at master 41 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/cache.h> 16#include <linux/gfp.h> 17#include <linux/overflow.h> 18#include <linux/types.h> 19#include <linux/rcupdate.h> 20#include <linux/workqueue.h> 21#include <linux/percpu-refcount.h> 22#include <linux/cleanup.h> 23#include <linux/hash.h> 24 25enum _slab_flag_bits { 26 _SLAB_CONSISTENCY_CHECKS, 27 _SLAB_RED_ZONE, 28 _SLAB_POISON, 29 _SLAB_KMALLOC, 30 _SLAB_HWCACHE_ALIGN, 31 _SLAB_CACHE_DMA, 32 _SLAB_CACHE_DMA32, 33 _SLAB_STORE_USER, 34 _SLAB_PANIC, 35 _SLAB_TYPESAFE_BY_RCU, 36 _SLAB_TRACE, 37#ifdef CONFIG_DEBUG_OBJECTS 38 _SLAB_DEBUG_OBJECTS, 39#endif 40 _SLAB_NOLEAKTRACE, 41 _SLAB_NO_MERGE, 42#ifdef CONFIG_FAILSLAB 43 _SLAB_FAILSLAB, 44#endif 45#ifdef CONFIG_MEMCG 46 _SLAB_ACCOUNT, 47#endif 48#ifdef CONFIG_KASAN_GENERIC 49 _SLAB_KASAN, 50#endif 51 _SLAB_NO_USER_FLAGS, 52#ifdef CONFIG_KFENCE 53 _SLAB_SKIP_KFENCE, 54#endif 55#ifndef CONFIG_SLUB_TINY 56 _SLAB_RECLAIM_ACCOUNT, 57#endif 58 _SLAB_OBJECT_POISON, 59 _SLAB_CMPXCHG_DOUBLE, 60#ifdef CONFIG_SLAB_OBJ_EXT 61 _SLAB_NO_OBJ_EXT, 62#endif 63 _SLAB_FLAGS_LAST_BIT 64}; 65 66#define __SLAB_FLAG_BIT(nr) ((slab_flags_t __force)(1U << (nr))) 67#define __SLAB_FLAG_UNUSED ((slab_flags_t __force)(0U)) 68 69/* 70 * Flags to pass to kmem_cache_create(). 71 * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op 72 */ 73/* DEBUG: Perform (expensive) checks on alloc/free */ 74#define SLAB_CONSISTENCY_CHECKS __SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS) 75/* DEBUG: Red zone objs in a cache */ 76#define SLAB_RED_ZONE __SLAB_FLAG_BIT(_SLAB_RED_ZONE) 77/* DEBUG: Poison objects */ 78#define SLAB_POISON __SLAB_FLAG_BIT(_SLAB_POISON) 79/* Indicate a kmalloc slab */ 80#define SLAB_KMALLOC __SLAB_FLAG_BIT(_SLAB_KMALLOC) 81/** 82 * define SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. 83 * 84 * Sufficiently large objects are aligned on cache line boundary. For object 85 * size smaller than a half of cache line size, the alignment is on the half of 86 * cache line size. In general, if object size is smaller than 1/2^n of cache 87 * line size, the alignment is adjusted to 1/2^n. 88 * 89 * If explicit alignment is also requested by the respective 90 * &struct kmem_cache_args field, the greater of both is alignments is applied. 91 */ 92#define SLAB_HWCACHE_ALIGN __SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN) 93/* Use GFP_DMA memory */ 94#define SLAB_CACHE_DMA __SLAB_FLAG_BIT(_SLAB_CACHE_DMA) 95/* Use GFP_DMA32 memory */ 96#define SLAB_CACHE_DMA32 __SLAB_FLAG_BIT(_SLAB_CACHE_DMA32) 97/* DEBUG: Store the last owner for bug hunting */ 98#define SLAB_STORE_USER __SLAB_FLAG_BIT(_SLAB_STORE_USER) 99/* Panic if kmem_cache_create() fails */ 100#define SLAB_PANIC __SLAB_FLAG_BIT(_SLAB_PANIC) 101/** 102 * define SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 103 * 104 * This delays freeing the SLAB page by a grace period, it does _NOT_ 105 * delay object freeing. This means that if you do kmem_cache_free() 106 * that memory location is free to be reused at any time. Thus it may 107 * be possible to see another object there in the same RCU grace period. 108 * 109 * This feature only ensures the memory location backing the object 110 * stays valid, the trick to using this is relying on an independent 111 * object validation pass. Something like: 112 * 113 * :: 114 * 115 * begin: 116 * rcu_read_lock(); 117 * obj = lockless_lookup(key); 118 * if (obj) { 119 * if (!try_get_ref(obj)) // might fail for free objects 120 * rcu_read_unlock(); 121 * goto begin; 122 * 123 * if (obj->key != key) { // not the object we expected 124 * put_ref(obj); 125 * rcu_read_unlock(); 126 * goto begin; 127 * } 128 * } 129 * rcu_read_unlock(); 130 * 131 * This is useful if we need to approach a kernel structure obliquely, 132 * from its address obtained without the usual locking. We can lock 133 * the structure to stabilize it and check it's still at the given address, 134 * only if we can be sure that the memory has not been meanwhile reused 135 * for some other kind of object (which our subsystem's lock might corrupt). 136 * 137 * rcu_read_lock before reading the address, then rcu_read_unlock after 138 * taking the spinlock within the structure expected at that address. 139 * 140 * Note that object identity check has to be done *after* acquiring a 141 * reference, therefore user has to ensure proper ordering for loads. 142 * Similarly, when initializing objects allocated with SLAB_TYPESAFE_BY_RCU, 143 * the newly allocated object has to be fully initialized *before* its 144 * refcount gets initialized and proper ordering for stores is required. 145 * refcount_{add|inc}_not_zero_acquire() and refcount_set_release() are 146 * designed with the proper fences required for reference counting objects 147 * allocated with SLAB_TYPESAFE_BY_RCU. 148 * 149 * Note that it is not possible to acquire a lock within a structure 150 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference 151 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages 152 * are not zeroed before being given to the slab, which means that any 153 * locks must be initialized after each and every kmem_struct_alloc(). 154 * Alternatively, make the ctor passed to kmem_cache_create() initialize 155 * the locks at page-allocation time, as is done in __i915_request_ctor(), 156 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers 157 * to safely acquire those ctor-initialized locks under rcu_read_lock() 158 * protection. 159 * 160 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 161 */ 162#define SLAB_TYPESAFE_BY_RCU __SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU) 163/* Trace allocations and frees */ 164#define SLAB_TRACE __SLAB_FLAG_BIT(_SLAB_TRACE) 165 166/* Flag to prevent checks on free */ 167#ifdef CONFIG_DEBUG_OBJECTS 168# define SLAB_DEBUG_OBJECTS __SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS) 169#else 170# define SLAB_DEBUG_OBJECTS __SLAB_FLAG_UNUSED 171#endif 172 173/* Avoid kmemleak tracing */ 174#define SLAB_NOLEAKTRACE __SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE) 175 176/* 177 * Prevent merging with compatible kmem caches. This flag should be used 178 * cautiously. Valid use cases: 179 * 180 * - caches created for self-tests (e.g. kunit) 181 * - general caches created and used by a subsystem, only when a 182 * (subsystem-specific) debug option is enabled 183 * - performance critical caches, should be very rare and consulted with slab 184 * maintainers, and not used together with CONFIG_SLUB_TINY 185 */ 186#define SLAB_NO_MERGE __SLAB_FLAG_BIT(_SLAB_NO_MERGE) 187 188/* Fault injection mark */ 189#ifdef CONFIG_FAILSLAB 190# define SLAB_FAILSLAB __SLAB_FLAG_BIT(_SLAB_FAILSLAB) 191#else 192# define SLAB_FAILSLAB __SLAB_FLAG_UNUSED 193#endif 194/** 195 * define SLAB_ACCOUNT - Account allocations to memcg. 196 * 197 * All object allocations from this cache will be memcg accounted, regardless of 198 * __GFP_ACCOUNT being or not being passed to individual allocations. 199 */ 200#ifdef CONFIG_MEMCG 201# define SLAB_ACCOUNT __SLAB_FLAG_BIT(_SLAB_ACCOUNT) 202#else 203# define SLAB_ACCOUNT __SLAB_FLAG_UNUSED 204#endif 205 206#ifdef CONFIG_KASAN_GENERIC 207#define SLAB_KASAN __SLAB_FLAG_BIT(_SLAB_KASAN) 208#else 209#define SLAB_KASAN __SLAB_FLAG_UNUSED 210#endif 211 212/* 213 * Ignore user specified debugging flags. 214 * Intended for caches created for self-tests so they have only flags 215 * specified in the code and other flags are ignored. 216 */ 217#define SLAB_NO_USER_FLAGS __SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS) 218 219#ifdef CONFIG_KFENCE 220#define SLAB_SKIP_KFENCE __SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE) 221#else 222#define SLAB_SKIP_KFENCE __SLAB_FLAG_UNUSED 223#endif 224 225/* The following flags affect the page allocator grouping pages by mobility */ 226/** 227 * define SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. 228 * 229 * Use this flag for caches that have an associated shrinker. As a result, slab 230 * pages are allocated with __GFP_RECLAIMABLE, which affects grouping pages by 231 * mobility, and are accounted in SReclaimable counter in /proc/meminfo 232 */ 233#ifndef CONFIG_SLUB_TINY 234#define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT) 235#else 236#define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_UNUSED 237#endif 238#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 239 240/* Slab created using create_boot_cache */ 241#ifdef CONFIG_SLAB_OBJ_EXT 242#define SLAB_NO_OBJ_EXT __SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT) 243#else 244#define SLAB_NO_OBJ_EXT __SLAB_FLAG_UNUSED 245#endif 246 247/* 248 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 249 * 250 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 251 * 252 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 253 * Both make kfree a no-op. 254 */ 255#define ZERO_SIZE_PTR ((void *)16) 256 257#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 258 (unsigned long)ZERO_SIZE_PTR) 259 260#include <linux/kasan.h> 261 262struct list_lru; 263struct mem_cgroup; 264/* 265 * struct kmem_cache related prototypes 266 */ 267bool slab_is_available(void); 268 269/** 270 * struct kmem_cache_args - Less common arguments for kmem_cache_create() 271 * 272 * Any uninitialized fields of the structure are interpreted as unused. The 273 * exception is @freeptr_offset where %0 is a valid value, so 274 * @use_freeptr_offset must be also set to %true in order to interpret the field 275 * as used. For @useroffset %0 is also valid, but only with non-%0 276 * @usersize. 277 * 278 * When %NULL args is passed to kmem_cache_create(), it is equivalent to all 279 * fields unused. 280 */ 281struct kmem_cache_args { 282 /** 283 * @align: The required alignment for the objects. 284 * 285 * %0 means no specific alignment is requested. 286 */ 287 unsigned int align; 288 /** 289 * @useroffset: Usercopy region offset. 290 * 291 * %0 is a valid offset, when @usersize is non-%0 292 */ 293 unsigned int useroffset; 294 /** 295 * @usersize: Usercopy region size. 296 * 297 * %0 means no usercopy region is specified. 298 */ 299 unsigned int usersize; 300 /** 301 * @freeptr_offset: Custom offset for the free pointer 302 * in &SLAB_TYPESAFE_BY_RCU caches 303 * 304 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer 305 * outside of the object. This might cause the object to grow in size. 306 * Cache creators that have a reason to avoid this can specify a custom 307 * free pointer offset in their struct where the free pointer will be 308 * placed. 309 * 310 * Note that placing the free pointer inside the object requires the 311 * caller to ensure that no fields are invalidated that are required to 312 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for 313 * details). 314 * 315 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset 316 * is specified, %use_freeptr_offset must be set %true. 317 * 318 * Note that @ctor currently isn't supported with custom free pointers 319 * as a @ctor requires an external free pointer. 320 */ 321 unsigned int freeptr_offset; 322 /** 323 * @use_freeptr_offset: Whether a @freeptr_offset is used. 324 */ 325 bool use_freeptr_offset; 326 /** 327 * @ctor: A constructor for the objects. 328 * 329 * The constructor is invoked for each object in a newly allocated slab 330 * page. It is the cache user's responsibility to free object in the 331 * same state as after calling the constructor, or deal appropriately 332 * with any differences between a freshly constructed and a reallocated 333 * object. 334 * 335 * %NULL means no constructor. 336 */ 337 void (*ctor)(void *); 338 /** 339 * @sheaf_capacity: Enable sheaves of given capacity for the cache. 340 * 341 * With a non-zero value, allocations from the cache go through caching 342 * arrays called sheaves. Each cpu has a main sheaf that's always 343 * present, and a spare sheaf that may be not present. When both become 344 * empty, there's an attempt to replace an empty sheaf with a full sheaf 345 * from the per-node barn. 346 * 347 * When no full sheaf is available, and gfp flags allow blocking, a 348 * sheaf is allocated and filled from slab(s) using bulk allocation. 349 * Otherwise the allocation falls back to the normal operation 350 * allocating a single object from a slab. 351 * 352 * Analogically when freeing and both percpu sheaves are full, the barn 353 * may replace it with an empty sheaf, unless it's over capacity. In 354 * that case a sheaf is bulk freed to slab pages. 355 * 356 * The sheaves do not enforce NUMA placement of objects, so allocations 357 * via kmem_cache_alloc_node() with a node specified other than 358 * NUMA_NO_NODE will bypass them. 359 * 360 * Bulk allocation and free operations also try to use the cpu sheaves 361 * and barn, but fallback to using slab pages directly. 362 * 363 * When slub_debug is enabled for the cache, the sheaf_capacity argument 364 * is ignored. 365 * 366 * %0 means no sheaves will be created. 367 */ 368 unsigned int sheaf_capacity; 369}; 370 371struct kmem_cache *__kmem_cache_create_args(const char *name, 372 unsigned int object_size, 373 struct kmem_cache_args *args, 374 slab_flags_t flags); 375static inline struct kmem_cache * 376__kmem_cache_create(const char *name, unsigned int size, unsigned int align, 377 slab_flags_t flags, void (*ctor)(void *)) 378{ 379 struct kmem_cache_args kmem_args = { 380 .align = align, 381 .ctor = ctor, 382 }; 383 384 return __kmem_cache_create_args(name, size, &kmem_args, flags); 385} 386 387/** 388 * kmem_cache_create_usercopy - Create a kmem cache with a region suitable 389 * for copying to userspace. 390 * @name: A string which is used in /proc/slabinfo to identify this cache. 391 * @size: The size of objects to be created in this cache. 392 * @align: The required alignment for the objects. 393 * @flags: SLAB flags 394 * @useroffset: Usercopy region offset 395 * @usersize: Usercopy region size 396 * @ctor: A constructor for the objects, or %NULL. 397 * 398 * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY() 399 * if whitelisting a single field is sufficient, or kmem_cache_create() with 400 * the necessary parameters passed via the args parameter (see 401 * &struct kmem_cache_args) 402 * 403 * Return: a pointer to the cache on success, NULL on failure. 404 */ 405static inline struct kmem_cache * 406kmem_cache_create_usercopy(const char *name, unsigned int size, 407 unsigned int align, slab_flags_t flags, 408 unsigned int useroffset, unsigned int usersize, 409 void (*ctor)(void *)) 410{ 411 struct kmem_cache_args kmem_args = { 412 .align = align, 413 .ctor = ctor, 414 .useroffset = useroffset, 415 .usersize = usersize, 416 }; 417 418 return __kmem_cache_create_args(name, size, &kmem_args, flags); 419} 420 421/* If NULL is passed for @args, use this variant with default arguments. */ 422static inline struct kmem_cache * 423__kmem_cache_default_args(const char *name, unsigned int size, 424 struct kmem_cache_args *args, 425 slab_flags_t flags) 426{ 427 struct kmem_cache_args kmem_default_args = {}; 428 429 /* Make sure we don't get passed garbage. */ 430 if (WARN_ON_ONCE(args)) 431 return ERR_PTR(-EINVAL); 432 433 return __kmem_cache_create_args(name, size, &kmem_default_args, flags); 434} 435 436/** 437 * kmem_cache_create - Create a kmem cache. 438 * @__name: A string which is used in /proc/slabinfo to identify this cache. 439 * @__object_size: The size of objects to be created in this cache. 440 * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL 441 * means defaults will be used for all the arguments. 442 * 443 * This is currently implemented as a macro using ``_Generic()`` to call 444 * either the new variant of the function, or a legacy one. 445 * 446 * The new variant has 4 parameters: 447 * ``kmem_cache_create(name, object_size, args, flags)`` 448 * 449 * See __kmem_cache_create_args() which implements this. 450 * 451 * The legacy variant has 5 parameters: 452 * ``kmem_cache_create(name, object_size, align, flags, ctor)`` 453 * 454 * The align and ctor parameters map to the respective fields of 455 * &struct kmem_cache_args 456 * 457 * Context: Cannot be called within a interrupt, but can be interrupted. 458 * 459 * Return: a pointer to the cache on success, NULL on failure. 460 */ 461#define kmem_cache_create(__name, __object_size, __args, ...) \ 462 _Generic((__args), \ 463 struct kmem_cache_args *: __kmem_cache_create_args, \ 464 void *: __kmem_cache_default_args, \ 465 default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__) 466 467void kmem_cache_destroy(struct kmem_cache *s); 468int kmem_cache_shrink(struct kmem_cache *s); 469 470/* 471 * Please use this macro to create slab caches. Simply specify the 472 * name of the structure and maybe some flags that are listed above. 473 * 474 * The alignment of the struct determines object alignment. If you 475 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 476 * then the objects will be properly aligned in SMP configurations. 477 */ 478#define KMEM_CACHE(__struct, __flags) \ 479 __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ 480 &(struct kmem_cache_args) { \ 481 .align = __alignof__(struct __struct), \ 482 }, (__flags)) 483 484/* 485 * To whitelist a single field for copying to/from usercopy, use this 486 * macro instead for KMEM_CACHE() above. 487 */ 488#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 489 __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ 490 &(struct kmem_cache_args) { \ 491 .align = __alignof__(struct __struct), \ 492 .useroffset = offsetof(struct __struct, __field), \ 493 .usersize = sizeof_field(struct __struct, __field), \ 494 }, (__flags)) 495 496/* 497 * Common kmalloc functions provided by all allocators 498 */ 499void * __must_check krealloc_node_align_noprof(const void *objp, size_t new_size, 500 unsigned long align, 501 gfp_t flags, int nid) __realloc_size(2); 502#define krealloc_noprof(_o, _s, _f) krealloc_node_align_noprof(_o, _s, 1, _f, NUMA_NO_NODE) 503#define krealloc_node_align(...) alloc_hooks(krealloc_node_align_noprof(__VA_ARGS__)) 504#define krealloc_node(_o, _s, _f, _n) krealloc_node_align(_o, _s, 1, _f, _n) 505#define krealloc(...) krealloc_node(__VA_ARGS__, NUMA_NO_NODE) 506 507void kfree(const void *objp); 508void kfree_nolock(const void *objp); 509void kfree_sensitive(const void *objp); 510size_t __ksize(const void *objp); 511 512DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T)) 513DEFINE_FREE(kfree_sensitive, void *, if (_T) kfree_sensitive(_T)) 514 515/** 516 * ksize - Report actual allocation size of associated object 517 * 518 * @objp: Pointer returned from a prior kmalloc()-family allocation. 519 * 520 * This should not be used for writing beyond the originally requested 521 * allocation size. Either use krealloc() or round up the allocation size 522 * with kmalloc_size_roundup() prior to allocation. If this is used to 523 * access beyond the originally requested allocation size, UBSAN_BOUNDS 524 * and/or FORTIFY_SOURCE may trip, since they only know about the 525 * originally allocated size via the __alloc_size attribute. 526 */ 527size_t ksize(const void *objp); 528 529#ifdef CONFIG_PRINTK 530bool kmem_dump_obj(void *object); 531#else 532static inline bool kmem_dump_obj(void *object) { return false; } 533#endif 534 535/* 536 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 537 * alignment larger than the alignment of a 64-bit integer. 538 * Setting ARCH_DMA_MINALIGN in arch headers allows that. 539 */ 540#ifdef ARCH_HAS_DMA_MINALIGN 541#if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN) 542#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 543#endif 544#endif 545 546#ifndef ARCH_KMALLOC_MINALIGN 547#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 548#elif ARCH_KMALLOC_MINALIGN > 8 549#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN 550#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 551#endif 552 553/* 554 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 555 * Intended for arches that get misalignment faults even for 64 bit integer 556 * aligned buffers. 557 */ 558#ifndef ARCH_SLAB_MINALIGN 559#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 560#endif 561 562/* 563 * Arches can define this function if they want to decide the minimum slab 564 * alignment at runtime. The value returned by the function must be a power 565 * of two and >= ARCH_SLAB_MINALIGN. 566 */ 567#ifndef arch_slab_minalign 568static inline unsigned int arch_slab_minalign(void) 569{ 570 return ARCH_SLAB_MINALIGN; 571} 572#endif 573 574/* 575 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. 576 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN 577 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. 578 */ 579#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 580#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 581#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 582 583/* 584 * Kmalloc array related definitions 585 */ 586 587/* 588 * SLUB directly allocates requests fitting in to an order-1 page 589 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 590 */ 591#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 592#define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDER + PAGE_SHIFT) 593#ifndef KMALLOC_SHIFT_LOW 594#define KMALLOC_SHIFT_LOW 3 595#endif 596 597/* Maximum allocatable size */ 598#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 599/* Maximum size for which we actually use a slab cache */ 600#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 601/* Maximum order allocatable via the slab allocator */ 602#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 603 604/* 605 * Kmalloc subsystem. 606 */ 607#ifndef KMALLOC_MIN_SIZE 608#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 609#endif 610 611/* 612 * This restriction comes from byte sized index implementation. 613 * Page size is normally 2^12 bytes and, in this case, if we want to use 614 * byte sized index which can represent 2^8 entries, the size of the object 615 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 616 * If minimum size of kmalloc is less than 16, we use it as minimum object 617 * size and give up to use byte sized index. 618 */ 619#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 620 (KMALLOC_MIN_SIZE) : 16) 621 622#ifdef CONFIG_RANDOM_KMALLOC_CACHES 623#define RANDOM_KMALLOC_CACHES_NR 15 // # of cache copies 624#else 625#define RANDOM_KMALLOC_CACHES_NR 0 626#endif 627 628/* 629 * Whenever changing this, take care of that kmalloc_type() and 630 * create_kmalloc_caches() still work as intended. 631 * 632 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 633 * is for accounted but unreclaimable and non-dma objects. All the other 634 * kmem caches can have both accounted and unaccounted objects. 635 */ 636enum kmalloc_cache_type { 637 KMALLOC_NORMAL = 0, 638#ifndef CONFIG_ZONE_DMA 639 KMALLOC_DMA = KMALLOC_NORMAL, 640#endif 641#ifndef CONFIG_MEMCG 642 KMALLOC_CGROUP = KMALLOC_NORMAL, 643#endif 644 KMALLOC_RANDOM_START = KMALLOC_NORMAL, 645 KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR, 646#ifdef CONFIG_SLUB_TINY 647 KMALLOC_RECLAIM = KMALLOC_NORMAL, 648#else 649 KMALLOC_RECLAIM, 650#endif 651#ifdef CONFIG_ZONE_DMA 652 KMALLOC_DMA, 653#endif 654#ifdef CONFIG_MEMCG 655 KMALLOC_CGROUP, 656#endif 657 NR_KMALLOC_TYPES 658}; 659 660typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1]; 661 662extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES]; 663 664/* 665 * Define gfp bits that should not be set for KMALLOC_NORMAL. 666 */ 667#define KMALLOC_NOT_NORMAL_BITS \ 668 (__GFP_RECLAIMABLE | \ 669 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 670 (IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0)) 671 672extern unsigned long random_kmalloc_seed; 673 674static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller) 675{ 676 /* 677 * The most common case is KMALLOC_NORMAL, so test for it 678 * with a single branch for all the relevant flags. 679 */ 680 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 681#ifdef CONFIG_RANDOM_KMALLOC_CACHES 682 /* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */ 683 return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed, 684 ilog2(RANDOM_KMALLOC_CACHES_NR + 1)); 685#else 686 return KMALLOC_NORMAL; 687#endif 688 689 /* 690 * At least one of the flags has to be set. Their priorities in 691 * decreasing order are: 692 * 1) __GFP_DMA 693 * 2) __GFP_RECLAIMABLE 694 * 3) __GFP_ACCOUNT 695 */ 696 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 697 return KMALLOC_DMA; 698 if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE)) 699 return KMALLOC_RECLAIM; 700 else 701 return KMALLOC_CGROUP; 702} 703 704/* 705 * Figure out which kmalloc slab an allocation of a certain size 706 * belongs to. 707 * 0 = zero alloc 708 * 1 = 65 .. 96 bytes 709 * 2 = 129 .. 192 bytes 710 * n = 2^(n-1)+1 .. 2^n 711 * 712 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 713 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 714 * Callers where !size_is_constant should only be test modules, where runtime 715 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 716 */ 717static __always_inline unsigned int __kmalloc_index(size_t size, 718 bool size_is_constant) 719{ 720 if (!size) 721 return 0; 722 723 if (size <= KMALLOC_MIN_SIZE) 724 return KMALLOC_SHIFT_LOW; 725 726 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 727 return 1; 728 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 729 return 2; 730 if (size <= 8) return 3; 731 if (size <= 16) return 4; 732 if (size <= 32) return 5; 733 if (size <= 64) return 6; 734 if (size <= 128) return 7; 735 if (size <= 256) return 8; 736 if (size <= 512) return 9; 737 if (size <= 1024) return 10; 738 if (size <= 2 * 1024) return 11; 739 if (size <= 4 * 1024) return 12; 740 if (size <= 8 * 1024) return 13; 741 if (size <= 16 * 1024) return 14; 742 if (size <= 32 * 1024) return 15; 743 if (size <= 64 * 1024) return 16; 744 if (size <= 128 * 1024) return 17; 745 if (size <= 256 * 1024) return 18; 746 if (size <= 512 * 1024) return 19; 747 if (size <= 1024 * 1024) return 20; 748 if (size <= 2 * 1024 * 1024) return 21; 749 750 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 751 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 752 else 753 BUG(); 754 755 /* Will never be reached. Needed because the compiler may complain */ 756 return -1; 757} 758static_assert(PAGE_SHIFT <= 20); 759#define kmalloc_index(s) __kmalloc_index(s, true) 760 761#include <linux/alloc_tag.h> 762 763/** 764 * kmem_cache_alloc - Allocate an object 765 * @cachep: The cache to allocate from. 766 * @flags: See kmalloc(). 767 * 768 * Allocate an object from this cache. 769 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags. 770 * 771 * Return: pointer to the new object or %NULL in case of error 772 */ 773void *kmem_cache_alloc_noprof(struct kmem_cache *cachep, 774 gfp_t flags) __assume_slab_alignment __malloc; 775#define kmem_cache_alloc(...) alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__)) 776 777void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 778 gfp_t gfpflags) __assume_slab_alignment __malloc; 779#define kmem_cache_alloc_lru(...) alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__)) 780 781/** 782 * kmem_cache_charge - memcg charge an already allocated slab memory 783 * @objp: address of the slab object to memcg charge 784 * @gfpflags: describe the allocation context 785 * 786 * kmem_cache_charge allows charging a slab object to the current memcg, 787 * primarily in cases where charging at allocation time might not be possible 788 * because the target memcg is not known (i.e. softirq context) 789 * 790 * The objp should be pointer returned by the slab allocator functions like 791 * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge 792 * behavior can be controlled through gfpflags parameter, which affects how the 793 * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes 794 * that overcharging is requested instead of failure, but is not applied for the 795 * internal metadata allocation. 796 * 797 * There are several cases where it will return true even if the charging was 798 * not done: 799 * More specifically: 800 * 801 * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems. 802 * 2. Already charged slab objects. 803 * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc() 804 * without __GFP_ACCOUNT 805 * 4. Allocating internal metadata has failed 806 * 807 * Return: true if charge was successful otherwise false. 808 */ 809bool kmem_cache_charge(void *objp, gfp_t gfpflags); 810void kmem_cache_free(struct kmem_cache *s, void *objp); 811 812kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, 813 unsigned int useroffset, unsigned int usersize, 814 void (*ctor)(void *)); 815 816/* 817 * Bulk allocation and freeing operations. These are accelerated in an 818 * allocator specific way to avoid taking locks repeatedly or building 819 * metadata structures unnecessarily. 820 * 821 * Note that interrupts must be enabled when calling these functions. 822 */ 823void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 824 825int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p); 826#define kmem_cache_alloc_bulk(...) alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__)) 827 828static __always_inline void kfree_bulk(size_t size, void **p) 829{ 830 kmem_cache_free_bulk(NULL, size, p); 831} 832 833void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags, 834 int node) __assume_slab_alignment __malloc; 835#define kmem_cache_alloc_node(...) alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__)) 836 837struct slab_sheaf * 838kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size); 839 840int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp, 841 struct slab_sheaf **sheafp, unsigned int size); 842 843void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp, 844 struct slab_sheaf *sheaf); 845 846void *kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *cachep, gfp_t gfp, 847 struct slab_sheaf *sheaf) __assume_slab_alignment __malloc; 848#define kmem_cache_alloc_from_sheaf(...) \ 849 alloc_hooks(kmem_cache_alloc_from_sheaf_noprof(__VA_ARGS__)) 850 851unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf); 852 853/* 854 * These macros allow declaring a kmem_buckets * parameter alongside size, which 855 * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call 856 * sites don't have to pass NULL. 857 */ 858#ifdef CONFIG_SLAB_BUCKETS 859#define DECL_BUCKET_PARAMS(_size, _b) size_t (_size), kmem_buckets *(_b) 860#define PASS_BUCKET_PARAMS(_size, _b) (_size), (_b) 861#define PASS_BUCKET_PARAM(_b) (_b) 862#else 863#define DECL_BUCKET_PARAMS(_size, _b) size_t (_size) 864#define PASS_BUCKET_PARAMS(_size, _b) (_size) 865#define PASS_BUCKET_PARAM(_b) NULL 866#endif 867 868/* 869 * The following functions are not to be used directly and are intended only 870 * for internal use from kmalloc() and kmalloc_node() 871 * with the exception of kunit tests 872 */ 873 874void *__kmalloc_noprof(size_t size, gfp_t flags) 875 __assume_kmalloc_alignment __alloc_size(1); 876 877void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 878 __assume_kmalloc_alignment __alloc_size(1); 879 880void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size) 881 __assume_kmalloc_alignment __alloc_size(3); 882 883void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 884 int node, size_t size) 885 __assume_kmalloc_alignment __alloc_size(4); 886 887void *__kmalloc_large_noprof(size_t size, gfp_t flags) 888 __assume_page_alignment __alloc_size(1); 889 890void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 891 __assume_page_alignment __alloc_size(1); 892 893/** 894 * kmalloc - allocate kernel memory 895 * @size: how many bytes of memory are required. 896 * @flags: describe the allocation context 897 * 898 * kmalloc is the normal method of allocating memory 899 * for objects smaller than page size in the kernel. 900 * 901 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 902 * bytes. For @size of power of two bytes, the alignment is also guaranteed 903 * to be at least to the size. For other sizes, the alignment is guaranteed to 904 * be at least the largest power-of-two divisor of @size. 905 * 906 * The @flags argument may be one of the GFP flags defined at 907 * include/linux/gfp_types.h and described at 908 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 909 * 910 * The recommended usage of the @flags is described at 911 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 912 * 913 * Below is a brief outline of the most useful GFP flags 914 * 915 * %GFP_KERNEL 916 * Allocate normal kernel ram. May sleep. 917 * 918 * %GFP_NOWAIT 919 * Allocation will not sleep. 920 * 921 * %GFP_ATOMIC 922 * Allocation will not sleep. May use emergency pools. 923 * 924 * Also it is possible to set different flags by OR'ing 925 * in one or more of the following additional @flags: 926 * 927 * %__GFP_ZERO 928 * Zero the allocated memory before returning. Also see kzalloc(). 929 * 930 * %__GFP_HIGH 931 * This allocation has high priority and may use emergency pools. 932 * 933 * %__GFP_NOFAIL 934 * Indicate that this allocation is in no way allowed to fail 935 * (think twice before using). 936 * 937 * %__GFP_NORETRY 938 * If memory is not immediately available, 939 * then give up at once. 940 * 941 * %__GFP_NOWARN 942 * If allocation fails, don't issue any warnings. 943 * 944 * %__GFP_RETRY_MAYFAIL 945 * Try really hard to succeed the allocation but fail 946 * eventually. 947 */ 948static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags) 949{ 950 if (__builtin_constant_p(size) && size) { 951 unsigned int index; 952 953 if (size > KMALLOC_MAX_CACHE_SIZE) 954 return __kmalloc_large_noprof(size, flags); 955 956 index = kmalloc_index(size); 957 return __kmalloc_cache_noprof( 958 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 959 flags, size); 960 } 961 return __kmalloc_noprof(size, flags); 962} 963#define kmalloc(...) alloc_hooks(kmalloc_noprof(__VA_ARGS__)) 964 965void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node); 966#define kmalloc_nolock(...) alloc_hooks(kmalloc_nolock_noprof(__VA_ARGS__)) 967 968#define kmem_buckets_alloc(_b, _size, _flags) \ 969 alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE)) 970 971#define kmem_buckets_alloc_track_caller(_b, _size, _flags) \ 972 alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_)) 973 974static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node) 975{ 976 if (__builtin_constant_p(size) && size) { 977 unsigned int index; 978 979 if (size > KMALLOC_MAX_CACHE_SIZE) 980 return __kmalloc_large_node_noprof(size, flags, node); 981 982 index = kmalloc_index(size); 983 return __kmalloc_cache_node_noprof( 984 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 985 flags, node, size); 986 } 987 return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node); 988} 989#define kmalloc_node(...) alloc_hooks(kmalloc_node_noprof(__VA_ARGS__)) 990 991/** 992 * kmalloc_array - allocate memory for an array. 993 * @n: number of elements. 994 * @size: element size. 995 * @flags: the type of memory to allocate (see kmalloc). 996 */ 997static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags) 998{ 999 size_t bytes; 1000 1001 if (unlikely(check_mul_overflow(n, size, &bytes))) 1002 return NULL; 1003 return kmalloc_noprof(bytes, flags); 1004} 1005#define kmalloc_array(...) alloc_hooks(kmalloc_array_noprof(__VA_ARGS__)) 1006 1007/** 1008 * krealloc_array - reallocate memory for an array. 1009 * @p: pointer to the memory chunk to reallocate 1010 * @new_n: new number of elements to alloc 1011 * @new_size: new size of a single member of the array 1012 * @flags: the type of memory to allocate (see kmalloc) 1013 * 1014 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 1015 * initial memory allocation, every subsequent call to this API for the same 1016 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 1017 * __GFP_ZERO is not fully honored by this API. 1018 * 1019 * See krealloc_noprof() for further details. 1020 * 1021 * In any case, the contents of the object pointed to are preserved up to the 1022 * lesser of the new and old sizes. 1023 */ 1024static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p, 1025 size_t new_n, 1026 size_t new_size, 1027 gfp_t flags) 1028{ 1029 size_t bytes; 1030 1031 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 1032 return NULL; 1033 1034 return krealloc_noprof(p, bytes, flags); 1035} 1036#define krealloc_array(...) alloc_hooks(krealloc_array_noprof(__VA_ARGS__)) 1037 1038/** 1039 * kcalloc - allocate memory for an array. The memory is set to zero. 1040 * @n: number of elements. 1041 * @size: element size. 1042 * @flags: the type of memory to allocate (see kmalloc). 1043 */ 1044#define kcalloc(n, size, flags) kmalloc_array(n, size, (flags) | __GFP_ZERO) 1045 1046void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node, 1047 unsigned long caller) __alloc_size(1); 1048#define kmalloc_node_track_caller_noprof(size, flags, node, caller) \ 1049 __kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller) 1050#define kmalloc_node_track_caller(...) \ 1051 alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_)) 1052 1053/* 1054 * kmalloc_track_caller is a special version of kmalloc that records the 1055 * calling function of the routine calling it for slab leak tracking instead 1056 * of just the calling function (confusing, eh?). 1057 * It's useful when the call to kmalloc comes from a widely-used standard 1058 * allocator where we care about the real place the memory allocation 1059 * request comes from. 1060 */ 1061#define kmalloc_track_caller(...) kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE) 1062 1063#define kmalloc_track_caller_noprof(...) \ 1064 kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_) 1065 1066static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, 1067 int node) 1068{ 1069 size_t bytes; 1070 1071 if (unlikely(check_mul_overflow(n, size, &bytes))) 1072 return NULL; 1073 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 1074 return kmalloc_node_noprof(bytes, flags, node); 1075 return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node); 1076} 1077#define kmalloc_array_node(...) alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__)) 1078 1079#define kcalloc_node(_n, _size, _flags, _node) \ 1080 kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node) 1081 1082/* 1083 * Shortcuts 1084 */ 1085#define kmem_cache_zalloc(_k, _flags) kmem_cache_alloc(_k, (_flags)|__GFP_ZERO) 1086 1087/** 1088 * kzalloc - allocate memory. The memory is set to zero. 1089 * @size: how many bytes of memory are required. 1090 * @flags: the type of memory to allocate (see kmalloc). 1091 */ 1092static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags) 1093{ 1094 return kmalloc_noprof(size, flags | __GFP_ZERO); 1095} 1096#define kzalloc(...) alloc_hooks(kzalloc_noprof(__VA_ARGS__)) 1097#define kzalloc_node(_size, _flags, _node) kmalloc_node(_size, (_flags)|__GFP_ZERO, _node) 1098 1099void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align, 1100 gfp_t flags, int node) __alloc_size(1); 1101#define kvmalloc_node_align_noprof(_size, _align, _flags, _node) \ 1102 __kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, NULL), _align, _flags, _node) 1103#define kvmalloc_node_align(...) \ 1104 alloc_hooks(kvmalloc_node_align_noprof(__VA_ARGS__)) 1105#define kvmalloc_node(_s, _f, _n) kvmalloc_node_align(_s, 1, _f, _n) 1106#define kvmalloc(...) kvmalloc_node(__VA_ARGS__, NUMA_NO_NODE) 1107#define kvzalloc(_size, _flags) kvmalloc(_size, (_flags)|__GFP_ZERO) 1108 1109#define kvzalloc_node(_size, _flags, _node) kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node) 1110 1111#define kmem_buckets_valloc(_b, _size, _flags) \ 1112 alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), 1, _flags, NUMA_NO_NODE)) 1113 1114static inline __alloc_size(1, 2) void * 1115kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node) 1116{ 1117 size_t bytes; 1118 1119 if (unlikely(check_mul_overflow(n, size, &bytes))) 1120 return NULL; 1121 1122 return kvmalloc_node_align_noprof(bytes, 1, flags, node); 1123} 1124 1125#define kvmalloc_array_noprof(...) kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE) 1126#define kvcalloc_node_noprof(_n,_s,_f,_node) kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node) 1127#define kvcalloc_noprof(...) kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE) 1128 1129#define kvmalloc_array(...) alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__)) 1130#define kvcalloc_node(...) alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__)) 1131#define kvcalloc(...) alloc_hooks(kvcalloc_noprof(__VA_ARGS__)) 1132 1133void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align, 1134 gfp_t flags, int nid) __realloc_size(2); 1135#define kvrealloc_node_align(...) \ 1136 alloc_hooks(kvrealloc_node_align_noprof(__VA_ARGS__)) 1137#define kvrealloc_node(_p, _s, _f, _n) kvrealloc_node_align(_p, _s, 1, _f, _n) 1138#define kvrealloc(...) kvrealloc_node(__VA_ARGS__, NUMA_NO_NODE) 1139 1140extern void kvfree(const void *addr); 1141DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T)) 1142 1143extern void kvfree_sensitive(const void *addr, size_t len); 1144 1145unsigned int kmem_cache_size(struct kmem_cache *s); 1146 1147#ifndef CONFIG_KVFREE_RCU_BATCHED 1148static inline void kvfree_rcu_barrier(void) 1149{ 1150 rcu_barrier(); 1151} 1152 1153static inline void kvfree_rcu_barrier_on_cache(struct kmem_cache *s) 1154{ 1155 rcu_barrier(); 1156} 1157 1158static inline void kfree_rcu_scheduler_running(void) { } 1159#else 1160void kvfree_rcu_barrier(void); 1161 1162void kvfree_rcu_barrier_on_cache(struct kmem_cache *s); 1163 1164void kfree_rcu_scheduler_running(void); 1165#endif 1166 1167/** 1168 * kmalloc_size_roundup - Report allocation bucket size for the given size 1169 * 1170 * @size: Number of bytes to round up from. 1171 * 1172 * This returns the number of bytes that would be available in a kmalloc() 1173 * allocation of @size bytes. For example, a 126 byte request would be 1174 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly 1175 * for the general-purpose kmalloc()-based allocations, and is not for the 1176 * pre-sized kmem_cache_alloc()-based allocations.) 1177 * 1178 * Use this to kmalloc() the full bucket size ahead of time instead of using 1179 * ksize() to query the size after an allocation. 1180 */ 1181size_t kmalloc_size_roundup(size_t size); 1182 1183void __init kmem_cache_init_late(void); 1184void __init kvfree_rcu_init(void); 1185 1186#endif /* _LINUX_SLAB_H */