Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SHA-3, as specified in
4 * https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
5 *
6 * SHA-3 code by Jeff Garzik <jeff@garzik.org>
7 * Ard Biesheuvel <ard.biesheuvel@linaro.org>
8 * David Howells <dhowells@redhat.com>
9 *
10 * See also Documentation/crypto/sha3.rst
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14#include <crypto/sha3.h>
15#include <crypto/utils.h>
16#include <linux/export.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/unaligned.h>
20#include "fips.h"
21
22/*
23 * On some 32-bit architectures, such as h8300, GCC ends up using over 1 KB of
24 * stack if the round calculation gets inlined into the loop in
25 * sha3_keccakf_generic(). On the other hand, on 64-bit architectures with
26 * plenty of [64-bit wide] general purpose registers, not inlining it severely
27 * hurts performance. So let's use 64-bitness as a heuristic to decide whether
28 * to inline or not.
29 */
30#ifdef CONFIG_64BIT
31#define SHA3_INLINE inline
32#else
33#define SHA3_INLINE noinline
34#endif
35
36#define SHA3_KECCAK_ROUNDS 24
37
38static const u64 sha3_keccakf_rndc[SHA3_KECCAK_ROUNDS] = {
39 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
40 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
41 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
42 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
43 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
44 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
45 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
46 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
47};
48
49/*
50 * Perform a single round of Keccak mixing.
51 */
52static SHA3_INLINE void sha3_keccakf_one_round_generic(u64 st[25], int round)
53{
54 u64 t[5], tt, bc[5];
55
56 /* Theta */
57 bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
58 bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
59 bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
60 bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
61 bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
62
63 t[0] = bc[4] ^ rol64(bc[1], 1);
64 t[1] = bc[0] ^ rol64(bc[2], 1);
65 t[2] = bc[1] ^ rol64(bc[3], 1);
66 t[3] = bc[2] ^ rol64(bc[4], 1);
67 t[4] = bc[3] ^ rol64(bc[0], 1);
68
69 st[0] ^= t[0];
70
71 /* Rho Pi */
72 tt = st[1];
73 st[ 1] = rol64(st[ 6] ^ t[1], 44);
74 st[ 6] = rol64(st[ 9] ^ t[4], 20);
75 st[ 9] = rol64(st[22] ^ t[2], 61);
76 st[22] = rol64(st[14] ^ t[4], 39);
77 st[14] = rol64(st[20] ^ t[0], 18);
78 st[20] = rol64(st[ 2] ^ t[2], 62);
79 st[ 2] = rol64(st[12] ^ t[2], 43);
80 st[12] = rol64(st[13] ^ t[3], 25);
81 st[13] = rol64(st[19] ^ t[4], 8);
82 st[19] = rol64(st[23] ^ t[3], 56);
83 st[23] = rol64(st[15] ^ t[0], 41);
84 st[15] = rol64(st[ 4] ^ t[4], 27);
85 st[ 4] = rol64(st[24] ^ t[4], 14);
86 st[24] = rol64(st[21] ^ t[1], 2);
87 st[21] = rol64(st[ 8] ^ t[3], 55);
88 st[ 8] = rol64(st[16] ^ t[1], 45);
89 st[16] = rol64(st[ 5] ^ t[0], 36);
90 st[ 5] = rol64(st[ 3] ^ t[3], 28);
91 st[ 3] = rol64(st[18] ^ t[3], 21);
92 st[18] = rol64(st[17] ^ t[2], 15);
93 st[17] = rol64(st[11] ^ t[1], 10);
94 st[11] = rol64(st[ 7] ^ t[2], 6);
95 st[ 7] = rol64(st[10] ^ t[0], 3);
96 st[10] = rol64( tt ^ t[1], 1);
97
98 /* Chi */
99 bc[ 0] = ~st[ 1] & st[ 2];
100 bc[ 1] = ~st[ 2] & st[ 3];
101 bc[ 2] = ~st[ 3] & st[ 4];
102 bc[ 3] = ~st[ 4] & st[ 0];
103 bc[ 4] = ~st[ 0] & st[ 1];
104 st[ 0] ^= bc[ 0];
105 st[ 1] ^= bc[ 1];
106 st[ 2] ^= bc[ 2];
107 st[ 3] ^= bc[ 3];
108 st[ 4] ^= bc[ 4];
109
110 bc[ 0] = ~st[ 6] & st[ 7];
111 bc[ 1] = ~st[ 7] & st[ 8];
112 bc[ 2] = ~st[ 8] & st[ 9];
113 bc[ 3] = ~st[ 9] & st[ 5];
114 bc[ 4] = ~st[ 5] & st[ 6];
115 st[ 5] ^= bc[ 0];
116 st[ 6] ^= bc[ 1];
117 st[ 7] ^= bc[ 2];
118 st[ 8] ^= bc[ 3];
119 st[ 9] ^= bc[ 4];
120
121 bc[ 0] = ~st[11] & st[12];
122 bc[ 1] = ~st[12] & st[13];
123 bc[ 2] = ~st[13] & st[14];
124 bc[ 3] = ~st[14] & st[10];
125 bc[ 4] = ~st[10] & st[11];
126 st[10] ^= bc[ 0];
127 st[11] ^= bc[ 1];
128 st[12] ^= bc[ 2];
129 st[13] ^= bc[ 3];
130 st[14] ^= bc[ 4];
131
132 bc[ 0] = ~st[16] & st[17];
133 bc[ 1] = ~st[17] & st[18];
134 bc[ 2] = ~st[18] & st[19];
135 bc[ 3] = ~st[19] & st[15];
136 bc[ 4] = ~st[15] & st[16];
137 st[15] ^= bc[ 0];
138 st[16] ^= bc[ 1];
139 st[17] ^= bc[ 2];
140 st[18] ^= bc[ 3];
141 st[19] ^= bc[ 4];
142
143 bc[ 0] = ~st[21] & st[22];
144 bc[ 1] = ~st[22] & st[23];
145 bc[ 2] = ~st[23] & st[24];
146 bc[ 3] = ~st[24] & st[20];
147 bc[ 4] = ~st[20] & st[21];
148 st[20] ^= bc[ 0];
149 st[21] ^= bc[ 1];
150 st[22] ^= bc[ 2];
151 st[23] ^= bc[ 3];
152 st[24] ^= bc[ 4];
153
154 /* Iota */
155 st[0] ^= sha3_keccakf_rndc[round];
156}
157
158/* Generic implementation of the Keccak-f[1600] permutation */
159static void sha3_keccakf_generic(struct sha3_state *state)
160{
161 /*
162 * Temporarily convert the state words from little-endian to native-
163 * endian so that they can be operated on. Note that on little-endian
164 * machines this conversion is a no-op and is optimized out.
165 */
166
167 for (int i = 0; i < ARRAY_SIZE(state->words); i++)
168 state->native_words[i] = le64_to_cpu(state->words[i]);
169
170 for (int round = 0; round < SHA3_KECCAK_ROUNDS; round++)
171 sha3_keccakf_one_round_generic(state->native_words, round);
172
173 for (int i = 0; i < ARRAY_SIZE(state->words); i++)
174 state->words[i] = cpu_to_le64(state->native_words[i]);
175}
176
177/*
178 * Generic implementation of absorbing the given nonzero number of full blocks
179 * into the sponge function Keccak[r=8*block_size, c=1600-8*block_size].
180 */
181static void __maybe_unused
182sha3_absorb_blocks_generic(struct sha3_state *state, const u8 *data,
183 size_t nblocks, size_t block_size)
184{
185 do {
186 for (size_t i = 0; i < block_size; i += 8)
187 state->words[i / 8] ^= get_unaligned((__le64 *)&data[i]);
188 sha3_keccakf_generic(state);
189 data += block_size;
190 } while (--nblocks);
191}
192
193#ifdef CONFIG_CRYPTO_LIB_SHA3_ARCH
194#include "sha3.h" /* $(SRCARCH)/sha3.h */
195#else
196#define sha3_keccakf sha3_keccakf_generic
197#define sha3_absorb_blocks sha3_absorb_blocks_generic
198#endif
199
200void __sha3_update(struct __sha3_ctx *ctx, const u8 *in, size_t in_len)
201{
202 const size_t block_size = ctx->block_size;
203 size_t absorb_offset = ctx->absorb_offset;
204
205 /* Warn if squeezing has already begun. */
206 WARN_ON_ONCE(absorb_offset >= block_size);
207
208 if (absorb_offset && absorb_offset + in_len >= block_size) {
209 crypto_xor(&ctx->state.bytes[absorb_offset], in,
210 block_size - absorb_offset);
211 in += block_size - absorb_offset;
212 in_len -= block_size - absorb_offset;
213 sha3_keccakf(&ctx->state);
214 absorb_offset = 0;
215 }
216
217 if (in_len >= block_size) {
218 size_t nblocks = in_len / block_size;
219
220 sha3_absorb_blocks(&ctx->state, in, nblocks, block_size);
221 in += nblocks * block_size;
222 in_len -= nblocks * block_size;
223 }
224
225 if (in_len) {
226 crypto_xor(&ctx->state.bytes[absorb_offset], in, in_len);
227 absorb_offset += in_len;
228 }
229 ctx->absorb_offset = absorb_offset;
230}
231EXPORT_SYMBOL_GPL(__sha3_update);
232
233void sha3_final(struct sha3_ctx *sha3_ctx, u8 *out)
234{
235 struct __sha3_ctx *ctx = &sha3_ctx->ctx;
236
237 ctx->state.bytes[ctx->absorb_offset] ^= 0x06;
238 ctx->state.bytes[ctx->block_size - 1] ^= 0x80;
239 sha3_keccakf(&ctx->state);
240 memcpy(out, ctx->state.bytes, ctx->digest_size);
241 sha3_zeroize_ctx(sha3_ctx);
242}
243EXPORT_SYMBOL_GPL(sha3_final);
244
245void shake_squeeze(struct shake_ctx *shake_ctx, u8 *out, size_t out_len)
246{
247 struct __sha3_ctx *ctx = &shake_ctx->ctx;
248 const size_t block_size = ctx->block_size;
249 size_t squeeze_offset = ctx->squeeze_offset;
250
251 if (ctx->absorb_offset < block_size) {
252 /* First squeeze: */
253
254 /* Add the domain separation suffix and padding. */
255 ctx->state.bytes[ctx->absorb_offset] ^= 0x1f;
256 ctx->state.bytes[block_size - 1] ^= 0x80;
257
258 /* Indicate that squeezing has begun. */
259 ctx->absorb_offset = block_size;
260
261 /*
262 * Indicate that no output is pending yet, i.e. sha3_keccakf()
263 * will need to be called before the first copy.
264 */
265 squeeze_offset = block_size;
266 }
267 while (out_len) {
268 if (squeeze_offset == block_size) {
269 sha3_keccakf(&ctx->state);
270 squeeze_offset = 0;
271 }
272 size_t copy = min(out_len, block_size - squeeze_offset);
273
274 memcpy(out, &ctx->state.bytes[squeeze_offset], copy);
275 out += copy;
276 out_len -= copy;
277 squeeze_offset += copy;
278 }
279 ctx->squeeze_offset = squeeze_offset;
280}
281EXPORT_SYMBOL_GPL(shake_squeeze);
282
283#ifndef sha3_224_arch
284static inline bool sha3_224_arch(const u8 *in, size_t in_len,
285 u8 out[SHA3_224_DIGEST_SIZE])
286{
287 return false;
288}
289#endif
290#ifndef sha3_256_arch
291static inline bool sha3_256_arch(const u8 *in, size_t in_len,
292 u8 out[SHA3_256_DIGEST_SIZE])
293{
294 return false;
295}
296#endif
297#ifndef sha3_384_arch
298static inline bool sha3_384_arch(const u8 *in, size_t in_len,
299 u8 out[SHA3_384_DIGEST_SIZE])
300{
301 return false;
302}
303#endif
304#ifndef sha3_512_arch
305static inline bool sha3_512_arch(const u8 *in, size_t in_len,
306 u8 out[SHA3_512_DIGEST_SIZE])
307{
308 return false;
309}
310#endif
311
312void sha3_224(const u8 *in, size_t in_len, u8 out[SHA3_224_DIGEST_SIZE])
313{
314 struct sha3_ctx ctx;
315
316 if (sha3_224_arch(in, in_len, out))
317 return;
318 sha3_224_init(&ctx);
319 sha3_update(&ctx, in, in_len);
320 sha3_final(&ctx, out);
321}
322EXPORT_SYMBOL_GPL(sha3_224);
323
324void sha3_256(const u8 *in, size_t in_len, u8 out[SHA3_256_DIGEST_SIZE])
325{
326 struct sha3_ctx ctx;
327
328 if (sha3_256_arch(in, in_len, out))
329 return;
330 sha3_256_init(&ctx);
331 sha3_update(&ctx, in, in_len);
332 sha3_final(&ctx, out);
333}
334EXPORT_SYMBOL_GPL(sha3_256);
335
336void sha3_384(const u8 *in, size_t in_len, u8 out[SHA3_384_DIGEST_SIZE])
337{
338 struct sha3_ctx ctx;
339
340 if (sha3_384_arch(in, in_len, out))
341 return;
342 sha3_384_init(&ctx);
343 sha3_update(&ctx, in, in_len);
344 sha3_final(&ctx, out);
345}
346EXPORT_SYMBOL_GPL(sha3_384);
347
348void sha3_512(const u8 *in, size_t in_len, u8 out[SHA3_512_DIGEST_SIZE])
349{
350 struct sha3_ctx ctx;
351
352 if (sha3_512_arch(in, in_len, out))
353 return;
354 sha3_512_init(&ctx);
355 sha3_update(&ctx, in, in_len);
356 sha3_final(&ctx, out);
357}
358EXPORT_SYMBOL_GPL(sha3_512);
359
360void shake128(const u8 *in, size_t in_len, u8 *out, size_t out_len)
361{
362 struct shake_ctx ctx;
363
364 shake128_init(&ctx);
365 shake_update(&ctx, in, in_len);
366 shake_squeeze(&ctx, out, out_len);
367 shake_zeroize_ctx(&ctx);
368}
369EXPORT_SYMBOL_GPL(shake128);
370
371void shake256(const u8 *in, size_t in_len, u8 *out, size_t out_len)
372{
373 struct shake_ctx ctx;
374
375 shake256_init(&ctx);
376 shake_update(&ctx, in, in_len);
377 shake_squeeze(&ctx, out, out_len);
378 shake_zeroize_ctx(&ctx);
379}
380EXPORT_SYMBOL_GPL(shake256);
381
382#if defined(sha3_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS)
383static int __init sha3_mod_init(void)
384{
385#ifdef sha3_mod_init_arch
386 sha3_mod_init_arch();
387#endif
388 if (fips_enabled) {
389 /*
390 * FIPS cryptographic algorithm self-test. As per the FIPS
391 * Implementation Guidance, testing any SHA-3 algorithm
392 * satisfies the test requirement for all of them.
393 */
394 u8 hash[SHA3_256_DIGEST_SIZE];
395
396 sha3_256(fips_test_data, sizeof(fips_test_data), hash);
397 if (memcmp(fips_test_sha3_256_value, hash, sizeof(hash)) != 0)
398 panic("sha3: FIPS self-test failed\n");
399 }
400 return 0;
401}
402subsys_initcall(sha3_mod_init);
403
404static void __exit sha3_mod_exit(void)
405{
406}
407module_exit(sha3_mod_exit);
408#endif
409
410MODULE_DESCRIPTION("SHA-3 library functions");
411MODULE_LICENSE("GPL");