at master 18 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_PWM_H 3#define __LINUX_PWM_H 4 5#include <linux/cdev.h> 6#include <linux/device.h> 7#include <linux/err.h> 8#include <linux/gpio/driver.h> 9#include <linux/module.h> 10#include <linux/mutex.h> 11#include <linux/of.h> 12 13MODULE_IMPORT_NS("PWM"); 14 15struct pwm_chip; 16 17/** 18 * enum pwm_polarity - polarity of a PWM signal 19 * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty- 20 * cycle, followed by a low signal for the remainder of the pulse 21 * period 22 * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty- 23 * cycle, followed by a high signal for the remainder of the pulse 24 * period 25 */ 26enum pwm_polarity { 27 PWM_POLARITY_NORMAL, 28 PWM_POLARITY_INVERSED, 29}; 30 31/** 32 * struct pwm_args - board-dependent PWM arguments 33 * @period: reference period 34 * @polarity: reference polarity 35 * 36 * This structure describes board-dependent arguments attached to a PWM 37 * device. These arguments are usually retrieved from the PWM lookup table or 38 * device tree. 39 * 40 * Do not confuse this with the PWM state: PWM arguments represent the initial 41 * configuration that users want to use on this PWM device rather than the 42 * current PWM hardware state. 43 */ 44struct pwm_args { 45 u64 period; 46 enum pwm_polarity polarity; 47}; 48 49enum { 50 PWMF_REQUESTED = 0, 51 PWMF_EXPORTED = 1, 52}; 53 54/** 55 * struct pwm_waveform - description of a PWM waveform 56 * @period_length_ns: PWM period 57 * @duty_length_ns: PWM duty cycle 58 * @duty_offset_ns: offset of the rising edge from the period's start 59 * 60 * This is a representation of a PWM waveform alternative to struct pwm_state 61 * below. It's more expressive than struct pwm_state as it contains a 62 * duty_offset_ns and so can represent offsets other than zero (with .polarity = 63 * PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity = 64 * PWM_POLARITY_INVERSED). 65 * 66 * Note there is no explicit bool for enabled. A "disabled" PWM is represented 67 * by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM 68 * is undefined. Depending on the hardware's capabilities it might drive the 69 * active or inactive level, go high-z or even continue to toggle. 70 * 71 * The unit for all three members is nanoseconds. 72 */ 73struct pwm_waveform { 74 u64 period_length_ns; 75 u64 duty_length_ns; 76 u64 duty_offset_ns; 77}; 78 79/* 80 * struct pwm_state - state of a PWM channel 81 * @period: PWM period (in nanoseconds) 82 * @duty_cycle: PWM duty cycle (in nanoseconds) 83 * @polarity: PWM polarity 84 * @enabled: PWM enabled status 85 * @usage_power: If set, the PWM driver is only required to maintain the power 86 * output but has more freedom regarding signal form. 87 * If supported, the signal can be optimized, for example to 88 * improve EMI by phase shifting individual channels. 89 */ 90struct pwm_state { 91 u64 period; 92 u64 duty_cycle; 93 enum pwm_polarity polarity; 94 bool enabled; 95 bool usage_power; 96}; 97 98/** 99 * struct pwm_device - PWM channel object 100 * @label: name of the PWM device 101 * @flags: flags associated with the PWM device 102 * @hwpwm: per-chip relative index of the PWM device 103 * @chip: PWM chip providing this PWM device 104 * @args: PWM arguments 105 * @state: last applied state 106 * @last: last implemented state (for PWM_DEBUG) 107 */ 108struct pwm_device { 109 const char *label; 110 unsigned long flags; 111 unsigned int hwpwm; 112 struct pwm_chip *chip; 113 114 struct pwm_args args; 115 struct pwm_state state; 116 struct pwm_state last; 117}; 118 119/** 120 * pwm_get_state() - retrieve the current PWM state 121 * @pwm: PWM device 122 * @state: state to fill with the current PWM state 123 * 124 * The returned PWM state represents the state that was applied by a previous call to 125 * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to 126 * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware 127 * state (if supported) or the default settings. 128 */ 129static inline void pwm_get_state(const struct pwm_device *pwm, 130 struct pwm_state *state) 131{ 132 *state = pwm->state; 133} 134 135static inline bool pwm_is_enabled(const struct pwm_device *pwm) 136{ 137 struct pwm_state state; 138 139 pwm_get_state(pwm, &state); 140 141 return state.enabled; 142} 143 144static inline u64 pwm_get_period(const struct pwm_device *pwm) 145{ 146 struct pwm_state state; 147 148 pwm_get_state(pwm, &state); 149 150 return state.period; 151} 152 153static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm) 154{ 155 struct pwm_state state; 156 157 pwm_get_state(pwm, &state); 158 159 return state.duty_cycle; 160} 161 162static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm) 163{ 164 struct pwm_state state; 165 166 pwm_get_state(pwm, &state); 167 168 return state.polarity; 169} 170 171static inline void pwm_get_args(const struct pwm_device *pwm, 172 struct pwm_args *args) 173{ 174 *args = pwm->args; 175} 176 177/** 178 * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep() 179 * @pwm: PWM device 180 * @state: state to fill with the prepared PWM state 181 * 182 * This functions prepares a state that can later be tweaked and applied 183 * to the PWM device with pwm_apply_might_sleep(). This is a convenient function 184 * that first retrieves the current PWM state and the replaces the period 185 * and polarity fields with the reference values defined in pwm->args. 186 * Once the function returns, you can adjust the ->enabled and ->duty_cycle 187 * fields according to your needs before calling pwm_apply_might_sleep(). 188 * 189 * ->duty_cycle is initially set to zero to avoid cases where the current 190 * ->duty_cycle value exceed the pwm_args->period one, which would trigger 191 * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle 192 * first. 193 */ 194static inline void pwm_init_state(const struct pwm_device *pwm, 195 struct pwm_state *state) 196{ 197 struct pwm_args args; 198 199 /* First get the current state. */ 200 pwm_get_state(pwm, state); 201 202 /* Then fill it with the reference config */ 203 pwm_get_args(pwm, &args); 204 205 state->period = args.period; 206 state->polarity = args.polarity; 207 state->duty_cycle = 0; 208 state->usage_power = false; 209} 210 211/** 212 * pwm_get_relative_duty_cycle() - Get a relative duty cycle value 213 * @state: PWM state to extract the duty cycle from 214 * @scale: target scale of the relative duty cycle 215 * 216 * This functions converts the absolute duty cycle stored in @state (expressed 217 * in nanosecond) into a value relative to the period. 218 * 219 * For example if you want to get the duty_cycle expressed in percent, call: 220 * 221 * pwm_get_state(pwm, &state); 222 * duty = pwm_get_relative_duty_cycle(&state, 100); 223 * 224 * Returns: rounded relative duty cycle multiplied by @scale 225 */ 226static inline unsigned int 227pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale) 228{ 229 if (!state->period) 230 return 0; 231 232 return DIV_ROUND_CLOSEST_ULL((u64)state->duty_cycle * scale, 233 state->period); 234} 235 236/** 237 * pwm_set_relative_duty_cycle() - Set a relative duty cycle value 238 * @state: PWM state to fill 239 * @duty_cycle: relative duty cycle value 240 * @scale: scale in which @duty_cycle is expressed 241 * 242 * This functions converts a relative into an absolute duty cycle (expressed 243 * in nanoseconds), and puts the result in state->duty_cycle. 244 * 245 * For example if you want to configure a 50% duty cycle, call: 246 * 247 * pwm_init_state(pwm, &state); 248 * pwm_set_relative_duty_cycle(&state, 50, 100); 249 * pwm_apply_might_sleep(pwm, &state); 250 * 251 * Returns: 0 on success or ``-EINVAL`` if @duty_cycle and/or @scale are 252 * inconsistent (@scale == 0 or @duty_cycle > @scale) 253 */ 254static inline int 255pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle, 256 unsigned int scale) 257{ 258 if (!scale || duty_cycle > scale) 259 return -EINVAL; 260 261 state->duty_cycle = DIV_ROUND_CLOSEST_ULL((u64)duty_cycle * 262 state->period, 263 scale); 264 265 return 0; 266} 267 268/** 269 * struct pwm_capture - PWM capture data 270 * @period: period of the PWM signal (in nanoseconds) 271 * @duty_cycle: duty cycle of the PWM signal (in nanoseconds) 272 */ 273struct pwm_capture { 274 unsigned int period; 275 unsigned int duty_cycle; 276}; 277 278#define PWM_WFHWSIZE 20 279 280/** 281 * struct pwm_ops - PWM controller operations 282 * @request: optional hook for requesting a PWM 283 * @free: optional hook for freeing a PWM 284 * @capture: capture and report PWM signal 285 * @sizeof_wfhw: size (in bytes) of driver specific waveform presentation 286 * @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation 287 * @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform 288 * @read_waveform: read driver specific waveform presentation from hardware 289 * @write_waveform: write driver specific waveform presentation to hardware 290 * @apply: atomically apply a new PWM config 291 * @get_state: get the current PWM state. 292 */ 293struct pwm_ops { 294 int (*request)(struct pwm_chip *chip, struct pwm_device *pwm); 295 void (*free)(struct pwm_chip *chip, struct pwm_device *pwm); 296 int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm, 297 struct pwm_capture *result, unsigned long timeout); 298 299 size_t sizeof_wfhw; 300 int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm, 301 const struct pwm_waveform *wf, void *wfhw); 302 int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm, 303 const void *wfhw, struct pwm_waveform *wf); 304 int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm, 305 void *wfhw); 306 int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm, 307 const void *wfhw); 308 309 int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm, 310 const struct pwm_state *state); 311 int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm, 312 struct pwm_state *state); 313}; 314 315/** 316 * struct pwm_chip - abstract a PWM controller 317 * @dev: device providing the PWMs 318 * @cdev: &struct cdev for this device 319 * @ops: callbacks for this PWM controller 320 * @owner: module providing this chip 321 * @id: unique number of this PWM chip 322 * @npwm: number of PWMs controlled by this chip 323 * @of_xlate: request a PWM device given a device tree PWM specifier 324 * @atomic: can the driver's ->apply() be called in atomic context 325 * @gpio: &struct gpio_chip to operate this PWM chip's lines as GPO 326 * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip 327 * @operational: signals if the chip can be used (or is already deregistered) 328 * @nonatomic_lock: mutex for nonatomic chips 329 * @atomic_lock: mutex for atomic chips 330 * @pwms: array of PWM devices allocated by the framework 331 */ 332struct pwm_chip { 333 struct device dev; 334 struct cdev cdev; 335 const struct pwm_ops *ops; 336 struct module *owner; 337 unsigned int id; 338 unsigned int npwm; 339 340 struct pwm_device * (*of_xlate)(struct pwm_chip *chip, 341 const struct of_phandle_args *args); 342 bool atomic; 343 344 /* only used internally by the PWM framework */ 345 struct gpio_chip gpio; 346 bool uses_pwmchip_alloc; 347 bool operational; 348 union { 349 /* 350 * depending on the chip being atomic or not either the mutex or 351 * the spinlock is used. It protects .operational and 352 * synchronizes the callbacks in .ops 353 */ 354 struct mutex nonatomic_lock; 355 spinlock_t atomic_lock; 356 }; 357 struct pwm_device pwms[] __counted_by(npwm); 358}; 359 360/** 361 * pwmchip_supports_waveform() - checks if the given chip supports waveform callbacks 362 * @chip: The pwm_chip to test 363 * 364 * Returns: true iff the pwm chip support the waveform functions like 365 * pwm_set_waveform_might_sleep() and pwm_round_waveform_might_sleep() 366 */ 367static inline bool pwmchip_supports_waveform(struct pwm_chip *chip) 368{ 369 /* 370 * only check for .write_waveform(). If that is available, 371 * .round_waveform_tohw() and .round_waveform_fromhw() asserted to be 372 * available, too, in pwmchip_add(). 373 */ 374 return chip->ops->write_waveform != NULL; 375} 376 377static inline struct device *pwmchip_parent(const struct pwm_chip *chip) 378{ 379 return chip->dev.parent; 380} 381 382static inline void *pwmchip_get_drvdata(const struct pwm_chip *chip) 383{ 384 return dev_get_drvdata(&chip->dev); 385} 386 387static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data) 388{ 389 dev_set_drvdata(&chip->dev, data); 390} 391 392#if IS_REACHABLE(CONFIG_PWM) 393 394/* PWM consumer APIs */ 395int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf); 396int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf); 397int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact); 398int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state); 399int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state); 400int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state); 401int pwm_adjust_config(struct pwm_device *pwm); 402 403/** 404 * pwm_config() - change a PWM device configuration 405 * @pwm: PWM device 406 * @duty_ns: "on" time (in nanoseconds) 407 * @period_ns: duration (in nanoseconds) of one cycle 408 * 409 * Returns: 0 on success or a negative error code on failure. 410 */ 411static inline int pwm_config(struct pwm_device *pwm, int duty_ns, 412 int period_ns) 413{ 414 struct pwm_state state; 415 416 if (!pwm) 417 return -EINVAL; 418 419 if (duty_ns < 0 || period_ns < 0) 420 return -EINVAL; 421 422 pwm_get_state(pwm, &state); 423 if (state.duty_cycle == duty_ns && state.period == period_ns) 424 return 0; 425 426 state.duty_cycle = duty_ns; 427 state.period = period_ns; 428 return pwm_apply_might_sleep(pwm, &state); 429} 430 431/** 432 * pwm_enable() - start a PWM output toggling 433 * @pwm: PWM device 434 * 435 * Returns: 0 on success or a negative error code on failure. 436 */ 437static inline int pwm_enable(struct pwm_device *pwm) 438{ 439 struct pwm_state state; 440 441 if (!pwm) 442 return -EINVAL; 443 444 pwm_get_state(pwm, &state); 445 if (state.enabled) 446 return 0; 447 448 state.enabled = true; 449 return pwm_apply_might_sleep(pwm, &state); 450} 451 452/** 453 * pwm_disable() - stop a PWM output toggling 454 * @pwm: PWM device 455 */ 456static inline void pwm_disable(struct pwm_device *pwm) 457{ 458 struct pwm_state state; 459 460 if (!pwm) 461 return; 462 463 pwm_get_state(pwm, &state); 464 if (!state.enabled) 465 return; 466 467 state.enabled = false; 468 pwm_apply_might_sleep(pwm, &state); 469} 470 471/** 472 * pwm_might_sleep() - is pwm_apply_atomic() supported? 473 * @pwm: PWM device 474 * 475 * Returns: false if pwm_apply_atomic() can be called from atomic context. 476 */ 477static inline bool pwm_might_sleep(struct pwm_device *pwm) 478{ 479 return !pwm->chip->atomic; 480} 481 482/* PWM provider APIs */ 483void pwmchip_put(struct pwm_chip *chip); 484struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv); 485struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv); 486 487int __pwmchip_add(struct pwm_chip *chip, struct module *owner); 488#define pwmchip_add(chip) __pwmchip_add(chip, THIS_MODULE) 489void pwmchip_remove(struct pwm_chip *chip); 490 491/* 492 * For FFI wrapper use only: 493 * The Rust PWM abstraction needs this to properly free the pwm_chip. 494 */ 495void pwmchip_release(struct device *dev); 496 497int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner); 498#define devm_pwmchip_add(dev, chip) __devm_pwmchip_add(dev, chip, THIS_MODULE) 499 500struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip, 501 const struct of_phandle_args *args); 502struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip, 503 const struct of_phandle_args *args); 504 505struct pwm_device *pwm_get(struct device *dev, const char *con_id); 506void pwm_put(struct pwm_device *pwm); 507 508struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id); 509struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 510 struct fwnode_handle *fwnode, 511 const char *con_id); 512#else 513static inline bool pwm_might_sleep(struct pwm_device *pwm) 514{ 515 return true; 516} 517 518static inline int pwm_apply_might_sleep(struct pwm_device *pwm, 519 const struct pwm_state *state) 520{ 521 might_sleep(); 522 return -EOPNOTSUPP; 523} 524 525static inline int pwm_apply_atomic(struct pwm_device *pwm, 526 const struct pwm_state *state) 527{ 528 return -EOPNOTSUPP; 529} 530 531static inline int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) 532{ 533 return -EOPNOTSUPP; 534} 535 536static inline int pwm_adjust_config(struct pwm_device *pwm) 537{ 538 return -EOPNOTSUPP; 539} 540 541static inline int pwm_config(struct pwm_device *pwm, int duty_ns, 542 int period_ns) 543{ 544 might_sleep(); 545 return -EINVAL; 546} 547 548static inline int pwm_enable(struct pwm_device *pwm) 549{ 550 might_sleep(); 551 return -EINVAL; 552} 553 554static inline void pwm_disable(struct pwm_device *pwm) 555{ 556 might_sleep(); 557} 558 559static inline void pwmchip_put(struct pwm_chip *chip) 560{ 561} 562 563static inline struct pwm_chip *pwmchip_alloc(struct device *parent, 564 unsigned int npwm, 565 size_t sizeof_priv) 566{ 567 return ERR_PTR(-EINVAL); 568} 569 570static inline struct pwm_chip *devm_pwmchip_alloc(struct device *parent, 571 unsigned int npwm, 572 size_t sizeof_priv) 573{ 574 return pwmchip_alloc(parent, npwm, sizeof_priv); 575} 576 577static inline int pwmchip_add(struct pwm_chip *chip) 578{ 579 return -EINVAL; 580} 581 582static inline int pwmchip_remove(struct pwm_chip *chip) 583{ 584 return -EINVAL; 585} 586 587static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip) 588{ 589 return -EINVAL; 590} 591 592static inline struct pwm_device *pwm_get(struct device *dev, 593 const char *consumer) 594{ 595 might_sleep(); 596 return ERR_PTR(-ENODEV); 597} 598 599static inline void pwm_put(struct pwm_device *pwm) 600{ 601 might_sleep(); 602} 603 604static inline struct pwm_device *devm_pwm_get(struct device *dev, 605 const char *consumer) 606{ 607 might_sleep(); 608 return ERR_PTR(-ENODEV); 609} 610 611static inline struct pwm_device * 612devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode, 613 const char *con_id) 614{ 615 might_sleep(); 616 return ERR_PTR(-ENODEV); 617} 618#endif 619 620struct pwm_lookup { 621 struct list_head list; 622 const char *provider; 623 unsigned int index; 624 const char *dev_id; 625 const char *con_id; 626 unsigned int period; 627 enum pwm_polarity polarity; 628 const char *module; /* optional, may be NULL */ 629}; 630 631#define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, \ 632 _period, _polarity, _module) \ 633 { \ 634 .provider = _provider, \ 635 .index = _index, \ 636 .dev_id = _dev_id, \ 637 .con_id = _con_id, \ 638 .period = _period, \ 639 .polarity = _polarity, \ 640 .module = _module, \ 641 } 642 643#define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \ 644 PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, _period, \ 645 _polarity, NULL) 646 647#if IS_REACHABLE(CONFIG_PWM) 648void pwm_add_table(struct pwm_lookup *table, size_t num); 649void pwm_remove_table(struct pwm_lookup *table, size_t num); 650#else 651static inline void pwm_add_table(struct pwm_lookup *table, size_t num) 652{ 653} 654 655static inline void pwm_remove_table(struct pwm_lookup *table, size_t num) 656{ 657} 658#endif 659 660#endif /* __LINUX_PWM_H */