at master 202 lines 5.6 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Floating proportions with flexible aging period 4 * 5 * Copyright (C) 2011, SUSE, Jan Kara <jack@suse.cz> 6 * 7 * The goal of this code is: Given different types of event, measure proportion 8 * of each type of event over time. The proportions are measured with 9 * exponentially decaying history to give smooth transitions. A formula 10 * expressing proportion of event of type 'j' is: 11 * 12 * p_{j} = (\Sum_{i>=0} x_{i,j}/2^{i+1})/(\Sum_{i>=0} x_i/2^{i+1}) 13 * 14 * Where x_{i,j} is j's number of events in i-th last time period and x_i is 15 * total number of events in i-th last time period. 16 * 17 * Note that p_{j}'s are normalised, i.e. 18 * 19 * \Sum_{j} p_{j} = 1, 20 * 21 * This formula can be straightforwardly computed by maintaining denominator 22 * (let's call it 'd') and for each event type its numerator (let's call it 23 * 'n_j'). When an event of type 'j' happens, we simply need to do: 24 * n_j++; d++; 25 * 26 * When a new period is declared, we could do: 27 * d /= 2 28 * for each j 29 * n_j /= 2 30 * 31 * To avoid iteration over all event types, we instead shift numerator of event 32 * j lazily when someone asks for a proportion of event j or when event j 33 * occurs. This can bit trivially implemented by remembering last period in 34 * which something happened with proportion of type j. 35 */ 36#include <linux/flex_proportions.h> 37 38int fprop_global_init(struct fprop_global *p, gfp_t gfp) 39{ 40 int err; 41 42 p->period = 0; 43 /* Use 1 to avoid dealing with periods with 0 events... */ 44 err = percpu_counter_init(&p->events, 1, gfp); 45 if (err) 46 return err; 47 seqcount_init(&p->sequence); 48 return 0; 49} 50 51void fprop_global_destroy(struct fprop_global *p) 52{ 53 percpu_counter_destroy(&p->events); 54} 55 56/* 57 * Declare @periods new periods. It is upto the caller to make sure period 58 * transitions cannot happen in parallel. 59 * 60 * The function returns true if the proportions are still defined and false 61 * if aging zeroed out all events. This can be used to detect whether declaring 62 * further periods has any effect. 63 */ 64bool fprop_new_period(struct fprop_global *p, int periods) 65{ 66 s64 events = percpu_counter_sum(&p->events); 67 unsigned long flags; 68 69 /* 70 * Don't do anything if there are no events. 71 */ 72 if (events <= 1) 73 return false; 74 local_irq_save(flags); 75 write_seqcount_begin(&p->sequence); 76 if (periods < 64) 77 events -= events >> periods; 78 /* Use addition to avoid losing events happening between sum and set */ 79 percpu_counter_add(&p->events, -events); 80 p->period += periods; 81 write_seqcount_end(&p->sequence); 82 local_irq_restore(flags); 83 84 return true; 85} 86 87/* 88 * ---- PERCPU ---- 89 */ 90#define PROP_BATCH (8*(1+ilog2(nr_cpu_ids))) 91 92int fprop_local_init_percpu(struct fprop_local_percpu *pl, gfp_t gfp) 93{ 94 int err; 95 96 err = percpu_counter_init(&pl->events, 0, gfp); 97 if (err) 98 return err; 99 pl->period = 0; 100 raw_spin_lock_init(&pl->lock); 101 return 0; 102} 103 104void fprop_local_destroy_percpu(struct fprop_local_percpu *pl) 105{ 106 percpu_counter_destroy(&pl->events); 107} 108 109static void fprop_reflect_period_percpu(struct fprop_global *p, 110 struct fprop_local_percpu *pl) 111{ 112 unsigned int period = p->period; 113 unsigned long flags; 114 115 /* Fast path - period didn't change */ 116 if (pl->period == period) 117 return; 118 raw_spin_lock_irqsave(&pl->lock, flags); 119 /* Someone updated pl->period while we were spinning? */ 120 if (pl->period >= period) { 121 raw_spin_unlock_irqrestore(&pl->lock, flags); 122 return; 123 } 124 /* Aging zeroed our fraction? */ 125 if (period - pl->period < BITS_PER_LONG) { 126 s64 val = percpu_counter_read(&pl->events); 127 128 if (val < (nr_cpu_ids * PROP_BATCH)) 129 val = percpu_counter_sum(&pl->events); 130 131 percpu_counter_add_batch(&pl->events, 132 -val + (val >> (period-pl->period)), PROP_BATCH); 133 } else 134 percpu_counter_set(&pl->events, 0); 135 pl->period = period; 136 raw_spin_unlock_irqrestore(&pl->lock, flags); 137} 138 139/* Event of type pl happened */ 140void __fprop_add_percpu(struct fprop_global *p, struct fprop_local_percpu *pl, 141 long nr) 142{ 143 fprop_reflect_period_percpu(p, pl); 144 percpu_counter_add_batch(&pl->events, nr, PROP_BATCH); 145 percpu_counter_add(&p->events, nr); 146} 147 148void fprop_fraction_percpu(struct fprop_global *p, 149 struct fprop_local_percpu *pl, 150 unsigned long *numerator, unsigned long *denominator) 151{ 152 unsigned int seq; 153 s64 num, den; 154 155 do { 156 seq = read_seqcount_begin(&p->sequence); 157 fprop_reflect_period_percpu(p, pl); 158 num = percpu_counter_read_positive(&pl->events); 159 den = percpu_counter_read_positive(&p->events); 160 } while (read_seqcount_retry(&p->sequence, seq)); 161 162 /* 163 * Make fraction <= 1 and denominator > 0 even in presence of percpu 164 * counter errors 165 */ 166 if (den <= num) { 167 if (num) 168 den = num; 169 else 170 den = 1; 171 } 172 *denominator = den; 173 *numerator = num; 174} 175 176/* 177 * Like __fprop_add_percpu() except that event is counted only if the given 178 * type has fraction smaller than @max_frac/FPROP_FRAC_BASE 179 */ 180void __fprop_add_percpu_max(struct fprop_global *p, 181 struct fprop_local_percpu *pl, int max_frac, long nr) 182{ 183 if (unlikely(max_frac < FPROP_FRAC_BASE)) { 184 unsigned long numerator, denominator; 185 s64 tmp; 186 187 fprop_fraction_percpu(p, pl, &numerator, &denominator); 188 /* Adding 'nr' to fraction exceeds max_frac/FPROP_FRAC_BASE? */ 189 tmp = (u64)denominator * max_frac - 190 ((u64)numerator << FPROP_FRAC_SHIFT); 191 if (tmp < 0) { 192 /* Maximum fraction already exceeded? */ 193 return; 194 } else if (tmp < nr * (FPROP_FRAC_BASE - max_frac)) { 195 /* Add just enough for the fraction to saturate */ 196 nr = div_u64(tmp + FPROP_FRAC_BASE - max_frac - 1, 197 FPROP_FRAC_BASE - max_frac); 198 } 199 } 200 201 __fprop_add_percpu(p, pl, nr); 202}