at master 525 lines 17 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool/helpers.h 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8/** 9 * DOC: page_pool allocator 10 * 11 * The page_pool allocator is optimized for recycling page or page fragment used 12 * by skb packet and xdp frame. 13 * 14 * Basic use involves replacing any alloc_pages() calls with page_pool_alloc(), 15 * which allocate memory with or without page splitting depending on the 16 * requested memory size. 17 * 18 * If the driver knows that it always requires full pages or its allocations are 19 * always smaller than half a page, it can use one of the more specific API 20 * calls: 21 * 22 * 1. page_pool_alloc_pages(): allocate memory without page splitting when 23 * driver knows that the memory it need is always bigger than half of the page 24 * allocated from page pool. There is no cache line dirtying for 'struct page' 25 * when a page is recycled back to the page pool. 26 * 27 * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver 28 * knows that the memory it need is always smaller than or equal to half of the 29 * page allocated from page pool. Page splitting enables memory saving and thus 30 * avoids TLB/cache miss for data access, but there also is some cost to 31 * implement page splitting, mainly some cache line dirtying/bouncing for 32 * 'struct page' and atomic operation for page->pp_ref_count. 33 * 34 * The API keeps track of in-flight pages, in order to let API users know when 35 * it is safe to free a page_pool object, the API users must call 36 * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or 37 * attach the page_pool object to a page_pool-aware object like skbs marked with 38 * skb_mark_for_recycle(). 39 * 40 * page_pool_put_page() may be called multiple times on the same page if a page 41 * is split into multiple fragments. For the last fragment, it will either 42 * recycle the page, or in case of page->_refcount > 1, it will release the DMA 43 * mapping and in-flight state accounting. 44 * 45 * dma_sync_single_range_for_device() is only called for the last fragment when 46 * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the 47 * last freed fragment to do the sync_for_device operation for all fragments in 48 * the same page when a page is split. The API user must setup pool->p.max_len 49 * and pool->p.offset correctly and ensure that page_pool_put_page() is called 50 * with dma_sync_size being -1 for fragment API. 51 */ 52#ifndef _NET_PAGE_POOL_HELPERS_H 53#define _NET_PAGE_POOL_HELPERS_H 54 55#include <linux/dma-mapping.h> 56 57#include <net/page_pool/types.h> 58#include <net/net_debug.h> 59#include <net/netmem.h> 60 61#ifdef CONFIG_PAGE_POOL_STATS 62/* Deprecated driver-facing API, use netlink instead */ 63int page_pool_ethtool_stats_get_count(void); 64u8 *page_pool_ethtool_stats_get_strings(u8 *data); 65u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats); 66 67bool page_pool_get_stats(const struct page_pool *pool, 68 struct page_pool_stats *stats); 69#else 70static inline int page_pool_ethtool_stats_get_count(void) 71{ 72 return 0; 73} 74 75static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data) 76{ 77 return data; 78} 79 80static inline u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 81{ 82 return data; 83} 84#endif 85 86/** 87 * page_pool_dev_alloc_pages() - allocate a page. 88 * @pool: pool from which to allocate 89 * 90 * Get a page from the page allocator or page_pool caches. 91 */ 92static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool) 93{ 94 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 95 96 return page_pool_alloc_pages(pool, gfp); 97} 98 99/** 100 * page_pool_dev_alloc_frag() - allocate a page fragment. 101 * @pool: pool from which to allocate 102 * @offset: offset to the allocated page 103 * @size: requested size 104 * 105 * Get a page fragment from the page allocator or page_pool caches. 106 * 107 * Return: allocated page fragment, otherwise return NULL. 108 */ 109static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool, 110 unsigned int *offset, 111 unsigned int size) 112{ 113 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 114 115 return page_pool_alloc_frag(pool, offset, size, gfp); 116} 117 118static inline netmem_ref page_pool_alloc_netmem(struct page_pool *pool, 119 unsigned int *offset, 120 unsigned int *size, gfp_t gfp) 121{ 122 unsigned int max_size = PAGE_SIZE << pool->p.order; 123 netmem_ref netmem; 124 125 if ((*size << 1) > max_size) { 126 *size = max_size; 127 *offset = 0; 128 return page_pool_alloc_netmems(pool, gfp); 129 } 130 131 netmem = page_pool_alloc_frag_netmem(pool, offset, *size, gfp); 132 if (unlikely(!netmem)) 133 return 0; 134 135 /* There is very likely not enough space for another fragment, so append 136 * the remaining size to the current fragment to avoid truesize 137 * underestimate problem. 138 */ 139 if (pool->frag_offset + *size > max_size) { 140 *size = max_size - *offset; 141 pool->frag_offset = max_size; 142 } 143 144 return netmem; 145} 146 147static inline netmem_ref page_pool_dev_alloc_netmem(struct page_pool *pool, 148 unsigned int *offset, 149 unsigned int *size) 150{ 151 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; 152 153 return page_pool_alloc_netmem(pool, offset, size, gfp); 154} 155 156static inline netmem_ref page_pool_dev_alloc_netmems(struct page_pool *pool) 157{ 158 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; 159 160 return page_pool_alloc_netmems(pool, gfp); 161} 162 163static inline struct page *page_pool_alloc(struct page_pool *pool, 164 unsigned int *offset, 165 unsigned int *size, gfp_t gfp) 166{ 167 return netmem_to_page(page_pool_alloc_netmem(pool, offset, size, gfp)); 168} 169 170/** 171 * page_pool_dev_alloc() - allocate a page or a page fragment. 172 * @pool: pool from which to allocate 173 * @offset: offset to the allocated page 174 * @size: in as the requested size, out as the allocated size 175 * 176 * Get a page or a page fragment from the page allocator or page_pool caches 177 * depending on the requested size in order to allocate memory with least memory 178 * utilization and performance penalty. 179 * 180 * Return: allocated page or page fragment, otherwise return NULL. 181 */ 182static inline struct page *page_pool_dev_alloc(struct page_pool *pool, 183 unsigned int *offset, 184 unsigned int *size) 185{ 186 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 187 188 return page_pool_alloc(pool, offset, size, gfp); 189} 190 191static inline void *page_pool_alloc_va(struct page_pool *pool, 192 unsigned int *size, gfp_t gfp) 193{ 194 unsigned int offset; 195 struct page *page; 196 197 /* Mask off __GFP_HIGHMEM to ensure we can use page_address() */ 198 page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM); 199 if (unlikely(!page)) 200 return NULL; 201 202 return page_address(page) + offset; 203} 204 205/** 206 * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its 207 * va. 208 * @pool: pool from which to allocate 209 * @size: in as the requested size, out as the allocated size 210 * 211 * This is just a thin wrapper around the page_pool_alloc() API, and 212 * it returns va of the allocated page or page fragment. 213 * 214 * Return: the va for the allocated page or page fragment, otherwise return NULL. 215 */ 216static inline void *page_pool_dev_alloc_va(struct page_pool *pool, 217 unsigned int *size) 218{ 219 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 220 221 return page_pool_alloc_va(pool, size, gfp); 222} 223 224/** 225 * page_pool_get_dma_dir() - Retrieve the stored DMA direction. 226 * @pool: pool from which page was allocated 227 * 228 * Get the stored dma direction. A driver might decide to store this locally 229 * and avoid the extra cache line from page_pool to determine the direction. 230 */ 231static inline enum dma_data_direction 232page_pool_get_dma_dir(const struct page_pool *pool) 233{ 234 return pool->p.dma_dir; 235} 236 237static inline void page_pool_fragment_netmem(netmem_ref netmem, long nr) 238{ 239 atomic_long_set(netmem_get_pp_ref_count_ref(netmem), nr); 240} 241 242/** 243 * page_pool_fragment_page() - split a fresh page into fragments 244 * @page: page to split 245 * @nr: references to set 246 * 247 * pp_ref_count represents the number of outstanding references to the page, 248 * which will be freed using page_pool APIs (rather than page allocator APIs 249 * like put_page()). Such references are usually held by page_pool-aware 250 * objects like skbs marked for page pool recycling. 251 * 252 * This helper allows the caller to take (set) multiple references to a 253 * freshly allocated page. The page must be freshly allocated (have a 254 * pp_ref_count of 1). This is commonly done by drivers and 255 * "fragment allocators" to save atomic operations - either when they know 256 * upfront how many references they will need; or to take MAX references and 257 * return the unused ones with a single atomic dec(), instead of performing 258 * multiple atomic inc() operations. 259 */ 260static inline void page_pool_fragment_page(struct page *page, long nr) 261{ 262 page_pool_fragment_netmem(page_to_netmem(page), nr); 263} 264 265static inline long page_pool_unref_netmem(netmem_ref netmem, long nr) 266{ 267 atomic_long_t *pp_ref_count = netmem_get_pp_ref_count_ref(netmem); 268 long ret; 269 270 /* If nr == pp_ref_count then we have cleared all remaining 271 * references to the page: 272 * 1. 'n == 1': no need to actually overwrite it. 273 * 2. 'n != 1': overwrite it with one, which is the rare case 274 * for pp_ref_count draining. 275 * 276 * The main advantage to doing this is that not only we avoid a atomic 277 * update, as an atomic_read is generally a much cheaper operation than 278 * an atomic update, especially when dealing with a page that may be 279 * referenced by only 2 or 3 users; but also unify the pp_ref_count 280 * handling by ensuring all pages have partitioned into only 1 piece 281 * initially, and only overwrite it when the page is partitioned into 282 * more than one piece. 283 */ 284 if (atomic_long_read(pp_ref_count) == nr) { 285 /* As we have ensured nr is always one for constant case using 286 * the BUILD_BUG_ON(), only need to handle the non-constant case 287 * here for pp_ref_count draining, which is a rare case. 288 */ 289 BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1); 290 if (!__builtin_constant_p(nr)) 291 atomic_long_set(pp_ref_count, 1); 292 293 return 0; 294 } 295 296 ret = atomic_long_sub_return(nr, pp_ref_count); 297 WARN_ON(ret < 0); 298 299 /* We are the last user here too, reset pp_ref_count back to 1 to 300 * ensure all pages have been partitioned into 1 piece initially, 301 * this should be the rare case when the last two fragment users call 302 * page_pool_unref_page() currently. 303 */ 304 if (unlikely(!ret)) 305 atomic_long_set(pp_ref_count, 1); 306 307 return ret; 308} 309 310static inline long page_pool_unref_page(struct page *page, long nr) 311{ 312 return page_pool_unref_netmem(page_to_netmem(page), nr); 313} 314 315static inline void page_pool_ref_netmem(netmem_ref netmem) 316{ 317 atomic_long_inc(netmem_get_pp_ref_count_ref(netmem)); 318} 319 320static inline void page_pool_ref_page(struct page *page) 321{ 322 page_pool_ref_netmem(page_to_netmem(page)); 323} 324 325static inline bool page_pool_unref_and_test(netmem_ref netmem) 326{ 327 /* If page_pool_unref_page() returns 0, we were the last user */ 328 return page_pool_unref_netmem(netmem, 1) == 0; 329} 330 331static inline void page_pool_put_netmem(struct page_pool *pool, 332 netmem_ref netmem, 333 unsigned int dma_sync_size, 334 bool allow_direct) 335{ 336 /* When page_pool isn't compiled-in, net/core/xdp.c doesn't 337 * allow registering MEM_TYPE_PAGE_POOL, but shield linker. 338 */ 339#ifdef CONFIG_PAGE_POOL 340 if (!page_pool_unref_and_test(netmem)) 341 return; 342 343 page_pool_put_unrefed_netmem(pool, netmem, dma_sync_size, allow_direct); 344#endif 345} 346 347/** 348 * page_pool_put_page() - release a reference to a page pool page 349 * @pool: pool from which page was allocated 350 * @page: page to release a reference on 351 * @dma_sync_size: how much of the page may have been touched by the device 352 * @allow_direct: released by the consumer, allow lockless caching 353 * 354 * The outcome of this depends on the page refcnt. If the driver bumps 355 * the refcnt > 1 this will unmap the page. If the page refcnt is 1 356 * the allocator owns the page and will try to recycle it in one of the pool 357 * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device 358 * using dma_sync_single_range_for_device(). 359 */ 360static inline void page_pool_put_page(struct page_pool *pool, 361 struct page *page, 362 unsigned int dma_sync_size, 363 bool allow_direct) 364{ 365 page_pool_put_netmem(pool, page_to_netmem(page), dma_sync_size, 366 allow_direct); 367} 368 369static inline void page_pool_put_full_netmem(struct page_pool *pool, 370 netmem_ref netmem, 371 bool allow_direct) 372{ 373 page_pool_put_netmem(pool, netmem, -1, allow_direct); 374} 375 376/** 377 * page_pool_put_full_page() - release a reference on a page pool page 378 * @pool: pool from which page was allocated 379 * @page: page to release a reference on 380 * @allow_direct: released by the consumer, allow lockless caching 381 * 382 * Similar to page_pool_put_page(), but will DMA sync the entire memory area 383 * as configured in &page_pool_params.max_len. 384 */ 385static inline void page_pool_put_full_page(struct page_pool *pool, 386 struct page *page, bool allow_direct) 387{ 388 page_pool_put_netmem(pool, page_to_netmem(page), -1, allow_direct); 389} 390 391/** 392 * page_pool_recycle_direct() - release a reference on a page pool page 393 * @pool: pool from which page was allocated 394 * @page: page to release a reference on 395 * 396 * Similar to page_pool_put_full_page() but caller must guarantee safe context 397 * (e.g NAPI), since it will recycle the page directly into the pool fast cache. 398 */ 399static inline void page_pool_recycle_direct(struct page_pool *pool, 400 struct page *page) 401{ 402 page_pool_put_full_page(pool, page, true); 403} 404 405static inline void page_pool_recycle_direct_netmem(struct page_pool *pool, 406 netmem_ref netmem) 407{ 408 page_pool_put_full_netmem(pool, netmem, true); 409} 410 411#define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA \ 412 (sizeof(dma_addr_t) > sizeof(unsigned long)) 413 414/** 415 * page_pool_free_va() - free a va into the page_pool 416 * @pool: pool from which va was allocated 417 * @va: va to be freed 418 * @allow_direct: freed by the consumer, allow lockless caching 419 * 420 * Free a va allocated from page_pool_allo_va(). 421 */ 422static inline void page_pool_free_va(struct page_pool *pool, void *va, 423 bool allow_direct) 424{ 425 page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct); 426} 427 428static inline dma_addr_t page_pool_get_dma_addr_netmem(netmem_ref netmem) 429{ 430 dma_addr_t ret = netmem_get_dma_addr(netmem); 431 432 if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA) 433 ret <<= PAGE_SHIFT; 434 435 return ret; 436} 437 438/** 439 * page_pool_get_dma_addr() - Retrieve the stored DMA address. 440 * @page: page allocated from a page pool 441 * 442 * Fetch the DMA address of the page. The page pool to which the page belongs 443 * must had been created with PP_FLAG_DMA_MAP. 444 */ 445static inline dma_addr_t page_pool_get_dma_addr(const struct page *page) 446{ 447 return page_pool_get_dma_addr_netmem(page_to_netmem(page)); 448} 449 450static inline void __page_pool_dma_sync_for_cpu(const struct page_pool *pool, 451 const dma_addr_t dma_addr, 452 u32 offset, u32 dma_sync_size) 453{ 454 dma_sync_single_range_for_cpu(pool->p.dev, dma_addr, 455 offset + pool->p.offset, dma_sync_size, 456 page_pool_get_dma_dir(pool)); 457} 458 459/** 460 * page_pool_dma_sync_for_cpu - sync Rx page for CPU after it's written by HW 461 * @pool: &page_pool the @page belongs to 462 * @page: page to sync 463 * @offset: offset from page start to "hard" start if using PP frags 464 * @dma_sync_size: size of the data written to the page 465 * 466 * Can be used as a shorthand to sync Rx pages before accessing them in the 467 * driver. Caller must ensure the pool was created with ``PP_FLAG_DMA_MAP``. 468 * Note that this version performs DMA sync unconditionally, even if the 469 * associated PP doesn't perform sync-for-device. 470 */ 471static inline void page_pool_dma_sync_for_cpu(const struct page_pool *pool, 472 const struct page *page, 473 u32 offset, u32 dma_sync_size) 474{ 475 __page_pool_dma_sync_for_cpu(pool, page_pool_get_dma_addr(page), offset, 476 dma_sync_size); 477} 478 479static inline void 480page_pool_dma_sync_netmem_for_cpu(const struct page_pool *pool, 481 const netmem_ref netmem, u32 offset, 482 u32 dma_sync_size) 483{ 484 if (!pool->dma_sync_for_cpu) 485 return; 486 487 __page_pool_dma_sync_for_cpu(pool, 488 page_pool_get_dma_addr_netmem(netmem), 489 offset, dma_sync_size); 490} 491 492static inline void page_pool_get(struct page_pool *pool) 493{ 494 refcount_inc(&pool->user_cnt); 495} 496 497static inline bool page_pool_put(struct page_pool *pool) 498{ 499 return refcount_dec_and_test(&pool->user_cnt); 500} 501 502static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid) 503{ 504 if (unlikely(pool->p.nid != new_nid)) 505 page_pool_update_nid(pool, new_nid); 506} 507 508/** 509 * page_pool_is_unreadable() - will allocated buffers be unreadable for the CPU 510 * @pool: queried page pool 511 * 512 * Check if page pool will return buffers which are unreadable to the CPU / 513 * kernel. This will only be the case if user space bound a memory provider (mp) 514 * which returns unreadable memory to the queue served by the page pool. 515 * If %PP_FLAG_ALLOW_UNREADABLE_NETMEM was set but there is no mp bound 516 * this helper will return false. See also netif_rxq_has_unreadable_mp(). 517 * 518 * Return: true if memory allocated by the page pool may be unreadable 519 */ 520static inline bool page_pool_is_unreadable(struct page_pool *pool) 521{ 522 return !!pool->mp_ops; 523} 524 525#endif /* _NET_PAGE_POOL_HELPERS_H */