at master 54 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7#ifndef __MM_INTERNAL_H 8#define __MM_INTERNAL_H 9 10#include <linux/fs.h> 11#include <linux/khugepaged.h> 12#include <linux/mm.h> 13#include <linux/mm_inline.h> 14#include <linux/pagemap.h> 15#include <linux/pagewalk.h> 16#include <linux/rmap.h> 17#include <linux/swap.h> 18#include <linux/leafops.h> 19#include <linux/swap_cgroup.h> 20#include <linux/tracepoint-defs.h> 21 22/* Internal core VMA manipulation functions. */ 23#include "vma.h" 24 25struct folio_batch; 26 27/* 28 * Maintains state across a page table move. The operation assumes both source 29 * and destination VMAs already exist and are specified by the user. 30 * 31 * Partial moves are permitted, but the old and new ranges must both reside 32 * within a VMA. 33 * 34 * mmap lock must be held in write and VMA write locks must be held on any VMA 35 * that is visible. 36 * 37 * Use the PAGETABLE_MOVE() macro to initialise this struct. 38 * 39 * The old_addr and new_addr fields are updated as the page table move is 40 * executed. 41 * 42 * NOTE: The page table move is affected by reading from [old_addr, old_end), 43 * and old_addr may be updated for better page table alignment, so len_in 44 * represents the length of the range being copied as specified by the user. 45 */ 46struct pagetable_move_control { 47 struct vm_area_struct *old; /* Source VMA. */ 48 struct vm_area_struct *new; /* Destination VMA. */ 49 unsigned long old_addr; /* Address from which the move begins. */ 50 unsigned long old_end; /* Exclusive address at which old range ends. */ 51 unsigned long new_addr; /* Address to move page tables to. */ 52 unsigned long len_in; /* Bytes to remap specified by user. */ 53 54 bool need_rmap_locks; /* Do rmap locks need to be taken? */ 55 bool for_stack; /* Is this an early temp stack being moved? */ 56}; 57 58#define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \ 59 struct pagetable_move_control name = { \ 60 .old = old_, \ 61 .new = new_, \ 62 .old_addr = old_addr_, \ 63 .old_end = (old_addr_) + (len_), \ 64 .new_addr = new_addr_, \ 65 .len_in = len_, \ 66 } 67 68/* 69 * The set of flags that only affect watermark checking and reclaim 70 * behaviour. This is used by the MM to obey the caller constraints 71 * about IO, FS and watermark checking while ignoring placement 72 * hints such as HIGHMEM usage. 73 */ 74#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 75 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 76 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 77 __GFP_NOLOCKDEP) 78 79/* The GFP flags allowed during early boot */ 80#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 81 82/* Control allocation cpuset and node placement constraints */ 83#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 84 85/* Do not use these with a slab allocator */ 86#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 87 88/* 89 * Different from WARN_ON_ONCE(), no warning will be issued 90 * when we specify __GFP_NOWARN. 91 */ 92#define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 93 static bool __section(".data..once") __warned; \ 94 int __ret_warn_once = !!(cond); \ 95 \ 96 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 97 __warned = true; \ 98 WARN_ON(1); \ 99 } \ 100 unlikely(__ret_warn_once); \ 101}) 102 103void page_writeback_init(void); 104 105/* 106 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, 107 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit 108 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 109 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. 110 */ 111#define ENTIRELY_MAPPED 0x800000 112#define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1) 113 114/* 115 * Flags passed to __show_mem() and show_free_areas() to suppress output in 116 * various contexts. 117 */ 118#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 119 120/* 121 * How many individual pages have an elevated _mapcount. Excludes 122 * the folio's entire_mapcount. 123 * 124 * Don't use this function outside of debugging code. 125 */ 126static inline int folio_nr_pages_mapped(const struct folio *folio) 127{ 128 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) 129 return -1; 130 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; 131} 132 133/* 134 * Retrieve the first entry of a folio based on a provided entry within the 135 * folio. We cannot rely on folio->swap as there is no guarantee that it has 136 * been initialized. Used for calling arch_swap_restore() 137 */ 138static inline swp_entry_t folio_swap(swp_entry_t entry, 139 const struct folio *folio) 140{ 141 swp_entry_t swap = { 142 .val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)), 143 }; 144 145 return swap; 146} 147 148static inline void *folio_raw_mapping(const struct folio *folio) 149{ 150 unsigned long mapping = (unsigned long)folio->mapping; 151 152 return (void *)(mapping & ~FOLIO_MAPPING_FLAGS); 153} 154 155/* 156 * This is a file-backed mapping, and is about to be memory mapped - invoke its 157 * mmap hook and safely handle error conditions. On error, VMA hooks will be 158 * mutated. 159 * 160 * @file: File which backs the mapping. 161 * @vma: VMA which we are mapping. 162 * 163 * Returns: 0 if success, error otherwise. 164 */ 165static inline int mmap_file(struct file *file, struct vm_area_struct *vma) 166{ 167 int err = vfs_mmap(file, vma); 168 169 if (likely(!err)) 170 return 0; 171 172 /* 173 * OK, we tried to call the file hook for mmap(), but an error 174 * arose. The mapping is in an inconsistent state and we most not invoke 175 * any further hooks on it. 176 */ 177 vma->vm_ops = &vma_dummy_vm_ops; 178 179 return err; 180} 181 182/* 183 * If the VMA has a close hook then close it, and since closing it might leave 184 * it in an inconsistent state which makes the use of any hooks suspect, clear 185 * them down by installing dummy empty hooks. 186 */ 187static inline void vma_close(struct vm_area_struct *vma) 188{ 189 if (vma->vm_ops && vma->vm_ops->close) { 190 vma->vm_ops->close(vma); 191 192 /* 193 * The mapping is in an inconsistent state, and no further hooks 194 * may be invoked upon it. 195 */ 196 vma->vm_ops = &vma_dummy_vm_ops; 197 } 198} 199 200#ifdef CONFIG_MMU 201 202/* Flags for folio_pte_batch(). */ 203typedef int __bitwise fpb_t; 204 205/* Compare PTEs respecting the dirty bit. */ 206#define FPB_RESPECT_DIRTY ((__force fpb_t)BIT(0)) 207 208/* Compare PTEs respecting the soft-dirty bit. */ 209#define FPB_RESPECT_SOFT_DIRTY ((__force fpb_t)BIT(1)) 210 211/* Compare PTEs respecting the writable bit. */ 212#define FPB_RESPECT_WRITE ((__force fpb_t)BIT(2)) 213 214/* 215 * Merge PTE write bits: if any PTE in the batch is writable, modify the 216 * PTE at @ptentp to be writable. 217 */ 218#define FPB_MERGE_WRITE ((__force fpb_t)BIT(3)) 219 220/* 221 * Merge PTE young and dirty bits: if any PTE in the batch is young or dirty, 222 * modify the PTE at @ptentp to be young or dirty, respectively. 223 */ 224#define FPB_MERGE_YOUNG_DIRTY ((__force fpb_t)BIT(4)) 225 226static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags) 227{ 228 if (!(flags & FPB_RESPECT_DIRTY)) 229 pte = pte_mkclean(pte); 230 if (likely(!(flags & FPB_RESPECT_SOFT_DIRTY))) 231 pte = pte_clear_soft_dirty(pte); 232 if (likely(!(flags & FPB_RESPECT_WRITE))) 233 pte = pte_wrprotect(pte); 234 return pte_mkold(pte); 235} 236 237/** 238 * folio_pte_batch_flags - detect a PTE batch for a large folio 239 * @folio: The large folio to detect a PTE batch for. 240 * @vma: The VMA. Only relevant with FPB_MERGE_WRITE, otherwise can be NULL. 241 * @ptep: Page table pointer for the first entry. 242 * @ptentp: Pointer to a COPY of the first page table entry whose flags this 243 * function updates based on @flags if appropriate. 244 * @max_nr: The maximum number of table entries to consider. 245 * @flags: Flags to modify the PTE batch semantics. 246 * 247 * Detect a PTE batch: consecutive (present) PTEs that map consecutive 248 * pages of the same large folio in a single VMA and a single page table. 249 * 250 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN, 251 * the accessed bit, writable bit, dirty bit (unless FPB_RESPECT_DIRTY is set) 252 * and soft-dirty bit (unless FPB_RESPECT_SOFT_DIRTY is set). 253 * 254 * @ptep must map any page of the folio. max_nr must be at least one and 255 * must be limited by the caller so scanning cannot exceed a single VMA and 256 * a single page table. 257 * 258 * Depending on the FPB_MERGE_* flags, the pte stored at @ptentp will 259 * be updated: it's crucial that a pointer to a COPY of the first 260 * page table entry, obtained through ptep_get(), is provided as @ptentp. 261 * 262 * This function will be inlined to optimize based on the input parameters; 263 * consider using folio_pte_batch() instead if applicable. 264 * 265 * Return: the number of table entries in the batch. 266 */ 267static inline unsigned int folio_pte_batch_flags(struct folio *folio, 268 struct vm_area_struct *vma, pte_t *ptep, pte_t *ptentp, 269 unsigned int max_nr, fpb_t flags) 270{ 271 bool any_writable = false, any_young = false, any_dirty = false; 272 pte_t expected_pte, pte = *ptentp; 273 unsigned int nr, cur_nr; 274 275 VM_WARN_ON_FOLIO(!pte_present(pte), folio); 276 VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio); 277 VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio); 278 /* 279 * Ensure this is a pointer to a copy not a pointer into a page table. 280 * If this is a stack value, it won't be a valid virtual address, but 281 * that's fine because it also cannot be pointing into the page table. 282 */ 283 VM_WARN_ON(virt_addr_valid(ptentp) && PageTable(virt_to_page(ptentp))); 284 285 /* Limit max_nr to the actual remaining PFNs in the folio we could batch. */ 286 max_nr = min_t(unsigned long, max_nr, 287 folio_pfn(folio) + folio_nr_pages(folio) - pte_pfn(pte)); 288 289 nr = pte_batch_hint(ptep, pte); 290 expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags); 291 ptep = ptep + nr; 292 293 while (nr < max_nr) { 294 pte = ptep_get(ptep); 295 296 if (!pte_same(__pte_batch_clear_ignored(pte, flags), expected_pte)) 297 break; 298 299 if (flags & FPB_MERGE_WRITE) 300 any_writable |= pte_write(pte); 301 if (flags & FPB_MERGE_YOUNG_DIRTY) { 302 any_young |= pte_young(pte); 303 any_dirty |= pte_dirty(pte); 304 } 305 306 cur_nr = pte_batch_hint(ptep, pte); 307 expected_pte = pte_advance_pfn(expected_pte, cur_nr); 308 ptep += cur_nr; 309 nr += cur_nr; 310 } 311 312 if (any_writable) 313 *ptentp = pte_mkwrite(*ptentp, vma); 314 if (any_young) 315 *ptentp = pte_mkyoung(*ptentp); 316 if (any_dirty) 317 *ptentp = pte_mkdirty(*ptentp); 318 319 return min(nr, max_nr); 320} 321 322unsigned int folio_pte_batch(struct folio *folio, pte_t *ptep, pte_t pte, 323 unsigned int max_nr); 324 325/** 326 * pte_move_swp_offset - Move the swap entry offset field of a swap pte 327 * forward or backward by delta 328 * @pte: The initial pte state; must be a swap entry 329 * @delta: The direction and the offset we are moving; forward if delta 330 * is positive; backward if delta is negative 331 * 332 * Moves the swap offset, while maintaining all other fields, including 333 * swap type, and any swp pte bits. The resulting pte is returned. 334 */ 335static inline pte_t pte_move_swp_offset(pte_t pte, long delta) 336{ 337 const softleaf_t entry = softleaf_from_pte(pte); 338 pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry), 339 (swp_offset(entry) + delta))); 340 341 if (pte_swp_soft_dirty(pte)) 342 new = pte_swp_mksoft_dirty(new); 343 if (pte_swp_exclusive(pte)) 344 new = pte_swp_mkexclusive(new); 345 if (pte_swp_uffd_wp(pte)) 346 new = pte_swp_mkuffd_wp(new); 347 348 return new; 349} 350 351 352/** 353 * pte_next_swp_offset - Increment the swap entry offset field of a swap pte. 354 * @pte: The initial pte state; must be a swap entry. 355 * 356 * Increments the swap offset, while maintaining all other fields, including 357 * swap type, and any swp pte bits. The resulting pte is returned. 358 */ 359static inline pte_t pte_next_swp_offset(pte_t pte) 360{ 361 return pte_move_swp_offset(pte, 1); 362} 363 364/** 365 * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries 366 * @start_ptep: Page table pointer for the first entry. 367 * @max_nr: The maximum number of table entries to consider. 368 * @pte: Page table entry for the first entry. 369 * 370 * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs 371 * containing swap entries all with consecutive offsets and targeting the same 372 * swap type, all with matching swp pte bits. 373 * 374 * max_nr must be at least one and must be limited by the caller so scanning 375 * cannot exceed a single page table. 376 * 377 * Return: the number of table entries in the batch. 378 */ 379static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte) 380{ 381 pte_t expected_pte = pte_next_swp_offset(pte); 382 const pte_t *end_ptep = start_ptep + max_nr; 383 const softleaf_t entry = softleaf_from_pte(pte); 384 pte_t *ptep = start_ptep + 1; 385 unsigned short cgroup_id; 386 387 VM_WARN_ON(max_nr < 1); 388 VM_WARN_ON(!softleaf_is_swap(entry)); 389 390 cgroup_id = lookup_swap_cgroup_id(entry); 391 while (ptep < end_ptep) { 392 softleaf_t entry; 393 394 pte = ptep_get(ptep); 395 396 if (!pte_same(pte, expected_pte)) 397 break; 398 entry = softleaf_from_pte(pte); 399 if (lookup_swap_cgroup_id(entry) != cgroup_id) 400 break; 401 expected_pte = pte_next_swp_offset(expected_pte); 402 ptep++; 403 } 404 405 return ptep - start_ptep; 406} 407#endif /* CONFIG_MMU */ 408 409void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 410 int nr_throttled); 411static inline void acct_reclaim_writeback(struct folio *folio) 412{ 413 pg_data_t *pgdat = folio_pgdat(folio); 414 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 415 416 if (nr_throttled) 417 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 418} 419 420static inline void wake_throttle_isolated(pg_data_t *pgdat) 421{ 422 wait_queue_head_t *wqh; 423 424 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 425 if (waitqueue_active(wqh)) 426 wake_up(wqh); 427} 428 429vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf); 430static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) 431{ 432 vm_fault_t ret = __vmf_anon_prepare(vmf); 433 434 if (unlikely(ret & VM_FAULT_RETRY)) 435 vma_end_read(vmf->vma); 436 return ret; 437} 438 439vm_fault_t do_swap_page(struct vm_fault *vmf); 440void folio_rotate_reclaimable(struct folio *folio); 441bool __folio_end_writeback(struct folio *folio); 442void deactivate_file_folio(struct folio *folio); 443void folio_activate(struct folio *folio); 444 445void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 446 struct vm_area_struct *start_vma, unsigned long floor, 447 unsigned long ceiling, bool mm_wr_locked); 448void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 449 450struct zap_details; 451void unmap_page_range(struct mmu_gather *tlb, 452 struct vm_area_struct *vma, 453 unsigned long addr, unsigned long end, 454 struct zap_details *details); 455void zap_page_range_single_batched(struct mmu_gather *tlb, 456 struct vm_area_struct *vma, unsigned long addr, 457 unsigned long size, struct zap_details *details); 458int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio, 459 gfp_t gfp); 460 461void page_cache_ra_order(struct readahead_control *, struct file_ra_state *); 462void force_page_cache_ra(struct readahead_control *, unsigned long nr); 463static inline void force_page_cache_readahead(struct address_space *mapping, 464 struct file *file, pgoff_t index, unsigned long nr_to_read) 465{ 466 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 467 force_page_cache_ra(&ractl, nr_to_read); 468} 469 470unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 471 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 472unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 473 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 474void filemap_free_folio(struct address_space *mapping, struct folio *folio); 475int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 476bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 477 loff_t end); 478long mapping_evict_folio(struct address_space *mapping, struct folio *folio); 479unsigned long mapping_try_invalidate(struct address_space *mapping, 480 pgoff_t start, pgoff_t end, unsigned long *nr_failed); 481 482/** 483 * folio_evictable - Test whether a folio is evictable. 484 * @folio: The folio to test. 485 * 486 * Test whether @folio is evictable -- i.e., should be placed on 487 * active/inactive lists vs unevictable list. 488 * 489 * Reasons folio might not be evictable: 490 * 1. folio's mapping marked unevictable 491 * 2. One of the pages in the folio is part of an mlocked VMA 492 */ 493static inline bool folio_evictable(struct folio *folio) 494{ 495 bool ret; 496 497 /* Prevent address_space of inode and swap cache from being freed */ 498 rcu_read_lock(); 499 ret = !mapping_unevictable(folio_mapping(folio)) && 500 !folio_test_mlocked(folio); 501 rcu_read_unlock(); 502 return ret; 503} 504 505/* 506 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 507 * a count of one. 508 */ 509static inline void set_page_refcounted(struct page *page) 510{ 511 VM_BUG_ON_PAGE(PageTail(page), page); 512 VM_BUG_ON_PAGE(page_ref_count(page), page); 513 set_page_count(page, 1); 514} 515 516/* 517 * Return true if a folio needs ->release_folio() calling upon it. 518 */ 519static inline bool folio_needs_release(struct folio *folio) 520{ 521 struct address_space *mapping = folio_mapping(folio); 522 523 return folio_has_private(folio) || 524 (mapping && mapping_release_always(mapping)); 525} 526 527extern unsigned long highest_memmap_pfn; 528 529/* 530 * Maximum number of reclaim retries without progress before the OOM 531 * killer is consider the only way forward. 532 */ 533#define MAX_RECLAIM_RETRIES 16 534 535/* 536 * in mm/vmscan.c: 537 */ 538bool folio_isolate_lru(struct folio *folio); 539void folio_putback_lru(struct folio *folio); 540extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 541#ifdef CONFIG_NUMA 542int user_proactive_reclaim(char *buf, 543 struct mem_cgroup *memcg, pg_data_t *pgdat); 544#else 545static inline int user_proactive_reclaim(char *buf, 546 struct mem_cgroup *memcg, pg_data_t *pgdat) 547{ 548 return 0; 549} 550#endif 551 552/* 553 * in mm/rmap.c: 554 */ 555pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 556 557/* 558 * in mm/page_alloc.c 559 */ 560#define K(x) ((x) << (PAGE_SHIFT-10)) 561 562extern char * const zone_names[MAX_NR_ZONES]; 563 564/* perform sanity checks on struct pages being allocated or freed */ 565DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 566 567extern int min_free_kbytes; 568extern int defrag_mode; 569 570void setup_per_zone_wmarks(void); 571void calculate_min_free_kbytes(void); 572int __meminit init_per_zone_wmark_min(void); 573void page_alloc_sysctl_init(void); 574 575/* 576 * Structure for holding the mostly immutable allocation parameters passed 577 * between functions involved in allocations, including the alloc_pages* 578 * family of functions. 579 * 580 * nodemask, migratetype and highest_zoneidx are initialized only once in 581 * __alloc_pages() and then never change. 582 * 583 * zonelist, preferred_zone and highest_zoneidx are set first in 584 * __alloc_pages() for the fast path, and might be later changed 585 * in __alloc_pages_slowpath(). All other functions pass the whole structure 586 * by a const pointer. 587 */ 588struct alloc_context { 589 struct zonelist *zonelist; 590 nodemask_t *nodemask; 591 struct zoneref *preferred_zoneref; 592 int migratetype; 593 594 /* 595 * highest_zoneidx represents highest usable zone index of 596 * the allocation request. Due to the nature of the zone, 597 * memory on lower zone than the highest_zoneidx will be 598 * protected by lowmem_reserve[highest_zoneidx]. 599 * 600 * highest_zoneidx is also used by reclaim/compaction to limit 601 * the target zone since higher zone than this index cannot be 602 * usable for this allocation request. 603 */ 604 enum zone_type highest_zoneidx; 605 bool spread_dirty_pages; 606}; 607 608/* 609 * This function returns the order of a free page in the buddy system. In 610 * general, page_zone(page)->lock must be held by the caller to prevent the 611 * page from being allocated in parallel and returning garbage as the order. 612 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 613 * page cannot be allocated or merged in parallel. Alternatively, it must 614 * handle invalid values gracefully, and use buddy_order_unsafe() below. 615 */ 616static inline unsigned int buddy_order(struct page *page) 617{ 618 /* PageBuddy() must be checked by the caller */ 619 return page_private(page); 620} 621 622/* 623 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 624 * PageBuddy() should be checked first by the caller to minimize race window, 625 * and invalid values must be handled gracefully. 626 * 627 * READ_ONCE is used so that if the caller assigns the result into a local 628 * variable and e.g. tests it for valid range before using, the compiler cannot 629 * decide to remove the variable and inline the page_private(page) multiple 630 * times, potentially observing different values in the tests and the actual 631 * use of the result. 632 */ 633#define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 634 635/* 636 * This function checks whether a page is free && is the buddy 637 * we can coalesce a page and its buddy if 638 * (a) the buddy is not in a hole (check before calling!) && 639 * (b) the buddy is in the buddy system && 640 * (c) a page and its buddy have the same order && 641 * (d) a page and its buddy are in the same zone. 642 * 643 * For recording whether a page is in the buddy system, we set PageBuddy. 644 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 645 * 646 * For recording page's order, we use page_private(page). 647 */ 648static inline bool page_is_buddy(struct page *page, struct page *buddy, 649 unsigned int order) 650{ 651 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 652 return false; 653 654 if (buddy_order(buddy) != order) 655 return false; 656 657 /* 658 * zone check is done late to avoid uselessly calculating 659 * zone/node ids for pages that could never merge. 660 */ 661 if (page_zone_id(page) != page_zone_id(buddy)) 662 return false; 663 664 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 665 666 return true; 667} 668 669/* 670 * Locate the struct page for both the matching buddy in our 671 * pair (buddy1) and the combined O(n+1) page they form (page). 672 * 673 * 1) Any buddy B1 will have an order O twin B2 which satisfies 674 * the following equation: 675 * B2 = B1 ^ (1 << O) 676 * For example, if the starting buddy (buddy2) is #8 its order 677 * 1 buddy is #10: 678 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 679 * 680 * 2) Any buddy B will have an order O+1 parent P which 681 * satisfies the following equation: 682 * P = B & ~(1 << O) 683 * 684 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER 685 */ 686static inline unsigned long 687__find_buddy_pfn(unsigned long page_pfn, unsigned int order) 688{ 689 return page_pfn ^ (1 << order); 690} 691 692/* 693 * Find the buddy of @page and validate it. 694 * @page: The input page 695 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 696 * function is used in the performance-critical __free_one_page(). 697 * @order: The order of the page 698 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 699 * page_to_pfn(). 700 * 701 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 702 * not the same as @page. The validation is necessary before use it. 703 * 704 * Return: the found buddy page or NULL if not found. 705 */ 706static inline struct page *find_buddy_page_pfn(struct page *page, 707 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 708{ 709 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 710 struct page *buddy; 711 712 buddy = page + (__buddy_pfn - pfn); 713 if (buddy_pfn) 714 *buddy_pfn = __buddy_pfn; 715 716 if (page_is_buddy(page, buddy, order)) 717 return buddy; 718 return NULL; 719} 720 721extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 722 unsigned long end_pfn, struct zone *zone); 723 724static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 725 unsigned long end_pfn, struct zone *zone) 726{ 727 if (zone->contiguous) 728 return pfn_to_page(start_pfn); 729 730 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 731} 732 733void set_zone_contiguous(struct zone *zone); 734bool pfn_range_intersects_zones(int nid, unsigned long start_pfn, 735 unsigned long nr_pages); 736 737static inline void clear_zone_contiguous(struct zone *zone) 738{ 739 zone->contiguous = false; 740} 741 742extern int __isolate_free_page(struct page *page, unsigned int order); 743extern void __putback_isolated_page(struct page *page, unsigned int order, 744 int mt); 745extern void memblock_free_pages(struct page *page, unsigned long pfn, 746 unsigned int order); 747extern void __free_pages_core(struct page *page, unsigned int order, 748 enum meminit_context context); 749 750/* 751 * This will have no effect, other than possibly generating a warning, if the 752 * caller passes in a non-large folio. 753 */ 754static inline void folio_set_order(struct folio *folio, unsigned int order) 755{ 756 if (WARN_ON_ONCE(!order || !folio_test_large(folio))) 757 return; 758 VM_WARN_ON_ONCE(order > MAX_FOLIO_ORDER); 759 760 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order; 761#ifdef NR_PAGES_IN_LARGE_FOLIO 762 folio->_nr_pages = 1U << order; 763#endif 764} 765 766bool __folio_unqueue_deferred_split(struct folio *folio); 767static inline bool folio_unqueue_deferred_split(struct folio *folio) 768{ 769 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio)) 770 return false; 771 772 /* 773 * At this point, there is no one trying to add the folio to 774 * deferred_list. If folio is not in deferred_list, it's safe 775 * to check without acquiring the split_queue_lock. 776 */ 777 if (data_race(list_empty(&folio->_deferred_list))) 778 return false; 779 780 return __folio_unqueue_deferred_split(folio); 781} 782 783static inline struct folio *page_rmappable_folio(struct page *page) 784{ 785 struct folio *folio = (struct folio *)page; 786 787 if (folio && folio_test_large(folio)) 788 folio_set_large_rmappable(folio); 789 return folio; 790} 791 792static inline void prep_compound_head(struct page *page, unsigned int order) 793{ 794 struct folio *folio = (struct folio *)page; 795 796 folio_set_order(folio, order); 797 atomic_set(&folio->_large_mapcount, -1); 798 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 799 atomic_set(&folio->_nr_pages_mapped, 0); 800 if (IS_ENABLED(CONFIG_MM_ID)) { 801 folio->_mm_ids = 0; 802 folio->_mm_id_mapcount[0] = -1; 803 folio->_mm_id_mapcount[1] = -1; 804 } 805 if (IS_ENABLED(CONFIG_64BIT) || order > 1) { 806 atomic_set(&folio->_pincount, 0); 807 atomic_set(&folio->_entire_mapcount, -1); 808 } 809 if (order > 1) 810 INIT_LIST_HEAD(&folio->_deferred_list); 811} 812 813static inline void prep_compound_tail(struct page *head, int tail_idx) 814{ 815 struct page *p = head + tail_idx; 816 817 p->mapping = TAIL_MAPPING; 818 set_compound_head(p, head); 819 set_page_private(p, 0); 820} 821 822void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags); 823extern bool free_pages_prepare(struct page *page, unsigned int order); 824 825extern int user_min_free_kbytes; 826 827struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid, 828 nodemask_t *); 829#define __alloc_frozen_pages(...) \ 830 alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__)) 831void free_frozen_pages(struct page *page, unsigned int order); 832void free_unref_folios(struct folio_batch *fbatch); 833 834#ifdef CONFIG_NUMA 835struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order); 836#else 837static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order) 838{ 839 return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL); 840} 841#endif 842 843#define alloc_frozen_pages(...) \ 844 alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__)) 845 846struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order); 847#define alloc_frozen_pages_nolock(...) \ 848 alloc_hooks(alloc_frozen_pages_nolock_noprof(__VA_ARGS__)) 849 850extern void zone_pcp_reset(struct zone *zone); 851extern void zone_pcp_disable(struct zone *zone); 852extern void zone_pcp_enable(struct zone *zone); 853extern void zone_pcp_init(struct zone *zone); 854 855extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 856 phys_addr_t min_addr, 857 int nid, bool exact_nid); 858 859void memmap_init_range(unsigned long, int, unsigned long, unsigned long, 860 unsigned long, enum meminit_context, struct vmem_altmap *, int, 861 bool); 862 863#if defined CONFIG_COMPACTION || defined CONFIG_CMA 864 865/* 866 * in mm/compaction.c 867 */ 868/* 869 * compact_control is used to track pages being migrated and the free pages 870 * they are being migrated to during memory compaction. The free_pfn starts 871 * at the end of a zone and migrate_pfn begins at the start. Movable pages 872 * are moved to the end of a zone during a compaction run and the run 873 * completes when free_pfn <= migrate_pfn 874 */ 875struct compact_control { 876 struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */ 877 struct list_head migratepages; /* List of pages being migrated */ 878 unsigned int nr_freepages; /* Number of isolated free pages */ 879 unsigned int nr_migratepages; /* Number of pages to migrate */ 880 unsigned long free_pfn; /* isolate_freepages search base */ 881 /* 882 * Acts as an in/out parameter to page isolation for migration. 883 * isolate_migratepages uses it as a search base. 884 * isolate_migratepages_block will update the value to the next pfn 885 * after the last isolated one. 886 */ 887 unsigned long migrate_pfn; 888 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 889 struct zone *zone; 890 unsigned long total_migrate_scanned; 891 unsigned long total_free_scanned; 892 unsigned short fast_search_fail;/* failures to use free list searches */ 893 short search_order; /* order to start a fast search at */ 894 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 895 int order; /* order a direct compactor needs */ 896 int migratetype; /* migratetype of direct compactor */ 897 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 898 const int highest_zoneidx; /* zone index of a direct compactor */ 899 enum migrate_mode mode; /* Async or sync migration mode */ 900 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 901 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 902 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 903 bool direct_compaction; /* False from kcompactd or /proc/... */ 904 bool proactive_compaction; /* kcompactd proactive compaction */ 905 bool whole_zone; /* Whole zone should/has been scanned */ 906 bool contended; /* Signal lock contention */ 907 bool finish_pageblock; /* Scan the remainder of a pageblock. Used 908 * when there are potentially transient 909 * isolation or migration failures to 910 * ensure forward progress. 911 */ 912 bool alloc_contig; /* alloc_contig_range allocation */ 913}; 914 915/* 916 * Used in direct compaction when a page should be taken from the freelists 917 * immediately when one is created during the free path. 918 */ 919struct capture_control { 920 struct compact_control *cc; 921 struct page *page; 922}; 923 924unsigned long 925isolate_freepages_range(struct compact_control *cc, 926 unsigned long start_pfn, unsigned long end_pfn); 927int 928isolate_migratepages_range(struct compact_control *cc, 929 unsigned long low_pfn, unsigned long end_pfn); 930 931/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 932void init_cma_reserved_pageblock(struct page *page); 933 934#endif /* CONFIG_COMPACTION || CONFIG_CMA */ 935 936struct cma; 937 938#ifdef CONFIG_CMA 939void *cma_reserve_early(struct cma *cma, unsigned long size); 940void init_cma_pageblock(struct page *page); 941#else 942static inline void *cma_reserve_early(struct cma *cma, unsigned long size) 943{ 944 return NULL; 945} 946static inline void init_cma_pageblock(struct page *page) 947{ 948} 949#endif 950 951 952int find_suitable_fallback(struct free_area *area, unsigned int order, 953 int migratetype, bool claimable); 954 955static inline bool free_area_empty(struct free_area *area, int migratetype) 956{ 957 return list_empty(&area->free_list[migratetype]); 958} 959 960/* mm/util.c */ 961struct anon_vma *folio_anon_vma(const struct folio *folio); 962 963#ifdef CONFIG_MMU 964void unmap_mapping_folio(struct folio *folio); 965extern long populate_vma_page_range(struct vm_area_struct *vma, 966 unsigned long start, unsigned long end, int *locked); 967extern long faultin_page_range(struct mm_struct *mm, unsigned long start, 968 unsigned long end, bool write, int *locked); 969bool mlock_future_ok(const struct mm_struct *mm, vm_flags_t vm_flags, 970 unsigned long bytes); 971 972/* 973 * NOTE: This function can't tell whether the folio is "fully mapped" in the 974 * range. 975 * "fully mapped" means all the pages of folio is associated with the page 976 * table of range while this function just check whether the folio range is 977 * within the range [start, end). Function caller needs to do page table 978 * check if it cares about the page table association. 979 * 980 * Typical usage (like mlock or madvise) is: 981 * Caller knows at least 1 page of folio is associated with page table of VMA 982 * and the range [start, end) is intersect with the VMA range. Caller wants 983 * to know whether the folio is fully associated with the range. It calls 984 * this function to check whether the folio is in the range first. Then checks 985 * the page table to know whether the folio is fully mapped to the range. 986 */ 987static inline bool 988folio_within_range(struct folio *folio, struct vm_area_struct *vma, 989 unsigned long start, unsigned long end) 990{ 991 pgoff_t pgoff, addr; 992 unsigned long vma_pglen = vma_pages(vma); 993 994 VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio); 995 if (start > end) 996 return false; 997 998 if (start < vma->vm_start) 999 start = vma->vm_start; 1000 1001 if (end > vma->vm_end) 1002 end = vma->vm_end; 1003 1004 pgoff = folio_pgoff(folio); 1005 1006 /* if folio start address is not in vma range */ 1007 if (!in_range(pgoff, vma->vm_pgoff, vma_pglen)) 1008 return false; 1009 1010 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1011 1012 return !(addr < start || end - addr < folio_size(folio)); 1013} 1014 1015static inline bool 1016folio_within_vma(struct folio *folio, struct vm_area_struct *vma) 1017{ 1018 return folio_within_range(folio, vma, vma->vm_start, vma->vm_end); 1019} 1020 1021/* 1022 * mlock_vma_folio() and munlock_vma_folio(): 1023 * should be called with vma's mmap_lock held for read or write, 1024 * under page table lock for the pte/pmd being added or removed. 1025 * 1026 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at 1027 * the end of folio_remove_rmap_*(); but new anon folios are managed by 1028 * folio_add_lru_vma() calling mlock_new_folio(). 1029 */ 1030void mlock_folio(struct folio *folio); 1031static inline void mlock_vma_folio(struct folio *folio, 1032 struct vm_area_struct *vma) 1033{ 1034 /* 1035 * The VM_SPECIAL check here serves two purposes. 1036 * 1) VM_IO check prevents migration from double-counting during mlock. 1037 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 1038 * is never left set on a VM_SPECIAL vma, there is an interval while 1039 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 1040 * still be set while VM_SPECIAL bits are added: so ignore it then. 1041 */ 1042 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED)) 1043 mlock_folio(folio); 1044} 1045 1046void munlock_folio(struct folio *folio); 1047static inline void munlock_vma_folio(struct folio *folio, 1048 struct vm_area_struct *vma) 1049{ 1050 /* 1051 * munlock if the function is called. Ideally, we should only 1052 * do munlock if any page of folio is unmapped from VMA and 1053 * cause folio not fully mapped to VMA. 1054 * 1055 * But it's not easy to confirm that's the situation. So we 1056 * always munlock the folio and page reclaim will correct it 1057 * if it's wrong. 1058 */ 1059 if (unlikely(vma->vm_flags & VM_LOCKED)) 1060 munlock_folio(folio); 1061} 1062 1063void mlock_new_folio(struct folio *folio); 1064bool need_mlock_drain(int cpu); 1065void mlock_drain_local(void); 1066void mlock_drain_remote(int cpu); 1067 1068extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 1069 1070/** 1071 * vma_address - Find the virtual address a page range is mapped at 1072 * @vma: The vma which maps this object. 1073 * @pgoff: The page offset within its object. 1074 * @nr_pages: The number of pages to consider. 1075 * 1076 * If any page in this range is mapped by this VMA, return the first address 1077 * where any of these pages appear. Otherwise, return -EFAULT. 1078 */ 1079static inline unsigned long vma_address(const struct vm_area_struct *vma, 1080 pgoff_t pgoff, unsigned long nr_pages) 1081{ 1082 unsigned long address; 1083 1084 if (pgoff >= vma->vm_pgoff) { 1085 address = vma->vm_start + 1086 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1087 /* Check for address beyond vma (or wrapped through 0?) */ 1088 if (address < vma->vm_start || address >= vma->vm_end) 1089 address = -EFAULT; 1090 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 1091 /* Test above avoids possibility of wrap to 0 on 32-bit */ 1092 address = vma->vm_start; 1093 } else { 1094 address = -EFAULT; 1095 } 1096 return address; 1097} 1098 1099/* 1100 * Then at what user virtual address will none of the range be found in vma? 1101 * Assumes that vma_address() already returned a good starting address. 1102 */ 1103static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 1104{ 1105 struct vm_area_struct *vma = pvmw->vma; 1106 pgoff_t pgoff; 1107 unsigned long address; 1108 1109 /* Common case, plus ->pgoff is invalid for KSM */ 1110 if (pvmw->nr_pages == 1) 1111 return pvmw->address + PAGE_SIZE; 1112 1113 pgoff = pvmw->pgoff + pvmw->nr_pages; 1114 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1115 /* Check for address beyond vma (or wrapped through 0?) */ 1116 if (address < vma->vm_start || address > vma->vm_end) 1117 address = vma->vm_end; 1118 return address; 1119} 1120 1121static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 1122 struct file *fpin) 1123{ 1124 int flags = vmf->flags; 1125 1126 if (fpin) 1127 return fpin; 1128 1129 /* 1130 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 1131 * anything, so we only pin the file and drop the mmap_lock if only 1132 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 1133 */ 1134 if (fault_flag_allow_retry_first(flags) && 1135 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 1136 fpin = get_file(vmf->vma->vm_file); 1137 release_fault_lock(vmf); 1138 } 1139 return fpin; 1140} 1141#else /* !CONFIG_MMU */ 1142static inline void unmap_mapping_folio(struct folio *folio) { } 1143static inline void mlock_new_folio(struct folio *folio) { } 1144static inline bool need_mlock_drain(int cpu) { return false; } 1145static inline void mlock_drain_local(void) { } 1146static inline void mlock_drain_remote(int cpu) { } 1147static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 1148{ 1149} 1150#endif /* !CONFIG_MMU */ 1151 1152/* Memory initialisation debug and verification */ 1153#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1154DECLARE_STATIC_KEY_TRUE(deferred_pages); 1155 1156bool __init deferred_grow_zone(struct zone *zone, unsigned int order); 1157#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1158 1159void init_deferred_page(unsigned long pfn, int nid); 1160 1161enum mminit_level { 1162 MMINIT_WARNING, 1163 MMINIT_VERIFY, 1164 MMINIT_TRACE 1165}; 1166 1167#ifdef CONFIG_DEBUG_MEMORY_INIT 1168 1169extern int mminit_loglevel; 1170 1171#define mminit_dprintk(level, prefix, fmt, arg...) \ 1172do { \ 1173 if (level < mminit_loglevel) { \ 1174 if (level <= MMINIT_WARNING) \ 1175 pr_warn("mminit::" prefix " " fmt, ##arg); \ 1176 else \ 1177 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 1178 } \ 1179} while (0) 1180 1181extern void mminit_verify_pageflags_layout(void); 1182extern void mminit_verify_zonelist(void); 1183#else 1184 1185static inline void mminit_dprintk(enum mminit_level level, 1186 const char *prefix, const char *fmt, ...) 1187{ 1188} 1189 1190static inline void mminit_verify_pageflags_layout(void) 1191{ 1192} 1193 1194static inline void mminit_verify_zonelist(void) 1195{ 1196} 1197#endif /* CONFIG_DEBUG_MEMORY_INIT */ 1198 1199#define NODE_RECLAIM_NOSCAN -2 1200#define NODE_RECLAIM_FULL -1 1201#define NODE_RECLAIM_SOME 0 1202#define NODE_RECLAIM_SUCCESS 1 1203 1204#ifdef CONFIG_NUMA 1205extern int node_reclaim_mode; 1206 1207extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 1208extern int find_next_best_node(int node, nodemask_t *used_node_mask); 1209#else 1210#define node_reclaim_mode 0 1211 1212static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 1213 unsigned int order) 1214{ 1215 return NODE_RECLAIM_NOSCAN; 1216} 1217static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 1218{ 1219 return NUMA_NO_NODE; 1220} 1221#endif 1222 1223static inline bool node_reclaim_enabled(void) 1224{ 1225 /* Is any node_reclaim_mode bit set? */ 1226 return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP); 1227} 1228 1229/* 1230 * mm/memory-failure.c 1231 */ 1232#ifdef CONFIG_MEMORY_FAILURE 1233int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill); 1234void shake_folio(struct folio *folio); 1235typedef int hwpoison_filter_func_t(struct page *p); 1236void hwpoison_filter_register(hwpoison_filter_func_t *filter); 1237void hwpoison_filter_unregister(void); 1238 1239#define MAGIC_HWPOISON 0x48575053U /* HWPS */ 1240void SetPageHWPoisonTakenOff(struct page *page); 1241void ClearPageHWPoisonTakenOff(struct page *page); 1242bool take_page_off_buddy(struct page *page); 1243bool put_page_back_buddy(struct page *page); 1244struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 1245void add_to_kill_ksm(struct task_struct *tsk, const struct page *p, 1246 struct vm_area_struct *vma, struct list_head *to_kill, 1247 unsigned long ksm_addr); 1248unsigned long page_mapped_in_vma(const struct page *page, 1249 struct vm_area_struct *vma); 1250 1251#else 1252static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill) 1253{ 1254 return -EBUSY; 1255} 1256#endif 1257 1258extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 1259 unsigned long, unsigned long, 1260 unsigned long, unsigned long); 1261 1262extern void set_pageblock_order(void); 1263unsigned long reclaim_pages(struct list_head *folio_list); 1264unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1265 struct list_head *folio_list); 1266/* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1267#define ALLOC_WMARK_MIN WMARK_MIN 1268#define ALLOC_WMARK_LOW WMARK_LOW 1269#define ALLOC_WMARK_HIGH WMARK_HIGH 1270#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1271 1272/* Mask to get the watermark bits */ 1273#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1274 1275/* 1276 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 1277 * cannot assume a reduced access to memory reserves is sufficient for 1278 * !MMU 1279 */ 1280#ifdef CONFIG_MMU 1281#define ALLOC_OOM 0x08 1282#else 1283#define ALLOC_OOM ALLOC_NO_WATERMARKS 1284#endif 1285 1286#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access 1287 * to 25% of the min watermark or 1288 * 62.5% if __GFP_HIGH is set. 1289 */ 1290#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% 1291 * of the min watermark. 1292 */ 1293#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1294#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 1295#ifdef CONFIG_ZONE_DMA32 1296#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 1297#else 1298#define ALLOC_NOFRAGMENT 0x0 1299#endif 1300#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ 1301#define ALLOC_TRYLOCK 0x400 /* Only use spin_trylock in allocation path */ 1302#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 1303 1304/* Flags that allow allocations below the min watermark. */ 1305#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) 1306 1307enum ttu_flags; 1308struct tlbflush_unmap_batch; 1309 1310 1311/* 1312 * only for MM internal work items which do not depend on 1313 * any allocations or locks which might depend on allocations 1314 */ 1315extern struct workqueue_struct *mm_percpu_wq; 1316 1317#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1318void try_to_unmap_flush(void); 1319void try_to_unmap_flush_dirty(void); 1320void flush_tlb_batched_pending(struct mm_struct *mm); 1321#else 1322static inline void try_to_unmap_flush(void) 1323{ 1324} 1325static inline void try_to_unmap_flush_dirty(void) 1326{ 1327} 1328static inline void flush_tlb_batched_pending(struct mm_struct *mm) 1329{ 1330} 1331#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 1332 1333extern const struct trace_print_flags pageflag_names[]; 1334extern const struct trace_print_flags vmaflag_names[]; 1335extern const struct trace_print_flags gfpflag_names[]; 1336 1337void setup_zone_pageset(struct zone *zone); 1338 1339struct migration_target_control { 1340 int nid; /* preferred node id */ 1341 nodemask_t *nmask; 1342 gfp_t gfp_mask; 1343 enum migrate_reason reason; 1344}; 1345 1346/* 1347 * mm/filemap.c 1348 */ 1349size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 1350 struct folio *folio, loff_t fpos, size_t size); 1351 1352/* 1353 * mm/vmalloc.c 1354 */ 1355#ifdef CONFIG_MMU 1356void __init vmalloc_init(void); 1357int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 1358 pgprot_t prot, struct page **pages, unsigned int page_shift, gfp_t gfp_mask); 1359unsigned int get_vm_area_page_order(struct vm_struct *vm); 1360#else 1361static inline void vmalloc_init(void) 1362{ 1363} 1364 1365static inline 1366int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 1367 pgprot_t prot, struct page **pages, unsigned int page_shift, gfp_t gfp_mask) 1368{ 1369 return -EINVAL; 1370} 1371#endif 1372 1373int __must_check __vmap_pages_range_noflush(unsigned long addr, 1374 unsigned long end, pgprot_t prot, 1375 struct page **pages, unsigned int page_shift); 1376 1377void vunmap_range_noflush(unsigned long start, unsigned long end); 1378 1379void __vunmap_range_noflush(unsigned long start, unsigned long end); 1380 1381static inline bool vma_is_single_threaded_private(struct vm_area_struct *vma) 1382{ 1383 if (vma->vm_flags & VM_SHARED) 1384 return false; 1385 1386 return atomic_read(&vma->vm_mm->mm_users) == 1; 1387} 1388 1389#ifdef CONFIG_NUMA_BALANCING 1390bool folio_can_map_prot_numa(struct folio *folio, struct vm_area_struct *vma, 1391 bool is_private_single_threaded); 1392 1393#else 1394static inline bool folio_can_map_prot_numa(struct folio *folio, 1395 struct vm_area_struct *vma, bool is_private_single_threaded) 1396{ 1397 return false; 1398} 1399#endif 1400 1401int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 1402 unsigned long addr, int *flags, bool writable, 1403 int *last_cpupid); 1404 1405void free_zone_device_folio(struct folio *folio); 1406int migrate_device_coherent_folio(struct folio *folio); 1407 1408struct vm_struct *__get_vm_area_node(unsigned long size, 1409 unsigned long align, unsigned long shift, 1410 unsigned long vm_flags, unsigned long start, 1411 unsigned long end, int node, gfp_t gfp_mask, 1412 const void *caller); 1413 1414/* 1415 * mm/gup.c 1416 */ 1417int __must_check try_grab_folio(struct folio *folio, int refs, 1418 unsigned int flags); 1419 1420/* 1421 * mm/huge_memory.c 1422 */ 1423void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1424 pud_t *pud, bool write); 1425bool touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1426 pmd_t *pmd, bool write); 1427 1428/* 1429 * Parses a string with mem suffixes into its order. Useful to parse kernel 1430 * parameters. 1431 */ 1432static inline int get_order_from_str(const char *size_str, 1433 unsigned long valid_orders) 1434{ 1435 unsigned long size; 1436 char *endptr; 1437 int order; 1438 1439 size = memparse(size_str, &endptr); 1440 1441 if (!is_power_of_2(size)) 1442 return -EINVAL; 1443 order = get_order(size); 1444 if (BIT(order) & ~valid_orders) 1445 return -EINVAL; 1446 1447 return order; 1448} 1449 1450enum { 1451 /* mark page accessed */ 1452 FOLL_TOUCH = 1 << 16, 1453 /* a retry, previous pass started an IO */ 1454 FOLL_TRIED = 1 << 17, 1455 /* we are working on non-current tsk/mm */ 1456 FOLL_REMOTE = 1 << 18, 1457 /* pages must be released via unpin_user_page */ 1458 FOLL_PIN = 1 << 19, 1459 /* gup_fast: prevent fall-back to slow gup */ 1460 FOLL_FAST_ONLY = 1 << 20, 1461 /* allow unlocking the mmap lock */ 1462 FOLL_UNLOCKABLE = 1 << 21, 1463 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */ 1464 FOLL_MADV_POPULATE = 1 << 22, 1465}; 1466 1467#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \ 1468 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \ 1469 FOLL_MADV_POPULATE) 1470 1471/* 1472 * Indicates for which pages that are write-protected in the page table, 1473 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 1474 * GUP pin will remain consistent with the pages mapped into the page tables 1475 * of the MM. 1476 * 1477 * Temporary unmapping of PageAnonExclusive() pages or clearing of 1478 * PageAnonExclusive() has to protect against concurrent GUP: 1479 * * Ordinary GUP: Using the PT lock 1480 * * GUP-fast and fork(): mm->write_protect_seq 1481 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 1482 * folio_try_share_anon_rmap_*() 1483 * 1484 * Must be called with the (sub)page that's actually referenced via the 1485 * page table entry, which might not necessarily be the head page for a 1486 * PTE-mapped THP. 1487 * 1488 * If the vma is NULL, we're coming from the GUP-fast path and might have 1489 * to fallback to the slow path just to lookup the vma. 1490 */ 1491static inline bool gup_must_unshare(struct vm_area_struct *vma, 1492 unsigned int flags, struct page *page) 1493{ 1494 /* 1495 * FOLL_WRITE is implicitly handled correctly as the page table entry 1496 * has to be writable -- and if it references (part of) an anonymous 1497 * folio, that part is required to be marked exclusive. 1498 */ 1499 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 1500 return false; 1501 /* 1502 * Note: PageAnon(page) is stable until the page is actually getting 1503 * freed. 1504 */ 1505 if (!PageAnon(page)) { 1506 /* 1507 * We only care about R/O long-term pining: R/O short-term 1508 * pinning does not have the semantics to observe successive 1509 * changes through the process page tables. 1510 */ 1511 if (!(flags & FOLL_LONGTERM)) 1512 return false; 1513 1514 /* We really need the vma ... */ 1515 if (!vma) 1516 return true; 1517 1518 /* 1519 * ... because we only care about writable private ("COW") 1520 * mappings where we have to break COW early. 1521 */ 1522 return is_cow_mapping(vma->vm_flags); 1523 } 1524 1525 /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */ 1526 if (IS_ENABLED(CONFIG_HAVE_GUP_FAST)) 1527 smp_rmb(); 1528 1529 /* 1530 * Note that KSM pages cannot be exclusive, and consequently, 1531 * cannot get pinned. 1532 */ 1533 return !PageAnonExclusive(page); 1534} 1535 1536extern bool mirrored_kernelcore; 1537bool memblock_has_mirror(void); 1538void memblock_free_all(void); 1539 1540static __always_inline void vma_set_range(struct vm_area_struct *vma, 1541 unsigned long start, unsigned long end, 1542 pgoff_t pgoff) 1543{ 1544 vma->vm_start = start; 1545 vma->vm_end = end; 1546 vma->vm_pgoff = pgoff; 1547} 1548 1549static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1550{ 1551 /* 1552 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 1553 * enablements, because when without soft-dirty being compiled in, 1554 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 1555 * will be constantly true. 1556 */ 1557 if (!pgtable_supports_soft_dirty()) 1558 return false; 1559 1560 /* 1561 * Soft-dirty is kind of special: its tracking is enabled when the 1562 * vma flags not set. 1563 */ 1564 return !(vma->vm_flags & VM_SOFTDIRTY); 1565} 1566 1567static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd) 1568{ 1569 return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd); 1570} 1571 1572static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte) 1573{ 1574 return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte); 1575} 1576 1577void __meminit __init_single_page(struct page *page, unsigned long pfn, 1578 unsigned long zone, int nid); 1579void __meminit __init_page_from_nid(unsigned long pfn, int nid); 1580 1581/* shrinker related functions */ 1582unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, 1583 int priority); 1584 1585int shmem_add_to_page_cache(struct folio *folio, 1586 struct address_space *mapping, 1587 pgoff_t index, void *expected, gfp_t gfp); 1588int shmem_inode_acct_blocks(struct inode *inode, long pages); 1589bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped); 1590 1591#ifdef CONFIG_SHRINKER_DEBUG 1592static inline __printf(2, 0) int shrinker_debugfs_name_alloc( 1593 struct shrinker *shrinker, const char *fmt, va_list ap) 1594{ 1595 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 1596 1597 return shrinker->name ? 0 : -ENOMEM; 1598} 1599 1600static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) 1601{ 1602 kfree_const(shrinker->name); 1603 shrinker->name = NULL; 1604} 1605 1606extern int shrinker_debugfs_add(struct shrinker *shrinker); 1607extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, 1608 int *debugfs_id); 1609extern void shrinker_debugfs_remove(struct dentry *debugfs_entry, 1610 int debugfs_id); 1611#else /* CONFIG_SHRINKER_DEBUG */ 1612static inline int shrinker_debugfs_add(struct shrinker *shrinker) 1613{ 1614 return 0; 1615} 1616static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker, 1617 const char *fmt, va_list ap) 1618{ 1619 return 0; 1620} 1621static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) 1622{ 1623} 1624static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, 1625 int *debugfs_id) 1626{ 1627 *debugfs_id = -1; 1628 return NULL; 1629} 1630static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry, 1631 int debugfs_id) 1632{ 1633} 1634#endif /* CONFIG_SHRINKER_DEBUG */ 1635 1636/* Only track the nodes of mappings with shadow entries */ 1637void workingset_update_node(struct xa_node *node); 1638extern struct list_lru shadow_nodes; 1639#define mapping_set_update(xas, mapping) do { \ 1640 if (!dax_mapping(mapping) && !shmem_mapping(mapping)) { \ 1641 xas_set_update(xas, workingset_update_node); \ 1642 xas_set_lru(xas, &shadow_nodes); \ 1643 } \ 1644} while (0) 1645 1646/* mremap.c */ 1647unsigned long move_page_tables(struct pagetable_move_control *pmc); 1648 1649#ifdef CONFIG_UNACCEPTED_MEMORY 1650void accept_page(struct page *page); 1651#else /* CONFIG_UNACCEPTED_MEMORY */ 1652static inline void accept_page(struct page *page) 1653{ 1654} 1655#endif /* CONFIG_UNACCEPTED_MEMORY */ 1656 1657/* pagewalk.c */ 1658int walk_page_range_mm_unsafe(struct mm_struct *mm, unsigned long start, 1659 unsigned long end, const struct mm_walk_ops *ops, 1660 void *private); 1661int walk_page_range_vma_unsafe(struct vm_area_struct *vma, unsigned long start, 1662 unsigned long end, const struct mm_walk_ops *ops, 1663 void *private); 1664int walk_page_range_debug(struct mm_struct *mm, unsigned long start, 1665 unsigned long end, const struct mm_walk_ops *ops, 1666 pgd_t *pgd, void *private); 1667 1668/* pt_reclaim.c */ 1669bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval); 1670void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb, 1671 pmd_t pmdval); 1672void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, 1673 struct mmu_gather *tlb); 1674 1675#ifdef CONFIG_PT_RECLAIM 1676bool reclaim_pt_is_enabled(unsigned long start, unsigned long end, 1677 struct zap_details *details); 1678#else 1679static inline bool reclaim_pt_is_enabled(unsigned long start, unsigned long end, 1680 struct zap_details *details) 1681{ 1682 return false; 1683} 1684#endif /* CONFIG_PT_RECLAIM */ 1685 1686void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm); 1687int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm); 1688 1689void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn); 1690int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr, 1691 unsigned long pfn, unsigned long size, pgprot_t pgprot); 1692 1693static inline void io_remap_pfn_range_prepare(struct vm_area_desc *desc, 1694 unsigned long orig_pfn, unsigned long size) 1695{ 1696 const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size); 1697 1698 return remap_pfn_range_prepare(desc, pfn); 1699} 1700 1701static inline int io_remap_pfn_range_complete(struct vm_area_struct *vma, 1702 unsigned long addr, unsigned long orig_pfn, unsigned long size, 1703 pgprot_t orig_prot) 1704{ 1705 const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size); 1706 const pgprot_t prot = pgprot_decrypted(orig_prot); 1707 1708 return remap_pfn_range_complete(vma, addr, pfn, size, prot); 1709} 1710 1711#endif /* __MM_INTERNAL_H */