Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2/*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12#ifndef IB_VERBS_H
13#define IB_VERBS_H
14
15#include <linux/ethtool.h>
16#include <linux/types.h>
17#include <linux/device.h>
18#include <linux/dma-mapping.h>
19#include <linux/kref.h>
20#include <linux/list.h>
21#include <linux/rwsem.h>
22#include <linux/workqueue.h>
23#include <linux/irq_poll.h>
24#include <uapi/linux/if_ether.h>
25#include <net/ipv6.h>
26#include <net/ip.h>
27#include <linux/string.h>
28#include <linux/slab.h>
29#include <linux/netdevice.h>
30#include <linux/refcount.h>
31#include <linux/if_link.h>
32#include <linux/atomic.h>
33#include <linux/mmu_notifier.h>
34#include <linux/uaccess.h>
35#include <linux/cgroup_rdma.h>
36#include <linux/irqflags.h>
37#include <linux/preempt.h>
38#include <linux/dim.h>
39#include <uapi/rdma/ib_user_verbs.h>
40#include <rdma/rdma_counter.h>
41#include <rdma/restrack.h>
42#include <rdma/signature.h>
43#include <uapi/rdma/rdma_user_ioctl.h>
44#include <uapi/rdma/ib_user_ioctl_verbs.h>
45#include <linux/pci-tph.h>
46
47#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
48
49struct ib_umem_odp;
50struct ib_uqp_object;
51struct ib_usrq_object;
52struct ib_uwq_object;
53struct rdma_cm_id;
54struct ib_port;
55struct hw_stats_device_data;
56
57extern struct workqueue_struct *ib_wq;
58extern struct workqueue_struct *ib_comp_wq;
59extern struct workqueue_struct *ib_comp_unbound_wq;
60
61struct ib_ucq_object;
62
63__printf(2, 3) __cold
64void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
65__printf(2, 3) __cold
66void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
67__printf(2, 3) __cold
68void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
69__printf(2, 3) __cold
70void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
71__printf(2, 3) __cold
72void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
73__printf(2, 3) __cold
74void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
75__printf(2, 3) __cold
76void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
77
78#if defined(CONFIG_DYNAMIC_DEBUG) || \
79 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
80#define ibdev_dbg(__dev, format, args...) \
81 dynamic_ibdev_dbg(__dev, format, ##args)
82#else
83__printf(2, 3) __cold
84static inline
85void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
86#endif
87
88#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
89do { \
90 static DEFINE_RATELIMIT_STATE(_rs, \
91 DEFAULT_RATELIMIT_INTERVAL, \
92 DEFAULT_RATELIMIT_BURST); \
93 if (__ratelimit(&_rs)) \
94 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
95} while (0)
96
97#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
98 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
99#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
101#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
103#define ibdev_err_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
105#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
107#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
109#define ibdev_info_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
111
112#if defined(CONFIG_DYNAMIC_DEBUG) || \
113 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
114/* descriptor check is first to prevent flooding with "callbacks suppressed" */
115#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
116do { \
117 static DEFINE_RATELIMIT_STATE(_rs, \
118 DEFAULT_RATELIMIT_INTERVAL, \
119 DEFAULT_RATELIMIT_BURST); \
120 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
121 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
122 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
123 ##__VA_ARGS__); \
124} while (0)
125#else
126__printf(2, 3) __cold
127static inline
128void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
129#endif
130
131union ib_gid {
132 u8 raw[16];
133 struct {
134 __be64 subnet_prefix;
135 __be64 interface_id;
136 } global;
137};
138
139extern union ib_gid zgid;
140
141enum ib_gid_type {
142 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
143 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
144 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
145 IB_GID_TYPE_SIZE
146};
147
148#define ROCE_V2_UDP_DPORT 4791
149struct ib_gid_attr {
150 struct net_device __rcu *ndev;
151 struct ib_device *device;
152 union ib_gid gid;
153 enum ib_gid_type gid_type;
154 u16 index;
155 u32 port_num;
156};
157
158enum {
159 /* set the local administered indication */
160 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
161};
162
163enum rdma_transport_type {
164 RDMA_TRANSPORT_IB,
165 RDMA_TRANSPORT_IWARP,
166 RDMA_TRANSPORT_USNIC,
167 RDMA_TRANSPORT_USNIC_UDP,
168 RDMA_TRANSPORT_UNSPECIFIED,
169};
170
171enum rdma_protocol_type {
172 RDMA_PROTOCOL_IB,
173 RDMA_PROTOCOL_IBOE,
174 RDMA_PROTOCOL_IWARP,
175 RDMA_PROTOCOL_USNIC_UDP
176};
177
178__attribute_const__ enum rdma_transport_type
179rdma_node_get_transport(unsigned int node_type);
180
181enum rdma_network_type {
182 RDMA_NETWORK_IB,
183 RDMA_NETWORK_ROCE_V1,
184 RDMA_NETWORK_IPV4,
185 RDMA_NETWORK_IPV6
186};
187
188static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189{
190 if (network_type == RDMA_NETWORK_IPV4 ||
191 network_type == RDMA_NETWORK_IPV6)
192 return IB_GID_TYPE_ROCE_UDP_ENCAP;
193 else if (network_type == RDMA_NETWORK_ROCE_V1)
194 return IB_GID_TYPE_ROCE;
195 else
196 return IB_GID_TYPE_IB;
197}
198
199static inline enum rdma_network_type
200rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
201{
202 if (attr->gid_type == IB_GID_TYPE_IB)
203 return RDMA_NETWORK_IB;
204
205 if (attr->gid_type == IB_GID_TYPE_ROCE)
206 return RDMA_NETWORK_ROCE_V1;
207
208 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
209 return RDMA_NETWORK_IPV4;
210 else
211 return RDMA_NETWORK_IPV6;
212}
213
214enum rdma_link_layer {
215 IB_LINK_LAYER_UNSPECIFIED,
216 IB_LINK_LAYER_INFINIBAND,
217 IB_LINK_LAYER_ETHERNET,
218};
219
220enum ib_device_cap_flags {
221 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
222 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
223 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
224 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
225 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
226 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
227 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
228 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
229 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
230 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
231 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
232 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
233 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
234 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
235 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
236
237 /* Reserved, old SEND_W_INV = 1 << 16,*/
238 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
239 /*
240 * Devices should set IB_DEVICE_UD_IP_SUM if they support
241 * insertion of UDP and TCP checksum on outgoing UD IPoIB
242 * messages and can verify the validity of checksum for
243 * incoming messages. Setting this flag implies that the
244 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
245 */
246 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
247 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
248
249 /*
250 * This device supports the IB "base memory management extension",
251 * which includes support for fast registrations (IB_WR_REG_MR,
252 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
253 * also be set by any iWarp device which must support FRs to comply
254 * to the iWarp verbs spec. iWarp devices also support the
255 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
256 * stag.
257 */
258 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
259 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
260 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
261 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
262 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
263 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
264 IB_DEVICE_MANAGED_FLOW_STEERING =
265 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
266 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
267 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
268 /* The device supports padding incoming writes to cacheline. */
269 IB_DEVICE_PCI_WRITE_END_PADDING =
270 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
271 /* Placement type attributes */
272 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
273 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
274 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
275};
276
277enum ib_kernel_cap_flags {
278 /*
279 * This device supports a per-device lkey or stag that can be
280 * used without performing a memory registration for the local
281 * memory. Note that ULPs should never check this flag, but
282 * instead of use the local_dma_lkey flag in the ib_pd structure,
283 * which will always contain a usable lkey.
284 */
285 IBK_LOCAL_DMA_LKEY = 1 << 0,
286 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
287 IBK_INTEGRITY_HANDOVER = 1 << 1,
288 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
289 IBK_ON_DEMAND_PAGING = 1 << 2,
290 /* IB_MR_TYPE_SG_GAPS is supported */
291 IBK_SG_GAPS_REG = 1 << 3,
292 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
293 IBK_ALLOW_USER_UNREG = 1 << 4,
294
295 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
296 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
297 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
298 IBK_UD_TSO = 1 << 6,
299 /* iopib will use the device ops:
300 * get_vf_config
301 * get_vf_guid
302 * get_vf_stats
303 * set_vf_guid
304 * set_vf_link_state
305 */
306 IBK_VIRTUAL_FUNCTION = 1 << 7,
307 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
308 IBK_RDMA_NETDEV_OPA = 1 << 8,
309};
310
311enum ib_atomic_cap {
312 IB_ATOMIC_NONE,
313 IB_ATOMIC_HCA,
314 IB_ATOMIC_GLOB
315};
316
317enum ib_odp_general_cap_bits {
318 IB_ODP_SUPPORT = IB_UVERBS_ODP_SUPPORT,
319 IB_ODP_SUPPORT_IMPLICIT = IB_UVERBS_ODP_SUPPORT_IMPLICIT,
320};
321
322enum ib_odp_transport_cap_bits {
323 IB_ODP_SUPPORT_SEND = IB_UVERBS_ODP_SUPPORT_SEND,
324 IB_ODP_SUPPORT_RECV = IB_UVERBS_ODP_SUPPORT_RECV,
325 IB_ODP_SUPPORT_WRITE = IB_UVERBS_ODP_SUPPORT_WRITE,
326 IB_ODP_SUPPORT_READ = IB_UVERBS_ODP_SUPPORT_READ,
327 IB_ODP_SUPPORT_ATOMIC = IB_UVERBS_ODP_SUPPORT_ATOMIC,
328 IB_ODP_SUPPORT_SRQ_RECV = IB_UVERBS_ODP_SUPPORT_SRQ_RECV,
329 IB_ODP_SUPPORT_FLUSH = IB_UVERBS_ODP_SUPPORT_FLUSH,
330 IB_ODP_SUPPORT_ATOMIC_WRITE = IB_UVERBS_ODP_SUPPORT_ATOMIC_WRITE,
331};
332
333struct ib_odp_caps {
334 uint64_t general_caps;
335 struct {
336 uint32_t rc_odp_caps;
337 uint32_t uc_odp_caps;
338 uint32_t ud_odp_caps;
339 uint32_t xrc_odp_caps;
340 } per_transport_caps;
341};
342
343struct ib_rss_caps {
344 /* Corresponding bit will be set if qp type from
345 * 'enum ib_qp_type' is supported, e.g.
346 * supported_qpts |= 1 << IB_QPT_UD
347 */
348 u32 supported_qpts;
349 u32 max_rwq_indirection_tables;
350 u32 max_rwq_indirection_table_size;
351};
352
353enum ib_tm_cap_flags {
354 /* Support tag matching with rendezvous offload for RC transport */
355 IB_TM_CAP_RNDV_RC = 1 << 0,
356};
357
358struct ib_tm_caps {
359 /* Max size of RNDV header */
360 u32 max_rndv_hdr_size;
361 /* Max number of entries in tag matching list */
362 u32 max_num_tags;
363 /* From enum ib_tm_cap_flags */
364 u32 flags;
365 /* Max number of outstanding list operations */
366 u32 max_ops;
367 /* Max number of SGE in tag matching entry */
368 u32 max_sge;
369};
370
371struct ib_cq_init_attr {
372 unsigned int cqe;
373 u32 comp_vector;
374 u32 flags;
375};
376
377enum ib_cq_attr_mask {
378 IB_CQ_MODERATE = 1 << 0,
379};
380
381struct ib_cq_caps {
382 u16 max_cq_moderation_count;
383 u16 max_cq_moderation_period;
384};
385
386struct ib_dm_mr_attr {
387 u64 length;
388 u64 offset;
389 u32 access_flags;
390};
391
392struct ib_dm_alloc_attr {
393 u64 length;
394 u32 alignment;
395 u32 flags;
396};
397
398struct ib_device_attr {
399 u64 fw_ver;
400 __be64 sys_image_guid;
401 u64 max_mr_size;
402 u64 page_size_cap;
403 u32 vendor_id;
404 u32 vendor_part_id;
405 u32 hw_ver;
406 int max_qp;
407 int max_qp_wr;
408 u64 device_cap_flags;
409 u64 kernel_cap_flags;
410 int max_send_sge;
411 int max_recv_sge;
412 int max_sge_rd;
413 int max_cq;
414 int max_cqe;
415 int max_mr;
416 int max_pd;
417 int max_qp_rd_atom;
418 int max_ee_rd_atom;
419 int max_res_rd_atom;
420 int max_qp_init_rd_atom;
421 int max_ee_init_rd_atom;
422 enum ib_atomic_cap atomic_cap;
423 enum ib_atomic_cap masked_atomic_cap;
424 int max_ee;
425 int max_rdd;
426 int max_mw;
427 int max_raw_ipv6_qp;
428 int max_raw_ethy_qp;
429 int max_mcast_grp;
430 int max_mcast_qp_attach;
431 int max_total_mcast_qp_attach;
432 int max_ah;
433 int max_srq;
434 int max_srq_wr;
435 int max_srq_sge;
436 unsigned int max_fast_reg_page_list_len;
437 unsigned int max_pi_fast_reg_page_list_len;
438 u16 max_pkeys;
439 u8 local_ca_ack_delay;
440 int sig_prot_cap;
441 int sig_guard_cap;
442 struct ib_odp_caps odp_caps;
443 uint64_t timestamp_mask;
444 uint64_t hca_core_clock; /* in KHZ */
445 struct ib_rss_caps rss_caps;
446 u32 max_wq_type_rq;
447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 struct ib_tm_caps tm_caps;
449 struct ib_cq_caps cq_caps;
450 u64 max_dm_size;
451 /* Max entries for sgl for optimized performance per READ */
452 u32 max_sgl_rd;
453};
454
455enum ib_mtu {
456 IB_MTU_256 = 1,
457 IB_MTU_512 = 2,
458 IB_MTU_1024 = 3,
459 IB_MTU_2048 = 4,
460 IB_MTU_4096 = 5
461};
462
463enum opa_mtu {
464 OPA_MTU_8192 = 6,
465 OPA_MTU_10240 = 7
466};
467
468static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469{
470 switch (mtu) {
471 case IB_MTU_256: return 256;
472 case IB_MTU_512: return 512;
473 case IB_MTU_1024: return 1024;
474 case IB_MTU_2048: return 2048;
475 case IB_MTU_4096: return 4096;
476 default: return -1;
477 }
478}
479
480static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481{
482 if (mtu >= 4096)
483 return IB_MTU_4096;
484 else if (mtu >= 2048)
485 return IB_MTU_2048;
486 else if (mtu >= 1024)
487 return IB_MTU_1024;
488 else if (mtu >= 512)
489 return IB_MTU_512;
490 else
491 return IB_MTU_256;
492}
493
494static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495{
496 switch (mtu) {
497 case OPA_MTU_8192:
498 return 8192;
499 case OPA_MTU_10240:
500 return 10240;
501 default:
502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503 }
504}
505
506static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507{
508 if (mtu >= 10240)
509 return OPA_MTU_10240;
510 else if (mtu >= 8192)
511 return OPA_MTU_8192;
512 else
513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514}
515
516enum ib_port_state {
517 IB_PORT_NOP = 0,
518 IB_PORT_DOWN = 1,
519 IB_PORT_INIT = 2,
520 IB_PORT_ARMED = 3,
521 IB_PORT_ACTIVE = 4,
522 IB_PORT_ACTIVE_DEFER = 5
523};
524
525static inline const char *__attribute_const__
526ib_port_state_to_str(enum ib_port_state state)
527{
528 const char * const states[] = {
529 [IB_PORT_NOP] = "NOP",
530 [IB_PORT_DOWN] = "DOWN",
531 [IB_PORT_INIT] = "INIT",
532 [IB_PORT_ARMED] = "ARMED",
533 [IB_PORT_ACTIVE] = "ACTIVE",
534 [IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER",
535 };
536
537 if (state < ARRAY_SIZE(states))
538 return states[state];
539 return "UNKNOWN";
540}
541
542enum ib_port_phys_state {
543 IB_PORT_PHYS_STATE_SLEEP = 1,
544 IB_PORT_PHYS_STATE_POLLING = 2,
545 IB_PORT_PHYS_STATE_DISABLED = 3,
546 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
547 IB_PORT_PHYS_STATE_LINK_UP = 5,
548 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
549 IB_PORT_PHYS_STATE_PHY_TEST = 7,
550};
551
552enum ib_port_width {
553 IB_WIDTH_1X = 1,
554 IB_WIDTH_2X = 16,
555 IB_WIDTH_4X = 2,
556 IB_WIDTH_8X = 4,
557 IB_WIDTH_12X = 8
558};
559
560static inline int ib_width_enum_to_int(enum ib_port_width width)
561{
562 switch (width) {
563 case IB_WIDTH_1X: return 1;
564 case IB_WIDTH_2X: return 2;
565 case IB_WIDTH_4X: return 4;
566 case IB_WIDTH_8X: return 8;
567 case IB_WIDTH_12X: return 12;
568 default: return -1;
569 }
570}
571
572enum ib_port_speed {
573 IB_SPEED_SDR = 1,
574 IB_SPEED_DDR = 2,
575 IB_SPEED_QDR = 4,
576 IB_SPEED_FDR10 = 8,
577 IB_SPEED_FDR = 16,
578 IB_SPEED_EDR = 32,
579 IB_SPEED_HDR = 64,
580 IB_SPEED_NDR = 128,
581 IB_SPEED_XDR = 256,
582};
583
584enum ib_stat_flag {
585 IB_STAT_FLAG_OPTIONAL = 1 << 0,
586};
587
588/**
589 * struct rdma_stat_desc - description of one rdma stat/counter
590 * @name: The name of the counter
591 * @flags: Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
592 * @priv: Driver private information; Core code should not use
593 */
594struct rdma_stat_desc {
595 const char *name;
596 unsigned int flags;
597 const void *priv;
598};
599
600/**
601 * struct rdma_hw_stats - collection of hardware stats and their management
602 * @lock: Mutex to protect parallel write access to lifespan and values
603 * of counters, which are 64bits and not guaranteed to be written
604 * atomicaly on 32bits systems.
605 * @timestamp: Used by the core code to track when the last update was
606 * @lifespan: Used by the core code to determine how old the counters
607 * should be before being updated again. Stored in jiffies, defaults
608 * to 10 milliseconds, drivers can override the default be specifying
609 * their own value during their allocation routine.
610 * @descs: Array of pointers to static descriptors used for the counters
611 * in directory.
612 * @is_disabled: A bitmap to indicate each counter is currently disabled
613 * or not.
614 * @num_counters: How many hardware counters there are. If name is
615 * shorter than this number, a kernel oops will result. Driver authors
616 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
617 * in their code to prevent this.
618 * @value: Array of u64 counters that are accessed by the sysfs code and
619 * filled in by the drivers get_stats routine
620 */
621struct rdma_hw_stats {
622 struct mutex lock; /* Protect lifespan and values[] */
623 unsigned long timestamp;
624 unsigned long lifespan;
625 const struct rdma_stat_desc *descs;
626 unsigned long *is_disabled;
627 int num_counters;
628 u64 value[] __counted_by(num_counters);
629};
630
631#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
632
633struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
634 const struct rdma_stat_desc *descs, int num_counters,
635 unsigned long lifespan);
636
637void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
638
639/* Define bits for the various functionality this port needs to be supported by
640 * the core.
641 */
642/* Management 0x00000FFF */
643#define RDMA_CORE_CAP_IB_MAD 0x00000001
644#define RDMA_CORE_CAP_IB_SMI 0x00000002
645#define RDMA_CORE_CAP_IB_CM 0x00000004
646#define RDMA_CORE_CAP_IW_CM 0x00000008
647#define RDMA_CORE_CAP_IB_SA 0x00000010
648#define RDMA_CORE_CAP_OPA_MAD 0x00000020
649
650/* Address format 0x000FF000 */
651#define RDMA_CORE_CAP_AF_IB 0x00001000
652#define RDMA_CORE_CAP_ETH_AH 0x00002000
653#define RDMA_CORE_CAP_OPA_AH 0x00004000
654#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
655
656/* Protocol 0xFFF00000 */
657#define RDMA_CORE_CAP_PROT_IB 0x00100000
658#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
659#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
660#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
661#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
662#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
663
664#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
665 | RDMA_CORE_CAP_PROT_ROCE \
666 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
667
668#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
669 | RDMA_CORE_CAP_IB_MAD \
670 | RDMA_CORE_CAP_IB_SMI \
671 | RDMA_CORE_CAP_IB_CM \
672 | RDMA_CORE_CAP_IB_SA \
673 | RDMA_CORE_CAP_AF_IB)
674#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
675 | RDMA_CORE_CAP_IB_MAD \
676 | RDMA_CORE_CAP_IB_CM \
677 | RDMA_CORE_CAP_AF_IB \
678 | RDMA_CORE_CAP_ETH_AH)
679#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
680 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
681 | RDMA_CORE_CAP_IB_MAD \
682 | RDMA_CORE_CAP_IB_CM \
683 | RDMA_CORE_CAP_AF_IB \
684 | RDMA_CORE_CAP_ETH_AH)
685#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
686 | RDMA_CORE_CAP_IW_CM)
687#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
688 | RDMA_CORE_CAP_OPA_MAD)
689
690#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
691
692#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
693
694struct ib_port_attr {
695 u64 subnet_prefix;
696 enum ib_port_state state;
697 enum ib_mtu max_mtu;
698 enum ib_mtu active_mtu;
699 u32 phys_mtu;
700 int gid_tbl_len;
701 unsigned int ip_gids:1;
702 /* This is the value from PortInfo CapabilityMask, defined by IBA */
703 u32 port_cap_flags;
704 u32 max_msg_sz;
705 u32 bad_pkey_cntr;
706 u32 qkey_viol_cntr;
707 u16 pkey_tbl_len;
708 u32 sm_lid;
709 u32 lid;
710 u8 lmc;
711 u8 max_vl_num;
712 u8 sm_sl;
713 u8 subnet_timeout;
714 u8 init_type_reply;
715 u8 active_width;
716 u16 active_speed;
717 u8 phys_state;
718 u16 port_cap_flags2;
719};
720
721enum ib_device_modify_flags {
722 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
723 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
724};
725
726#define IB_DEVICE_NODE_DESC_MAX 64
727
728struct ib_device_modify {
729 u64 sys_image_guid;
730 char node_desc[IB_DEVICE_NODE_DESC_MAX];
731};
732
733enum ib_port_modify_flags {
734 IB_PORT_SHUTDOWN = 1,
735 IB_PORT_INIT_TYPE = (1<<2),
736 IB_PORT_RESET_QKEY_CNTR = (1<<3),
737 IB_PORT_OPA_MASK_CHG = (1<<4)
738};
739
740struct ib_port_modify {
741 u32 set_port_cap_mask;
742 u32 clr_port_cap_mask;
743 u8 init_type;
744};
745
746enum ib_event_type {
747 IB_EVENT_CQ_ERR,
748 IB_EVENT_QP_FATAL,
749 IB_EVENT_QP_REQ_ERR,
750 IB_EVENT_QP_ACCESS_ERR,
751 IB_EVENT_COMM_EST,
752 IB_EVENT_SQ_DRAINED,
753 IB_EVENT_PATH_MIG,
754 IB_EVENT_PATH_MIG_ERR,
755 IB_EVENT_DEVICE_FATAL,
756 IB_EVENT_PORT_ACTIVE,
757 IB_EVENT_PORT_ERR,
758 IB_EVENT_LID_CHANGE,
759 IB_EVENT_PKEY_CHANGE,
760 IB_EVENT_SM_CHANGE,
761 IB_EVENT_SRQ_ERR,
762 IB_EVENT_SRQ_LIMIT_REACHED,
763 IB_EVENT_QP_LAST_WQE_REACHED,
764 IB_EVENT_CLIENT_REREGISTER,
765 IB_EVENT_GID_CHANGE,
766 IB_EVENT_WQ_FATAL,
767};
768
769const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
770
771struct ib_event {
772 struct ib_device *device;
773 union {
774 struct ib_cq *cq;
775 struct ib_qp *qp;
776 struct ib_srq *srq;
777 struct ib_wq *wq;
778 u32 port_num;
779 } element;
780 enum ib_event_type event;
781};
782
783struct ib_event_handler {
784 struct ib_device *device;
785 void (*handler)(struct ib_event_handler *, struct ib_event *);
786 struct list_head list;
787};
788
789#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
790 do { \
791 (_ptr)->device = _device; \
792 (_ptr)->handler = _handler; \
793 INIT_LIST_HEAD(&(_ptr)->list); \
794 } while (0)
795
796struct ib_global_route {
797 const struct ib_gid_attr *sgid_attr;
798 union ib_gid dgid;
799 u32 flow_label;
800 u8 sgid_index;
801 u8 hop_limit;
802 u8 traffic_class;
803};
804
805struct ib_grh {
806 __be32 version_tclass_flow;
807 __be16 paylen;
808 u8 next_hdr;
809 u8 hop_limit;
810 union ib_gid sgid;
811 union ib_gid dgid;
812};
813
814union rdma_network_hdr {
815 struct ib_grh ibgrh;
816 struct {
817 /* The IB spec states that if it's IPv4, the header
818 * is located in the last 20 bytes of the header.
819 */
820 u8 reserved[20];
821 struct iphdr roce4grh;
822 };
823};
824
825#define IB_QPN_MASK 0xFFFFFF
826
827enum {
828 IB_MULTICAST_QPN = 0xffffff
829};
830
831#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
832#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
833
834enum ib_ah_flags {
835 IB_AH_GRH = 1
836};
837
838enum ib_rate {
839 IB_RATE_PORT_CURRENT = 0,
840 IB_RATE_2_5_GBPS = 2,
841 IB_RATE_5_GBPS = 5,
842 IB_RATE_10_GBPS = 3,
843 IB_RATE_20_GBPS = 6,
844 IB_RATE_30_GBPS = 4,
845 IB_RATE_40_GBPS = 7,
846 IB_RATE_60_GBPS = 8,
847 IB_RATE_80_GBPS = 9,
848 IB_RATE_120_GBPS = 10,
849 IB_RATE_14_GBPS = 11,
850 IB_RATE_56_GBPS = 12,
851 IB_RATE_112_GBPS = 13,
852 IB_RATE_168_GBPS = 14,
853 IB_RATE_25_GBPS = 15,
854 IB_RATE_100_GBPS = 16,
855 IB_RATE_200_GBPS = 17,
856 IB_RATE_300_GBPS = 18,
857 IB_RATE_28_GBPS = 19,
858 IB_RATE_50_GBPS = 20,
859 IB_RATE_400_GBPS = 21,
860 IB_RATE_600_GBPS = 22,
861 IB_RATE_800_GBPS = 23,
862 IB_RATE_1600_GBPS = 25,
863};
864
865/**
866 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
867 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
868 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
869 * @rate: rate to convert.
870 */
871__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
872
873/**
874 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
875 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
876 * @rate: rate to convert.
877 */
878__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
879
880
881/**
882 * enum ib_mr_type - memory region type
883 * @IB_MR_TYPE_MEM_REG: memory region that is used for
884 * normal registration
885 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
886 * register any arbitrary sg lists (without
887 * the normal mr constraints - see
888 * ib_map_mr_sg)
889 * @IB_MR_TYPE_DM: memory region that is used for device
890 * memory registration
891 * @IB_MR_TYPE_USER: memory region that is used for the user-space
892 * application
893 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
894 * without address translations (VA=PA)
895 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
896 * data integrity operations
897 */
898enum ib_mr_type {
899 IB_MR_TYPE_MEM_REG,
900 IB_MR_TYPE_SG_GAPS,
901 IB_MR_TYPE_DM,
902 IB_MR_TYPE_USER,
903 IB_MR_TYPE_DMA,
904 IB_MR_TYPE_INTEGRITY,
905};
906
907enum ib_mr_status_check {
908 IB_MR_CHECK_SIG_STATUS = 1,
909};
910
911/**
912 * struct ib_mr_status - Memory region status container
913 *
914 * @fail_status: Bitmask of MR checks status. For each
915 * failed check a corresponding status bit is set.
916 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
917 * failure.
918 */
919struct ib_mr_status {
920 u32 fail_status;
921 struct ib_sig_err sig_err;
922};
923
924/**
925 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
926 * enum.
927 * @mult: multiple to convert.
928 */
929__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
930
931struct rdma_ah_init_attr {
932 struct rdma_ah_attr *ah_attr;
933 u32 flags;
934 struct net_device *xmit_slave;
935};
936
937enum rdma_ah_attr_type {
938 RDMA_AH_ATTR_TYPE_UNDEFINED,
939 RDMA_AH_ATTR_TYPE_IB,
940 RDMA_AH_ATTR_TYPE_ROCE,
941 RDMA_AH_ATTR_TYPE_OPA,
942};
943
944struct ib_ah_attr {
945 u16 dlid;
946 u8 src_path_bits;
947};
948
949struct roce_ah_attr {
950 u8 dmac[ETH_ALEN];
951};
952
953struct opa_ah_attr {
954 u32 dlid;
955 u8 src_path_bits;
956 bool make_grd;
957};
958
959struct rdma_ah_attr {
960 struct ib_global_route grh;
961 u8 sl;
962 u8 static_rate;
963 u32 port_num;
964 u8 ah_flags;
965 enum rdma_ah_attr_type type;
966 union {
967 struct ib_ah_attr ib;
968 struct roce_ah_attr roce;
969 struct opa_ah_attr opa;
970 };
971};
972
973enum ib_wc_status {
974 IB_WC_SUCCESS,
975 IB_WC_LOC_LEN_ERR,
976 IB_WC_LOC_QP_OP_ERR,
977 IB_WC_LOC_EEC_OP_ERR,
978 IB_WC_LOC_PROT_ERR,
979 IB_WC_WR_FLUSH_ERR,
980 IB_WC_MW_BIND_ERR,
981 IB_WC_BAD_RESP_ERR,
982 IB_WC_LOC_ACCESS_ERR,
983 IB_WC_REM_INV_REQ_ERR,
984 IB_WC_REM_ACCESS_ERR,
985 IB_WC_REM_OP_ERR,
986 IB_WC_RETRY_EXC_ERR,
987 IB_WC_RNR_RETRY_EXC_ERR,
988 IB_WC_LOC_RDD_VIOL_ERR,
989 IB_WC_REM_INV_RD_REQ_ERR,
990 IB_WC_REM_ABORT_ERR,
991 IB_WC_INV_EECN_ERR,
992 IB_WC_INV_EEC_STATE_ERR,
993 IB_WC_FATAL_ERR,
994 IB_WC_RESP_TIMEOUT_ERR,
995 IB_WC_GENERAL_ERR
996};
997
998const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
999
1000enum ib_wc_opcode {
1001 IB_WC_SEND = IB_UVERBS_WC_SEND,
1002 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
1003 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
1004 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
1005 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
1006 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
1007 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
1008 IB_WC_LSO = IB_UVERBS_WC_TSO,
1009 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
1010 IB_WC_REG_MR,
1011 IB_WC_MASKED_COMP_SWAP,
1012 IB_WC_MASKED_FETCH_ADD,
1013 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
1014/*
1015 * Set value of IB_WC_RECV so consumers can test if a completion is a
1016 * receive by testing (opcode & IB_WC_RECV).
1017 */
1018 IB_WC_RECV = 1 << 7,
1019 IB_WC_RECV_RDMA_WITH_IMM
1020};
1021
1022enum ib_wc_flags {
1023 IB_WC_GRH = 1,
1024 IB_WC_WITH_IMM = (1<<1),
1025 IB_WC_WITH_INVALIDATE = (1<<2),
1026 IB_WC_IP_CSUM_OK = (1<<3),
1027 IB_WC_WITH_SMAC = (1<<4),
1028 IB_WC_WITH_VLAN = (1<<5),
1029 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1030};
1031
1032struct ib_wc {
1033 union {
1034 u64 wr_id;
1035 struct ib_cqe *wr_cqe;
1036 };
1037 enum ib_wc_status status;
1038 enum ib_wc_opcode opcode;
1039 u32 vendor_err;
1040 u32 byte_len;
1041 struct ib_qp *qp;
1042 union {
1043 __be32 imm_data;
1044 u32 invalidate_rkey;
1045 } ex;
1046 u32 src_qp;
1047 u32 slid;
1048 int wc_flags;
1049 u16 pkey_index;
1050 u8 sl;
1051 u8 dlid_path_bits;
1052 u32 port_num; /* valid only for DR SMPs on switches */
1053 u8 smac[ETH_ALEN];
1054 u16 vlan_id;
1055 u8 network_hdr_type;
1056};
1057
1058enum ib_cq_notify_flags {
1059 IB_CQ_SOLICITED = 1 << 0,
1060 IB_CQ_NEXT_COMP = 1 << 1,
1061 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1062 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1063};
1064
1065enum ib_srq_type {
1066 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1067 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1068 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1069};
1070
1071static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1072{
1073 return srq_type == IB_SRQT_XRC ||
1074 srq_type == IB_SRQT_TM;
1075}
1076
1077enum ib_srq_attr_mask {
1078 IB_SRQ_MAX_WR = 1 << 0,
1079 IB_SRQ_LIMIT = 1 << 1,
1080};
1081
1082struct ib_srq_attr {
1083 u32 max_wr;
1084 u32 max_sge;
1085 u32 srq_limit;
1086};
1087
1088struct ib_srq_init_attr {
1089 void (*event_handler)(struct ib_event *, void *);
1090 void *srq_context;
1091 struct ib_srq_attr attr;
1092 enum ib_srq_type srq_type;
1093
1094 struct {
1095 struct ib_cq *cq;
1096 union {
1097 struct {
1098 struct ib_xrcd *xrcd;
1099 } xrc;
1100
1101 struct {
1102 u32 max_num_tags;
1103 } tag_matching;
1104 };
1105 } ext;
1106};
1107
1108struct ib_qp_cap {
1109 u32 max_send_wr;
1110 u32 max_recv_wr;
1111 u32 max_send_sge;
1112 u32 max_recv_sge;
1113 u32 max_inline_data;
1114
1115 /*
1116 * Maximum number of rdma_rw_ctx structures in flight at a time.
1117 * ib_create_qp() will calculate the right amount of needed WRs
1118 * and MRs based on this.
1119 */
1120 u32 max_rdma_ctxs;
1121};
1122
1123enum ib_sig_type {
1124 IB_SIGNAL_ALL_WR,
1125 IB_SIGNAL_REQ_WR
1126};
1127
1128enum ib_qp_type {
1129 /*
1130 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1131 * here (and in that order) since the MAD layer uses them as
1132 * indices into a 2-entry table.
1133 */
1134 IB_QPT_SMI,
1135 IB_QPT_GSI,
1136
1137 IB_QPT_RC = IB_UVERBS_QPT_RC,
1138 IB_QPT_UC = IB_UVERBS_QPT_UC,
1139 IB_QPT_UD = IB_UVERBS_QPT_UD,
1140 IB_QPT_RAW_IPV6,
1141 IB_QPT_RAW_ETHERTYPE,
1142 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1143 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1144 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1145 IB_QPT_MAX,
1146 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1147 /* Reserve a range for qp types internal to the low level driver.
1148 * These qp types will not be visible at the IB core layer, so the
1149 * IB_QPT_MAX usages should not be affected in the core layer
1150 */
1151 IB_QPT_RESERVED1 = 0x1000,
1152 IB_QPT_RESERVED2,
1153 IB_QPT_RESERVED3,
1154 IB_QPT_RESERVED4,
1155 IB_QPT_RESERVED5,
1156 IB_QPT_RESERVED6,
1157 IB_QPT_RESERVED7,
1158 IB_QPT_RESERVED8,
1159 IB_QPT_RESERVED9,
1160 IB_QPT_RESERVED10,
1161};
1162
1163enum ib_qp_create_flags {
1164 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1165 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1166 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1167 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1168 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1169 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1170 IB_QP_CREATE_NETIF_QP = 1 << 5,
1171 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1172 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1173 IB_QP_CREATE_SCATTER_FCS =
1174 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1175 IB_QP_CREATE_CVLAN_STRIPPING =
1176 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1177 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1178 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1179 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1180 /* reserve bits 26-31 for low level drivers' internal use */
1181 IB_QP_CREATE_RESERVED_START = 1 << 26,
1182 IB_QP_CREATE_RESERVED_END = 1 << 31,
1183};
1184
1185/*
1186 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1187 * callback to destroy the passed in QP.
1188 */
1189
1190struct ib_qp_init_attr {
1191 /* This callback occurs in workqueue context */
1192 void (*event_handler)(struct ib_event *, void *);
1193
1194 void *qp_context;
1195 struct ib_cq *send_cq;
1196 struct ib_cq *recv_cq;
1197 struct ib_srq *srq;
1198 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1199 struct ib_qp_cap cap;
1200 enum ib_sig_type sq_sig_type;
1201 enum ib_qp_type qp_type;
1202 u32 create_flags;
1203
1204 /*
1205 * Only needed for special QP types, or when using the RW API.
1206 */
1207 u32 port_num;
1208 struct ib_rwq_ind_table *rwq_ind_tbl;
1209 u32 source_qpn;
1210};
1211
1212struct ib_qp_open_attr {
1213 void (*event_handler)(struct ib_event *, void *);
1214 void *qp_context;
1215 u32 qp_num;
1216 enum ib_qp_type qp_type;
1217};
1218
1219enum ib_rnr_timeout {
1220 IB_RNR_TIMER_655_36 = 0,
1221 IB_RNR_TIMER_000_01 = 1,
1222 IB_RNR_TIMER_000_02 = 2,
1223 IB_RNR_TIMER_000_03 = 3,
1224 IB_RNR_TIMER_000_04 = 4,
1225 IB_RNR_TIMER_000_06 = 5,
1226 IB_RNR_TIMER_000_08 = 6,
1227 IB_RNR_TIMER_000_12 = 7,
1228 IB_RNR_TIMER_000_16 = 8,
1229 IB_RNR_TIMER_000_24 = 9,
1230 IB_RNR_TIMER_000_32 = 10,
1231 IB_RNR_TIMER_000_48 = 11,
1232 IB_RNR_TIMER_000_64 = 12,
1233 IB_RNR_TIMER_000_96 = 13,
1234 IB_RNR_TIMER_001_28 = 14,
1235 IB_RNR_TIMER_001_92 = 15,
1236 IB_RNR_TIMER_002_56 = 16,
1237 IB_RNR_TIMER_003_84 = 17,
1238 IB_RNR_TIMER_005_12 = 18,
1239 IB_RNR_TIMER_007_68 = 19,
1240 IB_RNR_TIMER_010_24 = 20,
1241 IB_RNR_TIMER_015_36 = 21,
1242 IB_RNR_TIMER_020_48 = 22,
1243 IB_RNR_TIMER_030_72 = 23,
1244 IB_RNR_TIMER_040_96 = 24,
1245 IB_RNR_TIMER_061_44 = 25,
1246 IB_RNR_TIMER_081_92 = 26,
1247 IB_RNR_TIMER_122_88 = 27,
1248 IB_RNR_TIMER_163_84 = 28,
1249 IB_RNR_TIMER_245_76 = 29,
1250 IB_RNR_TIMER_327_68 = 30,
1251 IB_RNR_TIMER_491_52 = 31
1252};
1253
1254enum ib_qp_attr_mask {
1255 IB_QP_STATE = 1,
1256 IB_QP_CUR_STATE = (1<<1),
1257 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1258 IB_QP_ACCESS_FLAGS = (1<<3),
1259 IB_QP_PKEY_INDEX = (1<<4),
1260 IB_QP_PORT = (1<<5),
1261 IB_QP_QKEY = (1<<6),
1262 IB_QP_AV = (1<<7),
1263 IB_QP_PATH_MTU = (1<<8),
1264 IB_QP_TIMEOUT = (1<<9),
1265 IB_QP_RETRY_CNT = (1<<10),
1266 IB_QP_RNR_RETRY = (1<<11),
1267 IB_QP_RQ_PSN = (1<<12),
1268 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1269 IB_QP_ALT_PATH = (1<<14),
1270 IB_QP_MIN_RNR_TIMER = (1<<15),
1271 IB_QP_SQ_PSN = (1<<16),
1272 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1273 IB_QP_PATH_MIG_STATE = (1<<18),
1274 IB_QP_CAP = (1<<19),
1275 IB_QP_DEST_QPN = (1<<20),
1276 IB_QP_RESERVED1 = (1<<21),
1277 IB_QP_RESERVED2 = (1<<22),
1278 IB_QP_RESERVED3 = (1<<23),
1279 IB_QP_RESERVED4 = (1<<24),
1280 IB_QP_RATE_LIMIT = (1<<25),
1281
1282 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1283};
1284
1285enum ib_qp_state {
1286 IB_QPS_RESET,
1287 IB_QPS_INIT,
1288 IB_QPS_RTR,
1289 IB_QPS_RTS,
1290 IB_QPS_SQD,
1291 IB_QPS_SQE,
1292 IB_QPS_ERR
1293};
1294
1295enum ib_mig_state {
1296 IB_MIG_MIGRATED,
1297 IB_MIG_REARM,
1298 IB_MIG_ARMED
1299};
1300
1301enum ib_mw_type {
1302 IB_MW_TYPE_1 = 1,
1303 IB_MW_TYPE_2 = 2
1304};
1305
1306struct ib_qp_attr {
1307 enum ib_qp_state qp_state;
1308 enum ib_qp_state cur_qp_state;
1309 enum ib_mtu path_mtu;
1310 enum ib_mig_state path_mig_state;
1311 u32 qkey;
1312 u32 rq_psn;
1313 u32 sq_psn;
1314 u32 dest_qp_num;
1315 int qp_access_flags;
1316 struct ib_qp_cap cap;
1317 struct rdma_ah_attr ah_attr;
1318 struct rdma_ah_attr alt_ah_attr;
1319 u16 pkey_index;
1320 u16 alt_pkey_index;
1321 u8 en_sqd_async_notify;
1322 u8 sq_draining;
1323 u8 max_rd_atomic;
1324 u8 max_dest_rd_atomic;
1325 u8 min_rnr_timer;
1326 u32 port_num;
1327 u8 timeout;
1328 u8 retry_cnt;
1329 u8 rnr_retry;
1330 u32 alt_port_num;
1331 u8 alt_timeout;
1332 u32 rate_limit;
1333 struct net_device *xmit_slave;
1334};
1335
1336enum ib_wr_opcode {
1337 /* These are shared with userspace */
1338 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1339 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1340 IB_WR_SEND = IB_UVERBS_WR_SEND,
1341 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1342 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1343 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1344 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1345 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1346 IB_WR_LSO = IB_UVERBS_WR_TSO,
1347 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1348 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1349 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1350 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1351 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1352 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1353 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1354 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1355 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1356
1357 /* These are kernel only and can not be issued by userspace */
1358 IB_WR_REG_MR = 0x20,
1359 IB_WR_REG_MR_INTEGRITY,
1360
1361 /* reserve values for low level drivers' internal use.
1362 * These values will not be used at all in the ib core layer.
1363 */
1364 IB_WR_RESERVED1 = 0xf0,
1365 IB_WR_RESERVED2,
1366 IB_WR_RESERVED3,
1367 IB_WR_RESERVED4,
1368 IB_WR_RESERVED5,
1369 IB_WR_RESERVED6,
1370 IB_WR_RESERVED7,
1371 IB_WR_RESERVED8,
1372 IB_WR_RESERVED9,
1373 IB_WR_RESERVED10,
1374};
1375
1376enum ib_send_flags {
1377 IB_SEND_FENCE = 1,
1378 IB_SEND_SIGNALED = (1<<1),
1379 IB_SEND_SOLICITED = (1<<2),
1380 IB_SEND_INLINE = (1<<3),
1381 IB_SEND_IP_CSUM = (1<<4),
1382
1383 /* reserve bits 26-31 for low level drivers' internal use */
1384 IB_SEND_RESERVED_START = (1 << 26),
1385 IB_SEND_RESERVED_END = (1 << 31),
1386};
1387
1388struct ib_sge {
1389 u64 addr;
1390 u32 length;
1391 u32 lkey;
1392};
1393
1394struct ib_cqe {
1395 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1396};
1397
1398struct ib_send_wr {
1399 struct ib_send_wr *next;
1400 union {
1401 u64 wr_id;
1402 struct ib_cqe *wr_cqe;
1403 };
1404 struct ib_sge *sg_list;
1405 int num_sge;
1406 enum ib_wr_opcode opcode;
1407 int send_flags;
1408 union {
1409 __be32 imm_data;
1410 u32 invalidate_rkey;
1411 } ex;
1412};
1413
1414struct ib_rdma_wr {
1415 struct ib_send_wr wr;
1416 u64 remote_addr;
1417 u32 rkey;
1418};
1419
1420static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1421{
1422 return container_of(wr, struct ib_rdma_wr, wr);
1423}
1424
1425struct ib_atomic_wr {
1426 struct ib_send_wr wr;
1427 u64 remote_addr;
1428 u64 compare_add;
1429 u64 swap;
1430 u64 compare_add_mask;
1431 u64 swap_mask;
1432 u32 rkey;
1433};
1434
1435static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1436{
1437 return container_of(wr, struct ib_atomic_wr, wr);
1438}
1439
1440struct ib_ud_wr {
1441 struct ib_send_wr wr;
1442 struct ib_ah *ah;
1443 void *header;
1444 int hlen;
1445 int mss;
1446 u32 remote_qpn;
1447 u32 remote_qkey;
1448 u16 pkey_index; /* valid for GSI only */
1449 u32 port_num; /* valid for DR SMPs on switch only */
1450};
1451
1452static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1453{
1454 return container_of(wr, struct ib_ud_wr, wr);
1455}
1456
1457struct ib_reg_wr {
1458 struct ib_send_wr wr;
1459 struct ib_mr *mr;
1460 u32 key;
1461 int access;
1462};
1463
1464static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1465{
1466 return container_of(wr, struct ib_reg_wr, wr);
1467}
1468
1469struct ib_recv_wr {
1470 struct ib_recv_wr *next;
1471 union {
1472 u64 wr_id;
1473 struct ib_cqe *wr_cqe;
1474 };
1475 struct ib_sge *sg_list;
1476 int num_sge;
1477};
1478
1479enum ib_access_flags {
1480 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1481 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1482 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1483 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1484 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1485 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1486 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1487 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1488 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1489 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1490 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1491
1492 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1493 IB_ACCESS_SUPPORTED =
1494 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1495};
1496
1497/*
1498 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1499 * are hidden here instead of a uapi header!
1500 */
1501enum ib_mr_rereg_flags {
1502 IB_MR_REREG_TRANS = 1,
1503 IB_MR_REREG_PD = (1<<1),
1504 IB_MR_REREG_ACCESS = (1<<2),
1505 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1506};
1507
1508struct ib_umem;
1509
1510enum rdma_remove_reason {
1511 /*
1512 * Userspace requested uobject deletion or initial try
1513 * to remove uobject via cleanup. Call could fail
1514 */
1515 RDMA_REMOVE_DESTROY,
1516 /* Context deletion. This call should delete the actual object itself */
1517 RDMA_REMOVE_CLOSE,
1518 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1519 RDMA_REMOVE_DRIVER_REMOVE,
1520 /* uobj is being cleaned-up before being committed */
1521 RDMA_REMOVE_ABORT,
1522 /* The driver failed to destroy the uobject and is being disconnected */
1523 RDMA_REMOVE_DRIVER_FAILURE,
1524};
1525
1526struct ib_rdmacg_object {
1527#ifdef CONFIG_CGROUP_RDMA
1528 struct rdma_cgroup *cg; /* owner rdma cgroup */
1529#endif
1530};
1531
1532struct ib_ucontext {
1533 struct ib_device *device;
1534 struct ib_uverbs_file *ufile;
1535
1536 struct ib_rdmacg_object cg_obj;
1537 u64 enabled_caps;
1538 /*
1539 * Implementation details of the RDMA core, don't use in drivers:
1540 */
1541 struct rdma_restrack_entry res;
1542 struct xarray mmap_xa;
1543};
1544
1545struct ib_uobject {
1546 u64 user_handle; /* handle given to us by userspace */
1547 /* ufile & ucontext owning this object */
1548 struct ib_uverbs_file *ufile;
1549 /* FIXME, save memory: ufile->context == context */
1550 struct ib_ucontext *context; /* associated user context */
1551 void *object; /* containing object */
1552 struct list_head list; /* link to context's list */
1553 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1554 int id; /* index into kernel idr */
1555 struct kref ref;
1556 atomic_t usecnt; /* protects exclusive access */
1557 struct rcu_head rcu; /* kfree_rcu() overhead */
1558
1559 const struct uverbs_api_object *uapi_object;
1560};
1561
1562struct ib_udata {
1563 const void __user *inbuf;
1564 void __user *outbuf;
1565 size_t inlen;
1566 size_t outlen;
1567};
1568
1569struct ib_pd {
1570 u32 local_dma_lkey;
1571 u32 flags;
1572 struct ib_device *device;
1573 struct ib_uobject *uobject;
1574 atomic_t usecnt; /* count all resources */
1575
1576 u32 unsafe_global_rkey;
1577
1578 /*
1579 * Implementation details of the RDMA core, don't use in drivers:
1580 */
1581 struct ib_mr *__internal_mr;
1582 struct rdma_restrack_entry res;
1583};
1584
1585struct ib_xrcd {
1586 struct ib_device *device;
1587 atomic_t usecnt; /* count all exposed resources */
1588 struct inode *inode;
1589 struct rw_semaphore tgt_qps_rwsem;
1590 struct xarray tgt_qps;
1591};
1592
1593struct ib_ah {
1594 struct ib_device *device;
1595 struct ib_pd *pd;
1596 struct ib_uobject *uobject;
1597 const struct ib_gid_attr *sgid_attr;
1598 enum rdma_ah_attr_type type;
1599};
1600
1601typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1602
1603enum ib_poll_context {
1604 IB_POLL_SOFTIRQ, /* poll from softirq context */
1605 IB_POLL_WORKQUEUE, /* poll from workqueue */
1606 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1607 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1608
1609 IB_POLL_DIRECT, /* caller context, no hw completions */
1610};
1611
1612struct ib_cq {
1613 struct ib_device *device;
1614 struct ib_ucq_object *uobject;
1615 ib_comp_handler comp_handler;
1616 void (*event_handler)(struct ib_event *, void *);
1617 void *cq_context;
1618 int cqe;
1619 unsigned int cqe_used;
1620 atomic_t usecnt; /* count number of work queues */
1621 enum ib_poll_context poll_ctx;
1622 struct ib_wc *wc;
1623 struct list_head pool_entry;
1624 union {
1625 struct irq_poll iop;
1626 struct work_struct work;
1627 };
1628 struct workqueue_struct *comp_wq;
1629 struct dim *dim;
1630
1631 /* updated only by trace points */
1632 ktime_t timestamp;
1633 u8 interrupt:1;
1634 u8 shared:1;
1635 unsigned int comp_vector;
1636
1637 /*
1638 * Implementation details of the RDMA core, don't use in drivers:
1639 */
1640 struct rdma_restrack_entry res;
1641};
1642
1643struct ib_srq {
1644 struct ib_device *device;
1645 struct ib_pd *pd;
1646 struct ib_usrq_object *uobject;
1647 void (*event_handler)(struct ib_event *, void *);
1648 void *srq_context;
1649 enum ib_srq_type srq_type;
1650 atomic_t usecnt;
1651
1652 struct {
1653 struct ib_cq *cq;
1654 union {
1655 struct {
1656 struct ib_xrcd *xrcd;
1657 u32 srq_num;
1658 } xrc;
1659 };
1660 } ext;
1661
1662 /*
1663 * Implementation details of the RDMA core, don't use in drivers:
1664 */
1665 struct rdma_restrack_entry res;
1666};
1667
1668enum ib_raw_packet_caps {
1669 /*
1670 * Strip cvlan from incoming packet and report it in the matching work
1671 * completion is supported.
1672 */
1673 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1674 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1675 /*
1676 * Scatter FCS field of an incoming packet to host memory is supported.
1677 */
1678 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1679 /* Checksum offloads are supported (for both send and receive). */
1680 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1681 /*
1682 * When a packet is received for an RQ with no receive WQEs, the
1683 * packet processing is delayed.
1684 */
1685 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1686};
1687
1688enum ib_wq_type {
1689 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1690};
1691
1692enum ib_wq_state {
1693 IB_WQS_RESET,
1694 IB_WQS_RDY,
1695 IB_WQS_ERR
1696};
1697
1698struct ib_wq {
1699 struct ib_device *device;
1700 struct ib_uwq_object *uobject;
1701 void *wq_context;
1702 void (*event_handler)(struct ib_event *, void *);
1703 struct ib_pd *pd;
1704 struct ib_cq *cq;
1705 u32 wq_num;
1706 enum ib_wq_state state;
1707 enum ib_wq_type wq_type;
1708 atomic_t usecnt;
1709};
1710
1711enum ib_wq_flags {
1712 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1713 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1714 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1715 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1716 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1717};
1718
1719struct ib_wq_init_attr {
1720 void *wq_context;
1721 enum ib_wq_type wq_type;
1722 u32 max_wr;
1723 u32 max_sge;
1724 struct ib_cq *cq;
1725 void (*event_handler)(struct ib_event *, void *);
1726 u32 create_flags; /* Use enum ib_wq_flags */
1727};
1728
1729enum ib_wq_attr_mask {
1730 IB_WQ_STATE = 1 << 0,
1731 IB_WQ_CUR_STATE = 1 << 1,
1732 IB_WQ_FLAGS = 1 << 2,
1733};
1734
1735struct ib_wq_attr {
1736 enum ib_wq_state wq_state;
1737 enum ib_wq_state curr_wq_state;
1738 u32 flags; /* Use enum ib_wq_flags */
1739 u32 flags_mask; /* Use enum ib_wq_flags */
1740};
1741
1742struct ib_rwq_ind_table {
1743 struct ib_device *device;
1744 struct ib_uobject *uobject;
1745 atomic_t usecnt;
1746 u32 ind_tbl_num;
1747 u32 log_ind_tbl_size;
1748 struct ib_wq **ind_tbl;
1749};
1750
1751struct ib_rwq_ind_table_init_attr {
1752 u32 log_ind_tbl_size;
1753 /* Each entry is a pointer to Receive Work Queue */
1754 struct ib_wq **ind_tbl;
1755};
1756
1757enum port_pkey_state {
1758 IB_PORT_PKEY_NOT_VALID = 0,
1759 IB_PORT_PKEY_VALID = 1,
1760 IB_PORT_PKEY_LISTED = 2,
1761};
1762
1763struct ib_qp_security;
1764
1765struct ib_port_pkey {
1766 enum port_pkey_state state;
1767 u16 pkey_index;
1768 u32 port_num;
1769 struct list_head qp_list;
1770 struct list_head to_error_list;
1771 struct ib_qp_security *sec;
1772};
1773
1774struct ib_ports_pkeys {
1775 struct ib_port_pkey main;
1776 struct ib_port_pkey alt;
1777};
1778
1779struct ib_qp_security {
1780 struct ib_qp *qp;
1781 struct ib_device *dev;
1782 /* Hold this mutex when changing port and pkey settings. */
1783 struct mutex mutex;
1784 struct ib_ports_pkeys *ports_pkeys;
1785 /* A list of all open shared QP handles. Required to enforce security
1786 * properly for all users of a shared QP.
1787 */
1788 struct list_head shared_qp_list;
1789 void *security;
1790 bool destroying;
1791 atomic_t error_list_count;
1792 struct completion error_complete;
1793 int error_comps_pending;
1794};
1795
1796/*
1797 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1798 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1799 */
1800struct ib_qp {
1801 struct ib_device *device;
1802 struct ib_pd *pd;
1803 struct ib_cq *send_cq;
1804 struct ib_cq *recv_cq;
1805 spinlock_t mr_lock;
1806 int mrs_used;
1807 struct list_head rdma_mrs;
1808 struct list_head sig_mrs;
1809 struct ib_srq *srq;
1810 struct completion srq_completion;
1811 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1812 struct list_head xrcd_list;
1813
1814 /* count times opened, mcast attaches, flow attaches */
1815 atomic_t usecnt;
1816 struct list_head open_list;
1817 struct ib_qp *real_qp;
1818 struct ib_uqp_object *uobject;
1819 void (*event_handler)(struct ib_event *, void *);
1820 void (*registered_event_handler)(struct ib_event *, void *);
1821 void *qp_context;
1822 /* sgid_attrs associated with the AV's */
1823 const struct ib_gid_attr *av_sgid_attr;
1824 const struct ib_gid_attr *alt_path_sgid_attr;
1825 u32 qp_num;
1826 u32 max_write_sge;
1827 u32 max_read_sge;
1828 enum ib_qp_type qp_type;
1829 struct ib_rwq_ind_table *rwq_ind_tbl;
1830 struct ib_qp_security *qp_sec;
1831 u32 port;
1832
1833 bool integrity_en;
1834 /*
1835 * Implementation details of the RDMA core, don't use in drivers:
1836 */
1837 struct rdma_restrack_entry res;
1838
1839 /* The counter the qp is bind to */
1840 struct rdma_counter *counter;
1841};
1842
1843struct ib_dm {
1844 struct ib_device *device;
1845 u32 length;
1846 u32 flags;
1847 struct ib_uobject *uobject;
1848 atomic_t usecnt;
1849};
1850
1851/* bit values to mark existence of ib_dmah fields */
1852enum {
1853 IB_DMAH_CPU_ID_EXISTS,
1854 IB_DMAH_MEM_TYPE_EXISTS,
1855 IB_DMAH_PH_EXISTS,
1856};
1857
1858struct ib_dmah {
1859 struct ib_device *device;
1860 struct ib_uobject *uobject;
1861 /*
1862 * Implementation details of the RDMA core, don't use in drivers:
1863 */
1864 struct rdma_restrack_entry res;
1865 u32 cpu_id;
1866 enum tph_mem_type mem_type;
1867 atomic_t usecnt;
1868 u8 ph;
1869 u8 valid_fields; /* use IB_DMAH_XXX_EXISTS */
1870};
1871
1872struct ib_mr {
1873 struct ib_device *device;
1874 struct ib_pd *pd;
1875 u32 lkey;
1876 u32 rkey;
1877 u64 iova;
1878 u64 length;
1879 unsigned int page_size;
1880 enum ib_mr_type type;
1881 bool need_inval;
1882 union {
1883 struct ib_uobject *uobject; /* user */
1884 struct list_head qp_entry; /* FR */
1885 };
1886
1887 struct ib_dm *dm;
1888 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1889 struct ib_dmah *dmah;
1890 /*
1891 * Implementation details of the RDMA core, don't use in drivers:
1892 */
1893 struct rdma_restrack_entry res;
1894};
1895
1896struct ib_mw {
1897 struct ib_device *device;
1898 struct ib_pd *pd;
1899 struct ib_uobject *uobject;
1900 u32 rkey;
1901 enum ib_mw_type type;
1902};
1903
1904/* Supported steering options */
1905enum ib_flow_attr_type {
1906 /* steering according to rule specifications */
1907 IB_FLOW_ATTR_NORMAL = 0x0,
1908 /* default unicast and multicast rule -
1909 * receive all Eth traffic which isn't steered to any QP
1910 */
1911 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1912 /* default multicast rule -
1913 * receive all Eth multicast traffic which isn't steered to any QP
1914 */
1915 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1916 /* sniffer rule - receive all port traffic */
1917 IB_FLOW_ATTR_SNIFFER = 0x3
1918};
1919
1920/* Supported steering header types */
1921enum ib_flow_spec_type {
1922 /* L2 headers*/
1923 IB_FLOW_SPEC_ETH = 0x20,
1924 IB_FLOW_SPEC_IB = 0x22,
1925 /* L3 header*/
1926 IB_FLOW_SPEC_IPV4 = 0x30,
1927 IB_FLOW_SPEC_IPV6 = 0x31,
1928 IB_FLOW_SPEC_ESP = 0x34,
1929 /* L4 headers*/
1930 IB_FLOW_SPEC_TCP = 0x40,
1931 IB_FLOW_SPEC_UDP = 0x41,
1932 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1933 IB_FLOW_SPEC_GRE = 0x51,
1934 IB_FLOW_SPEC_MPLS = 0x60,
1935 IB_FLOW_SPEC_INNER = 0x100,
1936 /* Actions */
1937 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1938 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1939 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1940 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1941};
1942#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1943#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1944
1945enum ib_flow_flags {
1946 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1947 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1948 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1949};
1950
1951struct ib_flow_eth_filter {
1952 u8 dst_mac[6];
1953 u8 src_mac[6];
1954 __be16 ether_type;
1955 __be16 vlan_tag;
1956};
1957
1958struct ib_flow_spec_eth {
1959 u32 type;
1960 u16 size;
1961 struct ib_flow_eth_filter val;
1962 struct ib_flow_eth_filter mask;
1963};
1964
1965struct ib_flow_ib_filter {
1966 __be16 dlid;
1967 __u8 sl;
1968};
1969
1970struct ib_flow_spec_ib {
1971 u32 type;
1972 u16 size;
1973 struct ib_flow_ib_filter val;
1974 struct ib_flow_ib_filter mask;
1975};
1976
1977/* IPv4 header flags */
1978enum ib_ipv4_flags {
1979 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1980 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1981 last have this flag set */
1982};
1983
1984struct ib_flow_ipv4_filter {
1985 __be32 src_ip;
1986 __be32 dst_ip;
1987 u8 proto;
1988 u8 tos;
1989 u8 ttl;
1990 u8 flags;
1991};
1992
1993struct ib_flow_spec_ipv4 {
1994 u32 type;
1995 u16 size;
1996 struct ib_flow_ipv4_filter val;
1997 struct ib_flow_ipv4_filter mask;
1998};
1999
2000struct ib_flow_ipv6_filter {
2001 u8 src_ip[16];
2002 u8 dst_ip[16];
2003 __be32 flow_label;
2004 u8 next_hdr;
2005 u8 traffic_class;
2006 u8 hop_limit;
2007} __packed;
2008
2009struct ib_flow_spec_ipv6 {
2010 u32 type;
2011 u16 size;
2012 struct ib_flow_ipv6_filter val;
2013 struct ib_flow_ipv6_filter mask;
2014};
2015
2016struct ib_flow_tcp_udp_filter {
2017 __be16 dst_port;
2018 __be16 src_port;
2019};
2020
2021struct ib_flow_spec_tcp_udp {
2022 u32 type;
2023 u16 size;
2024 struct ib_flow_tcp_udp_filter val;
2025 struct ib_flow_tcp_udp_filter mask;
2026};
2027
2028struct ib_flow_tunnel_filter {
2029 __be32 tunnel_id;
2030};
2031
2032/* ib_flow_spec_tunnel describes the Vxlan tunnel
2033 * the tunnel_id from val has the vni value
2034 */
2035struct ib_flow_spec_tunnel {
2036 u32 type;
2037 u16 size;
2038 struct ib_flow_tunnel_filter val;
2039 struct ib_flow_tunnel_filter mask;
2040};
2041
2042struct ib_flow_esp_filter {
2043 __be32 spi;
2044 __be32 seq;
2045};
2046
2047struct ib_flow_spec_esp {
2048 u32 type;
2049 u16 size;
2050 struct ib_flow_esp_filter val;
2051 struct ib_flow_esp_filter mask;
2052};
2053
2054struct ib_flow_gre_filter {
2055 __be16 c_ks_res0_ver;
2056 __be16 protocol;
2057 __be32 key;
2058};
2059
2060struct ib_flow_spec_gre {
2061 u32 type;
2062 u16 size;
2063 struct ib_flow_gre_filter val;
2064 struct ib_flow_gre_filter mask;
2065};
2066
2067struct ib_flow_mpls_filter {
2068 __be32 tag;
2069};
2070
2071struct ib_flow_spec_mpls {
2072 u32 type;
2073 u16 size;
2074 struct ib_flow_mpls_filter val;
2075 struct ib_flow_mpls_filter mask;
2076};
2077
2078struct ib_flow_spec_action_tag {
2079 enum ib_flow_spec_type type;
2080 u16 size;
2081 u32 tag_id;
2082};
2083
2084struct ib_flow_spec_action_drop {
2085 enum ib_flow_spec_type type;
2086 u16 size;
2087};
2088
2089struct ib_flow_spec_action_handle {
2090 enum ib_flow_spec_type type;
2091 u16 size;
2092 struct ib_flow_action *act;
2093};
2094
2095enum ib_counters_description {
2096 IB_COUNTER_PACKETS,
2097 IB_COUNTER_BYTES,
2098};
2099
2100struct ib_flow_spec_action_count {
2101 enum ib_flow_spec_type type;
2102 u16 size;
2103 struct ib_counters *counters;
2104};
2105
2106union ib_flow_spec {
2107 struct {
2108 u32 type;
2109 u16 size;
2110 };
2111 struct ib_flow_spec_eth eth;
2112 struct ib_flow_spec_ib ib;
2113 struct ib_flow_spec_ipv4 ipv4;
2114 struct ib_flow_spec_tcp_udp tcp_udp;
2115 struct ib_flow_spec_ipv6 ipv6;
2116 struct ib_flow_spec_tunnel tunnel;
2117 struct ib_flow_spec_esp esp;
2118 struct ib_flow_spec_gre gre;
2119 struct ib_flow_spec_mpls mpls;
2120 struct ib_flow_spec_action_tag flow_tag;
2121 struct ib_flow_spec_action_drop drop;
2122 struct ib_flow_spec_action_handle action;
2123 struct ib_flow_spec_action_count flow_count;
2124};
2125
2126struct ib_flow_attr {
2127 enum ib_flow_attr_type type;
2128 u16 size;
2129 u16 priority;
2130 u32 flags;
2131 u8 num_of_specs;
2132 u32 port;
2133 union ib_flow_spec flows[];
2134};
2135
2136struct ib_flow {
2137 struct ib_qp *qp;
2138 struct ib_device *device;
2139 struct ib_uobject *uobject;
2140};
2141
2142enum ib_flow_action_type {
2143 IB_FLOW_ACTION_UNSPECIFIED,
2144 IB_FLOW_ACTION_ESP = 1,
2145};
2146
2147struct ib_flow_action_attrs_esp_keymats {
2148 enum ib_uverbs_flow_action_esp_keymat protocol;
2149 union {
2150 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2151 } keymat;
2152};
2153
2154struct ib_flow_action_attrs_esp_replays {
2155 enum ib_uverbs_flow_action_esp_replay protocol;
2156 union {
2157 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2158 } replay;
2159};
2160
2161enum ib_flow_action_attrs_esp_flags {
2162 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2163 * This is done in order to share the same flags between user-space and
2164 * kernel and spare an unnecessary translation.
2165 */
2166
2167 /* Kernel flags */
2168 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2169 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2170};
2171
2172struct ib_flow_spec_list {
2173 struct ib_flow_spec_list *next;
2174 union ib_flow_spec spec;
2175};
2176
2177struct ib_flow_action_attrs_esp {
2178 struct ib_flow_action_attrs_esp_keymats *keymat;
2179 struct ib_flow_action_attrs_esp_replays *replay;
2180 struct ib_flow_spec_list *encap;
2181 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2182 * Value of 0 is a valid value.
2183 */
2184 u32 esn;
2185 u32 spi;
2186 u32 seq;
2187 u32 tfc_pad;
2188 /* Use enum ib_flow_action_attrs_esp_flags */
2189 u64 flags;
2190 u64 hard_limit_pkts;
2191};
2192
2193struct ib_flow_action {
2194 struct ib_device *device;
2195 struct ib_uobject *uobject;
2196 enum ib_flow_action_type type;
2197 atomic_t usecnt;
2198};
2199
2200struct ib_mad;
2201
2202enum ib_process_mad_flags {
2203 IB_MAD_IGNORE_MKEY = 1,
2204 IB_MAD_IGNORE_BKEY = 2,
2205 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2206};
2207
2208enum ib_mad_result {
2209 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2210 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2211 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2212 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2213};
2214
2215struct ib_port_cache {
2216 u64 subnet_prefix;
2217 struct ib_pkey_cache *pkey;
2218 struct ib_gid_table *gid;
2219 u8 lmc;
2220 enum ib_port_state port_state;
2221 enum ib_port_state last_port_state;
2222};
2223
2224struct ib_port_immutable {
2225 int pkey_tbl_len;
2226 int gid_tbl_len;
2227 u32 core_cap_flags;
2228 u32 max_mad_size;
2229};
2230
2231struct ib_port_data {
2232 struct ib_device *ib_dev;
2233
2234 struct ib_port_immutable immutable;
2235
2236 spinlock_t pkey_list_lock;
2237
2238 spinlock_t netdev_lock;
2239
2240 struct list_head pkey_list;
2241
2242 struct ib_port_cache cache;
2243
2244 struct net_device __rcu *netdev;
2245 netdevice_tracker netdev_tracker;
2246 struct hlist_node ndev_hash_link;
2247 struct rdma_port_counter port_counter;
2248 struct ib_port *sysfs;
2249};
2250
2251/* rdma netdev type - specifies protocol type */
2252enum rdma_netdev_t {
2253 RDMA_NETDEV_OPA_VNIC,
2254 RDMA_NETDEV_IPOIB,
2255};
2256
2257/**
2258 * struct rdma_netdev - rdma netdev
2259 * For cases where netstack interfacing is required.
2260 */
2261struct rdma_netdev {
2262 void *clnt_priv;
2263 struct ib_device *hca;
2264 u32 port_num;
2265 int mtu;
2266
2267 /*
2268 * cleanup function must be specified.
2269 * FIXME: This is only used for OPA_VNIC and that usage should be
2270 * removed too.
2271 */
2272 void (*free_rdma_netdev)(struct net_device *netdev);
2273
2274 /* control functions */
2275 void (*set_id)(struct net_device *netdev, int id);
2276 /* send packet */
2277 int (*send)(struct net_device *dev, struct sk_buff *skb,
2278 struct ib_ah *address, u32 dqpn);
2279 /* multicast */
2280 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2281 union ib_gid *gid, u16 mlid,
2282 int set_qkey, u32 qkey);
2283 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2284 union ib_gid *gid, u16 mlid);
2285 /* timeout */
2286 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2287};
2288
2289struct rdma_netdev_alloc_params {
2290 size_t sizeof_priv;
2291 unsigned int txqs;
2292 unsigned int rxqs;
2293 void *param;
2294
2295 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2296 struct net_device *netdev, void *param);
2297};
2298
2299struct ib_odp_counters {
2300 atomic64_t faults;
2301 atomic64_t faults_handled;
2302 atomic64_t invalidations;
2303 atomic64_t invalidations_handled;
2304 atomic64_t prefetch;
2305};
2306
2307struct ib_counters {
2308 struct ib_device *device;
2309 struct ib_uobject *uobject;
2310 /* num of objects attached */
2311 atomic_t usecnt;
2312};
2313
2314struct ib_counters_read_attr {
2315 u64 *counters_buff;
2316 u32 ncounters;
2317 u32 flags; /* use enum ib_read_counters_flags */
2318};
2319
2320struct uverbs_attr_bundle;
2321struct iw_cm_id;
2322struct iw_cm_conn_param;
2323
2324#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2325 .size_##ib_struct = \
2326 (sizeof(struct drv_struct) + \
2327 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2328 BUILD_BUG_ON_ZERO( \
2329 !__same_type(((struct drv_struct *)NULL)->member, \
2330 struct ib_struct)))
2331
2332#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2333 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2334 gfp, false))
2335
2336#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2337 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2338 GFP_KERNEL, true))
2339
2340#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2341 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2342
2343#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2344
2345struct rdma_user_mmap_entry {
2346 struct kref ref;
2347 struct ib_ucontext *ucontext;
2348 unsigned long start_pgoff;
2349 size_t npages;
2350 bool driver_removed;
2351};
2352
2353/* Return the offset (in bytes) the user should pass to libc's mmap() */
2354static inline u64
2355rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2356{
2357 return (u64)entry->start_pgoff << PAGE_SHIFT;
2358}
2359
2360/**
2361 * struct ib_device_ops - InfiniBand device operations
2362 * This structure defines all the InfiniBand device operations, providers will
2363 * need to define the supported operations, otherwise they will be set to null.
2364 */
2365struct ib_device_ops {
2366 struct module *owner;
2367 enum rdma_driver_id driver_id;
2368 u32 uverbs_abi_ver;
2369 unsigned int uverbs_no_driver_id_binding:1;
2370
2371 /*
2372 * NOTE: New drivers should not make use of device_group; instead new
2373 * device parameter should be exposed via netlink command. This
2374 * mechanism exists only for existing drivers.
2375 */
2376 const struct attribute_group *device_group;
2377 const struct attribute_group **port_groups;
2378
2379 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2380 const struct ib_send_wr **bad_send_wr);
2381 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2382 const struct ib_recv_wr **bad_recv_wr);
2383 void (*drain_rq)(struct ib_qp *qp);
2384 void (*drain_sq)(struct ib_qp *qp);
2385 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2386 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2387 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2388 int (*post_srq_recv)(struct ib_srq *srq,
2389 const struct ib_recv_wr *recv_wr,
2390 const struct ib_recv_wr **bad_recv_wr);
2391 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2392 u32 port_num, const struct ib_wc *in_wc,
2393 const struct ib_grh *in_grh,
2394 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2395 size_t *out_mad_size, u16 *out_mad_pkey_index);
2396 int (*query_device)(struct ib_device *device,
2397 struct ib_device_attr *device_attr,
2398 struct ib_udata *udata);
2399 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2400 struct ib_device_modify *device_modify);
2401 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2402 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2403 int comp_vector);
2404 int (*query_port)(struct ib_device *device, u32 port_num,
2405 struct ib_port_attr *port_attr);
2406 int (*modify_port)(struct ib_device *device, u32 port_num,
2407 int port_modify_mask,
2408 struct ib_port_modify *port_modify);
2409 /*
2410 * The following mandatory functions are used only at device
2411 * registration. Keep functions such as these at the end of this
2412 * structure to avoid cache line misses when accessing struct ib_device
2413 * in fast paths.
2414 */
2415 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2416 struct ib_port_immutable *immutable);
2417 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2418 u32 port_num);
2419 /*
2420 * When calling get_netdev, the HW vendor's driver should return the
2421 * net device of device @device at port @port_num or NULL if such
2422 * a net device doesn't exist. The vendor driver should call dev_hold
2423 * on this net device. The HW vendor's device driver must guarantee
2424 * that this function returns NULL before the net device has finished
2425 * NETDEV_UNREGISTER state.
2426 */
2427 struct net_device *(*get_netdev)(struct ib_device *device,
2428 u32 port_num);
2429 /*
2430 * rdma netdev operation
2431 *
2432 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2433 * must return -EOPNOTSUPP if it doesn't support the specified type.
2434 */
2435 struct net_device *(*alloc_rdma_netdev)(
2436 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2437 const char *name, unsigned char name_assign_type,
2438 void (*setup)(struct net_device *));
2439
2440 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2441 enum rdma_netdev_t type,
2442 struct rdma_netdev_alloc_params *params);
2443 /*
2444 * query_gid should be return GID value for @device, when @port_num
2445 * link layer is either IB or iWarp. It is no-op if @port_num port
2446 * is RoCE link layer.
2447 */
2448 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2449 union ib_gid *gid);
2450 /*
2451 * When calling add_gid, the HW vendor's driver should add the gid
2452 * of device of port at gid index available at @attr. Meta-info of
2453 * that gid (for example, the network device related to this gid) is
2454 * available at @attr. @context allows the HW vendor driver to store
2455 * extra information together with a GID entry. The HW vendor driver may
2456 * allocate memory to contain this information and store it in @context
2457 * when a new GID entry is written to. Params are consistent until the
2458 * next call of add_gid or delete_gid. The function should return 0 on
2459 * success or error otherwise. The function could be called
2460 * concurrently for different ports. This function is only called when
2461 * roce_gid_table is used.
2462 */
2463 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2464 /*
2465 * When calling del_gid, the HW vendor's driver should delete the
2466 * gid of device @device at gid index gid_index of port port_num
2467 * available in @attr.
2468 * Upon the deletion of a GID entry, the HW vendor must free any
2469 * allocated memory. The caller will clear @context afterwards.
2470 * This function is only called when roce_gid_table is used.
2471 */
2472 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2473 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2474 u16 *pkey);
2475 int (*alloc_ucontext)(struct ib_ucontext *context,
2476 struct ib_udata *udata);
2477 void (*dealloc_ucontext)(struct ib_ucontext *context);
2478 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2479 /*
2480 * This will be called once refcount of an entry in mmap_xa reaches
2481 * zero. The type of the memory that was mapped may differ between
2482 * entries and is opaque to the rdma_user_mmap interface.
2483 * Therefore needs to be implemented by the driver in mmap_free.
2484 */
2485 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2486 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2487 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2488 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2489 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2490 struct ib_udata *udata);
2491 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2492 struct ib_udata *udata);
2493 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2494 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2495 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2496 int (*create_srq)(struct ib_srq *srq,
2497 struct ib_srq_init_attr *srq_init_attr,
2498 struct ib_udata *udata);
2499 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2500 enum ib_srq_attr_mask srq_attr_mask,
2501 struct ib_udata *udata);
2502 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2503 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2504 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2505 struct ib_udata *udata);
2506 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2507 int qp_attr_mask, struct ib_udata *udata);
2508 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2509 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2510 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2511 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2512 struct uverbs_attr_bundle *attrs);
2513 int (*create_cq_umem)(struct ib_cq *cq,
2514 const struct ib_cq_init_attr *attr,
2515 struct ib_umem *umem,
2516 struct uverbs_attr_bundle *attrs);
2517 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2518 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2519 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2520 /*
2521 * pre_destroy_cq - Prevent a cq from generating any new work
2522 * completions, but not free any kernel resources
2523 */
2524 int (*pre_destroy_cq)(struct ib_cq *cq);
2525 /*
2526 * post_destroy_cq - Free all kernel resources
2527 */
2528 void (*post_destroy_cq)(struct ib_cq *cq);
2529 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2530 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2531 u64 virt_addr, int mr_access_flags,
2532 struct ib_dmah *dmah,
2533 struct ib_udata *udata);
2534 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2535 u64 length, u64 virt_addr, int fd,
2536 int mr_access_flags,
2537 struct ib_dmah *dmah,
2538 struct uverbs_attr_bundle *attrs);
2539 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2540 u64 length, u64 virt_addr,
2541 int mr_access_flags, struct ib_pd *pd,
2542 struct ib_udata *udata);
2543 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2544 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2545 u32 max_num_sg);
2546 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2547 u32 max_num_data_sg,
2548 u32 max_num_meta_sg);
2549 int (*advise_mr)(struct ib_pd *pd,
2550 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2551 struct ib_sge *sg_list, u32 num_sge,
2552 struct uverbs_attr_bundle *attrs);
2553
2554 /*
2555 * Kernel users should universally support relaxed ordering (RO), as
2556 * they are designed to read data only after observing the CQE and use
2557 * the DMA API correctly.
2558 *
2559 * Some drivers implicitly enable RO if platform supports it.
2560 */
2561 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2562 unsigned int *sg_offset);
2563 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2564 struct ib_mr_status *mr_status);
2565 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2566 int (*dealloc_mw)(struct ib_mw *mw);
2567 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2568 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2569 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2570 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2571 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2572 struct ib_flow_attr *flow_attr,
2573 struct ib_udata *udata);
2574 int (*destroy_flow)(struct ib_flow *flow_id);
2575 int (*destroy_flow_action)(struct ib_flow_action *action);
2576 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2577 int state);
2578 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2579 struct ifla_vf_info *ivf);
2580 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2581 struct ifla_vf_stats *stats);
2582 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2583 struct ifla_vf_guid *node_guid,
2584 struct ifla_vf_guid *port_guid);
2585 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2586 int type);
2587 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2588 struct ib_wq_init_attr *init_attr,
2589 struct ib_udata *udata);
2590 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2591 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2592 u32 wq_attr_mask, struct ib_udata *udata);
2593 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2594 struct ib_rwq_ind_table_init_attr *init_attr,
2595 struct ib_udata *udata);
2596 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2597 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2598 struct ib_ucontext *context,
2599 struct ib_dm_alloc_attr *attr,
2600 struct uverbs_attr_bundle *attrs);
2601 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2602 int (*alloc_dmah)(struct ib_dmah *ibdmah,
2603 struct uverbs_attr_bundle *attrs);
2604 int (*dealloc_dmah)(struct ib_dmah *dmah, struct uverbs_attr_bundle *attrs);
2605 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2606 struct ib_dm_mr_attr *attr,
2607 struct uverbs_attr_bundle *attrs);
2608 int (*create_counters)(struct ib_counters *counters,
2609 struct uverbs_attr_bundle *attrs);
2610 int (*destroy_counters)(struct ib_counters *counters);
2611 int (*read_counters)(struct ib_counters *counters,
2612 struct ib_counters_read_attr *counters_read_attr,
2613 struct uverbs_attr_bundle *attrs);
2614 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2615 int data_sg_nents, unsigned int *data_sg_offset,
2616 struct scatterlist *meta_sg, int meta_sg_nents,
2617 unsigned int *meta_sg_offset);
2618
2619 /*
2620 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2621 * fill in the driver initialized data. The struct is kfree()'ed by
2622 * the sysfs core when the device is removed. A lifespan of -1 in the
2623 * return struct tells the core to set a default lifespan.
2624 */
2625 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2626 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2627 u32 port_num);
2628 /*
2629 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2630 * @index - The index in the value array we wish to have updated, or
2631 * num_counters if we want all stats updated
2632 * Return codes -
2633 * < 0 - Error, no counters updated
2634 * index - Updated the single counter pointed to by index
2635 * num_counters - Updated all counters (will reset the timestamp
2636 * and prevent further calls for lifespan milliseconds)
2637 * Drivers are allowed to update all counters in leiu of just the
2638 * one given in index at their option
2639 */
2640 int (*get_hw_stats)(struct ib_device *device,
2641 struct rdma_hw_stats *stats, u32 port, int index);
2642
2643 /*
2644 * modify_hw_stat - Modify the counter configuration
2645 * @enable: true/false when enable/disable a counter
2646 * Return codes - 0 on success or error code otherwise.
2647 */
2648 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2649 unsigned int counter_index, bool enable);
2650 /*
2651 * Allows rdma drivers to add their own restrack attributes.
2652 */
2653 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2654 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2655 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2656 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2657 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2658 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2659 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2660 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2661 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2662
2663 /* Device lifecycle callbacks */
2664 /*
2665 * Called after the device becomes registered, before clients are
2666 * attached
2667 */
2668 int (*enable_driver)(struct ib_device *dev);
2669 /*
2670 * This is called as part of ib_dealloc_device().
2671 */
2672 void (*dealloc_driver)(struct ib_device *dev);
2673
2674 /* iWarp CM callbacks */
2675 void (*iw_add_ref)(struct ib_qp *qp);
2676 void (*iw_rem_ref)(struct ib_qp *qp);
2677 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2678 int (*iw_connect)(struct iw_cm_id *cm_id,
2679 struct iw_cm_conn_param *conn_param);
2680 int (*iw_accept)(struct iw_cm_id *cm_id,
2681 struct iw_cm_conn_param *conn_param);
2682 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2683 u8 pdata_len);
2684 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2685 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2686 /*
2687 * counter_bind_qp - Bind a QP to a counter.
2688 * @counter - The counter to be bound. If counter->id is zero then
2689 * the driver needs to allocate a new counter and set counter->id
2690 */
2691 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp,
2692 u32 port);
2693 /*
2694 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2695 * counter and bind it onto the default one
2696 */
2697 int (*counter_unbind_qp)(struct ib_qp *qp, u32 port);
2698 /*
2699 * counter_dealloc -De-allocate the hw counter
2700 */
2701 int (*counter_dealloc)(struct rdma_counter *counter);
2702 /*
2703 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2704 * the driver initialized data.
2705 */
2706 struct rdma_hw_stats *(*counter_alloc_stats)(
2707 struct rdma_counter *counter);
2708 /*
2709 * counter_update_stats - Query the stats value of this counter
2710 */
2711 int (*counter_update_stats)(struct rdma_counter *counter);
2712
2713 /*
2714 * counter_init - Initialize the driver specific rdma counter struct.
2715 */
2716 void (*counter_init)(struct rdma_counter *counter);
2717
2718 /*
2719 * Allows rdma drivers to add their own restrack attributes
2720 * dumped via 'rdma stat' iproute2 command.
2721 */
2722 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2723
2724 /* query driver for its ucontext properties */
2725 int (*query_ucontext)(struct ib_ucontext *context,
2726 struct uverbs_attr_bundle *attrs);
2727
2728 /*
2729 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2730 * Everyone else relies on Linux memory management model.
2731 */
2732 int (*get_numa_node)(struct ib_device *dev);
2733
2734 /*
2735 * add_sub_dev - Add a sub IB device
2736 */
2737 struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2738 enum rdma_nl_dev_type type,
2739 const char *name);
2740
2741 /*
2742 * del_sub_dev - Delete a sub IB device
2743 */
2744 void (*del_sub_dev)(struct ib_device *sub_dev);
2745
2746 /*
2747 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside
2748 * the ufile.
2749 */
2750 void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile);
2751
2752 /*
2753 * report_port_event - Drivers need to implement this if they have
2754 * some private stuff to handle when link status changes.
2755 */
2756 void (*report_port_event)(struct ib_device *ibdev,
2757 struct net_device *ndev, unsigned long event);
2758
2759 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2760 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2761 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2762 DECLARE_RDMA_OBJ_SIZE(ib_dmah);
2763 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2764 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2765 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2766 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2767 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2768 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2769 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2770 DECLARE_RDMA_OBJ_SIZE(rdma_counter);
2771};
2772
2773struct ib_core_device {
2774 /* device must be the first element in structure until,
2775 * union of ib_core_device and device exists in ib_device.
2776 */
2777 struct device dev;
2778 possible_net_t rdma_net;
2779 struct kobject *ports_kobj;
2780 struct list_head port_list;
2781 struct ib_device *owner; /* reach back to owner ib_device */
2782};
2783
2784struct rdma_restrack_root;
2785struct ib_device {
2786 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2787 struct device *dma_device;
2788 struct ib_device_ops ops;
2789 char name[IB_DEVICE_NAME_MAX];
2790 struct rcu_head rcu_head;
2791
2792 struct list_head event_handler_list;
2793 /* Protects event_handler_list */
2794 struct rw_semaphore event_handler_rwsem;
2795
2796 /* Protects QP's event_handler calls and open_qp list */
2797 spinlock_t qp_open_list_lock;
2798
2799 struct rw_semaphore client_data_rwsem;
2800 struct xarray client_data;
2801 struct mutex unregistration_lock;
2802
2803 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2804 rwlock_t cache_lock;
2805 /**
2806 * port_data is indexed by port number
2807 */
2808 struct ib_port_data *port_data;
2809
2810 int num_comp_vectors;
2811
2812 union {
2813 struct device dev;
2814 struct ib_core_device coredev;
2815 };
2816
2817 /* First group is for device attributes,
2818 * Second group is for driver provided attributes (optional).
2819 * Third group is for the hw_stats
2820 * It is a NULL terminated array.
2821 */
2822 const struct attribute_group *groups[4];
2823 u8 hw_stats_attr_index;
2824
2825 u64 uverbs_cmd_mask;
2826
2827 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2828 __be64 node_guid;
2829 u32 local_dma_lkey;
2830 u16 is_switch:1;
2831 /* Indicates kernel verbs support, should not be used in drivers */
2832 u16 kverbs_provider:1;
2833 /* CQ adaptive moderation (RDMA DIM) */
2834 u16 use_cq_dim:1;
2835 u8 node_type;
2836 u32 phys_port_cnt;
2837 struct ib_device_attr attrs;
2838 struct hw_stats_device_data *hw_stats_data;
2839
2840#ifdef CONFIG_CGROUP_RDMA
2841 struct rdmacg_device cg_device;
2842#endif
2843
2844 u32 index;
2845
2846 spinlock_t cq_pools_lock;
2847 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2848
2849 struct rdma_restrack_root *res;
2850
2851 const struct uapi_definition *driver_def;
2852
2853 /*
2854 * Positive refcount indicates that the device is currently
2855 * registered and cannot be unregistered.
2856 */
2857 refcount_t refcount;
2858 struct completion unreg_completion;
2859 struct work_struct unregistration_work;
2860
2861 const struct rdma_link_ops *link_ops;
2862
2863 /* Protects compat_devs xarray modifications */
2864 struct mutex compat_devs_mutex;
2865 /* Maintains compat devices for each net namespace */
2866 struct xarray compat_devs;
2867
2868 /* Used by iWarp CM */
2869 char iw_ifname[IFNAMSIZ];
2870 u32 iw_driver_flags;
2871 u32 lag_flags;
2872
2873 /* A parent device has a list of sub-devices */
2874 struct mutex subdev_lock;
2875 struct list_head subdev_list_head;
2876
2877 /* A sub device has a type and a parent */
2878 enum rdma_nl_dev_type type;
2879 struct ib_device *parent;
2880 struct list_head subdev_list;
2881
2882 enum rdma_nl_name_assign_type name_assign_type;
2883};
2884
2885static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2886 gfp_t gfp, bool is_numa_aware)
2887{
2888 if (is_numa_aware && dev->ops.get_numa_node)
2889 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2890
2891 return kzalloc(size, gfp);
2892}
2893
2894struct ib_client_nl_info;
2895struct ib_client {
2896 const char *name;
2897 int (*add)(struct ib_device *ibdev);
2898 void (*remove)(struct ib_device *, void *client_data);
2899 void (*rename)(struct ib_device *dev, void *client_data);
2900 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2901 struct ib_client_nl_info *res);
2902 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2903
2904 /* Returns the net_dev belonging to this ib_client and matching the
2905 * given parameters.
2906 * @dev: An RDMA device that the net_dev use for communication.
2907 * @port: A physical port number on the RDMA device.
2908 * @pkey: P_Key that the net_dev uses if applicable.
2909 * @gid: A GID that the net_dev uses to communicate.
2910 * @addr: An IP address the net_dev is configured with.
2911 * @client_data: The device's client data set by ib_set_client_data().
2912 *
2913 * An ib_client that implements a net_dev on top of RDMA devices
2914 * (such as IP over IB) should implement this callback, allowing the
2915 * rdma_cm module to find the right net_dev for a given request.
2916 *
2917 * The caller is responsible for calling dev_put on the returned
2918 * netdev. */
2919 struct net_device *(*get_net_dev_by_params)(
2920 struct ib_device *dev,
2921 u32 port,
2922 u16 pkey,
2923 const union ib_gid *gid,
2924 const struct sockaddr *addr,
2925 void *client_data);
2926
2927 refcount_t uses;
2928 struct completion uses_zero;
2929 u32 client_id;
2930
2931 /* kverbs are not required by the client */
2932 u8 no_kverbs_req:1;
2933};
2934
2935/*
2936 * IB block DMA iterator
2937 *
2938 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2939 * to a HW supported page size.
2940 */
2941struct ib_block_iter {
2942 /* internal states */
2943 struct scatterlist *__sg; /* sg holding the current aligned block */
2944 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2945 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */
2946 unsigned int __sg_nents; /* number of SG entries */
2947 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2948 unsigned int __pg_bit; /* alignment of current block */
2949};
2950
2951struct ib_device *_ib_alloc_device(size_t size, struct net *net);
2952#define ib_alloc_device(drv_struct, member) \
2953 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2954 BUILD_BUG_ON_ZERO(offsetof( \
2955 struct drv_struct, member)), \
2956 &init_net), \
2957 struct drv_struct, member)
2958
2959#define ib_alloc_device_with_net(drv_struct, member, net) \
2960 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2961 BUILD_BUG_ON_ZERO(offsetof( \
2962 struct drv_struct, member)), net), \
2963 struct drv_struct, member)
2964
2965void ib_dealloc_device(struct ib_device *device);
2966
2967void ib_get_device_fw_str(struct ib_device *device, char *str);
2968
2969int ib_register_device(struct ib_device *device, const char *name,
2970 struct device *dma_device);
2971void ib_unregister_device(struct ib_device *device);
2972void ib_unregister_driver(enum rdma_driver_id driver_id);
2973void ib_unregister_device_and_put(struct ib_device *device);
2974void ib_unregister_device_queued(struct ib_device *ib_dev);
2975
2976int ib_register_client (struct ib_client *client);
2977void ib_unregister_client(struct ib_client *client);
2978
2979void __rdma_block_iter_start(struct ib_block_iter *biter,
2980 struct scatterlist *sglist,
2981 unsigned int nents,
2982 unsigned long pgsz);
2983bool __rdma_block_iter_next(struct ib_block_iter *biter);
2984
2985/**
2986 * rdma_block_iter_dma_address - get the aligned dma address of the current
2987 * block held by the block iterator.
2988 * @biter: block iterator holding the memory block
2989 */
2990static inline dma_addr_t
2991rdma_block_iter_dma_address(struct ib_block_iter *biter)
2992{
2993 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2994}
2995
2996/**
2997 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2998 * @sglist: sglist to iterate over
2999 * @biter: block iterator holding the memory block
3000 * @nents: maximum number of sg entries to iterate over
3001 * @pgsz: best HW supported page size to use
3002 *
3003 * Callers may use rdma_block_iter_dma_address() to get each
3004 * blocks aligned DMA address.
3005 */
3006#define rdma_for_each_block(sglist, biter, nents, pgsz) \
3007 for (__rdma_block_iter_start(biter, sglist, nents, \
3008 pgsz); \
3009 __rdma_block_iter_next(biter);)
3010
3011/**
3012 * ib_get_client_data - Get IB client context
3013 * @device:Device to get context for
3014 * @client:Client to get context for
3015 *
3016 * ib_get_client_data() returns the client context data set with
3017 * ib_set_client_data(). This can only be called while the client is
3018 * registered to the device, once the ib_client remove() callback returns this
3019 * cannot be called.
3020 */
3021static inline void *ib_get_client_data(struct ib_device *device,
3022 struct ib_client *client)
3023{
3024 return xa_load(&device->client_data, client->client_id);
3025}
3026void ib_set_client_data(struct ib_device *device, struct ib_client *client,
3027 void *data);
3028void ib_set_device_ops(struct ib_device *device,
3029 const struct ib_device_ops *ops);
3030
3031int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
3032 unsigned long pfn, unsigned long size, pgprot_t prot,
3033 struct rdma_user_mmap_entry *entry);
3034int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
3035 struct rdma_user_mmap_entry *entry,
3036 size_t length);
3037int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
3038 struct rdma_user_mmap_entry *entry,
3039 size_t length, u32 min_pgoff,
3040 u32 max_pgoff);
3041
3042#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
3043void rdma_user_mmap_disassociate(struct ib_device *device);
3044#else
3045static inline void rdma_user_mmap_disassociate(struct ib_device *device)
3046{
3047}
3048#endif
3049
3050static inline int
3051rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
3052 struct rdma_user_mmap_entry *entry,
3053 size_t length, u32 pgoff)
3054{
3055 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
3056 pgoff);
3057}
3058
3059struct rdma_user_mmap_entry *
3060rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
3061 unsigned long pgoff);
3062struct rdma_user_mmap_entry *
3063rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
3064 struct vm_area_struct *vma);
3065void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
3066
3067void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
3068
3069static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
3070{
3071 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
3072}
3073
3074static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
3075{
3076 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
3077}
3078
3079static inline bool ib_is_buffer_cleared(const void __user *p,
3080 size_t len)
3081{
3082 bool ret;
3083 u8 *buf;
3084
3085 if (len > USHRT_MAX)
3086 return false;
3087
3088 buf = memdup_user(p, len);
3089 if (IS_ERR(buf))
3090 return false;
3091
3092 ret = !memchr_inv(buf, 0, len);
3093 kfree(buf);
3094 return ret;
3095}
3096
3097static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3098 size_t offset,
3099 size_t len)
3100{
3101 return ib_is_buffer_cleared(udata->inbuf + offset, len);
3102}
3103
3104/**
3105 * ib_modify_qp_is_ok - Check that the supplied attribute mask
3106 * contains all required attributes and no attributes not allowed for
3107 * the given QP state transition.
3108 * @cur_state: Current QP state
3109 * @next_state: Next QP state
3110 * @type: QP type
3111 * @mask: Mask of supplied QP attributes
3112 *
3113 * This function is a helper function that a low-level driver's
3114 * modify_qp method can use to validate the consumer's input. It
3115 * checks that cur_state and next_state are valid QP states, that a
3116 * transition from cur_state to next_state is allowed by the IB spec,
3117 * and that the attribute mask supplied is allowed for the transition.
3118 */
3119bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3120 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3121
3122void ib_register_event_handler(struct ib_event_handler *event_handler);
3123void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3124void ib_dispatch_event(const struct ib_event *event);
3125
3126int ib_query_port(struct ib_device *device,
3127 u32 port_num, struct ib_port_attr *port_attr);
3128
3129enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3130 u32 port_num);
3131
3132/**
3133 * rdma_cap_ib_switch - Check if the device is IB switch
3134 * @device: Device to check
3135 *
3136 * Device driver is responsible for setting is_switch bit on
3137 * in ib_device structure at init time.
3138 *
3139 * Return: true if the device is IB switch.
3140 */
3141static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3142{
3143 return device->is_switch;
3144}
3145
3146/**
3147 * rdma_start_port - Return the first valid port number for the device
3148 * specified
3149 *
3150 * @device: Device to be checked
3151 *
3152 * Return start port number
3153 */
3154static inline u32 rdma_start_port(const struct ib_device *device)
3155{
3156 return rdma_cap_ib_switch(device) ? 0 : 1;
3157}
3158
3159/**
3160 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3161 * @device: The struct ib_device * to iterate over
3162 * @iter: The unsigned int to store the port number
3163 */
3164#define rdma_for_each_port(device, iter) \
3165 for (iter = rdma_start_port(device + \
3166 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3167 iter))); \
3168 iter <= rdma_end_port(device); iter++)
3169
3170/**
3171 * rdma_end_port - Return the last valid port number for the device
3172 * specified
3173 *
3174 * @device: Device to be checked
3175 *
3176 * Return last port number
3177 */
3178static inline u32 rdma_end_port(const struct ib_device *device)
3179{
3180 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3181}
3182
3183static inline int rdma_is_port_valid(const struct ib_device *device,
3184 unsigned int port)
3185{
3186 return (port >= rdma_start_port(device) &&
3187 port <= rdma_end_port(device));
3188}
3189
3190static inline bool rdma_is_grh_required(const struct ib_device *device,
3191 u32 port_num)
3192{
3193 return device->port_data[port_num].immutable.core_cap_flags &
3194 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3195}
3196
3197static inline bool rdma_protocol_ib(const struct ib_device *device,
3198 u32 port_num)
3199{
3200 return device->port_data[port_num].immutable.core_cap_flags &
3201 RDMA_CORE_CAP_PROT_IB;
3202}
3203
3204static inline bool rdma_protocol_roce(const struct ib_device *device,
3205 u32 port_num)
3206{
3207 return device->port_data[port_num].immutable.core_cap_flags &
3208 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3209}
3210
3211static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3212 u32 port_num)
3213{
3214 return device->port_data[port_num].immutable.core_cap_flags &
3215 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3216}
3217
3218static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3219 u32 port_num)
3220{
3221 return device->port_data[port_num].immutable.core_cap_flags &
3222 RDMA_CORE_CAP_PROT_ROCE;
3223}
3224
3225static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3226 u32 port_num)
3227{
3228 return device->port_data[port_num].immutable.core_cap_flags &
3229 RDMA_CORE_CAP_PROT_IWARP;
3230}
3231
3232static inline bool rdma_ib_or_roce(const struct ib_device *device,
3233 u32 port_num)
3234{
3235 return rdma_protocol_ib(device, port_num) ||
3236 rdma_protocol_roce(device, port_num);
3237}
3238
3239static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3240 u32 port_num)
3241{
3242 return device->port_data[port_num].immutable.core_cap_flags &
3243 RDMA_CORE_CAP_PROT_RAW_PACKET;
3244}
3245
3246static inline bool rdma_protocol_usnic(const struct ib_device *device,
3247 u32 port_num)
3248{
3249 return device->port_data[port_num].immutable.core_cap_flags &
3250 RDMA_CORE_CAP_PROT_USNIC;
3251}
3252
3253/**
3254 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3255 * Management Datagrams.
3256 * @device: Device to check
3257 * @port_num: Port number to check
3258 *
3259 * Management Datagrams (MAD) are a required part of the InfiniBand
3260 * specification and are supported on all InfiniBand devices. A slightly
3261 * extended version are also supported on OPA interfaces.
3262 *
3263 * Return: true if the port supports sending/receiving of MAD packets.
3264 */
3265static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3266{
3267 return device->port_data[port_num].immutable.core_cap_flags &
3268 RDMA_CORE_CAP_IB_MAD;
3269}
3270
3271/**
3272 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3273 * Management Datagrams.
3274 * @device: Device to check
3275 * @port_num: Port number to check
3276 *
3277 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3278 * datagrams with their own versions. These OPA MADs share many but not all of
3279 * the characteristics of InfiniBand MADs.
3280 *
3281 * OPA MADs differ in the following ways:
3282 *
3283 * 1) MADs are variable size up to 2K
3284 * IBTA defined MADs remain fixed at 256 bytes
3285 * 2) OPA SMPs must carry valid PKeys
3286 * 3) OPA SMP packets are a different format
3287 *
3288 * Return: true if the port supports OPA MAD packet formats.
3289 */
3290static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3291{
3292 return device->port_data[port_num].immutable.core_cap_flags &
3293 RDMA_CORE_CAP_OPA_MAD;
3294}
3295
3296/**
3297 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3298 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3299 * @device: Device to check
3300 * @port_num: Port number to check
3301 *
3302 * Each InfiniBand node is required to provide a Subnet Management Agent
3303 * that the subnet manager can access. Prior to the fabric being fully
3304 * configured by the subnet manager, the SMA is accessed via a well known
3305 * interface called the Subnet Management Interface (SMI). This interface
3306 * uses directed route packets to communicate with the SM to get around the
3307 * chicken and egg problem of the SM needing to know what's on the fabric
3308 * in order to configure the fabric, and needing to configure the fabric in
3309 * order to send packets to the devices on the fabric. These directed
3310 * route packets do not need the fabric fully configured in order to reach
3311 * their destination. The SMI is the only method allowed to send
3312 * directed route packets on an InfiniBand fabric.
3313 *
3314 * Return: true if the port provides an SMI.
3315 */
3316static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3317{
3318 return device->port_data[port_num].immutable.core_cap_flags &
3319 RDMA_CORE_CAP_IB_SMI;
3320}
3321
3322/**
3323 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3324 * Communication Manager.
3325 * @device: Device to check
3326 * @port_num: Port number to check
3327 *
3328 * The InfiniBand Communication Manager is one of many pre-defined General
3329 * Service Agents (GSA) that are accessed via the General Service
3330 * Interface (GSI). It's role is to facilitate establishment of connections
3331 * between nodes as well as other management related tasks for established
3332 * connections.
3333 *
3334 * Return: true if the port supports an IB CM (this does not guarantee that
3335 * a CM is actually running however).
3336 */
3337static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3338{
3339 return device->port_data[port_num].immutable.core_cap_flags &
3340 RDMA_CORE_CAP_IB_CM;
3341}
3342
3343/**
3344 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3345 * Communication Manager.
3346 * @device: Device to check
3347 * @port_num: Port number to check
3348 *
3349 * Similar to above, but specific to iWARP connections which have a different
3350 * managment protocol than InfiniBand.
3351 *
3352 * Return: true if the port supports an iWARP CM (this does not guarantee that
3353 * a CM is actually running however).
3354 */
3355static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3356{
3357 return device->port_data[port_num].immutable.core_cap_flags &
3358 RDMA_CORE_CAP_IW_CM;
3359}
3360
3361/**
3362 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3363 * Subnet Administration.
3364 * @device: Device to check
3365 * @port_num: Port number to check
3366 *
3367 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3368 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3369 * fabrics, devices should resolve routes to other hosts by contacting the
3370 * SA to query the proper route.
3371 *
3372 * Return: true if the port should act as a client to the fabric Subnet
3373 * Administration interface. This does not imply that the SA service is
3374 * running locally.
3375 */
3376static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3377{
3378 return device->port_data[port_num].immutable.core_cap_flags &
3379 RDMA_CORE_CAP_IB_SA;
3380}
3381
3382/**
3383 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3384 * Multicast.
3385 * @device: Device to check
3386 * @port_num: Port number to check
3387 *
3388 * InfiniBand multicast registration is more complex than normal IPv4 or
3389 * IPv6 multicast registration. Each Host Channel Adapter must register
3390 * with the Subnet Manager when it wishes to join a multicast group. It
3391 * should do so only once regardless of how many queue pairs it subscribes
3392 * to this group. And it should leave the group only after all queue pairs
3393 * attached to the group have been detached.
3394 *
3395 * Return: true if the port must undertake the additional adminstrative
3396 * overhead of registering/unregistering with the SM and tracking of the
3397 * total number of queue pairs attached to the multicast group.
3398 */
3399static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3400 u32 port_num)
3401{
3402 return rdma_cap_ib_sa(device, port_num);
3403}
3404
3405/**
3406 * rdma_cap_af_ib - Check if the port of device has the capability
3407 * Native Infiniband Address.
3408 * @device: Device to check
3409 * @port_num: Port number to check
3410 *
3411 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3412 * GID. RoCE uses a different mechanism, but still generates a GID via
3413 * a prescribed mechanism and port specific data.
3414 *
3415 * Return: true if the port uses a GID address to identify devices on the
3416 * network.
3417 */
3418static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3419{
3420 return device->port_data[port_num].immutable.core_cap_flags &
3421 RDMA_CORE_CAP_AF_IB;
3422}
3423
3424/**
3425 * rdma_cap_eth_ah - Check if the port of device has the capability
3426 * Ethernet Address Handle.
3427 * @device: Device to check
3428 * @port_num: Port number to check
3429 *
3430 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3431 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3432 * port. Normally, packet headers are generated by the sending host
3433 * adapter, but when sending connectionless datagrams, we must manually
3434 * inject the proper headers for the fabric we are communicating over.
3435 *
3436 * Return: true if we are running as a RoCE port and must force the
3437 * addition of a Global Route Header built from our Ethernet Address
3438 * Handle into our header list for connectionless packets.
3439 */
3440static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3441{
3442 return device->port_data[port_num].immutable.core_cap_flags &
3443 RDMA_CORE_CAP_ETH_AH;
3444}
3445
3446/**
3447 * rdma_cap_opa_ah - Check if the port of device supports
3448 * OPA Address handles
3449 * @device: Device to check
3450 * @port_num: Port number to check
3451 *
3452 * Return: true if we are running on an OPA device which supports
3453 * the extended OPA addressing.
3454 */
3455static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3456{
3457 return (device->port_data[port_num].immutable.core_cap_flags &
3458 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3459}
3460
3461/**
3462 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3463 *
3464 * @device: Device
3465 * @port_num: Port number
3466 *
3467 * This MAD size includes the MAD headers and MAD payload. No other headers
3468 * are included.
3469 *
3470 * Return the max MAD size required by the Port. Will return 0 if the port
3471 * does not support MADs
3472 */
3473static inline size_t rdma_max_mad_size(const struct ib_device *device,
3474 u32 port_num)
3475{
3476 return device->port_data[port_num].immutable.max_mad_size;
3477}
3478
3479/**
3480 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3481 * @device: Device to check
3482 * @port_num: Port number to check
3483 *
3484 * RoCE GID table mechanism manages the various GIDs for a device.
3485 *
3486 * NOTE: if allocating the port's GID table has failed, this call will still
3487 * return true, but any RoCE GID table API will fail.
3488 *
3489 * Return: true if the port uses RoCE GID table mechanism in order to manage
3490 * its GIDs.
3491 */
3492static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3493 u32 port_num)
3494{
3495 return rdma_protocol_roce(device, port_num) &&
3496 device->ops.add_gid && device->ops.del_gid;
3497}
3498
3499/*
3500 * Check if the device supports READ W/ INVALIDATE.
3501 */
3502static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3503{
3504 /*
3505 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3506 * has support for it yet.
3507 */
3508 return rdma_protocol_iwarp(dev, port_num);
3509}
3510
3511/**
3512 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3513 * @device: Device
3514 * @port_num: 1 based Port number
3515 *
3516 * Return true if port is an Intel OPA port , false if not
3517 */
3518static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3519 u32 port_num)
3520{
3521 return (device->port_data[port_num].immutable.core_cap_flags &
3522 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3523}
3524
3525/**
3526 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3527 * @device: Device
3528 * @port: Port number
3529 * @mtu: enum value of MTU
3530 *
3531 * Return the MTU size supported by the port as an integer value. Will return
3532 * -1 if enum value of mtu is not supported.
3533 */
3534static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3535 int mtu)
3536{
3537 if (rdma_core_cap_opa_port(device, port))
3538 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3539 else
3540 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3541}
3542
3543/**
3544 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3545 * @device: Device
3546 * @port: Port number
3547 * @attr: port attribute
3548 *
3549 * Return the MTU size supported by the port as an integer value.
3550 */
3551static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3552 struct ib_port_attr *attr)
3553{
3554 if (rdma_core_cap_opa_port(device, port))
3555 return attr->phys_mtu;
3556 else
3557 return ib_mtu_enum_to_int(attr->max_mtu);
3558}
3559
3560int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3561 int state);
3562int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3563 struct ifla_vf_info *info);
3564int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3565 struct ifla_vf_stats *stats);
3566int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3567 struct ifla_vf_guid *node_guid,
3568 struct ifla_vf_guid *port_guid);
3569int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3570 int type);
3571
3572int ib_query_pkey(struct ib_device *device,
3573 u32 port_num, u16 index, u16 *pkey);
3574
3575int ib_modify_device(struct ib_device *device,
3576 int device_modify_mask,
3577 struct ib_device_modify *device_modify);
3578
3579int ib_modify_port(struct ib_device *device,
3580 u32 port_num, int port_modify_mask,
3581 struct ib_port_modify *port_modify);
3582
3583int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3584 u32 *port_num, u16 *index);
3585
3586int ib_find_pkey(struct ib_device *device,
3587 u32 port_num, u16 pkey, u16 *index);
3588
3589enum ib_pd_flags {
3590 /*
3591 * Create a memory registration for all memory in the system and place
3592 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3593 * ULPs to avoid the overhead of dynamic MRs.
3594 *
3595 * This flag is generally considered unsafe and must only be used in
3596 * extremly trusted environments. Every use of it will log a warning
3597 * in the kernel log.
3598 */
3599 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3600};
3601
3602struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3603 const char *caller);
3604
3605/**
3606 * ib_alloc_pd - Allocates an unused protection domain.
3607 * @device: The device on which to allocate the protection domain.
3608 * @flags: protection domain flags
3609 *
3610 * A protection domain object provides an association between QPs, shared
3611 * receive queues, address handles, memory regions, and memory windows.
3612 *
3613 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3614 * memory operations.
3615 */
3616#define ib_alloc_pd(device, flags) \
3617 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3618
3619int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3620
3621/**
3622 * ib_dealloc_pd - Deallocate kernel PD
3623 * @pd: The protection domain
3624 *
3625 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3626 */
3627static inline void ib_dealloc_pd(struct ib_pd *pd)
3628{
3629 int ret = ib_dealloc_pd_user(pd, NULL);
3630
3631 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3632}
3633
3634enum rdma_create_ah_flags {
3635 /* In a sleepable context */
3636 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3637};
3638
3639/**
3640 * rdma_create_ah - Creates an address handle for the given address vector.
3641 * @pd: The protection domain associated with the address handle.
3642 * @ah_attr: The attributes of the address vector.
3643 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3644 *
3645 * The address handle is used to reference a local or global destination
3646 * in all UD QP post sends.
3647 */
3648struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3649 u32 flags);
3650
3651/**
3652 * rdma_create_user_ah - Creates an address handle for the given address vector.
3653 * It resolves destination mac address for ah attribute of RoCE type.
3654 * @pd: The protection domain associated with the address handle.
3655 * @ah_attr: The attributes of the address vector.
3656 * @udata: pointer to user's input output buffer information need by
3657 * provider driver.
3658 *
3659 * It returns 0 on success and returns appropriate error code on error.
3660 * The address handle is used to reference a local or global destination
3661 * in all UD QP post sends.
3662 */
3663struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3664 struct rdma_ah_attr *ah_attr,
3665 struct ib_udata *udata);
3666/**
3667 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3668 * work completion.
3669 * @hdr: the L3 header to parse
3670 * @net_type: type of header to parse
3671 * @sgid: place to store source gid
3672 * @dgid: place to store destination gid
3673 */
3674int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3675 enum rdma_network_type net_type,
3676 union ib_gid *sgid, union ib_gid *dgid);
3677
3678/**
3679 * ib_get_rdma_header_version - Get the header version
3680 * @hdr: the L3 header to parse
3681 */
3682int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3683
3684/**
3685 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3686 * work completion.
3687 * @device: Device on which the received message arrived.
3688 * @port_num: Port on which the received message arrived.
3689 * @wc: Work completion associated with the received message.
3690 * @grh: References the received global route header. This parameter is
3691 * ignored unless the work completion indicates that the GRH is valid.
3692 * @ah_attr: Returned attributes that can be used when creating an address
3693 * handle for replying to the message.
3694 * When ib_init_ah_attr_from_wc() returns success,
3695 * (a) for IB link layer it optionally contains a reference to SGID attribute
3696 * when GRH is present for IB link layer.
3697 * (b) for RoCE link layer it contains a reference to SGID attribute.
3698 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3699 * attributes which are initialized using ib_init_ah_attr_from_wc().
3700 *
3701 */
3702int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3703 const struct ib_wc *wc, const struct ib_grh *grh,
3704 struct rdma_ah_attr *ah_attr);
3705
3706/**
3707 * ib_create_ah_from_wc - Creates an address handle associated with the
3708 * sender of the specified work completion.
3709 * @pd: The protection domain associated with the address handle.
3710 * @wc: Work completion information associated with a received message.
3711 * @grh: References the received global route header. This parameter is
3712 * ignored unless the work completion indicates that the GRH is valid.
3713 * @port_num: The outbound port number to associate with the address.
3714 *
3715 * The address handle is used to reference a local or global destination
3716 * in all UD QP post sends.
3717 */
3718struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3719 const struct ib_grh *grh, u32 port_num);
3720
3721/**
3722 * rdma_modify_ah - Modifies the address vector associated with an address
3723 * handle.
3724 * @ah: The address handle to modify.
3725 * @ah_attr: The new address vector attributes to associate with the
3726 * address handle.
3727 */
3728int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3729
3730/**
3731 * rdma_query_ah - Queries the address vector associated with an address
3732 * handle.
3733 * @ah: The address handle to query.
3734 * @ah_attr: The address vector attributes associated with the address
3735 * handle.
3736 */
3737int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3738
3739enum rdma_destroy_ah_flags {
3740 /* In a sleepable context */
3741 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3742};
3743
3744/**
3745 * rdma_destroy_ah_user - Destroys an address handle.
3746 * @ah: The address handle to destroy.
3747 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3748 * @udata: Valid user data or NULL for kernel objects
3749 */
3750int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3751
3752/**
3753 * rdma_destroy_ah - Destroys an kernel address handle.
3754 * @ah: The address handle to destroy.
3755 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3756 *
3757 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3758 */
3759static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3760{
3761 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3762
3763 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3764}
3765
3766struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3767 struct ib_srq_init_attr *srq_init_attr,
3768 struct ib_usrq_object *uobject,
3769 struct ib_udata *udata);
3770static inline struct ib_srq *
3771ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3772{
3773 if (!pd->device->ops.create_srq)
3774 return ERR_PTR(-EOPNOTSUPP);
3775
3776 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3777}
3778
3779/**
3780 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3781 * @srq: The SRQ to modify.
3782 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3783 * the current values of selected SRQ attributes are returned.
3784 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3785 * are being modified.
3786 *
3787 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3788 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3789 * the number of receives queued drops below the limit.
3790 */
3791int ib_modify_srq(struct ib_srq *srq,
3792 struct ib_srq_attr *srq_attr,
3793 enum ib_srq_attr_mask srq_attr_mask);
3794
3795/**
3796 * ib_query_srq - Returns the attribute list and current values for the
3797 * specified SRQ.
3798 * @srq: The SRQ to query.
3799 * @srq_attr: The attributes of the specified SRQ.
3800 */
3801int ib_query_srq(struct ib_srq *srq,
3802 struct ib_srq_attr *srq_attr);
3803
3804/**
3805 * ib_destroy_srq_user - Destroys the specified SRQ.
3806 * @srq: The SRQ to destroy.
3807 * @udata: Valid user data or NULL for kernel objects
3808 */
3809int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3810
3811/**
3812 * ib_destroy_srq - Destroys the specified kernel SRQ.
3813 * @srq: The SRQ to destroy.
3814 *
3815 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3816 */
3817static inline void ib_destroy_srq(struct ib_srq *srq)
3818{
3819 int ret = ib_destroy_srq_user(srq, NULL);
3820
3821 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3822}
3823
3824/**
3825 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3826 * @srq: The SRQ to post the work request on.
3827 * @recv_wr: A list of work requests to post on the receive queue.
3828 * @bad_recv_wr: On an immediate failure, this parameter will reference
3829 * the work request that failed to be posted on the QP.
3830 */
3831static inline int ib_post_srq_recv(struct ib_srq *srq,
3832 const struct ib_recv_wr *recv_wr,
3833 const struct ib_recv_wr **bad_recv_wr)
3834{
3835 const struct ib_recv_wr *dummy;
3836
3837 return srq->device->ops.post_srq_recv(srq, recv_wr,
3838 bad_recv_wr ? : &dummy);
3839}
3840
3841struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3842 struct ib_qp_init_attr *qp_init_attr,
3843 const char *caller);
3844/**
3845 * ib_create_qp - Creates a kernel QP associated with the specific protection
3846 * domain.
3847 * @pd: The protection domain associated with the QP.
3848 * @init_attr: A list of initial attributes required to create the
3849 * QP. If QP creation succeeds, then the attributes are updated to
3850 * the actual capabilities of the created QP.
3851 */
3852static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3853 struct ib_qp_init_attr *init_attr)
3854{
3855 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3856}
3857
3858/**
3859 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3860 * @qp: The QP to modify.
3861 * @attr: On input, specifies the QP attributes to modify. On output,
3862 * the current values of selected QP attributes are returned.
3863 * @attr_mask: A bit-mask used to specify which attributes of the QP
3864 * are being modified.
3865 * @udata: pointer to user's input output buffer information
3866 * are being modified.
3867 * It returns 0 on success and returns appropriate error code on error.
3868 */
3869int ib_modify_qp_with_udata(struct ib_qp *qp,
3870 struct ib_qp_attr *attr,
3871 int attr_mask,
3872 struct ib_udata *udata);
3873
3874/**
3875 * ib_modify_qp - Modifies the attributes for the specified QP and then
3876 * transitions the QP to the given state.
3877 * @qp: The QP to modify.
3878 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3879 * the current values of selected QP attributes are returned.
3880 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3881 * are being modified.
3882 */
3883int ib_modify_qp(struct ib_qp *qp,
3884 struct ib_qp_attr *qp_attr,
3885 int qp_attr_mask);
3886
3887/**
3888 * ib_query_qp - Returns the attribute list and current values for the
3889 * specified QP.
3890 * @qp: The QP to query.
3891 * @qp_attr: The attributes of the specified QP.
3892 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3893 * @qp_init_attr: Additional attributes of the selected QP.
3894 *
3895 * The qp_attr_mask may be used to limit the query to gathering only the
3896 * selected attributes.
3897 */
3898int ib_query_qp(struct ib_qp *qp,
3899 struct ib_qp_attr *qp_attr,
3900 int qp_attr_mask,
3901 struct ib_qp_init_attr *qp_init_attr);
3902
3903/**
3904 * ib_destroy_qp - Destroys the specified QP.
3905 * @qp: The QP to destroy.
3906 * @udata: Valid udata or NULL for kernel objects
3907 */
3908int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3909
3910/**
3911 * ib_destroy_qp - Destroys the specified kernel QP.
3912 * @qp: The QP to destroy.
3913 *
3914 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3915 */
3916static inline int ib_destroy_qp(struct ib_qp *qp)
3917{
3918 return ib_destroy_qp_user(qp, NULL);
3919}
3920
3921/**
3922 * ib_open_qp - Obtain a reference to an existing sharable QP.
3923 * @xrcd: XRC domain
3924 * @qp_open_attr: Attributes identifying the QP to open.
3925 *
3926 * Returns a reference to a sharable QP.
3927 */
3928struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3929 struct ib_qp_open_attr *qp_open_attr);
3930
3931/**
3932 * ib_close_qp - Release an external reference to a QP.
3933 * @qp: The QP handle to release
3934 *
3935 * The opened QP handle is released by the caller. The underlying
3936 * shared QP is not destroyed until all internal references are released.
3937 */
3938int ib_close_qp(struct ib_qp *qp);
3939
3940/**
3941 * ib_post_send - Posts a list of work requests to the send queue of
3942 * the specified QP.
3943 * @qp: The QP to post the work request on.
3944 * @send_wr: A list of work requests to post on the send queue.
3945 * @bad_send_wr: On an immediate failure, this parameter will reference
3946 * the work request that failed to be posted on the QP.
3947 *
3948 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3949 * error is returned, the QP state shall not be affected,
3950 * ib_post_send() will return an immediate error after queueing any
3951 * earlier work requests in the list.
3952 */
3953static inline int ib_post_send(struct ib_qp *qp,
3954 const struct ib_send_wr *send_wr,
3955 const struct ib_send_wr **bad_send_wr)
3956{
3957 const struct ib_send_wr *dummy;
3958
3959 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3960}
3961
3962/**
3963 * ib_post_recv - Posts a list of work requests to the receive queue of
3964 * the specified QP.
3965 * @qp: The QP to post the work request on.
3966 * @recv_wr: A list of work requests to post on the receive queue.
3967 * @bad_recv_wr: On an immediate failure, this parameter will reference
3968 * the work request that failed to be posted on the QP.
3969 */
3970static inline int ib_post_recv(struct ib_qp *qp,
3971 const struct ib_recv_wr *recv_wr,
3972 const struct ib_recv_wr **bad_recv_wr)
3973{
3974 const struct ib_recv_wr *dummy;
3975
3976 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3977}
3978
3979struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3980 int comp_vector, enum ib_poll_context poll_ctx,
3981 const char *caller);
3982static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3983 int nr_cqe, int comp_vector,
3984 enum ib_poll_context poll_ctx)
3985{
3986 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3987 KBUILD_MODNAME);
3988}
3989
3990struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3991 int nr_cqe, enum ib_poll_context poll_ctx,
3992 const char *caller);
3993
3994/**
3995 * ib_alloc_cq_any: Allocate kernel CQ
3996 * @dev: The IB device
3997 * @private: Private data attached to the CQE
3998 * @nr_cqe: Number of CQEs in the CQ
3999 * @poll_ctx: Context used for polling the CQ
4000 */
4001static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
4002 void *private, int nr_cqe,
4003 enum ib_poll_context poll_ctx)
4004{
4005 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
4006 KBUILD_MODNAME);
4007}
4008
4009void ib_free_cq(struct ib_cq *cq);
4010int ib_process_cq_direct(struct ib_cq *cq, int budget);
4011
4012/**
4013 * ib_create_cq - Creates a CQ on the specified device.
4014 * @device: The device on which to create the CQ.
4015 * @comp_handler: A user-specified callback that is invoked when a
4016 * completion event occurs on the CQ.
4017 * @event_handler: A user-specified callback that is invoked when an
4018 * asynchronous event not associated with a completion occurs on the CQ.
4019 * @cq_context: Context associated with the CQ returned to the user via
4020 * the associated completion and event handlers.
4021 * @cq_attr: The attributes the CQ should be created upon.
4022 *
4023 * Users can examine the cq structure to determine the actual CQ size.
4024 */
4025struct ib_cq *__ib_create_cq(struct ib_device *device,
4026 ib_comp_handler comp_handler,
4027 void (*event_handler)(struct ib_event *, void *),
4028 void *cq_context,
4029 const struct ib_cq_init_attr *cq_attr,
4030 const char *caller);
4031#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
4032 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
4033
4034/**
4035 * ib_resize_cq - Modifies the capacity of the CQ.
4036 * @cq: The CQ to resize.
4037 * @cqe: The minimum size of the CQ.
4038 *
4039 * Users can examine the cq structure to determine the actual CQ size.
4040 */
4041int ib_resize_cq(struct ib_cq *cq, int cqe);
4042
4043/**
4044 * rdma_set_cq_moderation - Modifies moderation params of the CQ
4045 * @cq: The CQ to modify.
4046 * @cq_count: number of CQEs that will trigger an event
4047 * @cq_period: max period of time in usec before triggering an event
4048 *
4049 */
4050int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
4051
4052/**
4053 * ib_destroy_cq_user - Destroys the specified CQ.
4054 * @cq: The CQ to destroy.
4055 * @udata: Valid user data or NULL for kernel objects
4056 */
4057int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
4058
4059/**
4060 * ib_destroy_cq - Destroys the specified kernel CQ.
4061 * @cq: The CQ to destroy.
4062 *
4063 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
4064 */
4065static inline void ib_destroy_cq(struct ib_cq *cq)
4066{
4067 int ret = ib_destroy_cq_user(cq, NULL);
4068
4069 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
4070}
4071
4072/**
4073 * ib_poll_cq - poll a CQ for completion(s)
4074 * @cq:the CQ being polled
4075 * @num_entries:maximum number of completions to return
4076 * @wc:array of at least @num_entries &struct ib_wc where completions
4077 * will be returned
4078 *
4079 * Poll a CQ for (possibly multiple) completions. If the return value
4080 * is < 0, an error occurred. If the return value is >= 0, it is the
4081 * number of completions returned. If the return value is
4082 * non-negative and < num_entries, then the CQ was emptied.
4083 */
4084static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4085 struct ib_wc *wc)
4086{
4087 return cq->device->ops.poll_cq(cq, num_entries, wc);
4088}
4089
4090/**
4091 * ib_req_notify_cq - Request completion notification on a CQ.
4092 * @cq: The CQ to generate an event for.
4093 * @flags:
4094 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4095 * to request an event on the next solicited event or next work
4096 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4097 * may also be |ed in to request a hint about missed events, as
4098 * described below.
4099 *
4100 * Return Value:
4101 * < 0 means an error occurred while requesting notification
4102 * == 0 means notification was requested successfully, and if
4103 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4104 * were missed and it is safe to wait for another event. In
4105 * this case is it guaranteed that any work completions added
4106 * to the CQ since the last CQ poll will trigger a completion
4107 * notification event.
4108 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4109 * in. It means that the consumer must poll the CQ again to
4110 * make sure it is empty to avoid missing an event because of a
4111 * race between requesting notification and an entry being
4112 * added to the CQ. This return value means it is possible
4113 * (but not guaranteed) that a work completion has been added
4114 * to the CQ since the last poll without triggering a
4115 * completion notification event.
4116 */
4117static inline int ib_req_notify_cq(struct ib_cq *cq,
4118 enum ib_cq_notify_flags flags)
4119{
4120 return cq->device->ops.req_notify_cq(cq, flags);
4121}
4122
4123struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4124 int comp_vector_hint,
4125 enum ib_poll_context poll_ctx);
4126
4127void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4128
4129/*
4130 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4131 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4132 * address into the dma address.
4133 */
4134static inline bool ib_uses_virt_dma(struct ib_device *dev)
4135{
4136 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4137}
4138
4139/*
4140 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4141 */
4142static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4143{
4144 if (ib_uses_virt_dma(dev))
4145 return false;
4146
4147 return dma_pci_p2pdma_supported(dev->dma_device);
4148}
4149
4150/**
4151 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4152 * @dma_addr: The DMA address
4153 *
4154 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4155 * going through the dma_addr marshalling.
4156 */
4157static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4158{
4159 /* virt_dma mode maps the kvs's directly into the dma addr */
4160 return (void *)(uintptr_t)dma_addr;
4161}
4162
4163/**
4164 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4165 * @dma_addr: The DMA address
4166 *
4167 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4168 * through the dma_addr marshalling.
4169 */
4170static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4171{
4172 return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4173}
4174
4175/**
4176 * ib_dma_mapping_error - check a DMA addr for error
4177 * @dev: The device for which the dma_addr was created
4178 * @dma_addr: The DMA address to check
4179 */
4180static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4181{
4182 if (ib_uses_virt_dma(dev))
4183 return 0;
4184 return dma_mapping_error(dev->dma_device, dma_addr);
4185}
4186
4187/**
4188 * ib_dma_map_single - Map a kernel virtual address to DMA address
4189 * @dev: The device for which the dma_addr is to be created
4190 * @cpu_addr: The kernel virtual address
4191 * @size: The size of the region in bytes
4192 * @direction: The direction of the DMA
4193 */
4194static inline u64 ib_dma_map_single(struct ib_device *dev,
4195 void *cpu_addr, size_t size,
4196 enum dma_data_direction direction)
4197{
4198 if (ib_uses_virt_dma(dev))
4199 return (uintptr_t)cpu_addr;
4200 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4201}
4202
4203/**
4204 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4205 * @dev: The device for which the DMA address was created
4206 * @addr: The DMA address
4207 * @size: The size of the region in bytes
4208 * @direction: The direction of the DMA
4209 */
4210static inline void ib_dma_unmap_single(struct ib_device *dev,
4211 u64 addr, size_t size,
4212 enum dma_data_direction direction)
4213{
4214 if (!ib_uses_virt_dma(dev))
4215 dma_unmap_single(dev->dma_device, addr, size, direction);
4216}
4217
4218/**
4219 * ib_dma_map_page - Map a physical page to DMA address
4220 * @dev: The device for which the dma_addr is to be created
4221 * @page: The page to be mapped
4222 * @offset: The offset within the page
4223 * @size: The size of the region in bytes
4224 * @direction: The direction of the DMA
4225 */
4226static inline u64 ib_dma_map_page(struct ib_device *dev,
4227 struct page *page,
4228 unsigned long offset,
4229 size_t size,
4230 enum dma_data_direction direction)
4231{
4232 if (ib_uses_virt_dma(dev))
4233 return (uintptr_t)(page_address(page) + offset);
4234 return dma_map_page(dev->dma_device, page, offset, size, direction);
4235}
4236
4237/**
4238 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4239 * @dev: The device for which the DMA address was created
4240 * @addr: The DMA address
4241 * @size: The size of the region in bytes
4242 * @direction: The direction of the DMA
4243 */
4244static inline void ib_dma_unmap_page(struct ib_device *dev,
4245 u64 addr, size_t size,
4246 enum dma_data_direction direction)
4247{
4248 if (!ib_uses_virt_dma(dev))
4249 dma_unmap_page(dev->dma_device, addr, size, direction);
4250}
4251
4252int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4253static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4254 struct scatterlist *sg, int nents,
4255 enum dma_data_direction direction,
4256 unsigned long dma_attrs)
4257{
4258 if (ib_uses_virt_dma(dev))
4259 return ib_dma_virt_map_sg(dev, sg, nents);
4260 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4261 dma_attrs);
4262}
4263
4264static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4265 struct scatterlist *sg, int nents,
4266 enum dma_data_direction direction,
4267 unsigned long dma_attrs)
4268{
4269 if (!ib_uses_virt_dma(dev))
4270 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4271 dma_attrs);
4272}
4273
4274/**
4275 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4276 * @dev: The device for which the DMA addresses are to be created
4277 * @sgt: The sg_table object describing the buffer
4278 * @direction: The direction of the DMA
4279 * @dma_attrs: Optional DMA attributes for the map operation
4280 */
4281static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4282 struct sg_table *sgt,
4283 enum dma_data_direction direction,
4284 unsigned long dma_attrs)
4285{
4286 int nents;
4287
4288 if (ib_uses_virt_dma(dev)) {
4289 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4290 if (!nents)
4291 return -EIO;
4292 sgt->nents = nents;
4293 return 0;
4294 }
4295 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4296}
4297
4298static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4299 struct sg_table *sgt,
4300 enum dma_data_direction direction,
4301 unsigned long dma_attrs)
4302{
4303 if (!ib_uses_virt_dma(dev))
4304 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4305}
4306
4307/**
4308 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4309 * @dev: The device for which the DMA addresses are to be created
4310 * @sg: The array of scatter/gather entries
4311 * @nents: The number of scatter/gather entries
4312 * @direction: The direction of the DMA
4313 */
4314static inline int ib_dma_map_sg(struct ib_device *dev,
4315 struct scatterlist *sg, int nents,
4316 enum dma_data_direction direction)
4317{
4318 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4319}
4320
4321/**
4322 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4323 * @dev: The device for which the DMA addresses were created
4324 * @sg: The array of scatter/gather entries
4325 * @nents: The number of scatter/gather entries
4326 * @direction: The direction of the DMA
4327 */
4328static inline void ib_dma_unmap_sg(struct ib_device *dev,
4329 struct scatterlist *sg, int nents,
4330 enum dma_data_direction direction)
4331{
4332 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4333}
4334
4335/**
4336 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4337 * @dev: The device to query
4338 *
4339 * The returned value represents a size in bytes.
4340 */
4341static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4342{
4343 if (ib_uses_virt_dma(dev))
4344 return UINT_MAX;
4345 return dma_get_max_seg_size(dev->dma_device);
4346}
4347
4348/**
4349 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4350 * @dev: The device for which the DMA address was created
4351 * @addr: The DMA address
4352 * @size: The size of the region in bytes
4353 * @dir: The direction of the DMA
4354 */
4355static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4356 u64 addr,
4357 size_t size,
4358 enum dma_data_direction dir)
4359{
4360 if (!ib_uses_virt_dma(dev))
4361 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4362}
4363
4364/**
4365 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4366 * @dev: The device for which the DMA address was created
4367 * @addr: The DMA address
4368 * @size: The size of the region in bytes
4369 * @dir: The direction of the DMA
4370 */
4371static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4372 u64 addr,
4373 size_t size,
4374 enum dma_data_direction dir)
4375{
4376 if (!ib_uses_virt_dma(dev))
4377 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4378}
4379
4380/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4381 * space. This function should be called when 'current' is the owning MM.
4382 */
4383struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4384 u64 virt_addr, int mr_access_flags);
4385
4386/* ib_advise_mr - give an advice about an address range in a memory region */
4387int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4388 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4389/**
4390 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4391 * HCA translation table.
4392 * @mr: The memory region to deregister.
4393 * @udata: Valid user data or NULL for kernel object
4394 *
4395 * This function can fail, if the memory region has memory windows bound to it.
4396 */
4397int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4398
4399/**
4400 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4401 * HCA translation table.
4402 * @mr: The memory region to deregister.
4403 *
4404 * This function can fail, if the memory region has memory windows bound to it.
4405 *
4406 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4407 */
4408static inline int ib_dereg_mr(struct ib_mr *mr)
4409{
4410 return ib_dereg_mr_user(mr, NULL);
4411}
4412
4413struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4414 u32 max_num_sg);
4415
4416struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4417 u32 max_num_data_sg,
4418 u32 max_num_meta_sg);
4419
4420/**
4421 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4422 * R_Key and L_Key.
4423 * @mr: struct ib_mr pointer to be updated.
4424 * @newkey: new key to be used.
4425 */
4426static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4427{
4428 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4429 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4430}
4431
4432/**
4433 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4434 * for calculating a new rkey for type 2 memory windows.
4435 * @rkey: the rkey to increment.
4436 */
4437static inline u32 ib_inc_rkey(u32 rkey)
4438{
4439 const u32 mask = 0x000000ff;
4440 return ((rkey + 1) & mask) | (rkey & ~mask);
4441}
4442
4443/**
4444 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4445 * @qp: QP to attach to the multicast group. The QP must be type
4446 * IB_QPT_UD.
4447 * @gid: Multicast group GID.
4448 * @lid: Multicast group LID in host byte order.
4449 *
4450 * In order to send and receive multicast packets, subnet
4451 * administration must have created the multicast group and configured
4452 * the fabric appropriately. The port associated with the specified
4453 * QP must also be a member of the multicast group.
4454 */
4455int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4456
4457/**
4458 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4459 * @qp: QP to detach from the multicast group.
4460 * @gid: Multicast group GID.
4461 * @lid: Multicast group LID in host byte order.
4462 */
4463int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4464
4465struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4466 struct inode *inode, struct ib_udata *udata);
4467int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4468
4469static inline int ib_check_mr_access(struct ib_device *ib_dev,
4470 unsigned int flags)
4471{
4472 u64 device_cap = ib_dev->attrs.device_cap_flags;
4473
4474 /*
4475 * Local write permission is required if remote write or
4476 * remote atomic permission is also requested.
4477 */
4478 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4479 !(flags & IB_ACCESS_LOCAL_WRITE))
4480 return -EINVAL;
4481
4482 if (flags & ~IB_ACCESS_SUPPORTED)
4483 return -EINVAL;
4484
4485 if (flags & IB_ACCESS_ON_DEMAND &&
4486 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4487 return -EOPNOTSUPP;
4488
4489 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4490 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4491 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4492 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4493 return -EOPNOTSUPP;
4494
4495 return 0;
4496}
4497
4498static inline bool ib_access_writable(int access_flags)
4499{
4500 /*
4501 * We have writable memory backing the MR if any of the following
4502 * access flags are set. "Local write" and "remote write" obviously
4503 * require write access. "Remote atomic" can do things like fetch and
4504 * add, which will modify memory, and "MW bind" can change permissions
4505 * by binding a window.
4506 */
4507 return access_flags &
4508 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4509 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4510}
4511
4512/**
4513 * ib_check_mr_status: lightweight check of MR status.
4514 * This routine may provide status checks on a selected
4515 * ib_mr. first use is for signature status check.
4516 *
4517 * @mr: A memory region.
4518 * @check_mask: Bitmask of which checks to perform from
4519 * ib_mr_status_check enumeration.
4520 * @mr_status: The container of relevant status checks.
4521 * failed checks will be indicated in the status bitmask
4522 * and the relevant info shall be in the error item.
4523 */
4524int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4525 struct ib_mr_status *mr_status);
4526
4527/**
4528 * ib_device_try_get: Hold a registration lock
4529 * @dev: The device to lock
4530 *
4531 * A device under an active registration lock cannot become unregistered. It
4532 * is only possible to obtain a registration lock on a device that is fully
4533 * registered, otherwise this function returns false.
4534 *
4535 * The registration lock is only necessary for actions which require the
4536 * device to still be registered. Uses that only require the device pointer to
4537 * be valid should use get_device(&ibdev->dev) to hold the memory.
4538 *
4539 */
4540static inline bool ib_device_try_get(struct ib_device *dev)
4541{
4542 return refcount_inc_not_zero(&dev->refcount);
4543}
4544
4545void ib_device_put(struct ib_device *device);
4546struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4547 enum rdma_driver_id driver_id);
4548struct ib_device *ib_device_get_by_name(const char *name,
4549 enum rdma_driver_id driver_id);
4550struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4551 u16 pkey, const union ib_gid *gid,
4552 const struct sockaddr *addr);
4553int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4554 unsigned int port);
4555struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4556 u32 port);
4557int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
4558 u32 *port);
4559
4560static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev)
4561{
4562 return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ?
4563 IB_PORT_ACTIVE : IB_PORT_DOWN;
4564}
4565
4566void ib_dispatch_port_state_event(struct ib_device *ibdev,
4567 struct net_device *ndev);
4568struct ib_wq *ib_create_wq(struct ib_pd *pd,
4569 struct ib_wq_init_attr *init_attr);
4570int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4571
4572int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4573 unsigned int *sg_offset, unsigned int page_size);
4574int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4575 int data_sg_nents, unsigned int *data_sg_offset,
4576 struct scatterlist *meta_sg, int meta_sg_nents,
4577 unsigned int *meta_sg_offset, unsigned int page_size);
4578
4579static inline int
4580ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4581 unsigned int *sg_offset, unsigned int page_size)
4582{
4583 int n;
4584
4585 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4586 mr->iova = 0;
4587
4588 return n;
4589}
4590
4591int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4592 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4593
4594void ib_drain_rq(struct ib_qp *qp);
4595void ib_drain_sq(struct ib_qp *qp);
4596void ib_drain_qp(struct ib_qp *qp);
4597
4598int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4599 u8 *width);
4600
4601static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4602{
4603 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4604 return attr->roce.dmac;
4605 return NULL;
4606}
4607
4608static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4609{
4610 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4611 attr->ib.dlid = (u16)dlid;
4612 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4613 attr->opa.dlid = dlid;
4614}
4615
4616static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4617{
4618 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4619 return attr->ib.dlid;
4620 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4621 return attr->opa.dlid;
4622 return 0;
4623}
4624
4625static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4626{
4627 attr->sl = sl;
4628}
4629
4630static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4631{
4632 return attr->sl;
4633}
4634
4635static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4636 u8 src_path_bits)
4637{
4638 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4639 attr->ib.src_path_bits = src_path_bits;
4640 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4641 attr->opa.src_path_bits = src_path_bits;
4642}
4643
4644static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4645{
4646 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4647 return attr->ib.src_path_bits;
4648 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4649 return attr->opa.src_path_bits;
4650 return 0;
4651}
4652
4653static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4654 bool make_grd)
4655{
4656 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4657 attr->opa.make_grd = make_grd;
4658}
4659
4660static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4661{
4662 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4663 return attr->opa.make_grd;
4664 return false;
4665}
4666
4667static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4668{
4669 attr->port_num = port_num;
4670}
4671
4672static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4673{
4674 return attr->port_num;
4675}
4676
4677static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4678 u8 static_rate)
4679{
4680 attr->static_rate = static_rate;
4681}
4682
4683static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4684{
4685 return attr->static_rate;
4686}
4687
4688static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4689 enum ib_ah_flags flag)
4690{
4691 attr->ah_flags = flag;
4692}
4693
4694static inline enum ib_ah_flags
4695 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4696{
4697 return attr->ah_flags;
4698}
4699
4700static inline const struct ib_global_route
4701 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4702{
4703 return &attr->grh;
4704}
4705
4706/*To retrieve and modify the grh */
4707static inline struct ib_global_route
4708 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4709{
4710 return &attr->grh;
4711}
4712
4713static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4714{
4715 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4716
4717 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4718}
4719
4720static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4721 __be64 prefix)
4722{
4723 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4724
4725 grh->dgid.global.subnet_prefix = prefix;
4726}
4727
4728static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4729 __be64 if_id)
4730{
4731 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4732
4733 grh->dgid.global.interface_id = if_id;
4734}
4735
4736static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4737 union ib_gid *dgid, u32 flow_label,
4738 u8 sgid_index, u8 hop_limit,
4739 u8 traffic_class)
4740{
4741 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4742
4743 attr->ah_flags = IB_AH_GRH;
4744 if (dgid)
4745 grh->dgid = *dgid;
4746 grh->flow_label = flow_label;
4747 grh->sgid_index = sgid_index;
4748 grh->hop_limit = hop_limit;
4749 grh->traffic_class = traffic_class;
4750 grh->sgid_attr = NULL;
4751}
4752
4753void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4754void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4755 u32 flow_label, u8 hop_limit, u8 traffic_class,
4756 const struct ib_gid_attr *sgid_attr);
4757void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4758 const struct rdma_ah_attr *src);
4759void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4760 const struct rdma_ah_attr *new);
4761void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4762
4763/**
4764 * rdma_ah_find_type - Return address handle type.
4765 *
4766 * @dev: Device to be checked
4767 * @port_num: Port number
4768 */
4769static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4770 u32 port_num)
4771{
4772 if (rdma_protocol_roce(dev, port_num))
4773 return RDMA_AH_ATTR_TYPE_ROCE;
4774 if (rdma_protocol_ib(dev, port_num)) {
4775 if (rdma_cap_opa_ah(dev, port_num))
4776 return RDMA_AH_ATTR_TYPE_OPA;
4777 return RDMA_AH_ATTR_TYPE_IB;
4778 }
4779 if (dev->type == RDMA_DEVICE_TYPE_SMI)
4780 return RDMA_AH_ATTR_TYPE_IB;
4781
4782 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4783}
4784
4785/**
4786 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4787 * In the current implementation the only way to
4788 * get the 32bit lid is from other sources for OPA.
4789 * For IB, lids will always be 16bits so cast the
4790 * value accordingly.
4791 *
4792 * @lid: A 32bit LID
4793 */
4794static inline u16 ib_lid_cpu16(u32 lid)
4795{
4796 WARN_ON_ONCE(lid & 0xFFFF0000);
4797 return (u16)lid;
4798}
4799
4800/**
4801 * ib_lid_be16 - Return lid in 16bit BE encoding.
4802 *
4803 * @lid: A 32bit LID
4804 */
4805static inline __be16 ib_lid_be16(u32 lid)
4806{
4807 WARN_ON_ONCE(lid & 0xFFFF0000);
4808 return cpu_to_be16((u16)lid);
4809}
4810
4811/**
4812 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4813 * vector
4814 * @device: the rdma device
4815 * @comp_vector: index of completion vector
4816 *
4817 * Returns NULL on failure, otherwise a corresponding cpu map of the
4818 * completion vector (returns all-cpus map if the device driver doesn't
4819 * implement get_vector_affinity).
4820 */
4821static inline const struct cpumask *
4822ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4823{
4824 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4825 !device->ops.get_vector_affinity)
4826 return NULL;
4827
4828 return device->ops.get_vector_affinity(device, comp_vector);
4829
4830}
4831
4832/**
4833 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4834 * and add their gids, as needed, to the relevant RoCE devices.
4835 *
4836 * @ibdev: the rdma device
4837 */
4838void rdma_roce_rescan_device(struct ib_device *ibdev);
4839void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4840void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4841 u32 port, struct net_device *ndev);
4842
4843struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4844
4845#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
4846int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4847bool rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs);
4848#else
4849static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs)
4850{
4851 return 0;
4852}
4853static inline bool
4854rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs)
4855{
4856 return false;
4857}
4858#endif
4859
4860struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4861 enum rdma_netdev_t type, const char *name,
4862 unsigned char name_assign_type,
4863 void (*setup)(struct net_device *));
4864
4865int rdma_init_netdev(struct ib_device *device, u32 port_num,
4866 enum rdma_netdev_t type, const char *name,
4867 unsigned char name_assign_type,
4868 void (*setup)(struct net_device *),
4869 struct net_device *netdev);
4870
4871/**
4872 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4873 *
4874 * @device: device pointer for which ib_device pointer to retrieve
4875 *
4876 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4877 *
4878 */
4879static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4880{
4881 struct ib_core_device *coredev =
4882 container_of(device, struct ib_core_device, dev);
4883
4884 return coredev->owner;
4885}
4886
4887/**
4888 * ibdev_to_node - return the NUMA node for a given ib_device
4889 * @ibdev: device to get the NUMA node for.
4890 */
4891static inline int ibdev_to_node(struct ib_device *ibdev)
4892{
4893 struct device *parent = ibdev->dev.parent;
4894
4895 if (!parent)
4896 return NUMA_NO_NODE;
4897 return dev_to_node(parent);
4898}
4899
4900/**
4901 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4902 * ib_device holder structure from device pointer.
4903 *
4904 * NOTE: New drivers should not make use of this API; This API is only for
4905 * existing drivers who have exposed sysfs entries using
4906 * ops->device_group.
4907 */
4908#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4909 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4910
4911bool rdma_dev_access_netns(const struct ib_device *device,
4912 const struct net *net);
4913
4914bool rdma_dev_has_raw_cap(const struct ib_device *dev);
4915static inline struct net *rdma_dev_net(struct ib_device *device)
4916{
4917 return read_pnet(&device->coredev.rdma_net);
4918}
4919
4920#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4921#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4922#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4923
4924/**
4925 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4926 * on the flow_label
4927 * @fl: flow_label value
4928 *
4929 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4930 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4931 * convention.
4932 */
4933static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4934{
4935 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4936
4937 fl_low ^= fl_high >> 14;
4938 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4939}
4940
4941/**
4942 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4943 * local and remote qpn values
4944 *
4945 * This function folded the multiplication results of two qpns, 24 bit each,
4946 * fields, and converts it to a 20 bit results.
4947 *
4948 * This function will create symmetric flow_label value based on the local
4949 * and remote qpn values. this will allow both the requester and responder
4950 * to calculate the same flow_label for a given connection.
4951 *
4952 * This helper function should be used by driver in case the upper layer
4953 * provide a zero flow_label value. This is to improve entropy of RDMA
4954 * traffic in the network.
4955 */
4956static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4957{
4958 u64 v = (u64)lqpn * rqpn;
4959
4960 v ^= v >> 20;
4961 v ^= v >> 40;
4962
4963 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4964}
4965
4966/**
4967 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4968 * label. If flow label is not defined in GRH then
4969 * calculate it based on lqpn/rqpn.
4970 *
4971 * @fl: flow label from GRH
4972 * @lqpn: local qp number
4973 * @rqpn: remote qp number
4974 */
4975static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4976{
4977 if (!fl)
4978 fl = rdma_calc_flow_label(lqpn, rqpn);
4979
4980 return rdma_flow_label_to_udp_sport(fl);
4981}
4982
4983const struct ib_port_immutable*
4984ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4985
4986/** ib_add_sub_device - Add a sub IB device on an existing one
4987 *
4988 * @parent: The IB device that needs to add a sub device
4989 * @type: The type of the new sub device
4990 * @name: The name of the new sub device
4991 *
4992 *
4993 * Return 0 on success, an error code otherwise
4994 */
4995int ib_add_sub_device(struct ib_device *parent,
4996 enum rdma_nl_dev_type type,
4997 const char *name);
4998
4999
5000/** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
5001 *
5002 * @sub: The sub device that is going to be deleted
5003 *
5004 * Return 0 on success, an error code otherwise
5005 */
5006int ib_del_sub_device_and_put(struct ib_device *sub);
5007
5008static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
5009{
5010 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
5011}
5012
5013#endif /* IB_VERBS_H */