at master 61 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9#include <linux/mman.h> 10#include <linux/pagemap.h> 11#include <linux/syscalls.h> 12#include <linux/mempolicy.h> 13#include <linux/page-isolation.h> 14#include <linux/page_idle.h> 15#include <linux/userfaultfd_k.h> 16#include <linux/hugetlb.h> 17#include <linux/falloc.h> 18#include <linux/fadvise.h> 19#include <linux/sched.h> 20#include <linux/sched/mm.h> 21#include <linux/mm_inline.h> 22#include <linux/mmu_context.h> 23#include <linux/string.h> 24#include <linux/uio.h> 25#include <linux/ksm.h> 26#include <linux/fs.h> 27#include <linux/file.h> 28#include <linux/blkdev.h> 29#include <linux/backing-dev.h> 30#include <linux/pagewalk.h> 31#include <linux/swap.h> 32#include <linux/leafops.h> 33#include <linux/shmem_fs.h> 34#include <linux/mmu_notifier.h> 35 36#include <asm/tlb.h> 37 38#include "internal.h" 39#include "swap.h" 40 41#define __MADV_SET_ANON_VMA_NAME (-1) 42 43/* 44 * Maximum number of attempts we make to install guard pages before we give up 45 * and return -ERESTARTNOINTR to have userspace try again. 46 */ 47#define MAX_MADVISE_GUARD_RETRIES 3 48 49struct madvise_walk_private { 50 struct mmu_gather *tlb; 51 bool pageout; 52}; 53 54enum madvise_lock_mode { 55 MADVISE_NO_LOCK, 56 MADVISE_MMAP_READ_LOCK, 57 MADVISE_MMAP_WRITE_LOCK, 58 MADVISE_VMA_READ_LOCK, 59}; 60 61struct madvise_behavior_range { 62 unsigned long start; 63 unsigned long end; 64}; 65 66struct madvise_behavior { 67 struct mm_struct *mm; 68 int behavior; 69 struct mmu_gather *tlb; 70 enum madvise_lock_mode lock_mode; 71 struct anon_vma_name *anon_name; 72 73 /* 74 * The range over which the behaviour is currently being applied. If 75 * traversing multiple VMAs, this is updated for each. 76 */ 77 struct madvise_behavior_range range; 78 /* The VMA and VMA preceding it (if applicable) currently targeted. */ 79 struct vm_area_struct *prev; 80 struct vm_area_struct *vma; 81 bool lock_dropped; 82}; 83 84#ifdef CONFIG_ANON_VMA_NAME 85static int madvise_walk_vmas(struct madvise_behavior *madv_behavior); 86 87struct anon_vma_name *anon_vma_name_alloc(const char *name) 88{ 89 struct anon_vma_name *anon_name; 90 size_t count; 91 92 /* Add 1 for NUL terminator at the end of the anon_name->name */ 93 count = strlen(name) + 1; 94 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); 95 if (anon_name) { 96 kref_init(&anon_name->kref); 97 memcpy(anon_name->name, name, count); 98 } 99 100 return anon_name; 101} 102 103void anon_vma_name_free(struct kref *kref) 104{ 105 struct anon_vma_name *anon_name = 106 container_of(kref, struct anon_vma_name, kref); 107 kfree(anon_name); 108} 109 110struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 111{ 112 if (!rwsem_is_locked(&vma->vm_mm->mmap_lock)) 113 vma_assert_locked(vma); 114 115 return vma->anon_name; 116} 117 118/* mmap_lock should be write-locked */ 119static int replace_anon_vma_name(struct vm_area_struct *vma, 120 struct anon_vma_name *anon_name) 121{ 122 struct anon_vma_name *orig_name = anon_vma_name(vma); 123 124 if (!anon_name) { 125 vma->anon_name = NULL; 126 anon_vma_name_put(orig_name); 127 return 0; 128 } 129 130 if (anon_vma_name_eq(orig_name, anon_name)) 131 return 0; 132 133 vma->anon_name = anon_vma_name_reuse(anon_name); 134 anon_vma_name_put(orig_name); 135 136 return 0; 137} 138#else /* CONFIG_ANON_VMA_NAME */ 139static int replace_anon_vma_name(struct vm_area_struct *vma, 140 struct anon_vma_name *anon_name) 141{ 142 if (anon_name) 143 return -EINVAL; 144 145 return 0; 146} 147#endif /* CONFIG_ANON_VMA_NAME */ 148/* 149 * Update the vm_flags or anon_name on region of a vma, splitting it or merging 150 * it as necessary. Must be called with mmap_lock held for writing. 151 */ 152static int madvise_update_vma(vm_flags_t new_flags, 153 struct madvise_behavior *madv_behavior) 154{ 155 struct vm_area_struct *vma = madv_behavior->vma; 156 struct madvise_behavior_range *range = &madv_behavior->range; 157 struct anon_vma_name *anon_name = madv_behavior->anon_name; 158 bool set_new_anon_name = madv_behavior->behavior == __MADV_SET_ANON_VMA_NAME; 159 VMA_ITERATOR(vmi, madv_behavior->mm, range->start); 160 161 if (new_flags == vma->vm_flags && (!set_new_anon_name || 162 anon_vma_name_eq(anon_vma_name(vma), anon_name))) 163 return 0; 164 165 if (set_new_anon_name) 166 vma = vma_modify_name(&vmi, madv_behavior->prev, vma, 167 range->start, range->end, anon_name); 168 else 169 vma = vma_modify_flags(&vmi, madv_behavior->prev, vma, 170 range->start, range->end, &new_flags); 171 172 if (IS_ERR(vma)) 173 return PTR_ERR(vma); 174 175 madv_behavior->vma = vma; 176 177 /* vm_flags is protected by the mmap_lock held in write mode. */ 178 vma_start_write(vma); 179 vm_flags_reset(vma, new_flags); 180 if (set_new_anon_name) 181 return replace_anon_vma_name(vma, anon_name); 182 183 return 0; 184} 185 186#ifdef CONFIG_SWAP 187static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 188 unsigned long end, struct mm_walk *walk) 189{ 190 struct vm_area_struct *vma = walk->private; 191 struct swap_iocb *splug = NULL; 192 pte_t *ptep = NULL; 193 spinlock_t *ptl; 194 unsigned long addr; 195 196 for (addr = start; addr < end; addr += PAGE_SIZE) { 197 pte_t pte; 198 softleaf_t entry; 199 struct folio *folio; 200 201 if (!ptep++) { 202 ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 203 if (!ptep) 204 break; 205 } 206 207 pte = ptep_get(ptep); 208 entry = softleaf_from_pte(pte); 209 if (unlikely(!softleaf_is_swap(entry))) 210 continue; 211 212 pte_unmap_unlock(ptep, ptl); 213 ptep = NULL; 214 215 folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 216 vma, addr, &splug); 217 if (folio) 218 folio_put(folio); 219 } 220 221 if (ptep) 222 pte_unmap_unlock(ptep, ptl); 223 swap_read_unplug(splug); 224 cond_resched(); 225 226 return 0; 227} 228 229static const struct mm_walk_ops swapin_walk_ops = { 230 .pmd_entry = swapin_walk_pmd_entry, 231 .walk_lock = PGWALK_RDLOCK, 232}; 233 234static void shmem_swapin_range(struct vm_area_struct *vma, 235 unsigned long start, unsigned long end, 236 struct address_space *mapping) 237{ 238 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); 239 pgoff_t end_index = linear_page_index(vma, end) - 1; 240 struct folio *folio; 241 struct swap_iocb *splug = NULL; 242 243 rcu_read_lock(); 244 xas_for_each(&xas, folio, end_index) { 245 unsigned long addr; 246 swp_entry_t entry; 247 248 if (!xa_is_value(folio)) 249 continue; 250 entry = radix_to_swp_entry(folio); 251 /* There might be swapin error entries in shmem mapping. */ 252 if (!softleaf_is_swap(entry)) 253 continue; 254 255 addr = vma->vm_start + 256 ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT); 257 xas_pause(&xas); 258 rcu_read_unlock(); 259 260 folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping), 261 vma, addr, &splug); 262 if (folio) 263 folio_put(folio); 264 265 rcu_read_lock(); 266 } 267 rcu_read_unlock(); 268 swap_read_unplug(splug); 269} 270#endif /* CONFIG_SWAP */ 271 272static void mark_mmap_lock_dropped(struct madvise_behavior *madv_behavior) 273{ 274 VM_WARN_ON_ONCE(madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK); 275 madv_behavior->lock_dropped = true; 276} 277 278/* 279 * Schedule all required I/O operations. Do not wait for completion. 280 */ 281static long madvise_willneed(struct madvise_behavior *madv_behavior) 282{ 283 struct vm_area_struct *vma = madv_behavior->vma; 284 struct mm_struct *mm = madv_behavior->mm; 285 struct file *file = vma->vm_file; 286 unsigned long start = madv_behavior->range.start; 287 unsigned long end = madv_behavior->range.end; 288 loff_t offset; 289 290#ifdef CONFIG_SWAP 291 if (!file) { 292 walk_page_range_vma(vma, start, end, &swapin_walk_ops, vma); 293 lru_add_drain(); /* Push any new pages onto the LRU now */ 294 return 0; 295 } 296 297 if (shmem_mapping(file->f_mapping)) { 298 shmem_swapin_range(vma, start, end, file->f_mapping); 299 lru_add_drain(); /* Push any new pages onto the LRU now */ 300 return 0; 301 } 302#else 303 if (!file) 304 return -EBADF; 305#endif 306 307 if (IS_DAX(file_inode(file))) { 308 /* no bad return value, but ignore advice */ 309 return 0; 310 } 311 312 /* 313 * Filesystem's fadvise may need to take various locks. We need to 314 * explicitly grab a reference because the vma (and hence the 315 * vma's reference to the file) can go away as soon as we drop 316 * mmap_lock. 317 */ 318 mark_mmap_lock_dropped(madv_behavior); 319 get_file(file); 320 offset = (loff_t)(start - vma->vm_start) 321 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 322 mmap_read_unlock(mm); 323 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 324 fput(file); 325 mmap_read_lock(mm); 326 return 0; 327} 328 329static inline bool can_do_file_pageout(struct vm_area_struct *vma) 330{ 331 if (!vma->vm_file) 332 return false; 333 /* 334 * paging out pagecache only for non-anonymous mappings that correspond 335 * to the files the calling process could (if tried) open for writing; 336 * otherwise we'd be including shared non-exclusive mappings, which 337 * opens a side channel. 338 */ 339 return inode_owner_or_capable(&nop_mnt_idmap, 340 file_inode(vma->vm_file)) || 341 file_permission(vma->vm_file, MAY_WRITE) == 0; 342} 343 344static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end, 345 struct folio *folio, pte_t *ptep, 346 pte_t *ptentp) 347{ 348 int max_nr = (end - addr) / PAGE_SIZE; 349 350 return folio_pte_batch_flags(folio, NULL, ptep, ptentp, max_nr, 351 FPB_MERGE_YOUNG_DIRTY); 352} 353 354static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 355 unsigned long addr, unsigned long end, 356 struct mm_walk *walk) 357{ 358 struct madvise_walk_private *private = walk->private; 359 struct mmu_gather *tlb = private->tlb; 360 bool pageout = private->pageout; 361 struct mm_struct *mm = tlb->mm; 362 struct vm_area_struct *vma = walk->vma; 363 pte_t *start_pte, *pte, ptent; 364 spinlock_t *ptl; 365 struct folio *folio = NULL; 366 LIST_HEAD(folio_list); 367 bool pageout_anon_only_filter; 368 unsigned int batch_count = 0; 369 int nr; 370 371 if (fatal_signal_pending(current)) 372 return -EINTR; 373 374 pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) && 375 !can_do_file_pageout(vma); 376 377#ifdef CONFIG_TRANSPARENT_HUGEPAGE 378 if (pmd_trans_huge(*pmd)) { 379 pmd_t orig_pmd; 380 unsigned long next = pmd_addr_end(addr, end); 381 382 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 383 ptl = pmd_trans_huge_lock(pmd, vma); 384 if (!ptl) 385 return 0; 386 387 orig_pmd = *pmd; 388 if (is_huge_zero_pmd(orig_pmd)) 389 goto huge_unlock; 390 391 if (unlikely(!pmd_present(orig_pmd))) { 392 VM_BUG_ON(thp_migration_supported() && 393 !pmd_is_migration_entry(orig_pmd)); 394 goto huge_unlock; 395 } 396 397 folio = pmd_folio(orig_pmd); 398 399 /* Do not interfere with other mappings of this folio */ 400 if (folio_maybe_mapped_shared(folio)) 401 goto huge_unlock; 402 403 if (pageout_anon_only_filter && !folio_test_anon(folio)) 404 goto huge_unlock; 405 406 if (next - addr != HPAGE_PMD_SIZE) { 407 int err; 408 409 folio_get(folio); 410 spin_unlock(ptl); 411 folio_lock(folio); 412 err = split_folio(folio); 413 folio_unlock(folio); 414 folio_put(folio); 415 if (!err) 416 goto regular_folio; 417 return 0; 418 } 419 420 if (!pageout && pmd_young(orig_pmd)) { 421 pmdp_invalidate(vma, addr, pmd); 422 orig_pmd = pmd_mkold(orig_pmd); 423 424 set_pmd_at(mm, addr, pmd, orig_pmd); 425 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 426 } 427 428 folio_clear_referenced(folio); 429 folio_test_clear_young(folio); 430 if (folio_test_active(folio)) 431 folio_set_workingset(folio); 432 if (pageout) { 433 if (folio_isolate_lru(folio)) { 434 if (folio_test_unevictable(folio)) 435 folio_putback_lru(folio); 436 else 437 list_add(&folio->lru, &folio_list); 438 } 439 } else 440 folio_deactivate(folio); 441huge_unlock: 442 spin_unlock(ptl); 443 if (pageout) 444 reclaim_pages(&folio_list); 445 return 0; 446 } 447 448regular_folio: 449#endif 450 tlb_change_page_size(tlb, PAGE_SIZE); 451restart: 452 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 453 if (!start_pte) 454 return 0; 455 flush_tlb_batched_pending(mm); 456 arch_enter_lazy_mmu_mode(); 457 for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) { 458 nr = 1; 459 ptent = ptep_get(pte); 460 461 if (++batch_count == SWAP_CLUSTER_MAX) { 462 batch_count = 0; 463 if (need_resched()) { 464 arch_leave_lazy_mmu_mode(); 465 pte_unmap_unlock(start_pte, ptl); 466 cond_resched(); 467 goto restart; 468 } 469 } 470 471 if (pte_none(ptent)) 472 continue; 473 474 if (!pte_present(ptent)) 475 continue; 476 477 folio = vm_normal_folio(vma, addr, ptent); 478 if (!folio || folio_is_zone_device(folio)) 479 continue; 480 481 /* 482 * If we encounter a large folio, only split it if it is not 483 * fully mapped within the range we are operating on. Otherwise 484 * leave it as is so that it can be swapped out whole. If we 485 * fail to split a folio, leave it in place and advance to the 486 * next pte in the range. 487 */ 488 if (folio_test_large(folio)) { 489 nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent); 490 if (nr < folio_nr_pages(folio)) { 491 int err; 492 493 if (folio_maybe_mapped_shared(folio)) 494 continue; 495 if (pageout_anon_only_filter && !folio_test_anon(folio)) 496 continue; 497 if (!folio_trylock(folio)) 498 continue; 499 folio_get(folio); 500 arch_leave_lazy_mmu_mode(); 501 pte_unmap_unlock(start_pte, ptl); 502 start_pte = NULL; 503 err = split_folio(folio); 504 folio_unlock(folio); 505 folio_put(folio); 506 start_pte = pte = 507 pte_offset_map_lock(mm, pmd, addr, &ptl); 508 if (!start_pte) 509 break; 510 flush_tlb_batched_pending(mm); 511 arch_enter_lazy_mmu_mode(); 512 if (!err) 513 nr = 0; 514 continue; 515 } 516 } 517 518 /* 519 * Do not interfere with other mappings of this folio and 520 * non-LRU folio. If we have a large folio at this point, we 521 * know it is fully mapped so if its mapcount is the same as its 522 * number of pages, it must be exclusive. 523 */ 524 if (!folio_test_lru(folio) || 525 folio_mapcount(folio) != folio_nr_pages(folio)) 526 continue; 527 528 if (pageout_anon_only_filter && !folio_test_anon(folio)) 529 continue; 530 531 if (!pageout && pte_young(ptent)) { 532 clear_young_dirty_ptes(vma, addr, pte, nr, 533 CYDP_CLEAR_YOUNG); 534 tlb_remove_tlb_entries(tlb, pte, nr, addr); 535 } 536 537 /* 538 * We are deactivating a folio for accelerating reclaiming. 539 * VM couldn't reclaim the folio unless we clear PG_young. 540 * As a side effect, it makes confuse idle-page tracking 541 * because they will miss recent referenced history. 542 */ 543 folio_clear_referenced(folio); 544 folio_test_clear_young(folio); 545 if (folio_test_active(folio)) 546 folio_set_workingset(folio); 547 if (pageout) { 548 if (folio_isolate_lru(folio)) { 549 if (folio_test_unevictable(folio)) 550 folio_putback_lru(folio); 551 else 552 list_add(&folio->lru, &folio_list); 553 } 554 } else 555 folio_deactivate(folio); 556 } 557 558 if (start_pte) { 559 arch_leave_lazy_mmu_mode(); 560 pte_unmap_unlock(start_pte, ptl); 561 } 562 if (pageout) 563 reclaim_pages(&folio_list); 564 cond_resched(); 565 566 return 0; 567} 568 569static const struct mm_walk_ops cold_walk_ops = { 570 .pmd_entry = madvise_cold_or_pageout_pte_range, 571 .walk_lock = PGWALK_RDLOCK, 572}; 573 574static void madvise_cold_page_range(struct mmu_gather *tlb, 575 struct madvise_behavior *madv_behavior) 576 577{ 578 struct vm_area_struct *vma = madv_behavior->vma; 579 struct madvise_behavior_range *range = &madv_behavior->range; 580 struct madvise_walk_private walk_private = { 581 .pageout = false, 582 .tlb = tlb, 583 }; 584 585 tlb_start_vma(tlb, vma); 586 walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops, 587 &walk_private); 588 tlb_end_vma(tlb, vma); 589} 590 591static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 592{ 593 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB)); 594} 595 596static long madvise_cold(struct madvise_behavior *madv_behavior) 597{ 598 struct vm_area_struct *vma = madv_behavior->vma; 599 struct mmu_gather tlb; 600 601 if (!can_madv_lru_vma(vma)) 602 return -EINVAL; 603 604 lru_add_drain(); 605 tlb_gather_mmu(&tlb, madv_behavior->mm); 606 madvise_cold_page_range(&tlb, madv_behavior); 607 tlb_finish_mmu(&tlb); 608 609 return 0; 610} 611 612static void madvise_pageout_page_range(struct mmu_gather *tlb, 613 struct vm_area_struct *vma, 614 struct madvise_behavior_range *range) 615{ 616 struct madvise_walk_private walk_private = { 617 .pageout = true, 618 .tlb = tlb, 619 }; 620 621 tlb_start_vma(tlb, vma); 622 walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops, 623 &walk_private); 624 tlb_end_vma(tlb, vma); 625} 626 627static long madvise_pageout(struct madvise_behavior *madv_behavior) 628{ 629 struct mmu_gather tlb; 630 struct vm_area_struct *vma = madv_behavior->vma; 631 632 if (!can_madv_lru_vma(vma)) 633 return -EINVAL; 634 635 /* 636 * If the VMA belongs to a private file mapping, there can be private 637 * dirty pages which can be paged out if even this process is neither 638 * owner nor write capable of the file. We allow private file mappings 639 * further to pageout dirty anon pages. 640 */ 641 if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) && 642 (vma->vm_flags & VM_MAYSHARE))) 643 return 0; 644 645 lru_add_drain(); 646 tlb_gather_mmu(&tlb, madv_behavior->mm); 647 madvise_pageout_page_range(&tlb, vma, &madv_behavior->range); 648 tlb_finish_mmu(&tlb); 649 650 return 0; 651} 652 653static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 654 unsigned long end, struct mm_walk *walk) 655 656{ 657 const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY; 658 struct mmu_gather *tlb = walk->private; 659 struct mm_struct *mm = tlb->mm; 660 struct vm_area_struct *vma = walk->vma; 661 spinlock_t *ptl; 662 pte_t *start_pte, *pte, ptent; 663 struct folio *folio; 664 int nr_swap = 0; 665 unsigned long next; 666 int nr, max_nr; 667 668 next = pmd_addr_end(addr, end); 669 if (pmd_trans_huge(*pmd)) 670 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 671 return 0; 672 673 tlb_change_page_size(tlb, PAGE_SIZE); 674 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 675 if (!start_pte) 676 return 0; 677 flush_tlb_batched_pending(mm); 678 arch_enter_lazy_mmu_mode(); 679 for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) { 680 nr = 1; 681 ptent = ptep_get(pte); 682 683 if (pte_none(ptent)) 684 continue; 685 /* 686 * If the pte has swp_entry, just clear page table to 687 * prevent swap-in which is more expensive rather than 688 * (page allocation + zeroing). 689 */ 690 if (!pte_present(ptent)) { 691 softleaf_t entry = softleaf_from_pte(ptent); 692 693 if (softleaf_is_swap(entry)) { 694 max_nr = (end - addr) / PAGE_SIZE; 695 nr = swap_pte_batch(pte, max_nr, ptent); 696 nr_swap -= nr; 697 free_swap_and_cache_nr(entry, nr); 698 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); 699 } else if (softleaf_is_hwpoison(entry) || 700 softleaf_is_poison_marker(entry)) { 701 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 702 } 703 continue; 704 } 705 706 folio = vm_normal_folio(vma, addr, ptent); 707 if (!folio || folio_is_zone_device(folio)) 708 continue; 709 710 /* 711 * If we encounter a large folio, only split it if it is not 712 * fully mapped within the range we are operating on. Otherwise 713 * leave it as is so that it can be marked as lazyfree. If we 714 * fail to split a folio, leave it in place and advance to the 715 * next pte in the range. 716 */ 717 if (folio_test_large(folio)) { 718 nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent); 719 if (nr < folio_nr_pages(folio)) { 720 int err; 721 722 if (folio_maybe_mapped_shared(folio)) 723 continue; 724 if (!folio_trylock(folio)) 725 continue; 726 folio_get(folio); 727 arch_leave_lazy_mmu_mode(); 728 pte_unmap_unlock(start_pte, ptl); 729 start_pte = NULL; 730 err = split_folio(folio); 731 folio_unlock(folio); 732 folio_put(folio); 733 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 734 start_pte = pte; 735 if (!start_pte) 736 break; 737 flush_tlb_batched_pending(mm); 738 arch_enter_lazy_mmu_mode(); 739 if (!err) 740 nr = 0; 741 continue; 742 } 743 } 744 745 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) { 746 if (!folio_trylock(folio)) 747 continue; 748 /* 749 * If we have a large folio at this point, we know it is 750 * fully mapped so if its mapcount is the same as its 751 * number of pages, it must be exclusive. 752 */ 753 if (folio_mapcount(folio) != folio_nr_pages(folio)) { 754 folio_unlock(folio); 755 continue; 756 } 757 758 if (folio_test_swapcache(folio) && 759 !folio_free_swap(folio)) { 760 folio_unlock(folio); 761 continue; 762 } 763 764 folio_clear_dirty(folio); 765 folio_unlock(folio); 766 } 767 768 if (pte_young(ptent) || pte_dirty(ptent)) { 769 clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags); 770 tlb_remove_tlb_entries(tlb, pte, nr, addr); 771 } 772 folio_mark_lazyfree(folio); 773 } 774 775 if (nr_swap) 776 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 777 if (start_pte) { 778 arch_leave_lazy_mmu_mode(); 779 pte_unmap_unlock(start_pte, ptl); 780 } 781 cond_resched(); 782 783 return 0; 784} 785 786static inline enum page_walk_lock get_walk_lock(enum madvise_lock_mode mode) 787{ 788 switch (mode) { 789 case MADVISE_VMA_READ_LOCK: 790 return PGWALK_VMA_RDLOCK_VERIFY; 791 case MADVISE_MMAP_READ_LOCK: 792 return PGWALK_RDLOCK; 793 default: 794 /* Other modes don't require fixing up the walk_lock */ 795 WARN_ON_ONCE(1); 796 return PGWALK_RDLOCK; 797 } 798} 799 800static int madvise_free_single_vma(struct madvise_behavior *madv_behavior) 801{ 802 struct mm_struct *mm = madv_behavior->mm; 803 struct vm_area_struct *vma = madv_behavior->vma; 804 unsigned long start_addr = madv_behavior->range.start; 805 unsigned long end_addr = madv_behavior->range.end; 806 struct mmu_notifier_range range; 807 struct mmu_gather *tlb = madv_behavior->tlb; 808 struct mm_walk_ops walk_ops = { 809 .pmd_entry = madvise_free_pte_range, 810 }; 811 812 /* MADV_FREE works for only anon vma at the moment */ 813 if (!vma_is_anonymous(vma)) 814 return -EINVAL; 815 816 range.start = max(vma->vm_start, start_addr); 817 if (range.start >= vma->vm_end) 818 return -EINVAL; 819 range.end = min(vma->vm_end, end_addr); 820 if (range.end <= vma->vm_start) 821 return -EINVAL; 822 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 823 range.start, range.end); 824 825 lru_add_drain(); 826 update_hiwater_rss(mm); 827 828 mmu_notifier_invalidate_range_start(&range); 829 tlb_start_vma(tlb, vma); 830 walk_ops.walk_lock = get_walk_lock(madv_behavior->lock_mode); 831 walk_page_range_vma(vma, range.start, range.end, 832 &walk_ops, tlb); 833 tlb_end_vma(tlb, vma); 834 mmu_notifier_invalidate_range_end(&range); 835 return 0; 836} 837 838/* 839 * Application no longer needs these pages. If the pages are dirty, 840 * it's OK to just throw them away. The app will be more careful about 841 * data it wants to keep. Be sure to free swap resources too. The 842 * zap_page_range_single call sets things up for shrink_active_list to actually 843 * free these pages later if no one else has touched them in the meantime, 844 * although we could add these pages to a global reuse list for 845 * shrink_active_list to pick up before reclaiming other pages. 846 * 847 * NB: This interface discards data rather than pushes it out to swap, 848 * as some implementations do. This has performance implications for 849 * applications like large transactional databases which want to discard 850 * pages in anonymous maps after committing to backing store the data 851 * that was kept in them. There is no reason to write this data out to 852 * the swap area if the application is discarding it. 853 * 854 * An interface that causes the system to free clean pages and flush 855 * dirty pages is already available as msync(MS_INVALIDATE). 856 */ 857static long madvise_dontneed_single_vma(struct madvise_behavior *madv_behavior) 858 859{ 860 struct madvise_behavior_range *range = &madv_behavior->range; 861 struct zap_details details = { 862 .reclaim_pt = true, 863 .even_cows = true, 864 }; 865 866 zap_page_range_single_batched( 867 madv_behavior->tlb, madv_behavior->vma, range->start, 868 range->end - range->start, &details); 869 return 0; 870} 871 872static 873bool madvise_dontneed_free_valid_vma(struct madvise_behavior *madv_behavior) 874{ 875 struct vm_area_struct *vma = madv_behavior->vma; 876 int behavior = madv_behavior->behavior; 877 struct madvise_behavior_range *range = &madv_behavior->range; 878 879 if (!is_vm_hugetlb_page(vma)) { 880 unsigned int forbidden = VM_PFNMAP; 881 882 if (behavior != MADV_DONTNEED_LOCKED) 883 forbidden |= VM_LOCKED; 884 885 return !(vma->vm_flags & forbidden); 886 } 887 888 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED) 889 return false; 890 if (range->start & ~huge_page_mask(hstate_vma(vma))) 891 return false; 892 893 /* 894 * Madvise callers expect the length to be rounded up to PAGE_SIZE 895 * boundaries, and may be unaware that this VMA uses huge pages. 896 * Avoid unexpected data loss by rounding down the number of 897 * huge pages freed. 898 */ 899 range->end = ALIGN_DOWN(range->end, huge_page_size(hstate_vma(vma))); 900 901 return true; 902} 903 904static long madvise_dontneed_free(struct madvise_behavior *madv_behavior) 905{ 906 struct mm_struct *mm = madv_behavior->mm; 907 struct madvise_behavior_range *range = &madv_behavior->range; 908 int behavior = madv_behavior->behavior; 909 910 if (!madvise_dontneed_free_valid_vma(madv_behavior)) 911 return -EINVAL; 912 913 if (range->start == range->end) 914 return 0; 915 916 if (!userfaultfd_remove(madv_behavior->vma, range->start, range->end)) { 917 struct vm_area_struct *vma; 918 919 mark_mmap_lock_dropped(madv_behavior); 920 mmap_read_lock(mm); 921 madv_behavior->vma = vma = vma_lookup(mm, range->start); 922 if (!vma) 923 return -ENOMEM; 924 /* 925 * Potential end adjustment for hugetlb vma is OK as 926 * the check below keeps end within vma. 927 */ 928 if (!madvise_dontneed_free_valid_vma(madv_behavior)) 929 return -EINVAL; 930 if (range->end > vma->vm_end) { 931 /* 932 * Don't fail if end > vma->vm_end. If the old 933 * vma was split while the mmap_lock was 934 * released the effect of the concurrent 935 * operation may not cause madvise() to 936 * have an undefined result. There may be an 937 * adjacent next vma that we'll walk 938 * next. userfaultfd_remove() will generate an 939 * UFFD_EVENT_REMOVE repetition on the 940 * end-vma->vm_end range, but the manager can 941 * handle a repetition fine. 942 */ 943 range->end = vma->vm_end; 944 } 945 /* 946 * If the memory region between start and end was 947 * originally backed by 4kB pages and then remapped to 948 * be backed by hugepages while mmap_lock was dropped, 949 * the adjustment for hugetlb vma above may have rounded 950 * end down to the start address. 951 */ 952 if (range->start == range->end) 953 return 0; 954 VM_WARN_ON(range->start > range->end); 955 } 956 957 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED) 958 return madvise_dontneed_single_vma(madv_behavior); 959 else if (behavior == MADV_FREE) 960 return madvise_free_single_vma(madv_behavior); 961 else 962 return -EINVAL; 963} 964 965static long madvise_populate(struct madvise_behavior *madv_behavior) 966{ 967 struct mm_struct *mm = madv_behavior->mm; 968 const bool write = madv_behavior->behavior == MADV_POPULATE_WRITE; 969 int locked = 1; 970 unsigned long start = madv_behavior->range.start; 971 unsigned long end = madv_behavior->range.end; 972 long pages; 973 974 while (start < end) { 975 /* Populate (prefault) page tables readable/writable. */ 976 pages = faultin_page_range(mm, start, end, write, &locked); 977 if (!locked) { 978 mmap_read_lock(mm); 979 locked = 1; 980 } 981 if (pages < 0) { 982 switch (pages) { 983 case -EINTR: 984 return -EINTR; 985 case -EINVAL: /* Incompatible mappings / permissions. */ 986 return -EINVAL; 987 case -EHWPOISON: 988 return -EHWPOISON; 989 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */ 990 return -EFAULT; 991 default: 992 pr_warn_once("%s: unhandled return value: %ld\n", 993 __func__, pages); 994 fallthrough; 995 case -ENOMEM: /* No VMA or out of memory. */ 996 return -ENOMEM; 997 } 998 } 999 start += pages * PAGE_SIZE; 1000 } 1001 return 0; 1002} 1003 1004/* 1005 * Application wants to free up the pages and associated backing store. 1006 * This is effectively punching a hole into the middle of a file. 1007 */ 1008static long madvise_remove(struct madvise_behavior *madv_behavior) 1009{ 1010 loff_t offset; 1011 int error; 1012 struct file *f; 1013 struct mm_struct *mm = madv_behavior->mm; 1014 struct vm_area_struct *vma = madv_behavior->vma; 1015 unsigned long start = madv_behavior->range.start; 1016 unsigned long end = madv_behavior->range.end; 1017 1018 mark_mmap_lock_dropped(madv_behavior); 1019 1020 if (vma->vm_flags & VM_LOCKED) 1021 return -EINVAL; 1022 1023 f = vma->vm_file; 1024 1025 if (!f || !f->f_mapping || !f->f_mapping->host) { 1026 return -EINVAL; 1027 } 1028 1029 if (!vma_is_shared_maywrite(vma)) 1030 return -EACCES; 1031 1032 offset = (loff_t)(start - vma->vm_start) 1033 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 1034 1035 /* 1036 * Filesystem's fallocate may need to take i_rwsem. We need to 1037 * explicitly grab a reference because the vma (and hence the 1038 * vma's reference to the file) can go away as soon as we drop 1039 * mmap_lock. 1040 */ 1041 get_file(f); 1042 if (userfaultfd_remove(vma, start, end)) { 1043 /* mmap_lock was not released by userfaultfd_remove() */ 1044 mmap_read_unlock(mm); 1045 } 1046 error = vfs_fallocate(f, 1047 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 1048 offset, end - start); 1049 fput(f); 1050 mmap_read_lock(mm); 1051 return error; 1052} 1053 1054static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked) 1055{ 1056 vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB; 1057 1058 /* 1059 * A user could lock after setting a guard range but that's fine, as 1060 * they'd not be able to fault in. The issue arises when we try to zap 1061 * existing locked VMAs. We don't want to do that. 1062 */ 1063 if (!allow_locked) 1064 disallowed |= VM_LOCKED; 1065 1066 return !(vma->vm_flags & disallowed); 1067} 1068 1069static bool is_guard_pte_marker(pte_t ptent) 1070{ 1071 const softleaf_t entry = softleaf_from_pte(ptent); 1072 1073 return softleaf_is_guard_marker(entry); 1074} 1075 1076static int guard_install_pud_entry(pud_t *pud, unsigned long addr, 1077 unsigned long next, struct mm_walk *walk) 1078{ 1079 pud_t pudval = pudp_get(pud); 1080 1081 /* If huge return >0 so we abort the operation + zap. */ 1082 return pud_trans_huge(pudval); 1083} 1084 1085static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr, 1086 unsigned long next, struct mm_walk *walk) 1087{ 1088 pmd_t pmdval = pmdp_get(pmd); 1089 1090 /* If huge return >0 so we abort the operation + zap. */ 1091 return pmd_trans_huge(pmdval); 1092} 1093 1094static int guard_install_pte_entry(pte_t *pte, unsigned long addr, 1095 unsigned long next, struct mm_walk *walk) 1096{ 1097 pte_t pteval = ptep_get(pte); 1098 unsigned long *nr_pages = (unsigned long *)walk->private; 1099 1100 /* If there is already a guard page marker, we have nothing to do. */ 1101 if (is_guard_pte_marker(pteval)) { 1102 (*nr_pages)++; 1103 1104 return 0; 1105 } 1106 1107 /* If populated return >0 so we abort the operation + zap. */ 1108 return 1; 1109} 1110 1111static int guard_install_set_pte(unsigned long addr, unsigned long next, 1112 pte_t *ptep, struct mm_walk *walk) 1113{ 1114 unsigned long *nr_pages = (unsigned long *)walk->private; 1115 1116 /* Simply install a PTE marker, this causes segfault on access. */ 1117 *ptep = make_pte_marker(PTE_MARKER_GUARD); 1118 (*nr_pages)++; 1119 1120 return 0; 1121} 1122 1123static long madvise_guard_install(struct madvise_behavior *madv_behavior) 1124{ 1125 struct vm_area_struct *vma = madv_behavior->vma; 1126 struct madvise_behavior_range *range = &madv_behavior->range; 1127 struct mm_walk_ops walk_ops = { 1128 .pud_entry = guard_install_pud_entry, 1129 .pmd_entry = guard_install_pmd_entry, 1130 .pte_entry = guard_install_pte_entry, 1131 .install_pte = guard_install_set_pte, 1132 .walk_lock = get_walk_lock(madv_behavior->lock_mode), 1133 }; 1134 long err; 1135 int i; 1136 1137 if (!is_valid_guard_vma(vma, /* allow_locked = */false)) 1138 return -EINVAL; 1139 1140 /* 1141 * Set atomically under read lock. All pertinent readers will need to 1142 * acquire an mmap/VMA write lock to read it. All remaining readers may 1143 * or may not see the flag set, but we don't care. 1144 */ 1145 vma_flag_set_atomic(vma, VMA_MAYBE_GUARD_BIT); 1146 1147 /* 1148 * If anonymous and we are establishing page tables the VMA ought to 1149 * have an anon_vma associated with it. 1150 * 1151 * We will hold an mmap read lock if this is necessary, this is checked 1152 * as part of the VMA lock logic. 1153 */ 1154 if (vma_is_anonymous(vma)) { 1155 VM_WARN_ON_ONCE(!vma->anon_vma && 1156 madv_behavior->lock_mode != MADVISE_MMAP_READ_LOCK); 1157 1158 err = anon_vma_prepare(vma); 1159 if (err) 1160 return err; 1161 } 1162 1163 /* 1164 * Optimistically try to install the guard marker pages first. If any 1165 * non-guard pages or THP huge pages are encountered, give up and zap 1166 * the range before trying again. 1167 * 1168 * We try a few times before giving up and releasing back to userland to 1169 * loop around, releasing locks in the process to avoid contention. 1170 * 1171 * This would only happen due to races with e.g. page faults or 1172 * khugepaged. 1173 * 1174 * In most cases we should simply install the guard markers immediately 1175 * with no zap or looping. 1176 */ 1177 for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) { 1178 unsigned long nr_pages = 0; 1179 1180 /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */ 1181 if (madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK) 1182 err = walk_page_range_vma_unsafe(madv_behavior->vma, 1183 range->start, range->end, &walk_ops, 1184 &nr_pages); 1185 else 1186 err = walk_page_range_mm_unsafe(vma->vm_mm, range->start, 1187 range->end, &walk_ops, &nr_pages); 1188 if (err < 0) 1189 return err; 1190 1191 if (err == 0) { 1192 unsigned long nr_expected_pages = 1193 PHYS_PFN(range->end - range->start); 1194 1195 VM_WARN_ON(nr_pages != nr_expected_pages); 1196 return 0; 1197 } 1198 1199 /* 1200 * OK some of the range have non-guard pages mapped, zap 1201 * them. This leaves existing guard pages in place. 1202 */ 1203 zap_page_range_single(vma, range->start, 1204 range->end - range->start, NULL); 1205 } 1206 1207 /* 1208 * We were unable to install the guard pages, return to userspace and 1209 * immediately retry, relieving lock contention. 1210 */ 1211 return restart_syscall(); 1212} 1213 1214static int guard_remove_pud_entry(pud_t *pud, unsigned long addr, 1215 unsigned long next, struct mm_walk *walk) 1216{ 1217 pud_t pudval = pudp_get(pud); 1218 1219 /* If huge, cannot have guard pages present, so no-op - skip. */ 1220 if (pud_trans_huge(pudval)) 1221 walk->action = ACTION_CONTINUE; 1222 1223 return 0; 1224} 1225 1226static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr, 1227 unsigned long next, struct mm_walk *walk) 1228{ 1229 pmd_t pmdval = pmdp_get(pmd); 1230 1231 /* If huge, cannot have guard pages present, so no-op - skip. */ 1232 if (pmd_trans_huge(pmdval)) 1233 walk->action = ACTION_CONTINUE; 1234 1235 return 0; 1236} 1237 1238static int guard_remove_pte_entry(pte_t *pte, unsigned long addr, 1239 unsigned long next, struct mm_walk *walk) 1240{ 1241 pte_t ptent = ptep_get(pte); 1242 1243 if (is_guard_pte_marker(ptent)) { 1244 /* Simply clear the PTE marker. */ 1245 pte_clear_not_present_full(walk->mm, addr, pte, false); 1246 update_mmu_cache(walk->vma, addr, pte); 1247 } 1248 1249 return 0; 1250} 1251 1252static long madvise_guard_remove(struct madvise_behavior *madv_behavior) 1253{ 1254 struct vm_area_struct *vma = madv_behavior->vma; 1255 struct madvise_behavior_range *range = &madv_behavior->range; 1256 struct mm_walk_ops wallk_ops = { 1257 .pud_entry = guard_remove_pud_entry, 1258 .pmd_entry = guard_remove_pmd_entry, 1259 .pte_entry = guard_remove_pte_entry, 1260 .walk_lock = get_walk_lock(madv_behavior->lock_mode), 1261 }; 1262 1263 /* 1264 * We're ok with removing guards in mlock()'d ranges, as this is a 1265 * non-destructive action. 1266 */ 1267 if (!is_valid_guard_vma(vma, /* allow_locked = */true)) 1268 return -EINVAL; 1269 1270 return walk_page_range_vma(vma, range->start, range->end, 1271 &wallk_ops, NULL); 1272} 1273 1274#ifdef CONFIG_64BIT 1275/* Does the madvise operation result in discarding of mapped data? */ 1276static bool is_discard(int behavior) 1277{ 1278 switch (behavior) { 1279 case MADV_FREE: 1280 case MADV_DONTNEED: 1281 case MADV_DONTNEED_LOCKED: 1282 case MADV_REMOVE: 1283 case MADV_DONTFORK: 1284 case MADV_WIPEONFORK: 1285 case MADV_GUARD_INSTALL: 1286 return true; 1287 } 1288 1289 return false; 1290} 1291 1292/* 1293 * We are restricted from madvise()'ing mseal()'d VMAs only in very particular 1294 * circumstances - discarding of data from read-only anonymous SEALED mappings. 1295 * 1296 * This is because users cannot trivally discard data from these VMAs, and may 1297 * only do so via an appropriate madvise() call. 1298 */ 1299static bool can_madvise_modify(struct madvise_behavior *madv_behavior) 1300{ 1301 struct vm_area_struct *vma = madv_behavior->vma; 1302 1303 /* If the VMA isn't sealed we're good. */ 1304 if (!vma_is_sealed(vma)) 1305 return true; 1306 1307 /* For a sealed VMA, we only care about discard operations. */ 1308 if (!is_discard(madv_behavior->behavior)) 1309 return true; 1310 1311 /* 1312 * We explicitly permit all file-backed mappings, whether MAP_SHARED or 1313 * MAP_PRIVATE. 1314 * 1315 * The latter causes some complications. Because now, one can mmap() 1316 * read/write a MAP_PRIVATE mapping, write to it, then mprotect() 1317 * read-only, mseal() and a discard will be permitted. 1318 * 1319 * However, in order to avoid issues with potential use of madvise(..., 1320 * MADV_DONTNEED) of mseal()'d .text mappings we, for the time being, 1321 * permit this. 1322 */ 1323 if (!vma_is_anonymous(vma)) 1324 return true; 1325 1326 /* If the user could write to the mapping anyway, then this is fine. */ 1327 if ((vma->vm_flags & VM_WRITE) && 1328 arch_vma_access_permitted(vma, /* write= */ true, 1329 /* execute= */ false, /* foreign= */ false)) 1330 return true; 1331 1332 /* Otherwise, we are not permitted to perform this operation. */ 1333 return false; 1334} 1335#else 1336static bool can_madvise_modify(struct madvise_behavior *madv_behavior) 1337{ 1338 return true; 1339} 1340#endif 1341 1342/* 1343 * Apply an madvise behavior to a region of a vma. madvise_update_vma 1344 * will handle splitting a vm area into separate areas, each area with its own 1345 * behavior. 1346 */ 1347static int madvise_vma_behavior(struct madvise_behavior *madv_behavior) 1348{ 1349 int behavior = madv_behavior->behavior; 1350 struct vm_area_struct *vma = madv_behavior->vma; 1351 vm_flags_t new_flags = vma->vm_flags; 1352 struct madvise_behavior_range *range = &madv_behavior->range; 1353 int error; 1354 1355 if (unlikely(!can_madvise_modify(madv_behavior))) 1356 return -EPERM; 1357 1358 switch (behavior) { 1359 case MADV_REMOVE: 1360 return madvise_remove(madv_behavior); 1361 case MADV_WILLNEED: 1362 return madvise_willneed(madv_behavior); 1363 case MADV_COLD: 1364 return madvise_cold(madv_behavior); 1365 case MADV_PAGEOUT: 1366 return madvise_pageout(madv_behavior); 1367 case MADV_FREE: 1368 case MADV_DONTNEED: 1369 case MADV_DONTNEED_LOCKED: 1370 return madvise_dontneed_free(madv_behavior); 1371 case MADV_COLLAPSE: 1372 return madvise_collapse(vma, range->start, range->end, 1373 &madv_behavior->lock_dropped); 1374 case MADV_GUARD_INSTALL: 1375 return madvise_guard_install(madv_behavior); 1376 case MADV_GUARD_REMOVE: 1377 return madvise_guard_remove(madv_behavior); 1378 1379 /* The below behaviours update VMAs via madvise_update_vma(). */ 1380 1381 case MADV_NORMAL: 1382 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 1383 break; 1384 case MADV_SEQUENTIAL: 1385 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 1386 break; 1387 case MADV_RANDOM: 1388 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 1389 break; 1390 case MADV_DONTFORK: 1391 new_flags |= VM_DONTCOPY; 1392 break; 1393 case MADV_DOFORK: 1394 if (new_flags & VM_IO) 1395 return -EINVAL; 1396 new_flags &= ~VM_DONTCOPY; 1397 break; 1398 case MADV_WIPEONFORK: 1399 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 1400 if (vma->vm_file || new_flags & VM_SHARED) 1401 return -EINVAL; 1402 new_flags |= VM_WIPEONFORK; 1403 break; 1404 case MADV_KEEPONFORK: 1405 if (new_flags & VM_DROPPABLE) 1406 return -EINVAL; 1407 new_flags &= ~VM_WIPEONFORK; 1408 break; 1409 case MADV_DONTDUMP: 1410 new_flags |= VM_DONTDUMP; 1411 break; 1412 case MADV_DODUMP: 1413 if ((!is_vm_hugetlb_page(vma) && (new_flags & VM_SPECIAL)) || 1414 (new_flags & VM_DROPPABLE)) 1415 return -EINVAL; 1416 new_flags &= ~VM_DONTDUMP; 1417 break; 1418 case MADV_MERGEABLE: 1419 case MADV_UNMERGEABLE: 1420 error = ksm_madvise(vma, range->start, range->end, 1421 behavior, &new_flags); 1422 if (error) 1423 goto out; 1424 break; 1425 case MADV_HUGEPAGE: 1426 case MADV_NOHUGEPAGE: 1427 error = hugepage_madvise(vma, &new_flags, behavior); 1428 if (error) 1429 goto out; 1430 break; 1431 case __MADV_SET_ANON_VMA_NAME: 1432 /* Only anonymous mappings can be named */ 1433 if (vma->vm_file && !vma_is_anon_shmem(vma)) 1434 return -EBADF; 1435 break; 1436 } 1437 1438 /* This is a write operation.*/ 1439 VM_WARN_ON_ONCE(madv_behavior->lock_mode != MADVISE_MMAP_WRITE_LOCK); 1440 1441 error = madvise_update_vma(new_flags, madv_behavior); 1442out: 1443 /* 1444 * madvise() returns EAGAIN if kernel resources, such as 1445 * slab, are temporarily unavailable. 1446 */ 1447 if (error == -ENOMEM) 1448 error = -EAGAIN; 1449 return error; 1450} 1451 1452#ifdef CONFIG_MEMORY_FAILURE 1453/* 1454 * Error injection support for memory error handling. 1455 */ 1456static int madvise_inject_error(struct madvise_behavior *madv_behavior) 1457{ 1458 unsigned long size; 1459 unsigned long start = madv_behavior->range.start; 1460 unsigned long end = madv_behavior->range.end; 1461 1462 if (!capable(CAP_SYS_ADMIN)) 1463 return -EPERM; 1464 1465 for (; start < end; start += size) { 1466 unsigned long pfn; 1467 struct page *page; 1468 int ret; 1469 1470 ret = get_user_pages_fast(start, 1, 0, &page); 1471 if (ret != 1) 1472 return ret; 1473 pfn = page_to_pfn(page); 1474 1475 /* 1476 * When soft offlining hugepages, after migrating the page 1477 * we dissolve it, therefore in the second loop "page" will 1478 * no longer be a compound page. 1479 */ 1480 size = page_size(compound_head(page)); 1481 1482 if (madv_behavior->behavior == MADV_SOFT_OFFLINE) { 1483 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 1484 pfn, start); 1485 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 1486 } else { 1487 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 1488 pfn, start); 1489 ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED); 1490 if (ret == -EOPNOTSUPP) 1491 ret = 0; 1492 } 1493 1494 if (ret) 1495 return ret; 1496 } 1497 1498 return 0; 1499} 1500 1501static bool is_memory_failure(struct madvise_behavior *madv_behavior) 1502{ 1503 switch (madv_behavior->behavior) { 1504 case MADV_HWPOISON: 1505 case MADV_SOFT_OFFLINE: 1506 return true; 1507 default: 1508 return false; 1509 } 1510} 1511 1512#else 1513 1514static int madvise_inject_error(struct madvise_behavior *madv_behavior) 1515{ 1516 return 0; 1517} 1518 1519static bool is_memory_failure(struct madvise_behavior *madv_behavior) 1520{ 1521 return false; 1522} 1523 1524#endif /* CONFIG_MEMORY_FAILURE */ 1525 1526static bool 1527madvise_behavior_valid(int behavior) 1528{ 1529 switch (behavior) { 1530 case MADV_DOFORK: 1531 case MADV_DONTFORK: 1532 case MADV_NORMAL: 1533 case MADV_SEQUENTIAL: 1534 case MADV_RANDOM: 1535 case MADV_REMOVE: 1536 case MADV_WILLNEED: 1537 case MADV_DONTNEED: 1538 case MADV_DONTNEED_LOCKED: 1539 case MADV_FREE: 1540 case MADV_COLD: 1541 case MADV_PAGEOUT: 1542 case MADV_POPULATE_READ: 1543 case MADV_POPULATE_WRITE: 1544#ifdef CONFIG_KSM 1545 case MADV_MERGEABLE: 1546 case MADV_UNMERGEABLE: 1547#endif 1548#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1549 case MADV_HUGEPAGE: 1550 case MADV_NOHUGEPAGE: 1551 case MADV_COLLAPSE: 1552#endif 1553 case MADV_DONTDUMP: 1554 case MADV_DODUMP: 1555 case MADV_WIPEONFORK: 1556 case MADV_KEEPONFORK: 1557 case MADV_GUARD_INSTALL: 1558 case MADV_GUARD_REMOVE: 1559#ifdef CONFIG_MEMORY_FAILURE 1560 case MADV_SOFT_OFFLINE: 1561 case MADV_HWPOISON: 1562#endif 1563 return true; 1564 1565 default: 1566 return false; 1567 } 1568} 1569 1570/* Can we invoke process_madvise() on a remote mm for the specified behavior? */ 1571static bool process_madvise_remote_valid(int behavior) 1572{ 1573 switch (behavior) { 1574 case MADV_COLD: 1575 case MADV_PAGEOUT: 1576 case MADV_WILLNEED: 1577 case MADV_COLLAPSE: 1578 return true; 1579 default: 1580 return false; 1581 } 1582} 1583 1584/* Does this operation invoke anon_vma_prepare()? */ 1585static bool prepares_anon_vma(int behavior) 1586{ 1587 switch (behavior) { 1588 case MADV_GUARD_INSTALL: 1589 return true; 1590 default: 1591 return false; 1592 } 1593} 1594 1595/* 1596 * We have acquired a VMA read lock, is the VMA valid to be madvise'd under VMA 1597 * read lock only now we have a VMA to examine? 1598 */ 1599static bool is_vma_lock_sufficient(struct vm_area_struct *vma, 1600 struct madvise_behavior *madv_behavior) 1601{ 1602 /* Must span only a single VMA.*/ 1603 if (madv_behavior->range.end > vma->vm_end) 1604 return false; 1605 /* Remote processes unsupported. */ 1606 if (current->mm != vma->vm_mm) 1607 return false; 1608 /* Userfaultfd unsupported. */ 1609 if (userfaultfd_armed(vma)) 1610 return false; 1611 /* 1612 * anon_vma_prepare() explicitly requires an mmap lock for 1613 * serialisation, so we cannot use a VMA lock in this case. 1614 * 1615 * Note we might race with anon_vma being set, however this makes this 1616 * check overly paranoid which is safe. 1617 */ 1618 if (vma_is_anonymous(vma) && 1619 prepares_anon_vma(madv_behavior->behavior) && !vma->anon_vma) 1620 return false; 1621 1622 return true; 1623} 1624 1625/* 1626 * Try to acquire a VMA read lock if possible. 1627 * 1628 * We only support this lock over a single VMA, which the input range must 1629 * span either partially or fully. 1630 * 1631 * This function always returns with an appropriate lock held. If a VMA read 1632 * lock could be acquired, we return true and set madv_behavior state 1633 * accordingly. 1634 * 1635 * If a VMA read lock could not be acquired, we return false and expect caller to 1636 * fallback to mmap lock behaviour. 1637 */ 1638static bool try_vma_read_lock(struct madvise_behavior *madv_behavior) 1639{ 1640 struct mm_struct *mm = madv_behavior->mm; 1641 struct vm_area_struct *vma; 1642 1643 vma = lock_vma_under_rcu(mm, madv_behavior->range.start); 1644 if (!vma) 1645 goto take_mmap_read_lock; 1646 1647 if (!is_vma_lock_sufficient(vma, madv_behavior)) { 1648 vma_end_read(vma); 1649 goto take_mmap_read_lock; 1650 } 1651 1652 madv_behavior->vma = vma; 1653 return true; 1654 1655take_mmap_read_lock: 1656 mmap_read_lock(mm); 1657 madv_behavior->lock_mode = MADVISE_MMAP_READ_LOCK; 1658 return false; 1659} 1660 1661/* 1662 * Walk the vmas in range [start,end), and call the madvise_vma_behavior 1663 * function on each one. The function will get start and end parameters that 1664 * cover the overlap between the current vma and the original range. Any 1665 * unmapped regions in the original range will result in this function returning 1666 * -ENOMEM while still calling the madvise_vma_behavior function on all of the 1667 * existing vmas in the range. Must be called with the mmap_lock held for 1668 * reading or writing. 1669 */ 1670static 1671int madvise_walk_vmas(struct madvise_behavior *madv_behavior) 1672{ 1673 struct mm_struct *mm = madv_behavior->mm; 1674 struct madvise_behavior_range *range = &madv_behavior->range; 1675 /* range is updated to span each VMA, so store end of entire range. */ 1676 unsigned long last_end = range->end; 1677 int unmapped_error = 0; 1678 int error; 1679 struct vm_area_struct *prev, *vma; 1680 1681 /* 1682 * If VMA read lock is supported, apply madvise to a single VMA 1683 * tentatively, avoiding walking VMAs. 1684 */ 1685 if (madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK && 1686 try_vma_read_lock(madv_behavior)) { 1687 error = madvise_vma_behavior(madv_behavior); 1688 vma_end_read(madv_behavior->vma); 1689 return error; 1690 } 1691 1692 vma = find_vma_prev(mm, range->start, &prev); 1693 if (vma && range->start > vma->vm_start) 1694 prev = vma; 1695 1696 for (;;) { 1697 /* Still start < end. */ 1698 if (!vma) 1699 return -ENOMEM; 1700 1701 /* Here start < (last_end|vma->vm_end). */ 1702 if (range->start < vma->vm_start) { 1703 /* 1704 * This indicates a gap between VMAs in the input 1705 * range. This does not cause the operation to abort, 1706 * rather we simply return -ENOMEM to indicate that this 1707 * has happened, but carry on. 1708 */ 1709 unmapped_error = -ENOMEM; 1710 range->start = vma->vm_start; 1711 if (range->start >= last_end) 1712 break; 1713 } 1714 1715 /* Here vma->vm_start <= range->start < (last_end|vma->vm_end) */ 1716 range->end = min(vma->vm_end, last_end); 1717 1718 /* Here vma->vm_start <= range->start < range->end <= (last_end|vma->vm_end). */ 1719 madv_behavior->prev = prev; 1720 madv_behavior->vma = vma; 1721 error = madvise_vma_behavior(madv_behavior); 1722 if (error) 1723 return error; 1724 if (madv_behavior->lock_dropped) { 1725 /* We dropped the mmap lock, we can't ref the VMA. */ 1726 prev = NULL; 1727 vma = NULL; 1728 madv_behavior->lock_dropped = false; 1729 } else { 1730 vma = madv_behavior->vma; 1731 prev = vma; 1732 } 1733 1734 if (vma && range->end < vma->vm_end) 1735 range->end = vma->vm_end; 1736 if (range->end >= last_end) 1737 break; 1738 1739 vma = find_vma(mm, vma ? vma->vm_end : range->end); 1740 range->start = range->end; 1741 } 1742 1743 return unmapped_error; 1744} 1745 1746/* 1747 * Any behaviour which results in changes to the vma->vm_flags needs to 1748 * take mmap_lock for writing. Others, which simply traverse vmas, need 1749 * to only take it for reading. 1750 */ 1751static enum madvise_lock_mode get_lock_mode(struct madvise_behavior *madv_behavior) 1752{ 1753 if (is_memory_failure(madv_behavior)) 1754 return MADVISE_NO_LOCK; 1755 1756 switch (madv_behavior->behavior) { 1757 case MADV_REMOVE: 1758 case MADV_WILLNEED: 1759 case MADV_COLD: 1760 case MADV_PAGEOUT: 1761 case MADV_POPULATE_READ: 1762 case MADV_POPULATE_WRITE: 1763 case MADV_COLLAPSE: 1764 return MADVISE_MMAP_READ_LOCK; 1765 case MADV_GUARD_INSTALL: 1766 case MADV_GUARD_REMOVE: 1767 case MADV_DONTNEED: 1768 case MADV_DONTNEED_LOCKED: 1769 case MADV_FREE: 1770 return MADVISE_VMA_READ_LOCK; 1771 default: 1772 return MADVISE_MMAP_WRITE_LOCK; 1773 } 1774} 1775 1776static int madvise_lock(struct madvise_behavior *madv_behavior) 1777{ 1778 struct mm_struct *mm = madv_behavior->mm; 1779 enum madvise_lock_mode lock_mode = get_lock_mode(madv_behavior); 1780 1781 switch (lock_mode) { 1782 case MADVISE_NO_LOCK: 1783 break; 1784 case MADVISE_MMAP_WRITE_LOCK: 1785 if (mmap_write_lock_killable(mm)) 1786 return -EINTR; 1787 break; 1788 case MADVISE_MMAP_READ_LOCK: 1789 mmap_read_lock(mm); 1790 break; 1791 case MADVISE_VMA_READ_LOCK: 1792 /* We will acquire the lock per-VMA in madvise_walk_vmas(). */ 1793 break; 1794 } 1795 1796 madv_behavior->lock_mode = lock_mode; 1797 return 0; 1798} 1799 1800static void madvise_unlock(struct madvise_behavior *madv_behavior) 1801{ 1802 struct mm_struct *mm = madv_behavior->mm; 1803 1804 switch (madv_behavior->lock_mode) { 1805 case MADVISE_NO_LOCK: 1806 return; 1807 case MADVISE_MMAP_WRITE_LOCK: 1808 mmap_write_unlock(mm); 1809 break; 1810 case MADVISE_MMAP_READ_LOCK: 1811 mmap_read_unlock(mm); 1812 break; 1813 case MADVISE_VMA_READ_LOCK: 1814 /* We will drop the lock per-VMA in madvise_walk_vmas(). */ 1815 break; 1816 } 1817 1818 madv_behavior->lock_mode = MADVISE_NO_LOCK; 1819} 1820 1821static bool madvise_batch_tlb_flush(int behavior) 1822{ 1823 switch (behavior) { 1824 case MADV_DONTNEED: 1825 case MADV_DONTNEED_LOCKED: 1826 case MADV_FREE: 1827 return true; 1828 default: 1829 return false; 1830 } 1831} 1832 1833static void madvise_init_tlb(struct madvise_behavior *madv_behavior) 1834{ 1835 if (madvise_batch_tlb_flush(madv_behavior->behavior)) 1836 tlb_gather_mmu(madv_behavior->tlb, madv_behavior->mm); 1837} 1838 1839static void madvise_finish_tlb(struct madvise_behavior *madv_behavior) 1840{ 1841 if (madvise_batch_tlb_flush(madv_behavior->behavior)) 1842 tlb_finish_mmu(madv_behavior->tlb); 1843} 1844 1845static bool is_valid_madvise(unsigned long start, size_t len_in, int behavior) 1846{ 1847 size_t len; 1848 1849 if (!madvise_behavior_valid(behavior)) 1850 return false; 1851 1852 if (!PAGE_ALIGNED(start)) 1853 return false; 1854 len = PAGE_ALIGN(len_in); 1855 1856 /* Check to see whether len was rounded up from small -ve to zero */ 1857 if (len_in && !len) 1858 return false; 1859 1860 if (start + len < start) 1861 return false; 1862 1863 return true; 1864} 1865 1866/* 1867 * madvise_should_skip() - Return if the request is invalid or nothing. 1868 * @start: Start address of madvise-requested address range. 1869 * @len_in: Length of madvise-requested address range. 1870 * @behavior: Requested madvise behavor. 1871 * @err: Pointer to store an error code from the check. 1872 * 1873 * If the specified behaviour is invalid or nothing would occur, we skip the 1874 * operation. This function returns true in the cases, otherwise false. In 1875 * the former case we store an error on @err. 1876 */ 1877static bool madvise_should_skip(unsigned long start, size_t len_in, 1878 int behavior, int *err) 1879{ 1880 if (!is_valid_madvise(start, len_in, behavior)) { 1881 *err = -EINVAL; 1882 return true; 1883 } 1884 if (start + PAGE_ALIGN(len_in) == start) { 1885 *err = 0; 1886 return true; 1887 } 1888 return false; 1889} 1890 1891static bool is_madvise_populate(struct madvise_behavior *madv_behavior) 1892{ 1893 switch (madv_behavior->behavior) { 1894 case MADV_POPULATE_READ: 1895 case MADV_POPULATE_WRITE: 1896 return true; 1897 default: 1898 return false; 1899 } 1900} 1901 1902/* 1903 * untagged_addr_remote() assumes mmap_lock is already held. On 1904 * architectures like x86 and RISC-V, tagging is tricky because each 1905 * mm may have a different tagging mask. However, we might only hold 1906 * the per-VMA lock (currently only local processes are supported), 1907 * so untagged_addr is used to avoid the mmap_lock assertion for 1908 * local processes. 1909 */ 1910static inline unsigned long get_untagged_addr(struct mm_struct *mm, 1911 unsigned long start) 1912{ 1913 return current->mm == mm ? untagged_addr(start) : 1914 untagged_addr_remote(mm, start); 1915} 1916 1917static int madvise_do_behavior(unsigned long start, size_t len_in, 1918 struct madvise_behavior *madv_behavior) 1919{ 1920 struct blk_plug plug; 1921 int error; 1922 struct madvise_behavior_range *range = &madv_behavior->range; 1923 1924 if (is_memory_failure(madv_behavior)) { 1925 range->start = start; 1926 range->end = start + len_in; 1927 return madvise_inject_error(madv_behavior); 1928 } 1929 1930 range->start = get_untagged_addr(madv_behavior->mm, start); 1931 range->end = range->start + PAGE_ALIGN(len_in); 1932 1933 blk_start_plug(&plug); 1934 if (is_madvise_populate(madv_behavior)) 1935 error = madvise_populate(madv_behavior); 1936 else 1937 error = madvise_walk_vmas(madv_behavior); 1938 blk_finish_plug(&plug); 1939 return error; 1940} 1941 1942/* 1943 * The madvise(2) system call. 1944 * 1945 * Applications can use madvise() to advise the kernel how it should 1946 * handle paging I/O in this VM area. The idea is to help the kernel 1947 * use appropriate read-ahead and caching techniques. The information 1948 * provided is advisory only, and can be safely disregarded by the 1949 * kernel without affecting the correct operation of the application. 1950 * 1951 * behavior values: 1952 * MADV_NORMAL - the default behavior is to read clusters. This 1953 * results in some read-ahead and read-behind. 1954 * MADV_RANDOM - the system should read the minimum amount of data 1955 * on any access, since it is unlikely that the appli- 1956 * cation will need more than what it asks for. 1957 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1958 * once, so they can be aggressively read ahead, and 1959 * can be freed soon after they are accessed. 1960 * MADV_WILLNEED - the application is notifying the system to read 1961 * some pages ahead. 1962 * MADV_DONTNEED - the application is finished with the given range, 1963 * so the kernel can free resources associated with it. 1964 * MADV_FREE - the application marks pages in the given range as lazy free, 1965 * where actual purges are postponed until memory pressure happens. 1966 * MADV_REMOVE - the application wants to free up the given range of 1967 * pages and associated backing store. 1968 * MADV_DONTFORK - omit this area from child's address space when forking: 1969 * typically, to avoid COWing pages pinned by get_user_pages(). 1970 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1971 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1972 * range after a fork. 1973 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1974 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1975 * were corrupted by unrecoverable hardware memory failure. 1976 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1977 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1978 * this area with pages of identical content from other such areas. 1979 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1980 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1981 * huge pages in the future. Existing pages might be coalesced and 1982 * new pages might be allocated as THP. 1983 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1984 * transparent huge pages so the existing pages will not be 1985 * coalesced into THP and new pages will not be allocated as THP. 1986 * MADV_COLLAPSE - synchronously coalesce pages into new THP. 1987 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1988 * from being included in its core dump. 1989 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1990 * MADV_COLD - the application is not expected to use this memory soon, 1991 * deactivate pages in this range so that they can be reclaimed 1992 * easily if memory pressure happens. 1993 * MADV_PAGEOUT - the application is not expected to use this memory soon, 1994 * page out the pages in this range immediately. 1995 * MADV_POPULATE_READ - populate (prefault) page tables readable by 1996 * triggering read faults if required 1997 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by 1998 * triggering write faults if required 1999 * 2000 * return values: 2001 * zero - success 2002 * -EINVAL - start + len < 0, start is not page-aligned, 2003 * "behavior" is not a valid value, or application 2004 * is attempting to release locked or shared pages, 2005 * or the specified address range includes file, Huge TLB, 2006 * MAP_SHARED or VMPFNMAP range. 2007 * -ENOMEM - addresses in the specified range are not currently 2008 * mapped, or are outside the AS of the process. 2009 * -EIO - an I/O error occurred while paging in data. 2010 * -EBADF - map exists, but area maps something that isn't a file. 2011 * -EAGAIN - a kernel resource was temporarily unavailable. 2012 * -EPERM - memory is sealed. 2013 */ 2014int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) 2015{ 2016 int error; 2017 struct mmu_gather tlb; 2018 struct madvise_behavior madv_behavior = { 2019 .mm = mm, 2020 .behavior = behavior, 2021 .tlb = &tlb, 2022 }; 2023 2024 if (madvise_should_skip(start, len_in, behavior, &error)) 2025 return error; 2026 error = madvise_lock(&madv_behavior); 2027 if (error) 2028 return error; 2029 madvise_init_tlb(&madv_behavior); 2030 error = madvise_do_behavior(start, len_in, &madv_behavior); 2031 madvise_finish_tlb(&madv_behavior); 2032 madvise_unlock(&madv_behavior); 2033 2034 return error; 2035} 2036 2037SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 2038{ 2039 return do_madvise(current->mm, start, len_in, behavior); 2040} 2041 2042/* Perform an madvise operation over a vector of addresses and lengths. */ 2043static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter, 2044 int behavior) 2045{ 2046 ssize_t ret = 0; 2047 size_t total_len; 2048 struct mmu_gather tlb; 2049 struct madvise_behavior madv_behavior = { 2050 .mm = mm, 2051 .behavior = behavior, 2052 .tlb = &tlb, 2053 }; 2054 2055 total_len = iov_iter_count(iter); 2056 2057 ret = madvise_lock(&madv_behavior); 2058 if (ret) 2059 return ret; 2060 madvise_init_tlb(&madv_behavior); 2061 2062 while (iov_iter_count(iter)) { 2063 unsigned long start = (unsigned long)iter_iov_addr(iter); 2064 size_t len_in = iter_iov_len(iter); 2065 int error; 2066 2067 if (madvise_should_skip(start, len_in, behavior, &error)) 2068 ret = error; 2069 else 2070 ret = madvise_do_behavior(start, len_in, &madv_behavior); 2071 /* 2072 * An madvise operation is attempting to restart the syscall, 2073 * but we cannot proceed as it would not be correct to repeat 2074 * the operation in aggregate, and would be surprising to the 2075 * user. 2076 * 2077 * We drop and reacquire locks so it is safe to just loop and 2078 * try again. We check for fatal signals in case we need exit 2079 * early anyway. 2080 */ 2081 if (ret == -ERESTARTNOINTR) { 2082 if (fatal_signal_pending(current)) { 2083 ret = -EINTR; 2084 break; 2085 } 2086 2087 /* Drop and reacquire lock to unwind race. */ 2088 madvise_finish_tlb(&madv_behavior); 2089 madvise_unlock(&madv_behavior); 2090 ret = madvise_lock(&madv_behavior); 2091 if (ret) 2092 goto out; 2093 madvise_init_tlb(&madv_behavior); 2094 continue; 2095 } 2096 if (ret < 0) 2097 break; 2098 iov_iter_advance(iter, iter_iov_len(iter)); 2099 } 2100 madvise_finish_tlb(&madv_behavior); 2101 madvise_unlock(&madv_behavior); 2102 2103out: 2104 ret = (total_len - iov_iter_count(iter)) ? : ret; 2105 2106 return ret; 2107} 2108 2109SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, 2110 size_t, vlen, int, behavior, unsigned int, flags) 2111{ 2112 ssize_t ret; 2113 struct iovec iovstack[UIO_FASTIOV]; 2114 struct iovec *iov = iovstack; 2115 struct iov_iter iter; 2116 struct task_struct *task; 2117 struct mm_struct *mm; 2118 unsigned int f_flags; 2119 2120 if (flags != 0) { 2121 ret = -EINVAL; 2122 goto out; 2123 } 2124 2125 ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); 2126 if (ret < 0) 2127 goto out; 2128 2129 task = pidfd_get_task(pidfd, &f_flags); 2130 if (IS_ERR(task)) { 2131 ret = PTR_ERR(task); 2132 goto free_iov; 2133 } 2134 2135 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ 2136 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2137 if (IS_ERR(mm)) { 2138 ret = PTR_ERR(mm); 2139 goto release_task; 2140 } 2141 2142 /* 2143 * We need only perform this check if we are attempting to manipulate a 2144 * remote process's address space. 2145 */ 2146 if (mm != current->mm && !process_madvise_remote_valid(behavior)) { 2147 ret = -EINVAL; 2148 goto release_mm; 2149 } 2150 2151 /* 2152 * Require CAP_SYS_NICE for influencing process performance. Note that 2153 * only non-destructive hints are currently supported for remote 2154 * processes. 2155 */ 2156 if (mm != current->mm && !capable(CAP_SYS_NICE)) { 2157 ret = -EPERM; 2158 goto release_mm; 2159 } 2160 2161 ret = vector_madvise(mm, &iter, behavior); 2162 2163release_mm: 2164 mmput(mm); 2165release_task: 2166 put_task_struct(task); 2167free_iov: 2168 kfree(iov); 2169out: 2170 return ret; 2171} 2172 2173#ifdef CONFIG_ANON_VMA_NAME 2174 2175#define ANON_VMA_NAME_MAX_LEN 80 2176#define ANON_VMA_NAME_INVALID_CHARS "\\`$[]" 2177 2178static inline bool is_valid_name_char(char ch) 2179{ 2180 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */ 2181 return ch > 0x1f && ch < 0x7f && 2182 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch); 2183} 2184 2185static int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 2186 unsigned long len_in, struct anon_vma_name *anon_name) 2187{ 2188 unsigned long end; 2189 unsigned long len; 2190 int error; 2191 struct madvise_behavior madv_behavior = { 2192 .mm = mm, 2193 .behavior = __MADV_SET_ANON_VMA_NAME, 2194 .anon_name = anon_name, 2195 }; 2196 2197 if (start & ~PAGE_MASK) 2198 return -EINVAL; 2199 len = (len_in + ~PAGE_MASK) & PAGE_MASK; 2200 2201 /* Check to see whether len was rounded up from small -ve to zero */ 2202 if (len_in && !len) 2203 return -EINVAL; 2204 2205 end = start + len; 2206 if (end < start) 2207 return -EINVAL; 2208 2209 if (end == start) 2210 return 0; 2211 2212 madv_behavior.range.start = start; 2213 madv_behavior.range.end = end; 2214 2215 error = madvise_lock(&madv_behavior); 2216 if (error) 2217 return error; 2218 error = madvise_walk_vmas(&madv_behavior); 2219 madvise_unlock(&madv_behavior); 2220 2221 return error; 2222} 2223 2224int set_anon_vma_name(unsigned long addr, unsigned long size, 2225 const char __user *uname) 2226{ 2227 struct anon_vma_name *anon_name = NULL; 2228 struct mm_struct *mm = current->mm; 2229 int error; 2230 2231 if (uname) { 2232 char *name, *pch; 2233 2234 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN); 2235 if (IS_ERR(name)) 2236 return PTR_ERR(name); 2237 2238 for (pch = name; *pch != '\0'; pch++) { 2239 if (!is_valid_name_char(*pch)) { 2240 kfree(name); 2241 return -EINVAL; 2242 } 2243 } 2244 /* anon_vma has its own copy */ 2245 anon_name = anon_vma_name_alloc(name); 2246 kfree(name); 2247 if (!anon_name) 2248 return -ENOMEM; 2249 } 2250 2251 error = madvise_set_anon_name(mm, addr, size, anon_name); 2252 anon_vma_name_put(anon_name); 2253 2254 return error; 2255} 2256#endif