Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * VFIO API definition
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#ifndef _UAPIVFIO_H
13#define _UAPIVFIO_H
14
15#include <linux/types.h>
16#include <linux/ioctl.h>
17#include <linux/stddef.h>
18
19#define VFIO_API_VERSION 0
20
21
22/* Kernel & User level defines for VFIO IOCTLs. */
23
24/* Extensions */
25
26#define VFIO_TYPE1_IOMMU 1
27#define VFIO_SPAPR_TCE_IOMMU 2
28#define VFIO_TYPE1v2_IOMMU 3
29/*
30 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This
31 * capability is subject to change as groups are added or removed.
32 */
33#define VFIO_DMA_CC_IOMMU 4
34
35/* Check if EEH is supported */
36#define VFIO_EEH 5
37
38/* Two-stage IOMMU */
39#define __VFIO_RESERVED_TYPE1_NESTING_IOMMU 6 /* Implies v2 */
40
41#define VFIO_SPAPR_TCE_v2_IOMMU 7
42
43/*
44 * The No-IOMMU IOMMU offers no translation or isolation for devices and
45 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU
46 * code will taint the host kernel and should be used with extreme caution.
47 */
48#define VFIO_NOIOMMU_IOMMU 8
49
50/* Supports VFIO_DMA_UNMAP_FLAG_ALL */
51#define VFIO_UNMAP_ALL 9
52
53/*
54 * Supports the vaddr flag for DMA map and unmap. Not supported for mediated
55 * devices, so this capability is subject to change as groups are added or
56 * removed.
57 */
58#define VFIO_UPDATE_VADDR 10
59
60/*
61 * The IOCTL interface is designed for extensibility by embedding the
62 * structure length (argsz) and flags into structures passed between
63 * kernel and userspace. We therefore use the _IO() macro for these
64 * defines to avoid implicitly embedding a size into the ioctl request.
65 * As structure fields are added, argsz will increase to match and flag
66 * bits will be defined to indicate additional fields with valid data.
67 * It's *always* the caller's responsibility to indicate the size of
68 * the structure passed by setting argsz appropriately.
69 */
70
71#define VFIO_TYPE (';')
72#define VFIO_BASE 100
73
74/*
75 * For extension of INFO ioctls, VFIO makes use of a capability chain
76 * designed after PCI/e capabilities. A flag bit indicates whether
77 * this capability chain is supported and a field defined in the fixed
78 * structure defines the offset of the first capability in the chain.
79 * This field is only valid when the corresponding bit in the flags
80 * bitmap is set. This offset field is relative to the start of the
81 * INFO buffer, as is the next field within each capability header.
82 * The id within the header is a shared address space per INFO ioctl,
83 * while the version field is specific to the capability id. The
84 * contents following the header are specific to the capability id.
85 */
86struct vfio_info_cap_header {
87 __u16 id; /* Identifies capability */
88 __u16 version; /* Version specific to the capability ID */
89 __u32 next; /* Offset of next capability */
90};
91
92/*
93 * Callers of INFO ioctls passing insufficiently sized buffers will see
94 * the capability chain flag bit set, a zero value for the first capability
95 * offset (if available within the provided argsz), and argsz will be
96 * updated to report the necessary buffer size. For compatibility, the
97 * INFO ioctl will not report error in this case, but the capability chain
98 * will not be available.
99 */
100
101/* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
102
103/**
104 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
105 *
106 * Report the version of the VFIO API. This allows us to bump the entire
107 * API version should we later need to add or change features in incompatible
108 * ways.
109 * Return: VFIO_API_VERSION
110 * Availability: Always
111 */
112#define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0)
113
114/**
115 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
116 *
117 * Check whether an extension is supported.
118 * Return: 0 if not supported, 1 (or some other positive integer) if supported.
119 * Availability: Always
120 */
121#define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1)
122
123/**
124 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
125 *
126 * Set the iommu to the given type. The type must be supported by an
127 * iommu driver as verified by calling CHECK_EXTENSION using the same
128 * type. A group must be set to this file descriptor before this
129 * ioctl is available. The IOMMU interfaces enabled by this call are
130 * specific to the value set.
131 * Return: 0 on success, -errno on failure
132 * Availability: When VFIO group attached
133 */
134#define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2)
135
136/* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
137
138/**
139 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
140 * struct vfio_group_status)
141 *
142 * Retrieve information about the group. Fills in provided
143 * struct vfio_group_info. Caller sets argsz.
144 * Return: 0 on succes, -errno on failure.
145 * Availability: Always
146 */
147struct vfio_group_status {
148 __u32 argsz;
149 __u32 flags;
150#define VFIO_GROUP_FLAGS_VIABLE (1 << 0)
151#define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1)
152};
153#define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3)
154
155/**
156 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
157 *
158 * Set the container for the VFIO group to the open VFIO file
159 * descriptor provided. Groups may only belong to a single
160 * container. Containers may, at their discretion, support multiple
161 * groups. Only when a container is set are all of the interfaces
162 * of the VFIO file descriptor and the VFIO group file descriptor
163 * available to the user.
164 * Return: 0 on success, -errno on failure.
165 * Availability: Always
166 */
167#define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4)
168
169/**
170 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
171 *
172 * Remove the group from the attached container. This is the
173 * opposite of the SET_CONTAINER call and returns the group to
174 * an initial state. All device file descriptors must be released
175 * prior to calling this interface. When removing the last group
176 * from a container, the IOMMU will be disabled and all state lost,
177 * effectively also returning the VFIO file descriptor to an initial
178 * state.
179 * Return: 0 on success, -errno on failure.
180 * Availability: When attached to container
181 */
182#define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5)
183
184/**
185 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
186 *
187 * Return a new file descriptor for the device object described by
188 * the provided string. The string should match a device listed in
189 * the devices subdirectory of the IOMMU group sysfs entry. The
190 * group containing the device must already be added to this context.
191 * Return: new file descriptor on success, -errno on failure.
192 * Availability: When attached to container
193 */
194#define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6)
195
196/* --------------- IOCTLs for DEVICE file descriptors --------------- */
197
198/**
199 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
200 * struct vfio_device_info)
201 *
202 * Retrieve information about the device. Fills in provided
203 * struct vfio_device_info. Caller sets argsz.
204 * Return: 0 on success, -errno on failure.
205 */
206struct vfio_device_info {
207 __u32 argsz;
208 __u32 flags;
209#define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */
210#define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */
211#define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */
212#define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */
213#define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */
214#define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */
215#define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */
216#define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */
217#define VFIO_DEVICE_FLAGS_CDX (1 << 8) /* vfio-cdx device */
218 __u32 num_regions; /* Max region index + 1 */
219 __u32 num_irqs; /* Max IRQ index + 1 */
220 __u32 cap_offset; /* Offset within info struct of first cap */
221 __u32 pad;
222};
223#define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7)
224
225/*
226 * Vendor driver using Mediated device framework should provide device_api
227 * attribute in supported type attribute groups. Device API string should be one
228 * of the following corresponding to device flags in vfio_device_info structure.
229 */
230
231#define VFIO_DEVICE_API_PCI_STRING "vfio-pci"
232#define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform"
233#define VFIO_DEVICE_API_AMBA_STRING "vfio-amba"
234#define VFIO_DEVICE_API_CCW_STRING "vfio-ccw"
235#define VFIO_DEVICE_API_AP_STRING "vfio-ap"
236
237/*
238 * The following capabilities are unique to s390 zPCI devices. Their contents
239 * are further-defined in vfio_zdev.h
240 */
241#define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1
242#define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2
243#define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3
244#define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4
245
246/*
247 * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp
248 * completion to the root bus with supported widths provided via flags.
249 */
250#define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP 5
251struct vfio_device_info_cap_pci_atomic_comp {
252 struct vfio_info_cap_header header;
253 __u32 flags;
254#define VFIO_PCI_ATOMIC_COMP32 (1 << 0)
255#define VFIO_PCI_ATOMIC_COMP64 (1 << 1)
256#define VFIO_PCI_ATOMIC_COMP128 (1 << 2)
257 __u32 reserved;
258};
259
260/**
261 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
262 * struct vfio_region_info)
263 *
264 * Retrieve information about a device region. Caller provides
265 * struct vfio_region_info with index value set. Caller sets argsz.
266 * Implementation of region mapping is bus driver specific. This is
267 * intended to describe MMIO, I/O port, as well as bus specific
268 * regions (ex. PCI config space). Zero sized regions may be used
269 * to describe unimplemented regions (ex. unimplemented PCI BARs).
270 * Return: 0 on success, -errno on failure.
271 */
272struct vfio_region_info {
273 __u32 argsz;
274 __u32 flags;
275#define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */
276#define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */
277#define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */
278#define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */
279 __u32 index; /* Region index */
280 __u32 cap_offset; /* Offset within info struct of first cap */
281 __aligned_u64 size; /* Region size (bytes) */
282 __aligned_u64 offset; /* Region offset from start of device fd */
283};
284#define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8)
285
286/*
287 * The sparse mmap capability allows finer granularity of specifying areas
288 * within a region with mmap support. When specified, the user should only
289 * mmap the offset ranges specified by the areas array. mmaps outside of the
290 * areas specified may fail (such as the range covering a PCI MSI-X table) or
291 * may result in improper device behavior.
292 *
293 * The structures below define version 1 of this capability.
294 */
295#define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1
296
297struct vfio_region_sparse_mmap_area {
298 __aligned_u64 offset; /* Offset of mmap'able area within region */
299 __aligned_u64 size; /* Size of mmap'able area */
300};
301
302struct vfio_region_info_cap_sparse_mmap {
303 struct vfio_info_cap_header header;
304 __u32 nr_areas;
305 __u32 reserved;
306 struct vfio_region_sparse_mmap_area areas[];
307};
308
309/*
310 * The device specific type capability allows regions unique to a specific
311 * device or class of devices to be exposed. This helps solve the problem for
312 * vfio bus drivers of defining which region indexes correspond to which region
313 * on the device, without needing to resort to static indexes, as done by
314 * vfio-pci. For instance, if we were to go back in time, we might remove
315 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
316 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
317 * make a "VGA" device specific type to describe the VGA access space. This
318 * means that non-VGA devices wouldn't need to waste this index, and thus the
319 * address space associated with it due to implementation of device file
320 * descriptor offsets in vfio-pci.
321 *
322 * The current implementation is now part of the user ABI, so we can't use this
323 * for VGA, but there are other upcoming use cases, such as opregions for Intel
324 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll
325 * use this for future additions.
326 *
327 * The structure below defines version 1 of this capability.
328 */
329#define VFIO_REGION_INFO_CAP_TYPE 2
330
331struct vfio_region_info_cap_type {
332 struct vfio_info_cap_header header;
333 __u32 type; /* global per bus driver */
334 __u32 subtype; /* type specific */
335};
336
337/*
338 * List of region types, global per bus driver.
339 * If you introduce a new type, please add it here.
340 */
341
342/* PCI region type containing a PCI vendor part */
343#define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31)
344#define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff)
345#define VFIO_REGION_TYPE_GFX (1)
346#define VFIO_REGION_TYPE_CCW (2)
347#define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3)
348
349/* sub-types for VFIO_REGION_TYPE_PCI_* */
350
351/* 8086 vendor PCI sub-types */
352#define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1)
353#define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2)
354#define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3)
355
356/* 10de vendor PCI sub-types */
357/*
358 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
359 *
360 * Deprecated, region no longer provided
361 */
362#define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1)
363
364/* 1014 vendor PCI sub-types */
365/*
366 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
367 * to do TLB invalidation on a GPU.
368 *
369 * Deprecated, region no longer provided
370 */
371#define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1)
372
373/* sub-types for VFIO_REGION_TYPE_GFX */
374#define VFIO_REGION_SUBTYPE_GFX_EDID (1)
375
376/**
377 * struct vfio_region_gfx_edid - EDID region layout.
378 *
379 * Set display link state and EDID blob.
380 *
381 * The EDID blob has monitor information such as brand, name, serial
382 * number, physical size, supported video modes and more.
383 *
384 * This special region allows userspace (typically qemu) set a virtual
385 * EDID for the virtual monitor, which allows a flexible display
386 * configuration.
387 *
388 * For the edid blob spec look here:
389 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
390 *
391 * On linux systems you can find the EDID blob in sysfs:
392 * /sys/class/drm/${card}/${connector}/edid
393 *
394 * You can use the edid-decode ulility (comes with xorg-x11-utils) to
395 * decode the EDID blob.
396 *
397 * @edid_offset: location of the edid blob, relative to the
398 * start of the region (readonly).
399 * @edid_max_size: max size of the edid blob (readonly).
400 * @edid_size: actual edid size (read/write).
401 * @link_state: display link state (read/write).
402 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
403 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
404 * @max_xres: max display width (0 == no limitation, readonly).
405 * @max_yres: max display height (0 == no limitation, readonly).
406 *
407 * EDID update protocol:
408 * (1) set link-state to down.
409 * (2) update edid blob and size.
410 * (3) set link-state to up.
411 */
412struct vfio_region_gfx_edid {
413 __u32 edid_offset;
414 __u32 edid_max_size;
415 __u32 edid_size;
416 __u32 max_xres;
417 __u32 max_yres;
418 __u32 link_state;
419#define VFIO_DEVICE_GFX_LINK_STATE_UP 1
420#define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2
421};
422
423/* sub-types for VFIO_REGION_TYPE_CCW */
424#define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1)
425#define VFIO_REGION_SUBTYPE_CCW_SCHIB (2)
426#define VFIO_REGION_SUBTYPE_CCW_CRW (3)
427
428/* sub-types for VFIO_REGION_TYPE_MIGRATION */
429#define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
430
431struct vfio_device_migration_info {
432 __u32 device_state; /* VFIO device state */
433#define VFIO_DEVICE_STATE_V1_STOP (0)
434#define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0)
435#define VFIO_DEVICE_STATE_V1_SAVING (1 << 1)
436#define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2)
437#define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \
438 VFIO_DEVICE_STATE_V1_SAVING | \
439 VFIO_DEVICE_STATE_V1_RESUMING)
440
441#define VFIO_DEVICE_STATE_VALID(state) \
442 (state & VFIO_DEVICE_STATE_V1_RESUMING ? \
443 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
444
445#define VFIO_DEVICE_STATE_IS_ERROR(state) \
446 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
447 VFIO_DEVICE_STATE_V1_RESUMING))
448
449#define VFIO_DEVICE_STATE_SET_ERROR(state) \
450 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
451 VFIO_DEVICE_STATE_V1_RESUMING)
452
453 __u32 reserved;
454 __aligned_u64 pending_bytes;
455 __aligned_u64 data_offset;
456 __aligned_u64 data_size;
457};
458
459/*
460 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
461 * which allows direct access to non-MSIX registers which happened to be within
462 * the same system page.
463 *
464 * Even though the userspace gets direct access to the MSIX data, the existing
465 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
466 */
467#define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3
468
469/*
470 * Capability with compressed real address (aka SSA - small system address)
471 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
472 * and by the userspace to associate a NVLink bridge with a GPU.
473 *
474 * Deprecated, capability no longer provided
475 */
476#define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4
477
478struct vfio_region_info_cap_nvlink2_ssatgt {
479 struct vfio_info_cap_header header;
480 __aligned_u64 tgt;
481};
482
483/*
484 * Capability with an NVLink link speed. The value is read by
485 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
486 * property in the device tree. The value is fixed in the hardware
487 * and failing to provide the correct value results in the link
488 * not working with no indication from the driver why.
489 *
490 * Deprecated, capability no longer provided
491 */
492#define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5
493
494struct vfio_region_info_cap_nvlink2_lnkspd {
495 struct vfio_info_cap_header header;
496 __u32 link_speed;
497 __u32 __pad;
498};
499
500/**
501 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
502 * struct vfio_irq_info)
503 *
504 * Retrieve information about a device IRQ. Caller provides
505 * struct vfio_irq_info with index value set. Caller sets argsz.
506 * Implementation of IRQ mapping is bus driver specific. Indexes
507 * using multiple IRQs are primarily intended to support MSI-like
508 * interrupt blocks. Zero count irq blocks may be used to describe
509 * unimplemented interrupt types.
510 *
511 * The EVENTFD flag indicates the interrupt index supports eventfd based
512 * signaling.
513 *
514 * The MASKABLE flags indicates the index supports MASK and UNMASK
515 * actions described below.
516 *
517 * AUTOMASKED indicates that after signaling, the interrupt line is
518 * automatically masked by VFIO and the user needs to unmask the line
519 * to receive new interrupts. This is primarily intended to distinguish
520 * level triggered interrupts.
521 *
522 * The NORESIZE flag indicates that the interrupt lines within the index
523 * are setup as a set and new subindexes cannot be enabled without first
524 * disabling the entire index. This is used for interrupts like PCI MSI
525 * and MSI-X where the driver may only use a subset of the available
526 * indexes, but VFIO needs to enable a specific number of vectors
527 * upfront. In the case of MSI-X, where the user can enable MSI-X and
528 * then add and unmask vectors, it's up to userspace to make the decision
529 * whether to allocate the maximum supported number of vectors or tear
530 * down setup and incrementally increase the vectors as each is enabled.
531 * Absence of the NORESIZE flag indicates that vectors can be enabled
532 * and disabled dynamically without impacting other vectors within the
533 * index.
534 */
535struct vfio_irq_info {
536 __u32 argsz;
537 __u32 flags;
538#define VFIO_IRQ_INFO_EVENTFD (1 << 0)
539#define VFIO_IRQ_INFO_MASKABLE (1 << 1)
540#define VFIO_IRQ_INFO_AUTOMASKED (1 << 2)
541#define VFIO_IRQ_INFO_NORESIZE (1 << 3)
542 __u32 index; /* IRQ index */
543 __u32 count; /* Number of IRQs within this index */
544};
545#define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9)
546
547/**
548 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
549 *
550 * Set signaling, masking, and unmasking of interrupts. Caller provides
551 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate
552 * the range of subindexes being specified.
553 *
554 * The DATA flags specify the type of data provided. If DATA_NONE, the
555 * operation performs the specified action immediately on the specified
556 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]:
557 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
558 *
559 * DATA_BOOL allows sparse support for the same on arrays of interrupts.
560 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
561 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
562 * data = {1,0,1}
563 *
564 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
565 * A value of -1 can be used to either de-assign interrupts if already
566 * assigned or skip un-assigned interrupts. For example, to set an eventfd
567 * to be trigger for interrupts [0,0] and [0,2]:
568 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
569 * data = {fd1, -1, fd2}
570 * If index [0,1] is previously set, two count = 1 ioctls calls would be
571 * required to set [0,0] and [0,2] without changing [0,1].
572 *
573 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
574 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
575 * from userspace (ie. simulate hardware triggering).
576 *
577 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
578 * enables the interrupt index for the device. Individual subindex interrupts
579 * can be disabled using the -1 value for DATA_EVENTFD or the index can be
580 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
581 *
582 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
583 * ACTION_TRIGGER specifies kernel->user signaling.
584 */
585struct vfio_irq_set {
586 __u32 argsz;
587 __u32 flags;
588#define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */
589#define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */
590#define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */
591#define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */
592#define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */
593#define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */
594 __u32 index;
595 __u32 start;
596 __u32 count;
597 __u8 data[];
598};
599#define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10)
600
601#define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \
602 VFIO_IRQ_SET_DATA_BOOL | \
603 VFIO_IRQ_SET_DATA_EVENTFD)
604#define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \
605 VFIO_IRQ_SET_ACTION_UNMASK | \
606 VFIO_IRQ_SET_ACTION_TRIGGER)
607/**
608 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
609 *
610 * Reset a device.
611 */
612#define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11)
613
614/*
615 * The VFIO-PCI bus driver makes use of the following fixed region and
616 * IRQ index mapping. Unimplemented regions return a size of zero.
617 * Unimplemented IRQ types return a count of zero.
618 */
619
620enum {
621 VFIO_PCI_BAR0_REGION_INDEX,
622 VFIO_PCI_BAR1_REGION_INDEX,
623 VFIO_PCI_BAR2_REGION_INDEX,
624 VFIO_PCI_BAR3_REGION_INDEX,
625 VFIO_PCI_BAR4_REGION_INDEX,
626 VFIO_PCI_BAR5_REGION_INDEX,
627 VFIO_PCI_ROM_REGION_INDEX,
628 VFIO_PCI_CONFIG_REGION_INDEX,
629 /*
630 * Expose VGA regions defined for PCI base class 03, subclass 00.
631 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
632 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented
633 * range is found at it's identity mapped offset from the region
634 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas
635 * between described ranges are unimplemented.
636 */
637 VFIO_PCI_VGA_REGION_INDEX,
638 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
639 /* device specific cap to define content. */
640};
641
642enum {
643 VFIO_PCI_INTX_IRQ_INDEX,
644 VFIO_PCI_MSI_IRQ_INDEX,
645 VFIO_PCI_MSIX_IRQ_INDEX,
646 VFIO_PCI_ERR_IRQ_INDEX,
647 VFIO_PCI_REQ_IRQ_INDEX,
648 VFIO_PCI_NUM_IRQS
649};
650
651/*
652 * The vfio-ccw bus driver makes use of the following fixed region and
653 * IRQ index mapping. Unimplemented regions return a size of zero.
654 * Unimplemented IRQ types return a count of zero.
655 */
656
657enum {
658 VFIO_CCW_CONFIG_REGION_INDEX,
659 VFIO_CCW_NUM_REGIONS
660};
661
662enum {
663 VFIO_CCW_IO_IRQ_INDEX,
664 VFIO_CCW_CRW_IRQ_INDEX,
665 VFIO_CCW_REQ_IRQ_INDEX,
666 VFIO_CCW_NUM_IRQS
667};
668
669/*
670 * The vfio-ap bus driver makes use of the following IRQ index mapping.
671 * Unimplemented IRQ types return a count of zero.
672 */
673enum {
674 VFIO_AP_REQ_IRQ_INDEX,
675 VFIO_AP_CFG_CHG_IRQ_INDEX,
676 VFIO_AP_NUM_IRQS
677};
678
679/**
680 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
681 * struct vfio_pci_hot_reset_info)
682 *
683 * This command is used to query the affected devices in the hot reset for
684 * a given device.
685 *
686 * This command always reports the segment, bus, and devfn information for
687 * each affected device, and selectively reports the group_id or devid per
688 * the way how the calling device is opened.
689 *
690 * - If the calling device is opened via the traditional group/container
691 * API, group_id is reported. User should check if it has owned all
692 * the affected devices and provides a set of group fds to prove the
693 * ownership in VFIO_DEVICE_PCI_HOT_RESET ioctl.
694 *
695 * - If the calling device is opened as a cdev, devid is reported.
696 * Flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set to indicate this
697 * data type. All the affected devices should be represented in
698 * the dev_set, ex. bound to a vfio driver, and also be owned by
699 * this interface which is determined by the following conditions:
700 * 1) Has a valid devid within the iommufd_ctx of the calling device.
701 * Ownership cannot be determined across separate iommufd_ctx and
702 * the cdev calling conventions do not support a proof-of-ownership
703 * model as provided in the legacy group interface. In this case
704 * valid devid with value greater than zero is provided in the return
705 * structure.
706 * 2) Does not have a valid devid within the iommufd_ctx of the calling
707 * device, but belongs to the same IOMMU group as the calling device
708 * or another opened device that has a valid devid within the
709 * iommufd_ctx of the calling device. This provides implicit ownership
710 * for devices within the same DMA isolation context. In this case
711 * the devid value of VFIO_PCI_DEVID_OWNED is provided in the return
712 * structure.
713 *
714 * A devid value of VFIO_PCI_DEVID_NOT_OWNED is provided in the return
715 * structure for affected devices where device is NOT represented in the
716 * dev_set or ownership is not available. Such devices prevent the use
717 * of VFIO_DEVICE_PCI_HOT_RESET ioctl outside of the proof-of-ownership
718 * calling conventions (ie. via legacy group accessed devices). Flag
719 * VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED would be set when all the
720 * affected devices are represented in the dev_set and also owned by
721 * the user. This flag is available only when
722 * flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set, otherwise reserved.
723 * When set, user could invoke VFIO_DEVICE_PCI_HOT_RESET with a zero
724 * length fd array on the calling device as the ownership is validated
725 * by iommufd_ctx.
726 *
727 * Return: 0 on success, -errno on failure:
728 * -enospc = insufficient buffer, -enodev = unsupported for device.
729 */
730struct vfio_pci_dependent_device {
731 union {
732 __u32 group_id;
733 __u32 devid;
734#define VFIO_PCI_DEVID_OWNED 0
735#define VFIO_PCI_DEVID_NOT_OWNED -1
736 };
737 __u16 segment;
738 __u8 bus;
739 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */
740};
741
742struct vfio_pci_hot_reset_info {
743 __u32 argsz;
744 __u32 flags;
745#define VFIO_PCI_HOT_RESET_FLAG_DEV_ID (1 << 0)
746#define VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED (1 << 1)
747 __u32 count;
748 struct vfio_pci_dependent_device devices[];
749};
750
751#define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
752
753/**
754 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
755 * struct vfio_pci_hot_reset)
756 *
757 * A PCI hot reset results in either a bus or slot reset which may affect
758 * other devices sharing the bus/slot. The calling user must have
759 * ownership of the full set of affected devices as determined by the
760 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO ioctl.
761 *
762 * When called on a device file descriptor acquired through the vfio
763 * group interface, the user is required to provide proof of ownership
764 * of those affected devices via the group_fds array in struct
765 * vfio_pci_hot_reset.
766 *
767 * When called on a direct cdev opened vfio device, the flags field of
768 * struct vfio_pci_hot_reset_info reports the ownership status of the
769 * affected devices and this ioctl must be called with an empty group_fds
770 * array. See above INFO ioctl definition for ownership requirements.
771 *
772 * Mixed usage of legacy groups and cdevs across the set of affected
773 * devices is not supported.
774 *
775 * Return: 0 on success, -errno on failure.
776 */
777struct vfio_pci_hot_reset {
778 __u32 argsz;
779 __u32 flags;
780 __u32 count;
781 __s32 group_fds[];
782};
783
784#define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13)
785
786/**
787 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
788 * struct vfio_device_query_gfx_plane)
789 *
790 * Set the drm_plane_type and flags, then retrieve the gfx plane info.
791 *
792 * flags supported:
793 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
794 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
795 * support for dma-buf.
796 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
797 * to ask if the mdev supports region. 0 on support, -EINVAL on no
798 * support for region.
799 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
800 * with each call to query the plane info.
801 * - Others are invalid and return -EINVAL.
802 *
803 * Note:
804 * 1. Plane could be disabled by guest. In that case, success will be
805 * returned with zero-initialized drm_format, size, width and height
806 * fields.
807 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
808 *
809 * Return: 0 on success, -errno on other failure.
810 */
811struct vfio_device_gfx_plane_info {
812 __u32 argsz;
813 __u32 flags;
814#define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
815#define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
816#define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
817 /* in */
818 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */
819 /* out */
820 __u32 drm_format; /* drm format of plane */
821 __aligned_u64 drm_format_mod; /* tiled mode */
822 __u32 width; /* width of plane */
823 __u32 height; /* height of plane */
824 __u32 stride; /* stride of plane */
825 __u32 size; /* size of plane in bytes, align on page*/
826 __u32 x_pos; /* horizontal position of cursor plane */
827 __u32 y_pos; /* vertical position of cursor plane*/
828 __u32 x_hot; /* horizontal position of cursor hotspot */
829 __u32 y_hot; /* vertical position of cursor hotspot */
830 union {
831 __u32 region_index; /* region index */
832 __u32 dmabuf_id; /* dma-buf id */
833 };
834 __u32 reserved;
835};
836
837#define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
838
839/**
840 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
841 *
842 * Return a new dma-buf file descriptor for an exposed guest framebuffer
843 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
844 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
845 */
846
847#define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
848
849/**
850 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
851 * struct vfio_device_ioeventfd)
852 *
853 * Perform a write to the device at the specified device fd offset, with
854 * the specified data and width when the provided eventfd is triggered.
855 * vfio bus drivers may not support this for all regions, for all widths,
856 * or at all. vfio-pci currently only enables support for BAR regions,
857 * excluding the MSI-X vector table.
858 *
859 * Return: 0 on success, -errno on failure.
860 */
861struct vfio_device_ioeventfd {
862 __u32 argsz;
863 __u32 flags;
864#define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */
865#define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */
866#define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */
867#define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */
868#define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf)
869 __aligned_u64 offset; /* device fd offset of write */
870 __aligned_u64 data; /* data to be written */
871 __s32 fd; /* -1 for de-assignment */
872 __u32 reserved;
873};
874
875#define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16)
876
877/**
878 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
879 * struct vfio_device_feature)
880 *
881 * Get, set, or probe feature data of the device. The feature is selected
882 * using the FEATURE_MASK portion of the flags field. Support for a feature
883 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe
884 * may optionally include the GET and/or SET bits to determine read vs write
885 * access of the feature respectively. Probing a feature will return success
886 * if the feature is supported and all of the optionally indicated GET/SET
887 * methods are supported. The format of the data portion of the structure is
888 * specific to the given feature. The data portion is not required for
889 * probing. GET and SET are mutually exclusive, except for use with PROBE.
890 *
891 * Return 0 on success, -errno on failure.
892 */
893struct vfio_device_feature {
894 __u32 argsz;
895 __u32 flags;
896#define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */
897#define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */
898#define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */
899#define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */
900 __u8 data[];
901};
902
903#define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17)
904
905/*
906 * VFIO_DEVICE_BIND_IOMMUFD - _IOR(VFIO_TYPE, VFIO_BASE + 18,
907 * struct vfio_device_bind_iommufd)
908 * @argsz: User filled size of this data.
909 * @flags: Must be 0 or a bit flags of VFIO_DEVICE_BIND_*
910 * @iommufd: iommufd to bind.
911 * @out_devid: The device id generated by this bind. devid is a handle for
912 * this device/iommufd bond and can be used in IOMMUFD commands.
913 * @token_uuid_ptr: Valid if VFIO_DEVICE_BIND_FLAG_TOKEN. Points to a 16 byte
914 * UUID in the same format as VFIO_DEVICE_FEATURE_PCI_VF_TOKEN.
915 *
916 * Bind a vfio_device to the specified iommufd.
917 *
918 * User is restricted from accessing the device before the binding operation
919 * is completed. Only allowed on cdev fds.
920 *
921 * Unbind is automatically conducted when device fd is closed.
922 *
923 * A token is sometimes required to open the device, unless this is known to be
924 * needed VFIO_DEVICE_BIND_FLAG_TOKEN should not be set and token_uuid_ptr is
925 * ignored. The only case today is a PF/VF relationship where the VF bind must
926 * be provided the same token as VFIO_DEVICE_FEATURE_PCI_VF_TOKEN provided to
927 * the PF.
928 *
929 * Return: 0 on success, -errno on failure.
930 */
931struct vfio_device_bind_iommufd {
932 __u32 argsz;
933 __u32 flags;
934#define VFIO_DEVICE_BIND_FLAG_TOKEN (1 << 0)
935 __s32 iommufd;
936 __u32 out_devid;
937 __aligned_u64 token_uuid_ptr;
938};
939
940#define VFIO_DEVICE_BIND_IOMMUFD _IO(VFIO_TYPE, VFIO_BASE + 18)
941
942/*
943 * VFIO_DEVICE_ATTACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 19,
944 * struct vfio_device_attach_iommufd_pt)
945 * @argsz: User filled size of this data.
946 * @flags: Flags for attach.
947 * @pt_id: Input the target id which can represent an ioas or a hwpt
948 * allocated via iommufd subsystem.
949 * Output the input ioas id or the attached hwpt id which could
950 * be the specified hwpt itself or a hwpt automatically created
951 * for the specified ioas by kernel during the attachment.
952 * @pasid: The pasid to be attached, only meaningful when
953 * VFIO_DEVICE_ATTACH_PASID is set in @flags
954 *
955 * Associate the device with an address space within the bound iommufd.
956 * Undo by VFIO_DEVICE_DETACH_IOMMUFD_PT or device fd close. This is only
957 * allowed on cdev fds.
958 *
959 * If a vfio device or a pasid of this device is currently attached to a valid
960 * hw_pagetable (hwpt), without doing a VFIO_DEVICE_DETACH_IOMMUFD_PT, a second
961 * VFIO_DEVICE_ATTACH_IOMMUFD_PT ioctl passing in another hwpt id is allowed.
962 * This action, also known as a hw_pagetable replacement, will replace the
963 * currently attached hwpt of the device or the pasid of this device with a new
964 * hwpt corresponding to the given pt_id.
965 *
966 * Return: 0 on success, -errno on failure.
967 */
968struct vfio_device_attach_iommufd_pt {
969 __u32 argsz;
970 __u32 flags;
971#define VFIO_DEVICE_ATTACH_PASID (1 << 0)
972 __u32 pt_id;
973 __u32 pasid;
974};
975
976#define VFIO_DEVICE_ATTACH_IOMMUFD_PT _IO(VFIO_TYPE, VFIO_BASE + 19)
977
978/*
979 * VFIO_DEVICE_DETACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 20,
980 * struct vfio_device_detach_iommufd_pt)
981 * @argsz: User filled size of this data.
982 * @flags: Flags for detach.
983 * @pasid: The pasid to be detached, only meaningful when
984 * VFIO_DEVICE_DETACH_PASID is set in @flags
985 *
986 * Remove the association of the device or a pasid of the device and its current
987 * associated address space. After it, the device or the pasid should be in a
988 * blocking DMA state. This is only allowed on cdev fds.
989 *
990 * Return: 0 on success, -errno on failure.
991 */
992struct vfio_device_detach_iommufd_pt {
993 __u32 argsz;
994 __u32 flags;
995#define VFIO_DEVICE_DETACH_PASID (1 << 0)
996 __u32 pasid;
997};
998
999#define VFIO_DEVICE_DETACH_IOMMUFD_PT _IO(VFIO_TYPE, VFIO_BASE + 20)
1000
1001/*
1002 * Provide support for setting a PCI VF Token, which is used as a shared
1003 * secret between PF and VF drivers. This feature may only be set on a
1004 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
1005 * open VFs. Data provided when setting this feature is a 16-byte array
1006 * (__u8 b[16]), representing a UUID.
1007 */
1008#define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0)
1009
1010/*
1011 * Indicates the device can support the migration API through
1012 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
1013 * ERROR states are always supported. Support for additional states is
1014 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
1015 * set.
1016 *
1017 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
1018 * RESUMING are supported.
1019 *
1020 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
1021 * is supported in addition to the STOP_COPY states.
1022 *
1023 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
1024 * PRE_COPY is supported in addition to the STOP_COPY states.
1025 *
1026 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
1027 * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
1028 * in addition to the STOP_COPY states.
1029 *
1030 * Other combinations of flags have behavior to be defined in the future.
1031 */
1032struct vfio_device_feature_migration {
1033 __aligned_u64 flags;
1034#define VFIO_MIGRATION_STOP_COPY (1 << 0)
1035#define VFIO_MIGRATION_P2P (1 << 1)
1036#define VFIO_MIGRATION_PRE_COPY (1 << 2)
1037};
1038#define VFIO_DEVICE_FEATURE_MIGRATION 1
1039
1040/*
1041 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
1042 * device. The new state is supplied in device_state, see enum
1043 * vfio_device_mig_state for details
1044 *
1045 * The kernel migration driver must fully transition the device to the new state
1046 * value before the operation returns to the user.
1047 *
1048 * The kernel migration driver must not generate asynchronous device state
1049 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
1050 * ioctl as described above.
1051 *
1052 * If this function fails then current device_state may be the original
1053 * operating state or some other state along the combination transition path.
1054 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
1055 * to return to the original state, or attempt to return to some other state
1056 * such as RUNNING or STOP.
1057 *
1058 * If the new_state starts a new data transfer session then the FD associated
1059 * with that session is returned in data_fd. The user is responsible to close
1060 * this FD when it is finished. The user must consider the migration data stream
1061 * carried over the FD to be opaque and must preserve the byte order of the
1062 * stream. The user is not required to preserve buffer segmentation when writing
1063 * the data stream during the RESUMING operation.
1064 *
1065 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
1066 * device, data_fd will be -1.
1067 */
1068struct vfio_device_feature_mig_state {
1069 __u32 device_state; /* From enum vfio_device_mig_state */
1070 __s32 data_fd;
1071};
1072#define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
1073
1074/*
1075 * The device migration Finite State Machine is described by the enum
1076 * vfio_device_mig_state. Some of the FSM arcs will create a migration data
1077 * transfer session by returning a FD, in this case the migration data will
1078 * flow over the FD using read() and write() as discussed below.
1079 *
1080 * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
1081 * RUNNING - The device is running normally
1082 * STOP - The device does not change the internal or external state
1083 * STOP_COPY - The device internal state can be read out
1084 * RESUMING - The device is stopped and is loading a new internal state
1085 * ERROR - The device has failed and must be reset
1086 *
1087 * And optional states to support VFIO_MIGRATION_P2P:
1088 * RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
1089 * And VFIO_MIGRATION_PRE_COPY:
1090 * PRE_COPY - The device is running normally but tracking internal state
1091 * changes
1092 * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
1093 * PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
1094 *
1095 * The FSM takes actions on the arcs between FSM states. The driver implements
1096 * the following behavior for the FSM arcs:
1097 *
1098 * RUNNING_P2P -> STOP
1099 * STOP_COPY -> STOP
1100 * While in STOP the device must stop the operation of the device. The device
1101 * must not generate interrupts, DMA, or any other change to external state.
1102 * It must not change its internal state. When stopped the device and kernel
1103 * migration driver must accept and respond to interaction to support external
1104 * subsystems in the STOP state, for example PCI MSI-X and PCI config space.
1105 * Failure by the user to restrict device access while in STOP must not result
1106 * in error conditions outside the user context (ex. host system faults).
1107 *
1108 * The STOP_COPY arc will terminate a data transfer session.
1109 *
1110 * RESUMING -> STOP
1111 * Leaving RESUMING terminates a data transfer session and indicates the
1112 * device should complete processing of the data delivered by write(). The
1113 * kernel migration driver should complete the incorporation of data written
1114 * to the data transfer FD into the device internal state and perform
1115 * final validity and consistency checking of the new device state. If the
1116 * user provided data is found to be incomplete, inconsistent, or otherwise
1117 * invalid, the migration driver must fail the SET_STATE ioctl and
1118 * optionally go to the ERROR state as described below.
1119 *
1120 * While in STOP the device has the same behavior as other STOP states
1121 * described above.
1122 *
1123 * To abort a RESUMING session the device must be reset.
1124 *
1125 * PRE_COPY -> RUNNING
1126 * RUNNING_P2P -> RUNNING
1127 * While in RUNNING the device is fully operational, the device may generate
1128 * interrupts, DMA, respond to MMIO, all vfio device regions are functional,
1129 * and the device may advance its internal state.
1130 *
1131 * The PRE_COPY arc will terminate a data transfer session.
1132 *
1133 * PRE_COPY_P2P -> RUNNING_P2P
1134 * RUNNING -> RUNNING_P2P
1135 * STOP -> RUNNING_P2P
1136 * While in RUNNING_P2P the device is partially running in the P2P quiescent
1137 * state defined below.
1138 *
1139 * The PRE_COPY_P2P arc will terminate a data transfer session.
1140 *
1141 * RUNNING -> PRE_COPY
1142 * RUNNING_P2P -> PRE_COPY_P2P
1143 * STOP -> STOP_COPY
1144 * PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
1145 * which share a data transfer session. Moving between these states alters
1146 * what is streamed in session, but does not terminate or otherwise affect
1147 * the associated fd.
1148 *
1149 * These arcs begin the process of saving the device state and will return a
1150 * new data_fd. The migration driver may perform actions such as enabling
1151 * dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
1152 *
1153 * Each arc does not change the device operation, the device remains
1154 * RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
1155 * in PRE_COPY_P2P -> STOP_COPY.
1156 *
1157 * PRE_COPY -> PRE_COPY_P2P
1158 * Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
1159 * However, while in the PRE_COPY_P2P state, the device is partially running
1160 * in the P2P quiescent state defined below, like RUNNING_P2P.
1161 *
1162 * PRE_COPY_P2P -> PRE_COPY
1163 * This arc allows returning the device to a full RUNNING behavior while
1164 * continuing all the behaviors of PRE_COPY.
1165 *
1166 * PRE_COPY_P2P -> STOP_COPY
1167 * While in the STOP_COPY state the device has the same behavior as STOP
1168 * with the addition that the data transfers session continues to stream the
1169 * migration state. End of stream on the FD indicates the entire device
1170 * state has been transferred.
1171 *
1172 * The user should take steps to restrict access to vfio device regions while
1173 * the device is in STOP_COPY or risk corruption of the device migration data
1174 * stream.
1175 *
1176 * STOP -> RESUMING
1177 * Entering the RESUMING state starts a process of restoring the device state
1178 * and will return a new data_fd. The data stream fed into the data_fd should
1179 * be taken from the data transfer output of a single FD during saving from
1180 * a compatible device. The migration driver may alter/reset the internal
1181 * device state for this arc if required to prepare the device to receive the
1182 * migration data.
1183 *
1184 * STOP_COPY -> PRE_COPY
1185 * STOP_COPY -> PRE_COPY_P2P
1186 * These arcs are not permitted and return error if requested. Future
1187 * revisions of this API may define behaviors for these arcs, in this case
1188 * support will be discoverable by a new flag in
1189 * VFIO_DEVICE_FEATURE_MIGRATION.
1190 *
1191 * any -> ERROR
1192 * ERROR cannot be specified as a device state, however any transition request
1193 * can be failed with an errno return and may then move the device_state into
1194 * ERROR. In this case the device was unable to execute the requested arc and
1195 * was also unable to restore the device to any valid device_state.
1196 * To recover from ERROR VFIO_DEVICE_RESET must be used to return the
1197 * device_state back to RUNNING.
1198 *
1199 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
1200 * state for the device for the purposes of managing multiple devices within a
1201 * user context where peer-to-peer DMA between devices may be active. The
1202 * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
1203 * any new P2P DMA transactions. If the device can identify P2P transactions
1204 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
1205 * driver must complete any such outstanding operations prior to completing the
1206 * FSM arc into a P2P state. For the purpose of specification the states
1207 * behave as though the device was fully running if not supported. Like while in
1208 * STOP or STOP_COPY the user must not touch the device, otherwise the state
1209 * can be exited.
1210 *
1211 * The remaining possible transitions are interpreted as combinations of the
1212 * above FSM arcs. As there are multiple paths through the FSM arcs the path
1213 * should be selected based on the following rules:
1214 * - Select the shortest path.
1215 * - The path cannot have saving group states as interior arcs, only
1216 * starting/end states.
1217 * Refer to vfio_mig_get_next_state() for the result of the algorithm.
1218 *
1219 * The automatic transit through the FSM arcs that make up the combination
1220 * transition is invisible to the user. When working with combination arcs the
1221 * user may see any step along the path in the device_state if SET_STATE
1222 * fails. When handling these types of errors users should anticipate future
1223 * revisions of this protocol using new states and those states becoming
1224 * visible in this case.
1225 *
1226 * The optional states cannot be used with SET_STATE if the device does not
1227 * support them. The user can discover if these states are supported by using
1228 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
1229 * avoid knowing about these optional states if the kernel driver supports them.
1230 *
1231 * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
1232 * is not present.
1233 */
1234enum vfio_device_mig_state {
1235 VFIO_DEVICE_STATE_ERROR = 0,
1236 VFIO_DEVICE_STATE_STOP = 1,
1237 VFIO_DEVICE_STATE_RUNNING = 2,
1238 VFIO_DEVICE_STATE_STOP_COPY = 3,
1239 VFIO_DEVICE_STATE_RESUMING = 4,
1240 VFIO_DEVICE_STATE_RUNNING_P2P = 5,
1241 VFIO_DEVICE_STATE_PRE_COPY = 6,
1242 VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
1243 VFIO_DEVICE_STATE_NR,
1244};
1245
1246/**
1247 * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
1248 *
1249 * This ioctl is used on the migration data FD in the precopy phase of the
1250 * migration data transfer. It returns an estimate of the current data sizes
1251 * remaining to be transferred. It allows the user to judge when it is
1252 * appropriate to leave PRE_COPY for STOP_COPY.
1253 *
1254 * This ioctl is valid only in PRE_COPY states and kernel driver should
1255 * return -EINVAL from any other migration state.
1256 *
1257 * The vfio_precopy_info data structure returned by this ioctl provides
1258 * estimates of data available from the device during the PRE_COPY states.
1259 * This estimate is split into two categories, initial_bytes and
1260 * dirty_bytes.
1261 *
1262 * The initial_bytes field indicates the amount of initial precopy
1263 * data available from the device. This field should have a non-zero initial
1264 * value and decrease as migration data is read from the device.
1265 * It is recommended to leave PRE_COPY for STOP_COPY only after this field
1266 * reaches zero. Leaving PRE_COPY earlier might make things slower.
1267 *
1268 * The dirty_bytes field tracks device state changes relative to data
1269 * previously retrieved. This field starts at zero and may increase as
1270 * the internal device state is modified or decrease as that modified
1271 * state is read from the device.
1272 *
1273 * Userspace may use the combination of these fields to estimate the
1274 * potential data size available during the PRE_COPY phases, as well as
1275 * trends relative to the rate the device is dirtying its internal
1276 * state, but these fields are not required to have any bearing relative
1277 * to the data size available during the STOP_COPY phase.
1278 *
1279 * Drivers have a lot of flexibility in when and what they transfer during the
1280 * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
1281 *
1282 * During pre-copy the migration data FD has a temporary "end of stream" that is
1283 * reached when both initial_bytes and dirty_byte are zero. For instance, this
1284 * may indicate that the device is idle and not currently dirtying any internal
1285 * state. When read() is done on this temporary end of stream the kernel driver
1286 * should return ENOMSG from read(). Userspace can wait for more data (which may
1287 * never come) by using poll.
1288 *
1289 * Once in STOP_COPY the migration data FD has a permanent end of stream
1290 * signaled in the usual way by read() always returning 0 and poll always
1291 * returning readable. ENOMSG may not be returned in STOP_COPY.
1292 * Support for this ioctl is mandatory if a driver claims to support
1293 * VFIO_MIGRATION_PRE_COPY.
1294 *
1295 * Return: 0 on success, -1 and errno set on failure.
1296 */
1297struct vfio_precopy_info {
1298 __u32 argsz;
1299 __u32 flags;
1300 __aligned_u64 initial_bytes;
1301 __aligned_u64 dirty_bytes;
1302};
1303
1304#define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
1305
1306/*
1307 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
1308 * state with the platform-based power management. Device use of lower power
1309 * states depends on factors managed by the runtime power management core,
1310 * including system level support and coordinating support among dependent
1311 * devices. Enabling device low power entry does not guarantee lower power
1312 * usage by the device, nor is a mechanism provided through this feature to
1313 * know the current power state of the device. If any device access happens
1314 * (either from the host or through the vfio uAPI) when the device is in the
1315 * low power state, then the host will move the device out of the low power
1316 * state as necessary prior to the access. Once the access is completed, the
1317 * device may re-enter the low power state. For single shot low power support
1318 * with wake-up notification, see
1319 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below. Access to mmap'd
1320 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after
1321 * calling LOW_POWER_EXIT.
1322 */
1323#define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3
1324
1325/*
1326 * This device feature has the same behavior as
1327 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user
1328 * provides an eventfd for wake-up notification. When the device moves out of
1329 * the low power state for the wake-up, the host will not allow the device to
1330 * re-enter a low power state without a subsequent user call to one of the low
1331 * power entry device feature IOCTLs. Access to mmap'd device regions is
1332 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the
1333 * low power exit. The low power exit can happen either through LOW_POWER_EXIT
1334 * or through any other access (where the wake-up notification has been
1335 * generated). The access to mmap'd device regions will not trigger low power
1336 * exit.
1337 *
1338 * The notification through the provided eventfd will be generated only when
1339 * the device has entered and is resumed from a low power state after
1340 * calling this device feature IOCTL. A device that has not entered low power
1341 * state, as managed through the runtime power management core, will not
1342 * generate a notification through the provided eventfd on access. Calling the
1343 * LOW_POWER_EXIT feature is optional in the case where notification has been
1344 * signaled on the provided eventfd that a resume from low power has occurred.
1345 */
1346struct vfio_device_low_power_entry_with_wakeup {
1347 __s32 wakeup_eventfd;
1348 __u32 reserved;
1349};
1350
1351#define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4
1352
1353/*
1354 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as
1355 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or
1356 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features.
1357 * This device feature IOCTL may itself generate a wakeup eventfd notification
1358 * in the latter case if the device had previously entered a low power state.
1359 */
1360#define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5
1361
1362/*
1363 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging.
1364 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports
1365 * DMA logging.
1366 *
1367 * DMA logging allows a device to internally record what DMAs the device is
1368 * initiating and report them back to userspace. It is part of the VFIO
1369 * migration infrastructure that allows implementing dirty page tracking
1370 * during the pre copy phase of live migration. Only DMA WRITEs are logged,
1371 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE.
1372 *
1373 * When DMA logging is started a range of IOVAs to monitor is provided and the
1374 * device can optimize its logging to cover only the IOVA range given. Each
1375 * DMA that the device initiates inside the range will be logged by the device
1376 * for later retrieval.
1377 *
1378 * page_size is an input that hints what tracking granularity the device
1379 * should try to achieve. If the device cannot do the hinted page size then
1380 * it's the driver choice which page size to pick based on its support.
1381 * On output the device will return the page size it selected.
1382 *
1383 * ranges is a pointer to an array of
1384 * struct vfio_device_feature_dma_logging_range.
1385 *
1386 * The core kernel code guarantees to support by minimum num_ranges that fit
1387 * into a single kernel page. User space can try higher values but should give
1388 * up if the above can't be achieved as of some driver limitations.
1389 *
1390 * A single call to start device DMA logging can be issued and a matching stop
1391 * should follow at the end. Another start is not allowed in the meantime.
1392 */
1393struct vfio_device_feature_dma_logging_control {
1394 __aligned_u64 page_size;
1395 __u32 num_ranges;
1396 __u32 __reserved;
1397 __aligned_u64 ranges;
1398};
1399
1400struct vfio_device_feature_dma_logging_range {
1401 __aligned_u64 iova;
1402 __aligned_u64 length;
1403};
1404
1405#define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6
1406
1407/*
1408 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started
1409 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START
1410 */
1411#define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7
1412
1413/*
1414 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log
1415 *
1416 * Query the device's DMA log for written pages within the given IOVA range.
1417 * During querying the log is cleared for the IOVA range.
1418 *
1419 * bitmap is a pointer to an array of u64s that will hold the output bitmap
1420 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits
1421 * is given by:
1422 * bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64))
1423 *
1424 * The input page_size can be any power of two value and does not have to
1425 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver
1426 * will format its internal logging to match the reporting page size, possibly
1427 * by replicating bits if the internal page size is lower than requested.
1428 *
1429 * The LOGGING_REPORT will only set bits in the bitmap and never clear or
1430 * perform any initialization of the user provided bitmap.
1431 *
1432 * If any error is returned userspace should assume that the dirty log is
1433 * corrupted. Error recovery is to consider all memory dirty and try to
1434 * restart the dirty tracking, or to abort/restart the whole migration.
1435 *
1436 * If DMA logging is not enabled, an error will be returned.
1437 *
1438 */
1439struct vfio_device_feature_dma_logging_report {
1440 __aligned_u64 iova;
1441 __aligned_u64 length;
1442 __aligned_u64 page_size;
1443 __aligned_u64 bitmap;
1444};
1445
1446#define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
1447
1448/*
1449 * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
1450 * be required to complete stop copy.
1451 *
1452 * Note: Can be called on each device state.
1453 */
1454
1455struct vfio_device_feature_mig_data_size {
1456 __aligned_u64 stop_copy_length;
1457};
1458
1459#define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
1460
1461/**
1462 * Upon VFIO_DEVICE_FEATURE_SET, set or clear the BUS mastering for the device
1463 * based on the operation specified in op flag.
1464 *
1465 * The functionality is incorporated for devices that needs bus master control,
1466 * but the in-band device interface lacks the support. Consequently, it is not
1467 * applicable to PCI devices, as bus master control for PCI devices is managed
1468 * in-band through the configuration space. At present, this feature is supported
1469 * only for CDX devices.
1470 * When the device's BUS MASTER setting is configured as CLEAR, it will result in
1471 * blocking all incoming DMA requests from the device. On the other hand, configuring
1472 * the device's BUS MASTER setting as SET (enable) will grant the device the
1473 * capability to perform DMA to the host memory.
1474 */
1475struct vfio_device_feature_bus_master {
1476 __u32 op;
1477#define VFIO_DEVICE_FEATURE_CLEAR_MASTER 0 /* Clear Bus Master */
1478#define VFIO_DEVICE_FEATURE_SET_MASTER 1 /* Set Bus Master */
1479};
1480#define VFIO_DEVICE_FEATURE_BUS_MASTER 10
1481
1482/**
1483 * Upon VFIO_DEVICE_FEATURE_GET create a dma_buf fd for the
1484 * regions selected.
1485 *
1486 * open_flags are the typical flags passed to open(2), eg O_RDWR, O_CLOEXEC,
1487 * etc. offset/length specify a slice of the region to create the dmabuf from.
1488 * nr_ranges is the total number of (P2P DMA) ranges that comprise the dmabuf.
1489 *
1490 * flags should be 0.
1491 *
1492 * Return: The fd number on success, -1 and errno is set on failure.
1493 */
1494#define VFIO_DEVICE_FEATURE_DMA_BUF 11
1495
1496struct vfio_region_dma_range {
1497 __u64 offset;
1498 __u64 length;
1499};
1500
1501struct vfio_device_feature_dma_buf {
1502 __u32 region_index;
1503 __u32 open_flags;
1504 __u32 flags;
1505 __u32 nr_ranges;
1506 struct vfio_region_dma_range dma_ranges[] __counted_by(nr_ranges);
1507};
1508
1509/* -------- API for Type1 VFIO IOMMU -------- */
1510
1511/**
1512 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1513 *
1514 * Retrieve information about the IOMMU object. Fills in provided
1515 * struct vfio_iommu_info. Caller sets argsz.
1516 *
1517 * XXX Should we do these by CHECK_EXTENSION too?
1518 */
1519struct vfio_iommu_type1_info {
1520 __u32 argsz;
1521 __u32 flags;
1522#define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */
1523#define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */
1524 __aligned_u64 iova_pgsizes; /* Bitmap of supported page sizes */
1525 __u32 cap_offset; /* Offset within info struct of first cap */
1526 __u32 pad;
1527};
1528
1529/*
1530 * The IOVA capability allows to report the valid IOVA range(s)
1531 * excluding any non-relaxable reserved regions exposed by
1532 * devices attached to the container. Any DMA map attempt
1533 * outside the valid iova range will return error.
1534 *
1535 * The structures below define version 1 of this capability.
1536 */
1537#define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1
1538
1539struct vfio_iova_range {
1540 __u64 start;
1541 __u64 end;
1542};
1543
1544struct vfio_iommu_type1_info_cap_iova_range {
1545 struct vfio_info_cap_header header;
1546 __u32 nr_iovas;
1547 __u32 reserved;
1548 struct vfio_iova_range iova_ranges[];
1549};
1550
1551/*
1552 * The migration capability allows to report supported features for migration.
1553 *
1554 * The structures below define version 1 of this capability.
1555 *
1556 * The existence of this capability indicates that IOMMU kernel driver supports
1557 * dirty page logging.
1558 *
1559 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1560 * page logging.
1561 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1562 * size in bytes that can be used by user applications when getting the dirty
1563 * bitmap.
1564 */
1565#define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2
1566
1567struct vfio_iommu_type1_info_cap_migration {
1568 struct vfio_info_cap_header header;
1569 __u32 flags;
1570 __u64 pgsize_bitmap;
1571 __u64 max_dirty_bitmap_size; /* in bytes */
1572};
1573
1574/*
1575 * The DMA available capability allows to report the current number of
1576 * simultaneously outstanding DMA mappings that are allowed.
1577 *
1578 * The structure below defines version 1 of this capability.
1579 *
1580 * avail: specifies the current number of outstanding DMA mappings allowed.
1581 */
1582#define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1583
1584struct vfio_iommu_type1_info_dma_avail {
1585 struct vfio_info_cap_header header;
1586 __u32 avail;
1587};
1588
1589#define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1590
1591/**
1592 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1593 *
1594 * Map process virtual addresses to IO virtual addresses using the
1595 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1596 *
1597 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr
1598 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To
1599 * maintain memory consistency within the user application, the updated vaddr
1600 * must address the same memory object as originally mapped. Failure to do so
1601 * will result in user memory corruption and/or device misbehavior. iova and
1602 * size must match those in the original MAP_DMA call. Protection is not
1603 * changed, and the READ & WRITE flags must be 0.
1604 */
1605struct vfio_iommu_type1_dma_map {
1606 __u32 argsz;
1607 __u32 flags;
1608#define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */
1609#define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */
1610#define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1611 __u64 vaddr; /* Process virtual address */
1612 __u64 iova; /* IO virtual address */
1613 __u64 size; /* Size of mapping (bytes) */
1614};
1615
1616#define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1617
1618struct vfio_bitmap {
1619 __u64 pgsize; /* page size for bitmap in bytes */
1620 __u64 size; /* in bytes */
1621 __u64 __user *data; /* one bit per page */
1622};
1623
1624/**
1625 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1626 * struct vfio_dma_unmap)
1627 *
1628 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1629 * Caller sets argsz. The actual unmapped size is returned in the size
1630 * field. No guarantee is made to the user that arbitrary unmaps of iova
1631 * or size different from those used in the original mapping call will
1632 * succeed.
1633 *
1634 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1635 * before unmapping IO virtual addresses. When this flag is set, the user must
1636 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1637 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1638 * A bit in the bitmap represents one page, of user provided page size in
1639 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1640 * indicates that the page at that offset from iova is dirty. A Bitmap of the
1641 * pages in the range of unmapped size is returned in the user-provided
1642 * vfio_bitmap.data.
1643 *
1644 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size
1645 * must be 0. This cannot be combined with the get-dirty-bitmap flag.
1646 *
1647 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1648 * virtual addresses in the iova range. DMA to already-mapped pages continues.
1649 * Groups may not be added to the container while any addresses are invalid.
1650 * This cannot be combined with the get-dirty-bitmap flag.
1651 */
1652struct vfio_iommu_type1_dma_unmap {
1653 __u32 argsz;
1654 __u32 flags;
1655#define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1656#define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1)
1657#define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2)
1658 __u64 iova; /* IO virtual address */
1659 __u64 size; /* Size of mapping (bytes) */
1660 __u8 data[];
1661};
1662
1663#define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1664
1665/*
1666 * IOCTLs to enable/disable IOMMU container usage.
1667 * No parameters are supported.
1668 */
1669#define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15)
1670#define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16)
1671
1672/**
1673 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1674 * struct vfio_iommu_type1_dirty_bitmap)
1675 * IOCTL is used for dirty pages logging.
1676 * Caller should set flag depending on which operation to perform, details as
1677 * below:
1678 *
1679 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1680 * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1681 * the device; designed to be used when a migration is in progress. Dirty pages
1682 * are logged until logging is disabled by user application by calling the IOCTL
1683 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1684 *
1685 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1686 * the IOMMU driver to stop logging dirtied pages.
1687 *
1688 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1689 * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1690 * The user must specify the IOVA range and the pgsize through the structure
1691 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1692 * supports getting a bitmap of the smallest supported pgsize only and can be
1693 * modified in future to get a bitmap of any specified supported pgsize. The
1694 * user must provide a zeroed memory area for the bitmap memory and specify its
1695 * size in bitmap.size. One bit is used to represent one page consecutively
1696 * starting from iova offset. The user should provide page size in bitmap.pgsize
1697 * field. A bit set in the bitmap indicates that the page at that offset from
1698 * iova is dirty. The caller must set argsz to a value including the size of
1699 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1700 * actual bitmap. If dirty pages logging is not enabled, an error will be
1701 * returned.
1702 *
1703 * Only one of the flags _START, _STOP and _GET may be specified at a time.
1704 *
1705 */
1706struct vfio_iommu_type1_dirty_bitmap {
1707 __u32 argsz;
1708 __u32 flags;
1709#define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0)
1710#define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1)
1711#define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2)
1712 __u8 data[];
1713};
1714
1715struct vfio_iommu_type1_dirty_bitmap_get {
1716 __u64 iova; /* IO virtual address */
1717 __u64 size; /* Size of iova range */
1718 struct vfio_bitmap bitmap;
1719};
1720
1721#define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17)
1722
1723/* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1724
1725/*
1726 * The SPAPR TCE DDW info struct provides the information about
1727 * the details of Dynamic DMA window capability.
1728 *
1729 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1730 * @max_dynamic_windows_supported tells the maximum number of windows
1731 * which the platform can create.
1732 * @levels tells the maximum number of levels in multi-level IOMMU tables;
1733 * this allows splitting a table into smaller chunks which reduces
1734 * the amount of physically contiguous memory required for the table.
1735 */
1736struct vfio_iommu_spapr_tce_ddw_info {
1737 __u64 pgsizes; /* Bitmap of supported page sizes */
1738 __u32 max_dynamic_windows_supported;
1739 __u32 levels;
1740};
1741
1742/*
1743 * The SPAPR TCE info struct provides the information about the PCI bus
1744 * address ranges available for DMA, these values are programmed into
1745 * the hardware so the guest has to know that information.
1746 *
1747 * The DMA 32 bit window start is an absolute PCI bus address.
1748 * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1749 * addresses too so the window works as a filter rather than an offset
1750 * for IOVA addresses.
1751 *
1752 * Flags supported:
1753 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1754 * (DDW) support is present. @ddw is only supported when DDW is present.
1755 */
1756struct vfio_iommu_spapr_tce_info {
1757 __u32 argsz;
1758 __u32 flags;
1759#define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */
1760 __u32 dma32_window_start; /* 32 bit window start (bytes) */
1761 __u32 dma32_window_size; /* 32 bit window size (bytes) */
1762 struct vfio_iommu_spapr_tce_ddw_info ddw;
1763};
1764
1765#define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1766
1767/*
1768 * EEH PE operation struct provides ways to:
1769 * - enable/disable EEH functionality;
1770 * - unfreeze IO/DMA for frozen PE;
1771 * - read PE state;
1772 * - reset PE;
1773 * - configure PE;
1774 * - inject EEH error.
1775 */
1776struct vfio_eeh_pe_err {
1777 __u32 type;
1778 __u32 func;
1779 __u64 addr;
1780 __u64 mask;
1781};
1782
1783struct vfio_eeh_pe_op {
1784 __u32 argsz;
1785 __u32 flags;
1786 __u32 op;
1787 union {
1788 struct vfio_eeh_pe_err err;
1789 };
1790};
1791
1792#define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */
1793#define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */
1794#define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */
1795#define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */
1796#define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */
1797#define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */
1798#define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */
1799#define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */
1800#define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */
1801#define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */
1802#define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */
1803#define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */
1804#define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */
1805#define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */
1806#define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */
1807
1808#define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21)
1809
1810/**
1811 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1812 *
1813 * Registers user space memory where DMA is allowed. It pins
1814 * user pages and does the locked memory accounting so
1815 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1816 * get faster.
1817 */
1818struct vfio_iommu_spapr_register_memory {
1819 __u32 argsz;
1820 __u32 flags;
1821 __u64 vaddr; /* Process virtual address */
1822 __u64 size; /* Size of mapping (bytes) */
1823};
1824#define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17)
1825
1826/**
1827 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1828 *
1829 * Unregisters user space memory registered with
1830 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1831 * Uses vfio_iommu_spapr_register_memory for parameters.
1832 */
1833#define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18)
1834
1835/**
1836 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1837 *
1838 * Creates an additional TCE table and programs it (sets a new DMA window)
1839 * to every IOMMU group in the container. It receives page shift, window
1840 * size and number of levels in the TCE table being created.
1841 *
1842 * It allocates and returns an offset on a PCI bus of the new DMA window.
1843 */
1844struct vfio_iommu_spapr_tce_create {
1845 __u32 argsz;
1846 __u32 flags;
1847 /* in */
1848 __u32 page_shift;
1849 __u32 __resv1;
1850 __u64 window_size;
1851 __u32 levels;
1852 __u32 __resv2;
1853 /* out */
1854 __u64 start_addr;
1855};
1856#define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19)
1857
1858/**
1859 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1860 *
1861 * Unprograms a TCE table from all groups in the container and destroys it.
1862 * It receives a PCI bus offset as a window id.
1863 */
1864struct vfio_iommu_spapr_tce_remove {
1865 __u32 argsz;
1866 __u32 flags;
1867 /* in */
1868 __u64 start_addr;
1869};
1870#define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20)
1871
1872/* ***************************************************************** */
1873
1874#endif /* _UAPIVFIO_H */