parse_opt_casefold(fc, param, true);
4744 case Opt_strict_encoding:
4745#if IS_ENABLED(CONFIG_UNICODE)
4746 ctx->strict_encoding = true;
4747 break;
4748#else
4749 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4750#endif
4751 }
4752 return 0;
4753
4754unsupported_parameter:
4755 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4756bad_value:
4757 return invalfc(fc, "Bad value for '%s'", param->key);
4758}
4759
4760static char *shmem_next_opt(char **s)
4761{
4762 char *sbegin = *s;
4763 char *p;
4764
4765 if (sbegin == NULL)
4766 return NULL;
4767
4768 /*
4769 * NUL-terminate this option: unfortunately,
4770 * mount options form a comma-separated list,
4771 * but mpol's nodelist may also contain commas.
4772 */
4773 for (;;) {
4774 p = strchr(*s, ',');
4775 if (p == NULL)
4776 break;
4777 *s = p + 1;
4778 if (!isdigit(*(p+1))) {
4779 *p = '\0';
4780 return sbegin;
4781 }
4782 }
4783
4784 *s = NULL;
4785 return sbegin;
4786}
4787
4788static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4789{
4790 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4791}
4792
4793/*
4794 * Reconfigure a shmem filesystem.
4795 */
4796static int shmem_reconfigure(struct fs_context *fc)
4797{
4798 struct shmem_options *ctx = fc->fs_private;
4799 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4800 unsigned long used_isp;
4801 struct mempolicy *mpol = NULL;
4802 const char *err;
4803
4804 raw_spin_lock(&sbinfo->stat_lock);
4805 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4806
4807 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4808 if (!sbinfo->max_blocks) {
4809 err = "Cannot retroactively limit size";
4810 goto out;
4811 }
4812 if (percpu_counter_compare(&sbinfo->used_blocks,
4813 ctx->blocks) > 0) {
4814 err = "Too small a size for current use";
4815 goto out;
4816 }
4817 }
4818 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4819 if (!sbinfo->max_inodes) {
4820 err = "Cannot retroactively limit inodes";
4821 goto out;
4822 }
4823 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4824 err = "Too few inodes for current use";
4825 goto out;
4826 }
4827 }
4828
4829 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4830 sbinfo->next_ino > UINT_MAX) {
4831 err = "Current inum too high to switch to 32-bit inums";
4832 goto out;
4833 }
4834
4835 /*
4836 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap"
4837 * counterpart for (re-)enabling swap.
4838 */
4839 if (ctx->noswap && !sbinfo->noswap) {
4840 err = "Cannot disable swap on remount";
4841 goto out;
4842 }
4843
4844 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4845 !sb_any_quota_loaded(fc->root->d_sb)) {
4846 err = "Cannot enable quota on remount";
4847 goto out;
4848 }
4849
4850#ifdef CONFIG_TMPFS_QUOTA
4851#define CHANGED_LIMIT(name) \
4852 (ctx->qlimits.name## hardlimit && \
4853 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4854
4855 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4856 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4857 err = "Cannot change global quota limit on remount";
4858 goto out;
4859 }
4860#endif /* CONFIG_TMPFS_QUOTA */
4861
4862 if (ctx->seen & SHMEM_SEEN_HUGE)
4863 sbinfo->huge = ctx->huge;
4864 if (ctx->seen & SHMEM_SEEN_INUMS)
4865 sbinfo->full_inums = ctx->full_inums;
4866 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4867 sbinfo->max_blocks = ctx->blocks;
4868 if (ctx->seen & SHMEM_SEEN_INODES) {
4869 sbinfo->max_inodes = ctx->inodes;
4870 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4871 }
4872
4873 /*
4874 * Preserve previous mempolicy unless mpol remount option was specified.
4875 */
4876 if (ctx->mpol) {
4877 mpol = sbinfo->mpol;
4878 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4879 ctx->mpol = NULL;
4880 }
4881
4882 if (ctx->noswap)
4883 sbinfo->noswap = true;
4884
4885 raw_spin_unlock(&sbinfo->stat_lock);
4886 mpol_put(mpol);
4887 return 0;
4888out:
4889 raw_spin_unlock(&sbinfo->stat_lock);
4890 return invalfc(fc, "%s", err);
4891}
4892
4893static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4894{
4895 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4896 struct mempolicy *mpol;
4897
4898 if (sbinfo->max_blocks != shmem_default_max_blocks())
4899 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4900 if (sbinfo->max_inodes != shmem_default_max_inodes())
4901 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4902 if (sbinfo->mode != (0777 | S_ISVTX))
4903 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4904 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4905 seq_printf(seq, ",uid=%u",
4906 from_kuid_munged(&init_user_ns, sbinfo->uid));
4907 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4908 seq_printf(seq, ",gid=%u",
4909 from_kgid_munged(&init_user_ns, sbinfo->gid));
4910
4911 /*
4912 * Showing inode{64,32} might be useful even if it's the system default,
4913 * since then people don't have to resort to checking both here and
4914 * /proc/config.gz to confirm 64-bit inums were successfully applied
4915 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4916 *
4917 * We hide it when inode64 isn't the default and we are using 32-bit
4918 * inodes, since that probably just means the feature isn't even under
4919 * consideration.
4920 *
4921 * As such:
4922 *
4923 * +-----------------+-----------------+
4924 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4925 * +------------------+-----------------+-----------------+
4926 * | full_inums=true | show | show |
4927 * | full_inums=false | show | hide |
4928 * +------------------+-----------------+-----------------+
4929 *
4930 */
4931 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4932 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4933#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4934 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4935 if (sbinfo->huge)
4936 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4937#endif
4938 mpol = shmem_get_sbmpol(sbinfo);
4939 shmem_show_mpol(seq, mpol);
4940 mpol_put(mpol);
4941 if (sbinfo->noswap)
4942 seq_printf(seq, ",noswap");
4943#ifdef CONFIG_TMPFS_QUOTA
4944 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4945 seq_printf(seq, ",usrquota");
4946 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4947 seq_printf(seq, ",grpquota");
4948 if (sbinfo->qlimits.usrquota_bhardlimit)
4949 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4950 sbinfo->qlimits.usrquota_bhardlimit);
4951 if (sbinfo->qlimits.grpquota_bhardlimit)
4952 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4953 sbinfo->qlimits.grpquota_bhardlimit);
4954 if (sbinfo->qlimits.usrquota_ihardlimit)
4955 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4956 sbinfo->qlimits.usrquota_ihardlimit);
4957 if (sbinfo->qlimits.grpquota_ihardlimit)
4958 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4959 sbinfo->qlimits.grpquota_ihardlimit);
4960#endif
4961 return 0;
4962}
4963
4964#endif /* CONFIG_TMPFS */
4965
4966static void shmem_put_super(struct super_block *sb)
4967{
4968 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4969
4970#if IS_ENABLED(CONFIG_UNICODE)
4971 if (sb->s_encoding)
4972 utf8_unload(sb->s_encoding);
4973#endif
4974
4975#ifdef CONFIG_TMPFS_QUOTA
4976 shmem_disable_quotas(sb);
4977#endif
4978 free_percpu(sbinfo->ino_batch);
4979 percpu_counter_destroy(&sbinfo->used_blocks);
4980 mpol_put(sbinfo->mpol);
4981 kfree(sbinfo);
4982 sb->s_fs_info = NULL;
4983}
4984
4985#if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4986static const struct dentry_operations shmem_ci_dentry_ops = {
4987 .d_hash = generic_ci_d_hash,
4988 .d_compare = generic_ci_d_compare,
4989};
4990#endif
4991
4992static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4993{
4994 struct shmem_options *ctx = fc->fs_private;
4995 struct inode *inode;
4996 struct shmem_sb_info *sbinfo;
4997 int error = -ENOMEM;
4998
4999 /* Round up to L1_CACHE_BYTES to resist false sharing */
5000 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5001 L1_CACHE_BYTES), GFP_KERNEL);
5002 if (!sbinfo)
5003 return error;
5004
5005 sb->s_fs_info = sbinfo;
5006
5007#ifdef CONFIG_TMPFS
5008 /*
5009 * Per default we only allow half of the physical ram per
5010 * tmpfs instance, limiting inodes to one per page of lowmem;
5011 * but the internal instance is left unlimited.
5012 */
5013 if (!(sb->s_flags & SB_KERNMOUNT)) {
5014 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5015 ctx->blocks = shmem_default_max_blocks();
5016 if (!(ctx->seen & SHMEM_SEEN_INODES))
5017 ctx->inodes = shmem_default_max_inodes();
5018 if (!(ctx->seen & SHMEM_SEEN_INUMS))
5019 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5020 sbinfo->noswap = ctx->noswap;
5021 } else {
5022 sb->s_flags |= SB_NOUSER;
5023 }
5024 sb->s_export_op = &shmem_export_ops;
5025 sb->s_flags |= SB_NOSEC;
5026
5027#if IS_ENABLED(CONFIG_UNICODE)
5028 if (!ctx->encoding && ctx->strict_encoding) {
5029 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5030 error = -EINVAL;
5031 goto failed;
5032 }
5033
5034 if (ctx->encoding) {
5035 sb->s_encoding = ctx->encoding;
5036 set_default_d_op(sb, &shmem_ci_dentry_ops);
5037 if (ctx->strict_encoding)
5038 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5039 }
5040#endif
5041
5042#else
5043 sb->s_flags |= SB_NOUSER;
5044#endif /* CONFIG_TMPFS */
5045 sb->s_d_flags |= DCACHE_DONTCACHE;
5046 sbinfo->max_blocks = ctx->blocks;
5047 sbinfo->max_inodes = ctx->inodes;
5048 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5049 if (sb->s_flags & SB_KERNMOUNT) {
5050 sbinfo->ino_batch = alloc_percpu(ino_t);
5051 if (!sbinfo->ino_batch)
5052 goto failed;
5053 }
5054 sbinfo->uid = ctx->uid;
5055 sbinfo->gid = ctx->gid;
5056 sbinfo->full_inums = ctx->full_inums;
5057 sbinfo->mode = ctx->mode;
5058#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5059 if (ctx->seen & SHMEM_SEEN_HUGE)
5060 sbinfo->huge = ctx->huge;
5061 else
5062 sbinfo->huge = tmpfs_huge;
5063#endif
5064 sbinfo->mpol = ctx->mpol;
5065 ctx->mpol = NULL;
5066
5067 raw_spin_lock_init(&sbinfo->stat_lock);
5068 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5069 goto failed;
5070 spin_lock_init(&sbinfo->shrinklist_lock);
5071 INIT_LIST_HEAD(&sbinfo->shrinklist);
5072
5073 sb->s_maxbytes = MAX_LFS_FILESIZE;
5074 sb->s_blocksize = PAGE_SIZE;
5075 sb->s_blocksize_bits = PAGE_SHIFT;
5076 sb->s_magic = TMPFS_MAGIC;
5077 sb->s_op = &shmem_ops;
5078 sb->s_time_gran = 1;
5079#ifdef CONFIG_TMPFS_XATTR
5080 sb->s_xattr = shmem_xattr_handlers;
5081#endif
5082#ifdef CONFIG_TMPFS_POSIX_ACL
5083 sb->s_flags |= SB_POSIXACL;
5084#endif
5085 uuid_t uuid;
5086 uuid_gen(&uuid);
5087 super_set_uuid(sb, uuid.b, sizeof(uuid));
5088
5089#ifdef CONFIG_TMPFS_QUOTA
5090 if (ctx->seen & SHMEM_SEEN_QUOTA) {
5091 sb->dq_op = &shmem_quota_operations;
5092 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5093 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5094
5095 /* Copy the default limits from ctx into sbinfo */
5096 memcpy(&sbinfo->qlimits, &ctx->qlimits,
5097 sizeof(struct shmem_quota_limits));
5098
5099 if (shmem_enable_quotas(sb, ctx->quota_types))
5100 goto failed;
5101 }
5102#endif /* CONFIG_TMPFS_QUOTA */
5103
5104 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5105 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5106 if (IS_ERR(inode)) {
5107 error = PTR_ERR(inode);
5108 goto failed;
5109 }
5110 inode->i_uid = sbinfo->uid;
5111 inode->i_gid = sbinfo->gid;
5112 sb->s_root = d_make_root(inode);
5113 if (!sb->s_root)
5114 goto failed;
5115 return 0;
5116
5117failed:
5118 shmem_put_super(sb);
5119 return error;
5120}
5121
5122static int shmem_get_tree(struct fs_context *fc)
5123{
5124 return get_tree_nodev(fc, shmem_fill_super);
5125}
5126
5127static void shmem_free_fc(struct fs_context *fc)
5128{
5129 struct shmem_options *ctx = fc->fs_private;
5130
5131 if (ctx) {
5132 mpol_put(ctx->mpol);
5133 kfree(ctx);
5134 }
5135}
5136
5137static const struct fs_context_operations shmem_fs_context_ops = {
5138 .free = shmem_free_fc,
5139 .get_tree = shmem_get_tree,
5140#ifdef CONFIG_TMPFS
5141 .parse_monolithic = shmem_parse_monolithic,
5142 .parse_param = shmem_parse_one,
5143 .reconfigure = shmem_reconfigure,
5144#endif
5145};
5146
5147static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5148
5149static struct inode *shmem_alloc_inode(struct super_block *sb)
5150{
5151 struct shmem_inode_info *info;
5152 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5153 if (!info)
5154 return NULL;
5155 return &info->vfs_inode;
5156}
5157
5158static void shmem_free_in_core_inode(struct inode *inode)
5159{
5160 if (S_ISLNK(inode->i_mode))
5161 kfree(inode->i_link);
5162 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5163}
5164
5165static void shmem_destroy_inode(struct inode *inode)
5166{
5167 if (S_ISREG(inode->i_mode))
5168 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5169 if (S_ISDIR(inode->i_mode))
5170 simple_offset_destroy(shmem_get_offset_ctx(inode));
5171}
5172
5173static void shmem_init_inode(void *foo)
5174{
5175 struct shmem_inode_info *info = foo;
5176 inode_init_once(&info->vfs_inode);
5177}
5178
5179static void __init shmem_init_inodecache(void)
5180{
5181 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5182 sizeof(struct shmem_inode_info),
5183 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5184}
5185
5186static void __init shmem_destroy_inodecache(void)
5187{
5188 kmem_cache_destroy(shmem_inode_cachep);
5189}
5190
5191/* Keep the page in page cache instead of truncating it */
5192static int shmem_error_remove_folio(struct address_space *mapping,
5193 struct folio *folio)
5194{
5195 return 0;
5196}
5197
5198static const struct address_space_operations shmem_aops = {
5199 .dirty_folio = noop_dirty_folio,
5200#ifdef CONFIG_TMPFS
5201 .write_begin = shmem_write_begin,
5202 .write_end = shmem_write_end,
5203#endif
5204#ifdef CONFIG_MIGRATION
5205 .migrate_folio = migrate_folio,
5206#endif
5207 .error_remove_folio = shmem_error_remove_folio,
5208};
5209
5210static const struct file_operations shmem_file_operations = {
5211 .mmap_prepare = shmem_mmap_prepare,
5212 .open = shmem_file_open,
5213 .get_unmapped_area = shmem_get_unmapped_area,
5214#ifdef CONFIG_TMPFS
5215 .llseek = shmem_file_llseek,
5216 .read_iter = shmem_file_read_iter,
5217 .write_iter = shmem_file_write_iter,
5218 .fsync = noop_fsync,
5219 .splice_read = shmem_file_splice_read,
5220 .splice_write = iter_file_splice_write,
5221 .fallocate = shmem_fallocate,
5222#endif
5223};
5224
5225static const struct inode_operations shmem_inode_operations = {
5226 .getattr = shmem_getattr,
5227 .setattr = shmem_setattr,
5228#ifdef CONFIG_TMPFS_XATTR
5229 .listxattr = shmem_listxattr,
5230 .set_acl = simple_set_acl,
5231 .fileattr_get = shmem_fileattr_get,
5232 .fileattr_set = shmem_fileattr_set,
5233#endif
5234};
5235
5236static const struct inode_operations shmem_dir_inode_operations = {
5237#ifdef CONFIG_TMPFS
5238 .getattr = shmem_getattr,
5239 .create = shmem_create,
5240 .lookup = simple_lookup,
5241 .link = shmem_link,
5242 .unlink = shmem_unlink,
5243 .symlink = shmem_symlink,
5244 .mkdir = shmem_mkdir,
5245 .rmdir = shmem_rmdir,
5246 .mknod = shmem_mknod,
5247 .rename = shmem_rename2,
5248 .tmpfile = shmem_tmpfile,
5249 .get_offset_ctx = shmem_get_offset_ctx,
5250#endif
5251#ifdef CONFIG_TMPFS_XATTR
5252 .listxattr = shmem_listxattr,
5253 .fileattr_get = shmem_fileattr_get,
5254 .fileattr_set = shmem_fileattr_set,
5255#endif
5256#ifdef CONFIG_TMPFS_POSIX_ACL
5257 .setattr = shmem_setattr,
5258 .set_acl = simple_set_acl,
5259#endif
5260};
5261
5262static const struct inode_operations shmem_special_inode_operations = {
5263 .getattr = shmem_getattr,
5264#ifdef CONFIG_TMPFS_XATTR
5265 .listxattr = shmem_listxattr,
5266#endif
5267#ifdef CONFIG_TMPFS_POSIX_ACL
5268 .setattr = shmem_setattr,
5269 .set_acl = simple_set_acl,
5270#endif
5271};
5272
5273static const struct super_operations shmem_ops = {
5274 .alloc_inode = shmem_alloc_inode,
5275 .free_inode = shmem_free_in_core_inode,
5276 .destroy_inode = shmem_destroy_inode,
5277#ifdef CONFIG_TMPFS
5278 .statfs = shmem_statfs,
5279 .show_options = shmem_show_options,
5280#endif
5281#ifdef CONFIG_TMPFS_QUOTA
5282 .get_dquots = shmem_get_dquots,
5283#endif
5284 .evict_inode = shmem_evict_inode,
5285 .drop_inode = inode_just_drop,
5286 .put_super = shmem_put_super,
5287#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5288 .nr_cached_objects = shmem_unused_huge_count,
5289 .free_cached_objects = shmem_unused_huge_scan,
5290#endif
5291};
5292
5293static const struct vm_operations_struct shmem_vm_ops = {
5294 .fault = shmem_fault,
5295 .map_pages = filemap_map_pages,
5296#ifdef CONFIG_NUMA
5297 .set_policy = shmem_set_policy,
5298 .get_policy = shmem_get_policy,
5299#endif
5300};
5301
5302static const struct vm_operations_struct shmem_anon_vm_ops = {
5303 .fault = shmem_fault,
5304 .map_pages = filemap_map_pages,
5305#ifdef CONFIG_NUMA
5306 .set_policy = shmem_set_policy,
5307 .get_policy = shmem_get_policy,
5308#endif
5309};
5310
5311int shmem_init_fs_context(struct fs_context *fc)
5312{
5313 struct shmem_options *ctx;
5314
5315 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5316 if (!ctx)
5317 return -ENOMEM;
5318
5319 ctx->mode = 0777 | S_ISVTX;
5320 ctx->uid = current_fsuid();
5321 ctx->gid = current_fsgid();
5322
5323#if IS_ENABLED(CONFIG_UNICODE)
5324 ctx->encoding = NULL;
5325#endif
5326
5327 fc->fs_private = ctx;
5328 fc->ops = &shmem_fs_context_ops;
5329#ifdef CONFIG_TMPFS
5330 fc->sb_flags |= SB_I_VERSION;
5331#endif
5332 return 0;
5333}
5334
5335static struct file_system_type shmem_fs_type = {
5336 .owner = THIS_MODULE,
5337 .name = "tmpfs",
5338 .init_fs_context = shmem_init_fs_context,
5339#ifdef CONFIG_TMPFS
5340 .parameters = shmem_fs_parameters,
5341#endif
5342 .kill_sb = kill_anon_super,
5343 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5344};
5345
5346#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5347
5348#define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5349{ \
5350 .attr = { .name = __stringify(_name), .mode = _mode }, \
5351 .show = _show, \
5352 .store = _store, \
5353}
5354
5355#define TMPFS_ATTR_W(_name, _store) \
5356 static struct kobj_attribute tmpfs_attr_##_name = \
5357 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5358
5359#define TMPFS_ATTR_RW(_name, _show, _store) \
5360 static struct kobj_attribute tmpfs_attr_##_name = \
5361 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5362
5363#define TMPFS_ATTR_RO(_name, _show) \
5364 static struct kobj_attribute tmpfs_attr_##_name = \
5365 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5366
5367#if IS_ENABLED(CONFIG_UNICODE)
5368static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5369 char *buf)
5370{
5371 return sysfs_emit(buf, "supported\n");
5372}
5373TMPFS_ATTR_RO(casefold, casefold_show);
5374#endif
5375
5376static struct attribute *tmpfs_attributes[] = {
5377#if IS_ENABLED(CONFIG_UNICODE)
5378 &tmpfs_attr_casefold.attr,
5379#endif
5380 NULL
5381};
5382
5383static const struct attribute_group tmpfs_attribute_group = {
5384 .attrs = tmpfs_attributes,
5385 .name = "features"
5386};
5387
5388static struct kobject *tmpfs_kobj;
5389
5390static int __init tmpfs_sysfs_init(void)
5391{
5392 int ret;
5393
5394 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5395 if (!tmpfs_kobj)
5396 return -ENOMEM;
5397
5398 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5399 if (ret)
5400 kobject_put(tmpfs_kobj);
5401
5402 return ret;
5403}
5404#endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5405
5406void __init shmem_init(void)
5407{
5408 int error;
5409
5410 shmem_init_inodecache();
5411
5412#ifdef CONFIG_TMPFS_QUOTA
5413 register_quota_format(&shmem_quota_format);
5414#endif
5415
5416 error = register_filesystem(&shmem_fs_type);
5417 if (error) {
5418 pr_err("Could not register tmpfs\n");
5419 goto out2;
5420 }
5421
5422 shm_mnt = kern_mount(&shmem_fs_type);
5423 if (IS_ERR(shm_mnt)) {
5424 error = PTR_ERR(shm_mnt);
5425 pr_err("Could not kern_mount tmpfs\n");
5426 goto out1;
5427 }
5428
5429#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5430 error = tmpfs_sysfs_init();
5431 if (error) {
5432 pr_err("Could not init tmpfs sysfs\n");
5433 goto out1;
5434 }
5435#endif
5436
5437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5438 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5439 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5440 else
5441 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5442
5443 /*
5444 * Default to setting PMD-sized THP to inherit the global setting and
5445 * disable all other multi-size THPs.
5446 */
5447 if (!shmem_orders_configured)
5448 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5449#endif
5450 return;
5451
5452out1:
5453 unregister_filesystem(&shmem_fs_type);
5454out2:
5455#ifdef CONFIG_TMPFS_QUOTA
5456 unregister_quota_format(&shmem_quota_format);
5457#endif
5458 shmem_destroy_inodecache();
5459 shm_mnt = ERR_PTR(error);
5460}
5461
5462#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5463static ssize_t shmem_enabled_show(struct kobject *kobj,
5464 struct kobj_attribute *attr, char *buf)
5465{
5466 static const int values[] = {
5467 SHMEM_HUGE_ALWAYS,
5468 SHMEM_HUGE_WITHIN_SIZE,
5469 SHMEM_HUGE_ADVISE,
5470 SHMEM_HUGE_NEVER,
5471 SHMEM_HUGE_DENY,
5472 SHMEM_HUGE_FORCE,
5473 };
5474 int len = 0;
5475 int i;
5476
5477 for (i = 0; i < ARRAY_SIZE(values); i++) {
5478 len += sysfs_emit_at(buf, len,
5479 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5480 i ? " " : "", shmem_format_huge(values[i]));
5481 }
5482 len += sysfs_emit_at(buf, len, "\n");
5483
5484 return len;
5485}
5486
5487static ssize_t shmem_enabled_store(struct kobject *kobj,
5488 struct kobj_attribute *attr, const char *buf, size_t count)
5489{
5490 char tmp[16];
5491 int huge, err;
5492
5493 if (count + 1 > sizeof(tmp))
5494 return -EINVAL;
5495 memcpy(tmp, buf, count);
5496 tmp[count] = '\0';
5497 if (count && tmp[count - 1] == '\n')
5498 tmp[count - 1] = '\0';
5499
5500 huge = shmem_parse_huge(tmp);
5501 if (huge == -EINVAL)
5502 return huge;
5503
5504 shmem_huge = huge;
5505 if (shmem_huge > SHMEM_HUGE_DENY)
5506 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5507
5508 err = start_stop_khugepaged();
5509 return err ? err : count;
5510}
5511
5512struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5513static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5514
5515static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5516 struct kobj_attribute *attr, char *buf)
5517{
5518 int order = to_thpsize(kobj)->order;
5519 const char *output;
5520
5521 if (test_bit(order, &huge_shmem_orders_always))
5522 output = "[always] inherit within_size advise never";
5523 else if (test_bit(order, &huge_shmem_orders_inherit))
5524 output = "always [inherit] within_size advise never";
5525 else if (test_bit(order, &huge_shmem_orders_within_size))
5526 output = "always inherit [within_size] advise never";
5527 else if (test_bit(order, &huge_shmem_orders_madvise))
5528 output = "always inherit within_size [advise] never";
5529 else
5530 output = "always inherit within_size advise [never]";
5531
5532 return sysfs_emit(buf, "%s\n", output);
5533}
5534
5535static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5536 struct kobj_attribute *attr,
5537 const char *buf, size_t count)
5538{
5539 int order = to_thpsize(kobj)->order;
5540 ssize_t ret = count;
5541
5542 if (sysfs_streq(buf, "always")) {
5543 spin_lock(&huge_shmem_orders_lock);
5544 clear_bit(order, &huge_shmem_orders_inherit);
5545 clear_bit(order, &huge_shmem_orders_madvise);
5546 clear_bit(order, &huge_shmem_orders_within_size);
5547 set_bit(order, &huge_shmem_orders_always);
5548 spin_unlock(&huge_shmem_orders_lock);
5549 } else if (sysfs_streq(buf, "inherit")) {
5550 /* Do not override huge allocation policy with non-PMD sized mTHP */
5551 if (shmem_huge == SHMEM_HUGE_FORCE &&
5552 order != HPAGE_PMD_ORDER)
5553 return -EINVAL;
5554
5555 spin_lock(&huge_shmem_orders_lock);
5556 clear_bit(order, &huge_shmem_orders_always);
5557 clear_bit(order, &huge_shmem_orders_madvise);
5558 clear_bit(order, &huge_shmem_orders_within_size);
5559 set_bit(order, &huge_shmem_orders_inherit);
5560 spin_unlock(&huge_shmem_orders_lock);
5561 } else if (sysfs_streq(buf, "within_size")) {
5562 spin_lock(&huge_shmem_orders_lock);
5563 clear_bit(order, &huge_shmem_orders_always);
5564 clear_bit(order, &huge_shmem_orders_inherit);
5565 clear_bit(order, &huge_shmem_orders_madvise);
5566 set_bit(order, &huge_shmem_orders_within_size);
5567 spin_unlock(&huge_shmem_orders_lock);
5568 } else if (sysfs_streq(buf, "advise")) {
5569 spin_lock(&huge_shmem_orders_lock);
5570 clear_bit(order, &huge_shmem_orders_always);
5571 clear_bit(order, &huge_shmem_orders_inherit);
5572 clear_bit(order, &huge_shmem_orders_within_size);
5573 set_bit(order, &huge_shmem_orders_madvise);
5574 spin_unlock(&huge_shmem_orders_lock);
5575 } else if (sysfs_streq(buf, "never")) {
5576 spin_lock(&huge_shmem_orders_lock);
5577 clear_bit(order, &huge_shmem_orders_always);
5578 clear_bit(order, &huge_shmem_orders_inherit);
5579 clear_bit(order, &huge_shmem_orders_within_size);
5580 clear_bit(order, &huge_shmem_orders_madvise);
5581 spin_unlock(&huge_shmem_orders_lock);
5582 } else {
5583 ret = -EINVAL;
5584 }
5585
5586 if (ret > 0) {
5587 int err = start_stop_khugepaged();
5588
5589 if (err)
5590 ret = err;
5591 }
5592 return ret;
5593}
5594
5595struct kobj_attribute thpsize_shmem_enabled_attr =
5596 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5597#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5598
5599#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5600
5601static int __init setup_transparent_hugepage_shmem(char *str)
5602{
5603 int huge;
5604
5605 huge = shmem_parse_huge(str);
5606 if (huge == -EINVAL) {
5607 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5608 return huge;
5609 }
5610
5611 shmem_huge = huge;
5612 return 1;
5613}
5614__setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5615
5616static int __init setup_transparent_hugepage_tmpfs(char *str)
5617{
5618 int huge;
5619
5620 huge = shmem_parse_huge(str);
5621 if (huge < 0) {
5622 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5623 return huge;
5624 }
5625
5626 tmpfs_huge = huge;
5627 return 1;
5628}
5629__setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5630
5631static char str_dup[PAGE_SIZE] __initdata;
5632static int __init setup_thp_shmem(char *str)
5633{
5634 char *token, *range, *policy, *subtoken;
5635 unsigned long always, inherit, madvise, within_size;
5636 char *start_size, *end_size;
5637 int start, end, nr;
5638 char *p;
5639
5640 if (!str || strlen(str) + 1 > PAGE_SIZE)
5641 goto err;
5642 strscpy(str_dup, str);
5643
5644 always = huge_shmem_orders_always;
5645 inherit = huge_shmem_orders_inherit;
5646 madvise = huge_shmem_orders_madvise;
5647 within_size = huge_shmem_orders_within_size;
5648 p = str_dup;
5649 while ((token = strsep(&p, ";")) != NULL) {
5650 range = strsep(&token, ":");
5651 policy = token;
5652
5653 if (!policy)
5654 goto err;
5655
5656 while ((subtoken = strsep(&range, ",")) != NULL) {
5657 if (strchr(subtoken, '-')) {
5658 start_size = strsep(&subtoken, "-");
5659 end_size = subtoken;
5660
5661 start = get_order_from_str(start_size,
5662 THP_ORDERS_ALL_FILE_DEFAULT);
5663 end = get_order_from_str(end_size,
5664 THP_ORDERS_ALL_FILE_DEFAULT);
5665 } else {
5666 start_size = end_size = subtoken;
5667 start = end = get_order_from_str(subtoken,
5668 THP_ORDERS_ALL_FILE_DEFAULT);
5669 }
5670
5671 if (start < 0) {
5672 pr_err("invalid size %s in thp_shmem boot parameter\n",
5673 start_size);
5674 goto err;
5675 }
5676
5677 if (end < 0) {
5678 pr_err("invalid size %s in thp_shmem boot parameter\n",
5679 end_size);
5680 goto err;
5681 }
5682
5683 if (start > end)
5684 goto err;
5685
5686 nr = end - start + 1;
5687 if (!strcmp(policy, "always")) {
5688 bitmap_set(&always, start, nr);
5689 bitmap_clear(&inherit, start, nr);
5690 bitmap_clear(&madvise, start, nr);
5691 bitmap_clear(&within_size, start, nr);
5692 } else if (!strcmp(policy, "advise")) {
5693 bitmap_set(&madvise, start, nr);
5694 bitmap_clear(&inherit, start, nr);
5695 bitmap_clear(&always, start, nr);
5696 bitmap_clear(&within_size, start, nr);
5697 } else if (!strcmp(policy, "inherit")) {
5698 bitmap_set(&inherit, start, nr);
5699 bitmap_clear(&madvise, start, nr);
5700 bitmap_clear(&always, start, nr);
5701 bitmap_clear(&within_size, start, nr);
5702 } else if (!strcmp(policy, "within_size")) {
5703 bitmap_set(&within_size, start, nr);
5704 bitmap_clear(&inherit, start, nr);
5705 bitmap_clear(&madvise, start, nr);
5706 bitmap_clear(&always, start, nr);
5707 } else if (!strcmp(policy, "never")) {
5708 bitmap_clear(&inherit, start, nr);
5709 bitmap_clear(&madvise, start, nr);
5710 bitmap_clear(&always, start, nr);
5711 bitmap_clear(&within_size, start, nr);
5712 } else {
5713 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5714 goto err;
5715 }
5716 }
5717 }
5718
5719 huge_shmem_orders_always = always;
5720 huge_shmem_orders_madvise = madvise;
5721 huge_shmem_orders_inherit = inherit;
5722 huge_shmem_orders_within_size = within_size;
5723 shmem_orders_configured = true;
5724 return 1;
5725
5726err:
5727 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5728 return 0;
5729}
5730__setup("thp_shmem=", setup_thp_shmem);
5731
5732#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5733
5734#else /* !CONFIG_SHMEM */
5735
5736/*
5737 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5738 *
5739 * This is intended for small system where the benefits of the full
5740 * shmem code (swap-backed and resource-limited) are outweighed by
5741 * their complexity. On systems without swap this code should be
5742 * effectively equivalent, but much lighter weight.
5743 */
5744
5745static struct file_system_type shmem_fs_type = {
5746 .name = "tmpfs",
5747 .init_fs_context = ramfs_init_fs_context,
5748 .parameters = ramfs_fs_parameters,
5749 .kill_sb = ramfs_kill_sb,
5750 .fs_flags = FS_USERNS_MOUNT,
5751};
5752
5753void __init shmem_init(void)
5754{
5755 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5756
5757 shm_mnt = kern_mount(&shmem_fs_type);
5758 BUG_ON(IS_ERR(shm_mnt));
5759}
5760
5761int shmem_unuse(unsigned int type)
5762{
5763 return 0;
5764}
5765
5766int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5767{
5768 return 0;
5769}
5770
5771void shmem_unlock_mapping(struct address_space *mapping)
5772{
5773}
5774
5775#ifdef CONFIG_MMU
5776unsigned long shmem_get_unmapped_area(struct file *file,
5777 unsigned long addr, unsigned long len,
5778 unsigned long pgoff, unsigned long flags)
5779{
5780 return mm_get_unmapped_area(file, addr, len, pgoff, flags);
5781}
5782#endif
5783
5784void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
5785{
5786 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5787}
5788EXPORT_SYMBOL_GPL(shmem_truncate_range);
5789
5790#define shmem_vm_ops generic_file_vm_ops
5791#define shmem_anon_vm_ops generic_file_vm_ops
5792#define shmem_file_operations ramfs_file_operations
5793
5794static inline int shmem_acct_size(unsigned long flags, loff_t size)
5795{
5796 return 0;
5797}
5798
5799static inline void shmem_unacct_size(unsigned long flags, loff_t size)
5800{
5801}
5802
5803static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5804 struct super_block *sb, struct inode *dir,
5805 umode_t mode, dev_t dev, unsigned long flags)
5806{
5807 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5808 return inode ? inode : ERR_PTR(-ENOSPC);
5809}
5810
5811#endif /* CONFIG_SHMEM */
5812
5813/* common code */
5814
5815static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5816 loff_t size, unsigned long vm_flags,
5817 unsigned int i_flags)
5818{
5819 unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
5820 struct inode *inode;
5821 struct file *res;
5822
5823 if (IS_ERR(mnt))
5824 return ERR_CAST(mnt);
5825
5826 if (size < 0 || size > MAX_LFS_FILESIZE)
5827 return ERR_PTR(-EINVAL);
5828
5829 if (is_idmapped_mnt(mnt))
5830 return ERR_PTR(-EINVAL);
5831
5832 if (shmem_acct_size(flags, size))
5833 return ERR_PTR(-ENOMEM);
5834
5835 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5836 S_IFREG | S_IRWXUGO, 0, vm_flags);
5837 if (IS_ERR(inode)) {
5838 shmem_unacct_size(flags, size);
5839 return ERR_CAST(inode);
5840 }
5841 inode->i_flags |= i_flags;
5842 inode->i_size = size;
5843 clear_nlink(inode); /* It is unlinked */
5844 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5845 if (!IS_ERR(res))
5846 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5847 &shmem_file_operations);
5848 if (IS_ERR(res))
5849 iput(inode);
5850 return res;
5851}
5852
5853/**
5854 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5855 * kernel internal. There will be NO LSM permission checks against the
5856 * underlying inode. So users of this interface must do LSM checks at a
5857 * higher layer. The users are the big_key and shm implementations. LSM
5858 * checks are provided at the key or shm level rather than the inode.
5859 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5860 * @size: size to be set for the file
5861 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5862 */
5863struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5864{
5865 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5866}
5867EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5868
5869/**
5870 * shmem_file_setup - get an unlinked file living in tmpfs
5871 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5872 * @size: size to be set for the file
5873 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5874 */
5875struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5876{
5877 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5878}
5879EXPORT_SYMBOL_GPL(shmem_file_setup);
5880
5881/**
5882 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5883 * @mnt: the tmpfs mount where the file will be created
5884 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5885 * @size: size to be set for the file
5886 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5887 */
5888struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5889 loff_t size, unsigned long flags)
5890{
5891 return __shmem_file_setup(mnt, name, size, flags, 0);
5892}
5893EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5894
5895static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags)
5896{
5897 loff_t size = end - start;
5898
5899 /*
5900 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5901 * between XFS directory reading and selinux: since this file is only
5902 * accessible to the user through its mapping, use S_PRIVATE flag to
5903 * bypass file security, in the same way as shmem_kernel_file_setup().
5904 */
5905 return shmem_kernel_file_setup("dev/zero", size, vm_flags);
5906}
5907
5908/**
5909 * shmem_zero_setup - setup a shared anonymous mapping
5910 * @vma: the vma to be mmapped is prepared by do_mmap
5911 * Returns: 0 on success, or error
5912 */
5913int shmem_zero_setup(struct vm_area_struct *vma)
5914{
5915 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags);
5916
5917 if (IS_ERR(file))
5918 return PTR_ERR(file);
5919
5920 if (vma->vm_file)
5921 fput(vma->vm_file);
5922 vma->vm_file = file;
5923 vma->vm_ops = &shmem_anon_vm_ops;
5924
5925 return 0;
5926}
5927
5928/**
5929 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA
5930 * descriptor for convenience.
5931 * @desc: Describes VMA
5932 * Returns: 0 on success, or error
5933 */
5934int shmem_zero_setup_desc(struct vm_area_desc *desc)
5935{
5936 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags);
5937
5938 if (IS_ERR(file))
5939 return PTR_ERR(file);
5940
5941 desc->vm_file = file;
5942 desc->vm_ops = &shmem_anon_vm_ops;
5943
5944 return 0;
5945}
5946
5947/**
5948 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5949 * @mapping: the folio's address_space
5950 * @index: the folio index
5951 * @gfp: the page allocator flags to use if allocating
5952 *
5953 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5954 * with any new page allocations done using the specified allocation flags.
5955 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5956 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5957 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5958 *
5959 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5960 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5961 */
5962struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5963 pgoff_t index, gfp_t gfp)
5964{
5965#ifdef CONFIG_SHMEM
5966 struct inode *inode = mapping->host;
5967 struct folio *folio;
5968 int error;
5969
5970 error = shmem_get_folio_gfp(inode, index, i_size_read(inode),
5971 &folio, SGP_CACHE, gfp, NULL, NULL);
5972 if (error)
5973 return ERR_PTR(error);
5974
5975 folio_unlock(folio);
5976 return folio;
5977#else
5978 /*
5979 * The tiny !SHMEM case uses ramfs without swap
5980 */
5981 return mapping_read_folio_gfp(mapping, index, gfp);
5982#endif
5983}
5984EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5985
5986struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5987 pgoff_t index, gfp_t gfp)
5988{
5989 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5990 struct page *page;
5991
5992 if (IS_ERR(folio))
5993 return &folio->page;
5994
5995 page = folio_file_page(folio, index);
5996 if (PageHWPoison(page)) {
5997 folio_put(folio);
5998 return ERR_PTR(-EIO);
5999 }
6000
6001 return page;
6002}
6003EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);