at master 16 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_PREEMPT_H 3#define __LINUX_PREEMPT_H 4 5/* 6 * include/linux/preempt.h - macros for accessing and manipulating 7 * preempt_count (used for kernel preemption, interrupt count, etc.) 8 */ 9 10#include <linux/linkage.h> 11#include <linux/cleanup.h> 12#include <linux/types.h> 13 14/* 15 * We put the hardirq and softirq counter into the preemption 16 * counter. The bitmask has the following meaning: 17 * 18 * - bits 0-7 are the preemption count (max preemption depth: 256) 19 * - bits 8-15 are the softirq count (max # of softirqs: 256) 20 * 21 * The hardirq count could in theory be the same as the number of 22 * interrupts in the system, but we run all interrupt handlers with 23 * interrupts disabled, so we cannot have nesting interrupts. Though 24 * there are a few palaeontologic drivers which reenable interrupts in 25 * the handler, so we need more than one bit here. 26 * 27 * PREEMPT_MASK: 0x000000ff 28 * SOFTIRQ_MASK: 0x0000ff00 29 * HARDIRQ_MASK: 0x000f0000 30 * NMI_MASK: 0x00f00000 31 * PREEMPT_NEED_RESCHED: 0x80000000 32 */ 33#define PREEMPT_BITS 8 34#define SOFTIRQ_BITS 8 35#define HARDIRQ_BITS 4 36#define NMI_BITS 4 37 38#define PREEMPT_SHIFT 0 39#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) 40#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) 41#define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) 42 43#define __IRQ_MASK(x) ((1UL << (x))-1) 44 45#define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) 46#define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) 47#define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) 48#define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) 49 50#define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) 51#define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) 52#define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) 53#define NMI_OFFSET (1UL << NMI_SHIFT) 54 55#define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) 56 57#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 58 59/* 60 * Disable preemption until the scheduler is running -- use an unconditional 61 * value so that it also works on !PREEMPT_COUNT kernels. 62 * 63 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 64 */ 65#define INIT_PREEMPT_COUNT PREEMPT_OFFSET 66 67/* 68 * Initial preempt_count value; reflects the preempt_count schedule invariant 69 * which states that during context switches: 70 * 71 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 72 * 73 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 74 * Note: See finish_task_switch(). 75 */ 76#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 77 78/* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ 79#include <asm/preempt.h> 80 81/** 82 * interrupt_context_level - return interrupt context level 83 * 84 * Returns the current interrupt context level. 85 * 0 - normal context 86 * 1 - softirq context 87 * 2 - hardirq context 88 * 3 - NMI context 89 */ 90static __always_inline unsigned char interrupt_context_level(void) 91{ 92 unsigned long pc = preempt_count(); 93 unsigned char level = 0; 94 95 level += !!(pc & (NMI_MASK)); 96 level += !!(pc & (NMI_MASK | HARDIRQ_MASK)); 97 level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); 98 99 return level; 100} 101 102/* 103 * These macro definitions avoid redundant invocations of preempt_count() 104 * because such invocations would result in redundant loads given that 105 * preempt_count() is commonly implemented with READ_ONCE(). 106 */ 107 108#define nmi_count() (preempt_count() & NMI_MASK) 109#define hardirq_count() (preempt_count() & HARDIRQ_MASK) 110#ifdef CONFIG_PREEMPT_RT 111# define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) 112# define irq_count() ((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | softirq_count()) 113#else 114# define softirq_count() (preempt_count() & SOFTIRQ_MASK) 115# define irq_count() (preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_MASK)) 116#endif 117 118/* 119 * Macros to retrieve the current execution context: 120 * 121 * in_nmi() - We're in NMI context 122 * in_hardirq() - We're in hard IRQ context 123 * in_serving_softirq() - We're in softirq context 124 * in_task() - We're in task context 125 */ 126#define in_nmi() (nmi_count()) 127#define in_hardirq() (hardirq_count()) 128#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) 129#ifdef CONFIG_PREEMPT_RT 130# define in_task() (!((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | in_serving_softirq())) 131#else 132# define in_task() (!(preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 133#endif 134 135/* 136 * The following macros are deprecated and should not be used in new code: 137 * in_softirq() - We have BH disabled, or are processing softirqs 138 * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled 139 */ 140#define in_softirq() (softirq_count()) 141#define in_interrupt() (irq_count()) 142 143/* 144 * The preempt_count offset after preempt_disable(); 145 */ 146#if defined(CONFIG_PREEMPT_COUNT) 147# define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET 148#else 149# define PREEMPT_DISABLE_OFFSET 0 150#endif 151 152/* 153 * The preempt_count offset after spin_lock() 154 */ 155#if !defined(CONFIG_PREEMPT_RT) 156#define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET 157#else 158/* Locks on RT do not disable preemption */ 159#define PREEMPT_LOCK_OFFSET 0 160#endif 161 162/* 163 * The preempt_count offset needed for things like: 164 * 165 * spin_lock_bh() 166 * 167 * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and 168 * softirqs, such that unlock sequences of: 169 * 170 * spin_unlock(); 171 * local_bh_enable(); 172 * 173 * Work as expected. 174 */ 175#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) 176 177/* 178 * Are we running in atomic context? WARNING: this macro cannot 179 * always detect atomic context; in particular, it cannot know about 180 * held spinlocks in non-preemptible kernels. Thus it should not be 181 * used in the general case to determine whether sleeping is possible. 182 * Do not use in_atomic() in driver code. 183 */ 184#define in_atomic() (preempt_count() != 0) 185 186/* 187 * Check whether we were atomic before we did preempt_disable(): 188 * (used by the scheduler) 189 */ 190#define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) 191 192#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 193extern void preempt_count_add(int val); 194extern void preempt_count_sub(int val); 195#define preempt_count_dec_and_test() \ 196 ({ preempt_count_sub(1); should_resched(0); }) 197#else 198#define preempt_count_add(val) __preempt_count_add(val) 199#define preempt_count_sub(val) __preempt_count_sub(val) 200#define preempt_count_dec_and_test() __preempt_count_dec_and_test() 201#endif 202 203#define __preempt_count_inc() __preempt_count_add(1) 204#define __preempt_count_dec() __preempt_count_sub(1) 205 206#define preempt_count_inc() preempt_count_add(1) 207#define preempt_count_dec() preempt_count_sub(1) 208 209#ifdef CONFIG_PREEMPT_COUNT 210 211#define preempt_disable() \ 212do { \ 213 preempt_count_inc(); \ 214 barrier(); \ 215} while (0) 216 217#define sched_preempt_enable_no_resched() \ 218do { \ 219 barrier(); \ 220 preempt_count_dec(); \ 221} while (0) 222 223#define preempt_enable_no_resched() sched_preempt_enable_no_resched() 224 225#define preemptible() (preempt_count() == 0 && !irqs_disabled()) 226 227#ifdef CONFIG_PREEMPTION 228#define preempt_enable() \ 229do { \ 230 barrier(); \ 231 if (unlikely(preempt_count_dec_and_test())) \ 232 __preempt_schedule(); \ 233} while (0) 234 235#define preempt_enable_notrace() \ 236do { \ 237 barrier(); \ 238 if (unlikely(__preempt_count_dec_and_test())) \ 239 __preempt_schedule_notrace(); \ 240} while (0) 241 242#define preempt_check_resched() \ 243do { \ 244 if (should_resched(0)) \ 245 __preempt_schedule(); \ 246} while (0) 247 248#else /* !CONFIG_PREEMPTION */ 249#define preempt_enable() \ 250do { \ 251 barrier(); \ 252 preempt_count_dec(); \ 253} while (0) 254 255#define preempt_enable_notrace() \ 256do { \ 257 barrier(); \ 258 __preempt_count_dec(); \ 259} while (0) 260 261#define preempt_check_resched() do { } while (0) 262#endif /* CONFIG_PREEMPTION */ 263 264#define preempt_disable_notrace() \ 265do { \ 266 __preempt_count_inc(); \ 267 barrier(); \ 268} while (0) 269 270#define preempt_enable_no_resched_notrace() \ 271do { \ 272 barrier(); \ 273 __preempt_count_dec(); \ 274} while (0) 275 276#else /* !CONFIG_PREEMPT_COUNT */ 277 278/* 279 * Even if we don't have any preemption, we need preempt disable/enable 280 * to be barriers, so that we don't have things like get_user/put_user 281 * that can cause faults and scheduling migrate into our preempt-protected 282 * region. 283 */ 284#define preempt_disable() barrier() 285#define sched_preempt_enable_no_resched() barrier() 286#define preempt_enable_no_resched() barrier() 287#define preempt_enable() barrier() 288#define preempt_check_resched() do { } while (0) 289 290#define preempt_disable_notrace() barrier() 291#define preempt_enable_no_resched_notrace() barrier() 292#define preempt_enable_notrace() barrier() 293#define preemptible() 0 294 295#endif /* CONFIG_PREEMPT_COUNT */ 296 297#ifdef MODULE 298/* 299 * Modules have no business playing preemption tricks. 300 */ 301#undef sched_preempt_enable_no_resched 302#undef preempt_enable_no_resched 303#undef preempt_enable_no_resched_notrace 304#undef preempt_check_resched 305#endif 306 307#define preempt_set_need_resched() \ 308do { \ 309 set_preempt_need_resched(); \ 310} while (0) 311#define preempt_fold_need_resched() \ 312do { \ 313 if (tif_need_resched()) \ 314 set_preempt_need_resched(); \ 315} while (0) 316 317#ifdef CONFIG_PREEMPT_NOTIFIERS 318 319struct preempt_notifier; 320struct task_struct; 321 322/** 323 * preempt_ops - notifiers called when a task is preempted and rescheduled 324 * @sched_in: we're about to be rescheduled: 325 * notifier: struct preempt_notifier for the task being scheduled 326 * cpu: cpu we're scheduled on 327 * @sched_out: we've just been preempted 328 * notifier: struct preempt_notifier for the task being preempted 329 * next: the task that's kicking us out 330 * 331 * Please note that sched_in and out are called under different 332 * contexts. sched_out is called with rq lock held and irq disabled 333 * while sched_in is called without rq lock and irq enabled. This 334 * difference is intentional and depended upon by its users. 335 */ 336struct preempt_ops { 337 void (*sched_in)(struct preempt_notifier *notifier, int cpu); 338 void (*sched_out)(struct preempt_notifier *notifier, 339 struct task_struct *next); 340}; 341 342/** 343 * preempt_notifier - key for installing preemption notifiers 344 * @link: internal use 345 * @ops: defines the notifier functions to be called 346 * 347 * Usually used in conjunction with container_of(). 348 */ 349struct preempt_notifier { 350 struct hlist_node link; 351 struct preempt_ops *ops; 352}; 353 354void preempt_notifier_inc(void); 355void preempt_notifier_dec(void); 356void preempt_notifier_register(struct preempt_notifier *notifier); 357void preempt_notifier_unregister(struct preempt_notifier *notifier); 358 359static inline void preempt_notifier_init(struct preempt_notifier *notifier, 360 struct preempt_ops *ops) 361{ 362 /* INIT_HLIST_NODE() open coded, to avoid dependency on list.h */ 363 notifier->link.next = NULL; 364 notifier->link.pprev = NULL; 365 notifier->ops = ops; 366} 367 368#endif 369 370/* 371 * Migrate-Disable and why it is undesired. 372 * 373 * When a preempted task becomes eligible to run under the ideal model (IOW it 374 * becomes one of the M highest priority tasks), it might still have to wait 375 * for the preemptee's migrate_disable() section to complete. Thereby suffering 376 * a reduction in bandwidth in the exact duration of the migrate_disable() 377 * section. 378 * 379 * Per this argument, the change from preempt_disable() to migrate_disable() 380 * gets us: 381 * 382 * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() 383 * it would have had to wait for the lower priority task. 384 * 385 * - a lower priority tasks; which under preempt_disable() could've instantly 386 * migrated away when another CPU becomes available, is now constrained 387 * by the ability to push the higher priority task away, which might itself be 388 * in a migrate_disable() section, reducing its available bandwidth. 389 * 390 * IOW it trades latency / moves the interference term, but it stays in the 391 * system, and as long as it remains unbounded, the system is not fully 392 * deterministic. 393 * 394 * 395 * The reason we have it anyway. 396 * 397 * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a 398 * number of primitives into becoming preemptible, they would also allow 399 * migration. This turns out to break a bunch of per-cpu usage. To this end, 400 * all these primitives employ migrate_disable() to restore this implicit 401 * assumption. 402 * 403 * This is a 'temporary' work-around at best. The correct solution is getting 404 * rid of the above assumptions and reworking the code to employ explicit 405 * per-cpu locking or short preempt-disable regions. 406 * 407 * The end goal must be to get rid of migrate_disable(), alternatively we need 408 * a schedulability theory that does not depend on arbitrary migration. 409 * 410 * 411 * Notes on the implementation. 412 * 413 * The implementation is particularly tricky since existing code patterns 414 * dictate neither migrate_disable() nor migrate_enable() is allowed to block. 415 * This means that it cannot use cpus_read_lock() to serialize against hotplug, 416 * nor can it easily migrate itself into a pending affinity mask change on 417 * migrate_enable(). 418 * 419 * 420 * Note: even non-work-conserving schedulers like semi-partitioned depends on 421 * migration, so migrate_disable() is not only a problem for 422 * work-conserving schedulers. 423 * 424 */ 425 426/** 427 * preempt_disable_nested - Disable preemption inside a normally preempt disabled section 428 * 429 * Use for code which requires preemption protection inside a critical 430 * section which has preemption disabled implicitly on non-PREEMPT_RT 431 * enabled kernels, by e.g.: 432 * - holding a spinlock/rwlock 433 * - soft interrupt context 434 * - regular interrupt handlers 435 * 436 * On PREEMPT_RT enabled kernels spinlock/rwlock held sections, soft 437 * interrupt context and regular interrupt handlers are preemptible and 438 * only prevent migration. preempt_disable_nested() ensures that preemption 439 * is disabled for cases which require CPU local serialization even on 440 * PREEMPT_RT. For non-PREEMPT_RT kernels this is a NOP. 441 * 442 * The use cases are code sequences which are not serialized by a 443 * particular lock instance, e.g.: 444 * - seqcount write side critical sections where the seqcount is not 445 * associated to a particular lock and therefore the automatic 446 * protection mechanism does not work. This prevents a live lock 447 * against a preempting high priority reader. 448 * - RMW per CPU variable updates like vmstat. 449 */ 450/* Macro to avoid header recursion hell vs. lockdep */ 451#define preempt_disable_nested() \ 452do { \ 453 if (IS_ENABLED(CONFIG_PREEMPT_RT)) \ 454 preempt_disable(); \ 455 else \ 456 lockdep_assert_preemption_disabled(); \ 457} while (0) 458 459/** 460 * preempt_enable_nested - Undo the effect of preempt_disable_nested() 461 */ 462static __always_inline void preempt_enable_nested(void) 463{ 464 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 465 preempt_enable(); 466} 467 468DEFINE_LOCK_GUARD_0(preempt, preempt_disable(), preempt_enable()) 469DEFINE_LOCK_GUARD_0(preempt_notrace, preempt_disable_notrace(), preempt_enable_notrace()) 470 471#ifdef CONFIG_PREEMPT_DYNAMIC 472 473extern bool preempt_model_none(void); 474extern bool preempt_model_voluntary(void); 475extern bool preempt_model_full(void); 476extern bool preempt_model_lazy(void); 477 478#else 479 480static inline bool preempt_model_none(void) 481{ 482 return IS_ENABLED(CONFIG_PREEMPT_NONE); 483} 484static inline bool preempt_model_voluntary(void) 485{ 486 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY); 487} 488static inline bool preempt_model_full(void) 489{ 490 return IS_ENABLED(CONFIG_PREEMPT); 491} 492 493static inline bool preempt_model_lazy(void) 494{ 495 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 496} 497 498#endif 499 500static inline bool preempt_model_rt(void) 501{ 502 return IS_ENABLED(CONFIG_PREEMPT_RT); 503} 504 505extern const char *preempt_model_str(void); 506 507/* 508 * Does the preemption model allow non-cooperative preemption? 509 * 510 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with 511 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the 512 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the 513 * PREEMPT_NONE model. 514 */ 515static inline bool preempt_model_preemptible(void) 516{ 517 return preempt_model_full() || preempt_model_lazy() || preempt_model_rt(); 518} 519 520#endif /* __LINUX_PREEMPT_H */