at master 32 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_RCULIST_H 3#define _LINUX_RCULIST_H 4 5#ifdef __KERNEL__ 6 7/* 8 * RCU-protected list version 9 */ 10#include <linux/list.h> 11#include <linux/rcupdate.h> 12 13/* 14 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers 15 * @list: list to be initialized 16 * 17 * You should instead use INIT_LIST_HEAD() for normal initialization and 18 * cleanup tasks, when readers have no access to the list being initialized. 19 * However, if the list being initialized is visible to readers, you 20 * need to keep the compiler from being too mischievous. 21 */ 22static inline void INIT_LIST_HEAD_RCU(struct list_head *list) 23{ 24 WRITE_ONCE(list->next, list); 25 WRITE_ONCE(list->prev, list); 26} 27 28/* 29 * return the ->next pointer of a list_head in an rcu safe 30 * way, we must not access it directly 31 */ 32#define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next))) 33/* 34 * Return the ->prev pointer of a list_head in an rcu safe way. Don't 35 * access it directly. 36 * 37 * Any list traversed with list_bidir_prev_rcu() must never use 38 * list_del_rcu(). Doing so will poison the ->prev pointer that 39 * list_bidir_prev_rcu() relies on, which will result in segfaults. 40 * To prevent these segfaults, use list_bidir_del_rcu() instead 41 * of list_del_rcu(). 42 */ 43#define list_bidir_prev_rcu(list) (*((struct list_head __rcu **)(&(list)->prev))) 44 45/** 46 * list_for_each_rcu - Iterate over a list in an RCU-safe fashion 47 * @pos: the &struct list_head to use as a loop cursor. 48 * @head: the head for your list. 49 */ 50#define list_for_each_rcu(pos, head) \ 51 for (pos = rcu_dereference((head)->next); \ 52 !list_is_head(pos, (head)); \ 53 pos = rcu_dereference(pos->next)) 54 55/** 56 * list_tail_rcu - returns the prev pointer of the head of the list 57 * @head: the head of the list 58 * 59 * Note: This should only be used with the list header, and even then 60 * only if list_del() and similar primitives are not also used on the 61 * list header. 62 */ 63#define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev))) 64 65/* 66 * Check during list traversal that we are within an RCU reader 67 */ 68 69#define check_arg_count_one(dummy) 70 71#ifdef CONFIG_PROVE_RCU_LIST 72#define __list_check_rcu(dummy, cond, extra...) \ 73 ({ \ 74 check_arg_count_one(extra); \ 75 RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \ 76 "RCU-list traversed in non-reader section!"); \ 77 }) 78 79#define __list_check_srcu(cond) \ 80 ({ \ 81 RCU_LOCKDEP_WARN(!(cond), \ 82 "RCU-list traversed without holding the required lock!");\ 83 }) 84#else 85#define __list_check_rcu(dummy, cond, extra...) \ 86 ({ check_arg_count_one(extra); }) 87 88#define __list_check_srcu(cond) ({ }) 89#endif 90 91/* 92 * Insert a new entry between two known consecutive entries. 93 * 94 * This is only for internal list manipulation where we know 95 * the prev/next entries already! 96 */ 97static inline void __list_add_rcu(struct list_head *new, 98 struct list_head *prev, struct list_head *next) 99{ 100 if (!__list_add_valid(new, prev, next)) 101 return; 102 103 new->next = next; 104 new->prev = prev; 105 rcu_assign_pointer(list_next_rcu(prev), new); 106 next->prev = new; 107} 108 109/** 110 * list_add_rcu - add a new entry to rcu-protected list 111 * @new: new entry to be added 112 * @head: list head to add it after 113 * 114 * Insert a new entry after the specified head. 115 * This is good for implementing stacks. 116 * 117 * The caller must take whatever precautions are necessary 118 * (such as holding appropriate locks) to avoid racing 119 * with another list-mutation primitive, such as list_add_rcu() 120 * or list_del_rcu(), running on this same list. 121 * However, it is perfectly legal to run concurrently with 122 * the _rcu list-traversal primitives, such as 123 * list_for_each_entry_rcu(). 124 */ 125static inline void list_add_rcu(struct list_head *new, struct list_head *head) 126{ 127 __list_add_rcu(new, head, head->next); 128} 129 130/** 131 * list_add_tail_rcu - add a new entry to rcu-protected list 132 * @new: new entry to be added 133 * @head: list head to add it before 134 * 135 * Insert a new entry before the specified head. 136 * This is useful for implementing queues. 137 * 138 * The caller must take whatever precautions are necessary 139 * (such as holding appropriate locks) to avoid racing 140 * with another list-mutation primitive, such as list_add_tail_rcu() 141 * or list_del_rcu(), running on this same list. 142 * However, it is perfectly legal to run concurrently with 143 * the _rcu list-traversal primitives, such as 144 * list_for_each_entry_rcu(). 145 */ 146static inline void list_add_tail_rcu(struct list_head *new, 147 struct list_head *head) 148{ 149 __list_add_rcu(new, head->prev, head); 150} 151 152/** 153 * list_del_rcu - deletes entry from list without re-initialization 154 * @entry: the element to delete from the list. 155 * 156 * Note: list_empty() on entry does not return true after this, 157 * the entry is in an undefined state. It is useful for RCU based 158 * lockfree traversal. 159 * 160 * In particular, it means that we can not poison the forward 161 * pointers that may still be used for walking the list. 162 * 163 * The caller must take whatever precautions are necessary 164 * (such as holding appropriate locks) to avoid racing 165 * with another list-mutation primitive, such as list_del_rcu() 166 * or list_add_rcu(), running on this same list. 167 * However, it is perfectly legal to run concurrently with 168 * the _rcu list-traversal primitives, such as 169 * list_for_each_entry_rcu(). 170 * 171 * Note that the caller is not permitted to immediately free 172 * the newly deleted entry. Instead, either synchronize_rcu() 173 * or call_rcu() must be used to defer freeing until an RCU 174 * grace period has elapsed. 175 */ 176static inline void list_del_rcu(struct list_head *entry) 177{ 178 __list_del_entry(entry); 179 entry->prev = LIST_POISON2; 180} 181 182/** 183 * list_bidir_del_rcu - deletes entry from list without re-initialization 184 * @entry: the element to delete from the list. 185 * 186 * In contrast to list_del_rcu() doesn't poison the prev pointer thus 187 * allowing backwards traversal via list_bidir_prev_rcu(). 188 * 189 * Note: list_empty() on entry does not return true after this because 190 * the entry is in a special undefined state that permits RCU-based 191 * lockfree reverse traversal. In particular this means that we can not 192 * poison the forward and backwards pointers that may still be used for 193 * walking the list. 194 * 195 * The caller must take whatever precautions are necessary (such as 196 * holding appropriate locks) to avoid racing with another list-mutation 197 * primitive, such as list_bidir_del_rcu() or list_add_rcu(), running on 198 * this same list. However, it is perfectly legal to run concurrently 199 * with the _rcu list-traversal primitives, such as 200 * list_for_each_entry_rcu(). 201 * 202 * Note that list_del_rcu() and list_bidir_del_rcu() must not be used on 203 * the same list. 204 * 205 * Note that the caller is not permitted to immediately free 206 * the newly deleted entry. Instead, either synchronize_rcu() 207 * or call_rcu() must be used to defer freeing until an RCU 208 * grace period has elapsed. 209 */ 210static inline void list_bidir_del_rcu(struct list_head *entry) 211{ 212 __list_del_entry(entry); 213} 214 215/** 216 * hlist_del_init_rcu - deletes entry from hash list with re-initialization 217 * @n: the element to delete from the hash list. 218 * 219 * Note: list_unhashed() on the node return true after this. It is 220 * useful for RCU based read lockfree traversal if the writer side 221 * must know if the list entry is still hashed or already unhashed. 222 * 223 * In particular, it means that we can not poison the forward pointers 224 * that may still be used for walking the hash list and we can only 225 * zero the pprev pointer so list_unhashed() will return true after 226 * this. 227 * 228 * The caller must take whatever precautions are necessary (such as 229 * holding appropriate locks) to avoid racing with another 230 * list-mutation primitive, such as hlist_add_head_rcu() or 231 * hlist_del_rcu(), running on this same list. However, it is 232 * perfectly legal to run concurrently with the _rcu list-traversal 233 * primitives, such as hlist_for_each_entry_rcu(). 234 */ 235static inline void hlist_del_init_rcu(struct hlist_node *n) 236{ 237 if (!hlist_unhashed(n)) { 238 __hlist_del(n); 239 WRITE_ONCE(n->pprev, NULL); 240 } 241} 242 243/** 244 * list_replace_rcu - replace old entry by new one 245 * @old : the element to be replaced 246 * @new : the new element to insert 247 * 248 * The @old entry will be replaced with the @new entry atomically from 249 * the perspective of concurrent readers. It is the caller's responsibility 250 * to synchronize with concurrent updaters, if any. 251 * 252 * Note: @old should not be empty. 253 */ 254static inline void list_replace_rcu(struct list_head *old, 255 struct list_head *new) 256{ 257 new->next = old->next; 258 new->prev = old->prev; 259 rcu_assign_pointer(list_next_rcu(new->prev), new); 260 new->next->prev = new; 261 old->prev = LIST_POISON2; 262} 263 264/** 265 * __list_splice_init_rcu - join an RCU-protected list into an existing list. 266 * @list: the RCU-protected list to splice 267 * @prev: points to the last element of the existing list 268 * @next: points to the first element of the existing list 269 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 270 * 271 * The list pointed to by @prev and @next can be RCU-read traversed 272 * concurrently with this function. 273 * 274 * Note that this function blocks. 275 * 276 * Important note: the caller must take whatever action is necessary to prevent 277 * any other updates to the existing list. In principle, it is possible to 278 * modify the list as soon as sync() begins execution. If this sort of thing 279 * becomes necessary, an alternative version based on call_rcu() could be 280 * created. But only if -really- needed -- there is no shortage of RCU API 281 * members. 282 */ 283static inline void __list_splice_init_rcu(struct list_head *list, 284 struct list_head *prev, 285 struct list_head *next, 286 void (*sync)(void)) 287{ 288 struct list_head *first = list->next; 289 struct list_head *last = list->prev; 290 291 /* 292 * "first" and "last" tracking list, so initialize it. RCU readers 293 * have access to this list, so we must use INIT_LIST_HEAD_RCU() 294 * instead of INIT_LIST_HEAD(). 295 */ 296 297 INIT_LIST_HEAD_RCU(list); 298 299 /* 300 * At this point, the list body still points to the source list. 301 * Wait for any readers to finish using the list before splicing 302 * the list body into the new list. Any new readers will see 303 * an empty list. 304 */ 305 306 sync(); 307 ASSERT_EXCLUSIVE_ACCESS(*first); 308 ASSERT_EXCLUSIVE_ACCESS(*last); 309 310 /* 311 * Readers are finished with the source list, so perform splice. 312 * The order is important if the new list is global and accessible 313 * to concurrent RCU readers. Note that RCU readers are not 314 * permitted to traverse the prev pointers without excluding 315 * this function. 316 */ 317 318 last->next = next; 319 rcu_assign_pointer(list_next_rcu(prev), first); 320 first->prev = prev; 321 next->prev = last; 322} 323 324/** 325 * list_splice_init_rcu - splice an RCU-protected list into an existing list, 326 * designed for stacks. 327 * @list: the RCU-protected list to splice 328 * @head: the place in the existing list to splice the first list into 329 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 330 */ 331static inline void list_splice_init_rcu(struct list_head *list, 332 struct list_head *head, 333 void (*sync)(void)) 334{ 335 if (!list_empty(list)) 336 __list_splice_init_rcu(list, head, head->next, sync); 337} 338 339/** 340 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing 341 * list, designed for queues. 342 * @list: the RCU-protected list to splice 343 * @head: the place in the existing list to splice the first list into 344 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 345 */ 346static inline void list_splice_tail_init_rcu(struct list_head *list, 347 struct list_head *head, 348 void (*sync)(void)) 349{ 350 if (!list_empty(list)) 351 __list_splice_init_rcu(list, head->prev, head, sync); 352} 353 354/** 355 * list_entry_rcu - get the struct for this entry 356 * @ptr: the &struct list_head pointer. 357 * @type: the type of the struct this is embedded in. 358 * @member: the name of the list_head within the struct. 359 * 360 * This primitive may safely run concurrently with the _rcu list-mutation 361 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 362 */ 363#define list_entry_rcu(ptr, type, member) \ 364 container_of(READ_ONCE(ptr), type, member) 365 366/* 367 * Where are list_empty_rcu() and list_first_entry_rcu()? 368 * 369 * They do not exist because they would lead to subtle race conditions: 370 * 371 * if (!list_empty_rcu(mylist)) { 372 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member); 373 * do_something(bar); 374 * } 375 * 376 * The list might be non-empty when list_empty_rcu() checks it, but it 377 * might have become empty by the time that list_first_entry_rcu() rereads 378 * the ->next pointer, which would result in a SEGV. 379 * 380 * When not using RCU, it is OK for list_first_entry() to re-read that 381 * pointer because both functions should be protected by some lock that 382 * blocks writers. 383 * 384 * When using RCU, list_empty() uses READ_ONCE() to fetch the 385 * RCU-protected ->next pointer and then compares it to the address of the 386 * list head. However, it neither dereferences this pointer nor provides 387 * this pointer to its caller. Thus, READ_ONCE() suffices (that is, 388 * rcu_dereference() is not needed), which means that list_empty() can be 389 * used anywhere you would want to use list_empty_rcu(). Just don't 390 * expect anything useful to happen if you do a subsequent lockless 391 * call to list_first_entry_rcu()!!! 392 * 393 * See list_first_or_null_rcu for an alternative. 394 */ 395 396/** 397 * list_first_or_null_rcu - get the first element from a list 398 * @ptr: the list head to take the element from. 399 * @type: the type of the struct this is embedded in. 400 * @member: the name of the list_head within the struct. 401 * 402 * Note that if the list is empty, it returns NULL. 403 * 404 * This primitive may safely run concurrently with the _rcu list-mutation 405 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 406 */ 407#define list_first_or_null_rcu(ptr, type, member) \ 408({ \ 409 struct list_head *__ptr = (ptr); \ 410 struct list_head *__next = READ_ONCE(__ptr->next); \ 411 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \ 412}) 413 414/** 415 * list_next_or_null_rcu - get the next element from a list 416 * @head: the head for the list. 417 * @ptr: the list head to take the next element from. 418 * @type: the type of the struct this is embedded in. 419 * @member: the name of the list_head within the struct. 420 * 421 * Note that if the ptr is at the end of the list, NULL is returned. 422 * 423 * This primitive may safely run concurrently with the _rcu list-mutation 424 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 425 */ 426#define list_next_or_null_rcu(head, ptr, type, member) \ 427({ \ 428 struct list_head *__head = (head); \ 429 struct list_head *__ptr = (ptr); \ 430 struct list_head *__next = READ_ONCE(__ptr->next); \ 431 likely(__next != __head) ? list_entry_rcu(__next, type, \ 432 member) : NULL; \ 433}) 434 435/** 436 * list_for_each_entry_rcu - iterate over rcu list of given type 437 * @pos: the type * to use as a loop cursor. 438 * @head: the head for your list. 439 * @member: the name of the list_head within the struct. 440 * @cond: optional lockdep expression if called from non-RCU protection. 441 * 442 * This list-traversal primitive may safely run concurrently with 443 * the _rcu list-mutation primitives such as list_add_rcu() 444 * as long as the traversal is guarded by rcu_read_lock(). 445 */ 446#define list_for_each_entry_rcu(pos, head, member, cond...) \ 447 for (__list_check_rcu(dummy, ## cond, 0), \ 448 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 449 &pos->member != (head); \ 450 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 451 452/** 453 * list_for_each_entry_srcu - iterate over rcu list of given type 454 * @pos: the type * to use as a loop cursor. 455 * @head: the head for your list. 456 * @member: the name of the list_head within the struct. 457 * @cond: lockdep expression for the lock required to traverse the list. 458 * 459 * This list-traversal primitive may safely run concurrently with 460 * the _rcu list-mutation primitives such as list_add_rcu() 461 * as long as the traversal is guarded by srcu_read_lock(). 462 * The lockdep expression srcu_read_lock_held() can be passed as the 463 * cond argument from read side. 464 */ 465#define list_for_each_entry_srcu(pos, head, member, cond) \ 466 for (__list_check_srcu(cond), \ 467 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 468 &pos->member != (head); \ 469 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 470 471/** 472 * list_entry_lockless - get the struct for this entry 473 * @ptr: the &struct list_head pointer. 474 * @type: the type of the struct this is embedded in. 475 * @member: the name of the list_head within the struct. 476 * 477 * This primitive may safely run concurrently with the _rcu 478 * list-mutation primitives such as list_add_rcu(), but requires some 479 * implicit RCU read-side guarding. One example is running within a special 480 * exception-time environment where preemption is disabled and where lockdep 481 * cannot be invoked. Another example is when items are added to the list, 482 * but never deleted. 483 */ 484#define list_entry_lockless(ptr, type, member) \ 485 container_of((typeof(ptr))READ_ONCE(ptr), type, member) 486 487/** 488 * list_for_each_entry_lockless - iterate over rcu list of given type 489 * @pos: the type * to use as a loop cursor. 490 * @head: the head for your list. 491 * @member: the name of the list_struct within the struct. 492 * 493 * This primitive may safely run concurrently with the _rcu 494 * list-mutation primitives such as list_add_rcu(), but requires some 495 * implicit RCU read-side guarding. One example is running within a special 496 * exception-time environment where preemption is disabled and where lockdep 497 * cannot be invoked. Another example is when items are added to the list, 498 * but never deleted. 499 */ 500#define list_for_each_entry_lockless(pos, head, member) \ 501 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \ 502 &pos->member != (head); \ 503 pos = list_entry_lockless(pos->member.next, typeof(*pos), member)) 504 505/** 506 * list_for_each_entry_continue_rcu - continue iteration over list of given type 507 * @pos: the type * to use as a loop cursor. 508 * @head: the head for your list. 509 * @member: the name of the list_head within the struct. 510 * 511 * Continue to iterate over list of given type, continuing after 512 * the current position which must have been in the list when the RCU read 513 * lock was taken. 514 * This would typically require either that you obtained the node from a 515 * previous walk of the list in the same RCU read-side critical section, or 516 * that you held some sort of non-RCU reference (such as a reference count) 517 * to keep the node alive *and* in the list. 518 * 519 * This iterator is similar to list_for_each_entry_from_rcu() except 520 * this starts after the given position and that one starts at the given 521 * position. 522 */ 523#define list_for_each_entry_continue_rcu(pos, head, member) \ 524 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \ 525 &pos->member != (head); \ 526 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 527 528/** 529 * list_for_each_entry_from_rcu - iterate over a list from current point 530 * @pos: the type * to use as a loop cursor. 531 * @head: the head for your list. 532 * @member: the name of the list_node within the struct. 533 * 534 * Iterate over the tail of a list starting from a given position, 535 * which must have been in the list when the RCU read lock was taken. 536 * This would typically require either that you obtained the node from a 537 * previous walk of the list in the same RCU read-side critical section, or 538 * that you held some sort of non-RCU reference (such as a reference count) 539 * to keep the node alive *and* in the list. 540 * 541 * This iterator is similar to list_for_each_entry_continue_rcu() except 542 * this starts from the given position and that one starts from the position 543 * after the given position. 544 */ 545#define list_for_each_entry_from_rcu(pos, head, member) \ 546 for (; &(pos)->member != (head); \ 547 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member)) 548 549/** 550 * hlist_del_rcu - deletes entry from hash list without re-initialization 551 * @n: the element to delete from the hash list. 552 * 553 * Note: list_unhashed() on entry does not return true after this, 554 * the entry is in an undefined state. It is useful for RCU based 555 * lockfree traversal. 556 * 557 * In particular, it means that we can not poison the forward 558 * pointers that may still be used for walking the hash list. 559 * 560 * The caller must take whatever precautions are necessary 561 * (such as holding appropriate locks) to avoid racing 562 * with another list-mutation primitive, such as hlist_add_head_rcu() 563 * or hlist_del_rcu(), running on this same list. 564 * However, it is perfectly legal to run concurrently with 565 * the _rcu list-traversal primitives, such as 566 * hlist_for_each_entry(). 567 */ 568static inline void hlist_del_rcu(struct hlist_node *n) 569{ 570 __hlist_del(n); 571 WRITE_ONCE(n->pprev, LIST_POISON2); 572} 573 574/** 575 * hlist_replace_rcu - replace old entry by new one 576 * @old : the element to be replaced 577 * @new : the new element to insert 578 * 579 * The @old entry will be replaced with the @new entry atomically from 580 * the perspective of concurrent readers. It is the caller's responsibility 581 * to synchronize with concurrent updaters, if any. 582 */ 583static inline void hlist_replace_rcu(struct hlist_node *old, 584 struct hlist_node *new) 585{ 586 struct hlist_node *next = old->next; 587 588 new->next = next; 589 WRITE_ONCE(new->pprev, old->pprev); 590 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new); 591 if (next) 592 WRITE_ONCE(new->next->pprev, &new->next); 593 WRITE_ONCE(old->pprev, LIST_POISON2); 594} 595 596/** 597 * hlists_swap_heads_rcu - swap the lists the hlist heads point to 598 * @left: The hlist head on the left 599 * @right: The hlist head on the right 600 * 601 * The lists start out as [@left ][node1 ... ] and 602 * [@right ][node2 ... ] 603 * The lists end up as [@left ][node2 ... ] 604 * [@right ][node1 ... ] 605 */ 606static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right) 607{ 608 struct hlist_node *node1 = left->first; 609 struct hlist_node *node2 = right->first; 610 611 rcu_assign_pointer(left->first, node2); 612 rcu_assign_pointer(right->first, node1); 613 WRITE_ONCE(node2->pprev, &left->first); 614 WRITE_ONCE(node1->pprev, &right->first); 615} 616 617/* 618 * return the first or the next element in an RCU protected hlist 619 */ 620#define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first))) 621#define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next))) 622#define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev))) 623 624/** 625 * hlist_add_head_rcu 626 * @n: the element to add to the hash list. 627 * @h: the list to add to. 628 * 629 * Description: 630 * Adds the specified element to the specified hlist, 631 * while permitting racing traversals. 632 * 633 * The caller must take whatever precautions are necessary 634 * (such as holding appropriate locks) to avoid racing 635 * with another list-mutation primitive, such as hlist_add_head_rcu() 636 * or hlist_del_rcu(), running on this same list. 637 * However, it is perfectly legal to run concurrently with 638 * the _rcu list-traversal primitives, such as 639 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 640 * problems on Alpha CPUs. Regardless of the type of CPU, the 641 * list-traversal primitive must be guarded by rcu_read_lock(). 642 */ 643static inline void hlist_add_head_rcu(struct hlist_node *n, 644 struct hlist_head *h) 645{ 646 struct hlist_node *first = h->first; 647 648 n->next = first; 649 WRITE_ONCE(n->pprev, &h->first); 650 rcu_assign_pointer(hlist_first_rcu(h), n); 651 if (first) 652 WRITE_ONCE(first->pprev, &n->next); 653} 654 655/** 656 * hlist_add_tail_rcu 657 * @n: the element to add to the hash list. 658 * @h: the list to add to. 659 * 660 * Description: 661 * Adds the specified element to the specified hlist, 662 * while permitting racing traversals. 663 * 664 * The caller must take whatever precautions are necessary 665 * (such as holding appropriate locks) to avoid racing 666 * with another list-mutation primitive, such as hlist_add_head_rcu() 667 * or hlist_del_rcu(), running on this same list. 668 * However, it is perfectly legal to run concurrently with 669 * the _rcu list-traversal primitives, such as 670 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 671 * problems on Alpha CPUs. Regardless of the type of CPU, the 672 * list-traversal primitive must be guarded by rcu_read_lock(). 673 */ 674static inline void hlist_add_tail_rcu(struct hlist_node *n, 675 struct hlist_head *h) 676{ 677 struct hlist_node *i, *last = NULL; 678 679 /* Note: write side code, so rcu accessors are not needed. */ 680 for (i = h->first; i; i = i->next) 681 last = i; 682 683 if (last) { 684 n->next = last->next; 685 WRITE_ONCE(n->pprev, &last->next); 686 rcu_assign_pointer(hlist_next_rcu(last), n); 687 } else { 688 hlist_add_head_rcu(n, h); 689 } 690} 691 692/** 693 * hlist_add_before_rcu 694 * @n: the new element to add to the hash list. 695 * @next: the existing element to add the new element before. 696 * 697 * Description: 698 * Adds the specified element to the specified hlist 699 * before the specified node while permitting racing traversals. 700 * 701 * The caller must take whatever precautions are necessary 702 * (such as holding appropriate locks) to avoid racing 703 * with another list-mutation primitive, such as hlist_add_head_rcu() 704 * or hlist_del_rcu(), running on this same list. 705 * However, it is perfectly legal to run concurrently with 706 * the _rcu list-traversal primitives, such as 707 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 708 * problems on Alpha CPUs. 709 */ 710static inline void hlist_add_before_rcu(struct hlist_node *n, 711 struct hlist_node *next) 712{ 713 WRITE_ONCE(n->pprev, next->pprev); 714 n->next = next; 715 rcu_assign_pointer(hlist_pprev_rcu(n), n); 716 WRITE_ONCE(next->pprev, &n->next); 717} 718 719/** 720 * hlist_add_behind_rcu 721 * @n: the new element to add to the hash list. 722 * @prev: the existing element to add the new element after. 723 * 724 * Description: 725 * Adds the specified element to the specified hlist 726 * after the specified node while permitting racing traversals. 727 * 728 * The caller must take whatever precautions are necessary 729 * (such as holding appropriate locks) to avoid racing 730 * with another list-mutation primitive, such as hlist_add_head_rcu() 731 * or hlist_del_rcu(), running on this same list. 732 * However, it is perfectly legal to run concurrently with 733 * the _rcu list-traversal primitives, such as 734 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 735 * problems on Alpha CPUs. 736 */ 737static inline void hlist_add_behind_rcu(struct hlist_node *n, 738 struct hlist_node *prev) 739{ 740 n->next = prev->next; 741 WRITE_ONCE(n->pprev, &prev->next); 742 rcu_assign_pointer(hlist_next_rcu(prev), n); 743 if (n->next) 744 WRITE_ONCE(n->next->pprev, &n->next); 745} 746 747#define __hlist_for_each_rcu(pos, head) \ 748 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 749 pos; \ 750 pos = rcu_dereference(hlist_next_rcu(pos))) 751 752/** 753 * hlist_for_each_entry_rcu - iterate over rcu list of given type 754 * @pos: the type * to use as a loop cursor. 755 * @head: the head for your list. 756 * @member: the name of the hlist_node within the struct. 757 * @cond: optional lockdep expression if called from non-RCU protection. 758 * 759 * This list-traversal primitive may safely run concurrently with 760 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 761 * as long as the traversal is guarded by rcu_read_lock(). 762 */ 763#define hlist_for_each_entry_rcu(pos, head, member, cond...) \ 764 for (__list_check_rcu(dummy, ## cond, 0), \ 765 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 766 typeof(*(pos)), member); \ 767 pos; \ 768 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 769 &(pos)->member)), typeof(*(pos)), member)) 770 771/** 772 * hlist_for_each_entry_srcu - iterate over rcu list of given type 773 * @pos: the type * to use as a loop cursor. 774 * @head: the head for your list. 775 * @member: the name of the hlist_node within the struct. 776 * @cond: lockdep expression for the lock required to traverse the list. 777 * 778 * This list-traversal primitive may safely run concurrently with 779 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 780 * as long as the traversal is guarded by srcu_read_lock(). 781 * The lockdep expression srcu_read_lock_held() can be passed as the 782 * cond argument from read side. 783 */ 784#define hlist_for_each_entry_srcu(pos, head, member, cond) \ 785 for (__list_check_srcu(cond), \ 786 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 787 typeof(*(pos)), member); \ 788 pos; \ 789 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 790 &(pos)->member)), typeof(*(pos)), member)) 791 792/** 793 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing) 794 * @pos: the type * to use as a loop cursor. 795 * @head: the head for your list. 796 * @member: the name of the hlist_node within the struct. 797 * 798 * This list-traversal primitive may safely run concurrently with 799 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 800 * as long as the traversal is guarded by rcu_read_lock(). 801 * 802 * This is the same as hlist_for_each_entry_rcu() except that it does 803 * not do any RCU debugging or tracing. 804 */ 805#define hlist_for_each_entry_rcu_notrace(pos, head, member) \ 806 for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\ 807 typeof(*(pos)), member); \ 808 pos; \ 809 pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\ 810 &(pos)->member)), typeof(*(pos)), member)) 811 812/** 813 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type 814 * @pos: the type * to use as a loop cursor. 815 * @head: the head for your list. 816 * @member: the name of the hlist_node within the struct. 817 * 818 * This list-traversal primitive may safely run concurrently with 819 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 820 * as long as the traversal is guarded by rcu_read_lock(). 821 */ 822#define hlist_for_each_entry_rcu_bh(pos, head, member) \ 823 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\ 824 typeof(*(pos)), member); \ 825 pos; \ 826 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\ 827 &(pos)->member)), typeof(*(pos)), member)) 828 829/** 830 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point 831 * @pos: the type * to use as a loop cursor. 832 * @member: the name of the hlist_node within the struct. 833 */ 834#define hlist_for_each_entry_continue_rcu(pos, member) \ 835 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 836 &(pos)->member)), typeof(*(pos)), member); \ 837 pos; \ 838 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 839 &(pos)->member)), typeof(*(pos)), member)) 840 841/** 842 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point 843 * @pos: the type * to use as a loop cursor. 844 * @member: the name of the hlist_node within the struct. 845 */ 846#define hlist_for_each_entry_continue_rcu_bh(pos, member) \ 847 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 848 &(pos)->member)), typeof(*(pos)), member); \ 849 pos; \ 850 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 851 &(pos)->member)), typeof(*(pos)), member)) 852 853/** 854 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point 855 * @pos: the type * to use as a loop cursor. 856 * @member: the name of the hlist_node within the struct. 857 */ 858#define hlist_for_each_entry_from_rcu(pos, member) \ 859 for (; pos; \ 860 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 861 &(pos)->member)), typeof(*(pos)), member)) 862 863#endif /* __KERNEL__ */ 864#endif