at master 42 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12#ifndef __LINUX_POWER_SUPPLY_H__ 13#define __LINUX_POWER_SUPPLY_H__ 14 15#include <linux/device.h> 16#include <linux/workqueue.h> 17#include <linux/leds.h> 18#include <linux/rwsem.h> 19#include <linux/list.h> 20#include <linux/spinlock.h> 21#include <linux/notifier.h> 22 23/* 24 * All voltages, currents, charges, energies, time and temperatures in uV, 25 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise 26 * stated. It's driver's job to convert its raw values to units in which 27 * this class operates. 28 */ 29 30/* 31 * For systems where the charger determines the maximum battery capacity 32 * the min and max fields should be used to present these values to user 33 * space. Unused/unknown fields will not appear in sysfs. 34 */ 35 36enum { 37 POWER_SUPPLY_STATUS_UNKNOWN = 0, 38 POWER_SUPPLY_STATUS_CHARGING, 39 POWER_SUPPLY_STATUS_DISCHARGING, 40 POWER_SUPPLY_STATUS_NOT_CHARGING, 41 POWER_SUPPLY_STATUS_FULL, 42}; 43 44/* What algorithm is the charger using? */ 45enum power_supply_charge_type { 46 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, 47 POWER_SUPPLY_CHARGE_TYPE_NONE, 48 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ 49 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ 50 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ 51 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ 52 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ 53 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ 54 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */ 55}; 56 57enum { 58 POWER_SUPPLY_HEALTH_UNKNOWN = 0, 59 POWER_SUPPLY_HEALTH_GOOD, 60 POWER_SUPPLY_HEALTH_OVERHEAT, 61 POWER_SUPPLY_HEALTH_DEAD, 62 POWER_SUPPLY_HEALTH_OVERVOLTAGE, 63 POWER_SUPPLY_HEALTH_UNDERVOLTAGE, 64 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, 65 POWER_SUPPLY_HEALTH_COLD, 66 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, 67 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, 68 POWER_SUPPLY_HEALTH_OVERCURRENT, 69 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, 70 POWER_SUPPLY_HEALTH_WARM, 71 POWER_SUPPLY_HEALTH_COOL, 72 POWER_SUPPLY_HEALTH_HOT, 73 POWER_SUPPLY_HEALTH_NO_BATTERY, 74 POWER_SUPPLY_HEALTH_BLOWN_FUSE, 75 POWER_SUPPLY_HEALTH_CELL_IMBALANCE, 76}; 77 78enum { 79 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, 80 POWER_SUPPLY_TECHNOLOGY_NiMH, 81 POWER_SUPPLY_TECHNOLOGY_LION, 82 POWER_SUPPLY_TECHNOLOGY_LIPO, 83 POWER_SUPPLY_TECHNOLOGY_LiFe, 84 POWER_SUPPLY_TECHNOLOGY_NiCd, 85 POWER_SUPPLY_TECHNOLOGY_LiMn, 86}; 87 88enum { 89 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, 90 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, 91 POWER_SUPPLY_CAPACITY_LEVEL_LOW, 92 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, 93 POWER_SUPPLY_CAPACITY_LEVEL_HIGH, 94 POWER_SUPPLY_CAPACITY_LEVEL_FULL, 95}; 96 97enum { 98 POWER_SUPPLY_SCOPE_UNKNOWN = 0, 99 POWER_SUPPLY_SCOPE_SYSTEM, 100 POWER_SUPPLY_SCOPE_DEVICE, 101}; 102 103enum power_supply_property { 104 /* Properties of type `int' */ 105 POWER_SUPPLY_PROP_STATUS = 0, 106 POWER_SUPPLY_PROP_CHARGE_TYPE, 107 POWER_SUPPLY_PROP_CHARGE_TYPES, 108 POWER_SUPPLY_PROP_HEALTH, 109 POWER_SUPPLY_PROP_PRESENT, 110 POWER_SUPPLY_PROP_ONLINE, 111 POWER_SUPPLY_PROP_AUTHENTIC, 112 POWER_SUPPLY_PROP_TECHNOLOGY, 113 POWER_SUPPLY_PROP_CYCLE_COUNT, 114 POWER_SUPPLY_PROP_VOLTAGE_MAX, 115 POWER_SUPPLY_PROP_VOLTAGE_MIN, 116 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 117 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 118 POWER_SUPPLY_PROP_VOLTAGE_NOW, 119 POWER_SUPPLY_PROP_VOLTAGE_AVG, 120 POWER_SUPPLY_PROP_VOLTAGE_OCV, 121 POWER_SUPPLY_PROP_VOLTAGE_BOOT, 122 POWER_SUPPLY_PROP_CURRENT_MAX, 123 POWER_SUPPLY_PROP_CURRENT_NOW, 124 POWER_SUPPLY_PROP_CURRENT_AVG, 125 POWER_SUPPLY_PROP_CURRENT_BOOT, 126 POWER_SUPPLY_PROP_POWER_NOW, 127 POWER_SUPPLY_PROP_POWER_AVG, 128 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 129 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, 130 POWER_SUPPLY_PROP_CHARGE_FULL, 131 POWER_SUPPLY_PROP_CHARGE_EMPTY, 132 POWER_SUPPLY_PROP_CHARGE_NOW, 133 POWER_SUPPLY_PROP_CHARGE_AVG, 134 POWER_SUPPLY_PROP_CHARGE_COUNTER, 135 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 136 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 137 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 138 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 139 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, 140 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, 141 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ 142 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ 143 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, 144 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, 145 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, 146 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, 147 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 148 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, 149 POWER_SUPPLY_PROP_ENERGY_FULL, 150 POWER_SUPPLY_PROP_ENERGY_EMPTY, 151 POWER_SUPPLY_PROP_ENERGY_NOW, 152 POWER_SUPPLY_PROP_ENERGY_AVG, 153 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ 154 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ 155 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ 156 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ 157 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 158 POWER_SUPPLY_PROP_TEMP, 159 POWER_SUPPLY_PROP_TEMP_MAX, 160 POWER_SUPPLY_PROP_TEMP_MIN, 161 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 162 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 163 POWER_SUPPLY_PROP_TEMP_AMBIENT, 164 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 165 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 166 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 167 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 168 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 169 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 170 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ 171 POWER_SUPPLY_PROP_USB_TYPE, 172 POWER_SUPPLY_PROP_SCOPE, 173 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 174 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 175 POWER_SUPPLY_PROP_CALIBRATE, 176 POWER_SUPPLY_PROP_MANUFACTURE_YEAR, 177 POWER_SUPPLY_PROP_MANUFACTURE_MONTH, 178 POWER_SUPPLY_PROP_MANUFACTURE_DAY, 179 POWER_SUPPLY_PROP_INTERNAL_RESISTANCE, 180 POWER_SUPPLY_PROP_STATE_OF_HEALTH, 181 /* Properties of type `const char *' */ 182 POWER_SUPPLY_PROP_MODEL_NAME, 183 POWER_SUPPLY_PROP_MANUFACTURER, 184 POWER_SUPPLY_PROP_SERIAL_NUMBER, 185}; 186 187enum power_supply_type { 188 POWER_SUPPLY_TYPE_UNKNOWN = 0, 189 POWER_SUPPLY_TYPE_BATTERY, 190 POWER_SUPPLY_TYPE_UPS, 191 POWER_SUPPLY_TYPE_MAINS, 192 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ 193 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ 194 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ 195 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ 196 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ 197 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ 198 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ 199 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 200 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ 201}; 202 203enum power_supply_usb_type { 204 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, 205 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ 206 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ 207 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ 208 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ 209 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ 210 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ 211 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ 212 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ 213 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 214}; 215 216enum power_supply_charge_behaviour { 217 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, 218 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, 219 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE_AWAKE, 220 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, 221}; 222 223enum power_supply_notifier_events { 224 PSY_EVENT_PROP_CHANGED, 225}; 226 227union power_supply_propval { 228 int intval; 229 const char *strval; 230}; 231 232struct device_node; 233struct power_supply; 234 235/* Run-time specific power supply configuration */ 236struct power_supply_config { 237 struct fwnode_handle *fwnode; 238 239 /* Driver private data */ 240 void *drv_data; 241 242 /* Device specific sysfs attributes */ 243 const struct attribute_group **attr_grp; 244 245 char **supplied_to; 246 size_t num_supplicants; 247 248 bool no_wakeup_source; 249}; 250 251/* Description of power supply */ 252struct power_supply_desc { 253 const char *name; 254 enum power_supply_type type; 255 u8 charge_behaviours; 256 u32 charge_types; 257 u32 usb_types; 258 const enum power_supply_property *properties; 259 size_t num_properties; 260 261 /* 262 * Functions for drivers implementing power supply class. 263 * These shouldn't be called directly by other drivers for accessing 264 * this power supply. Instead use power_supply_*() functions (for 265 * example power_supply_get_property()). 266 */ 267 int (*get_property)(struct power_supply *psy, 268 enum power_supply_property psp, 269 union power_supply_propval *val); 270 int (*set_property)(struct power_supply *psy, 271 enum power_supply_property psp, 272 const union power_supply_propval *val); 273 /* 274 * property_is_writeable() will be called during registration 275 * of power supply. If this happens during device probe then it must 276 * not access internal data of device (because probe did not end). 277 */ 278 int (*property_is_writeable)(struct power_supply *psy, 279 enum power_supply_property psp); 280 void (*external_power_changed)(struct power_supply *psy); 281 282 /* 283 * Set if thermal zone should not be created for this power supply. 284 * For example for virtual supplies forwarding calls to actual 285 * sensors or other supplies. 286 */ 287 bool no_thermal; 288 /* For APM emulation, think legacy userspace. */ 289 int use_for_apm; 290}; 291 292struct power_supply_ext { 293 const char *const name; 294 u8 charge_behaviours; 295 u32 charge_types; 296 const enum power_supply_property *properties; 297 size_t num_properties; 298 299 int (*get_property)(struct power_supply *psy, 300 const struct power_supply_ext *ext, 301 void *data, 302 enum power_supply_property psp, 303 union power_supply_propval *val); 304 int (*set_property)(struct power_supply *psy, 305 const struct power_supply_ext *ext, 306 void *data, 307 enum power_supply_property psp, 308 const union power_supply_propval *val); 309 int (*property_is_writeable)(struct power_supply *psy, 310 const struct power_supply_ext *ext, 311 void *data, 312 enum power_supply_property psp); 313}; 314 315struct power_supply { 316 const struct power_supply_desc *desc; 317 318 char **supplied_to; 319 size_t num_supplicants; 320 321 char **supplied_from; 322 size_t num_supplies; 323 324 /* Driver private data */ 325 void *drv_data; 326 327 /* private */ 328 struct device dev; 329 struct work_struct changed_work; 330 struct delayed_work deferred_register_work; 331 spinlock_t changed_lock; 332 bool changed; 333 bool update_groups; 334 bool initialized; 335 bool removing; 336 atomic_t use_cnt; 337 struct power_supply_battery_info *battery_info; 338 struct rw_semaphore extensions_sem; /* protects "extensions" */ 339 struct list_head extensions; 340#ifdef CONFIG_THERMAL 341 struct thermal_zone_device *tzd; 342 struct thermal_cooling_device *tcd; 343#endif 344 345#ifdef CONFIG_LEDS_TRIGGERS 346 struct led_trigger *trig; 347 struct led_trigger *charging_trig; 348 struct led_trigger *full_trig; 349 struct led_trigger *charging_blink_full_solid_trig; 350 struct led_trigger *charging_orange_full_green_trig; 351#endif 352}; 353 354#define dev_to_psy(__dev) container_of_const(__dev, struct power_supply, dev) 355 356/* 357 * This is recommended structure to specify static power supply parameters. 358 * Generic one, parametrizable for different power supplies. Power supply 359 * class itself does not use it, but that's what implementing most platform 360 * drivers, should try reuse for consistency. 361 */ 362 363struct power_supply_info { 364 const char *name; 365 int technology; 366 int voltage_max_design; 367 int voltage_min_design; 368 int charge_full_design; 369 int charge_empty_design; 370 int energy_full_design; 371 int energy_empty_design; 372 int use_for_apm; 373}; 374 375struct power_supply_battery_ocv_table { 376 int ocv; /* microVolts */ 377 int capacity; /* percent */ 378}; 379 380struct power_supply_resistance_temp_table { 381 int temp; /* celsius */ 382 int resistance; /* internal resistance percent */ 383}; 384 385struct power_supply_vbat_ri_table { 386 int vbat_uv; /* Battery voltage in microvolt */ 387 int ri_uohm; /* Internal resistance in microohm */ 388}; 389 390/** 391 * struct power_supply_maintenance_charge_table - setting for maintenace charging 392 * @charge_current_max_ua: maintenance charging current that is used to keep 393 * the charge of the battery full as current is consumed after full charging. 394 * The corresponding charge_voltage_max_uv is used as a safeguard: when we 395 * reach this voltage the maintenance charging current is turned off. It is 396 * turned back on if we fall below this voltage. 397 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit 398 * lower than the constant_charge_voltage_max_uv. We can apply this settings 399 * charge_current_max_ua until we get back up to this voltage. 400 * @safety_timer_minutes: maintenance charging safety timer, with an expiry 401 * time in minutes. We will only use maintenance charging in this setting 402 * for a certain amount of time, then we will first move to the next 403 * maintenance charge current and voltage pair in respective array and wait 404 * for the next safety timer timeout, or, if we reached the last maintencance 405 * charging setting, disable charging until we reach 406 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there. 407 * These timers should be chosen to align with the typical discharge curve 408 * for the battery. 409 * 410 * Ordinary CC/CV charging will stop charging when the charge current goes 411 * below charge_term_current_ua, and then restart it (if the device is still 412 * plugged into the charger) at charge_restart_voltage_uv. This happens in most 413 * consumer products because the power usage while connected to a charger is 414 * not zero, and devices are not manufactured to draw power directly from the 415 * charger: instead they will at all times dissipate the battery a little, like 416 * the power used in standby mode. This will over time give a charge graph 417 * such as this: 418 * 419 * Energy 420 * ^ ... ... ... ... ... ... ... 421 * | . . . . . . . . . . . . . 422 * | .. . .. . .. . .. . .. . .. . .. 423 * |. .. .. .. .. .. .. 424 * +-------------------------------------------------------------------> t 425 * 426 * Practically this means that the Li-ions are wandering back and forth in the 427 * battery and this causes degeneration of the battery anode and cathode. 428 * To prolong the life of the battery, maintenance charging is applied after 429 * reaching charge_term_current_ua to hold up the charge in the battery while 430 * consuming power, thus lowering the wear on the battery: 431 * 432 * Energy 433 * ^ ....................................... 434 * | . ...................... 435 * | .. 436 * |. 437 * +-------------------------------------------------------------------> t 438 * 439 * Maintenance charging uses the voltages from this table: a table of settings 440 * is traversed using a slightly lower current and voltage than what is used for 441 * CC/CV charging. The maintenance charging will for safety reasons not go on 442 * indefinately: we lower the current and voltage with successive maintenance 443 * settings, then disable charging completely after we reach the last one, 444 * and after that we do not restart charging until we reach 445 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart 446 * ordinary CC/CV charging from there. 447 * 448 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged 449 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to 450 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours. 451 * After this the charge cycle is restarted waiting for 452 * charge_restart_voltage_uv. 453 * 454 * For most mobile electronics this type of maintenance charging is enough for 455 * the user to disconnect the device and make use of it before both maintenance 456 * charging cycles are complete, if the current and voltage has been chosen 457 * appropriately. These need to be determined from battery discharge curves 458 * and expected standby current. 459 * 460 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance 461 * charging, ordinary CC/CV charging is restarted. This can happen if the 462 * device is e.g. actively used during charging, so more current is drawn than 463 * the expected stand-by current. Also overvoltage protection will be applied 464 * as usual. 465 */ 466struct power_supply_maintenance_charge_table { 467 int charge_current_max_ua; 468 int charge_voltage_max_uv; 469 int charge_safety_timer_minutes; 470}; 471 472#define POWER_SUPPLY_OCV_TEMP_MAX 20 473 474/** 475 * struct power_supply_battery_info - information about batteries 476 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum 477 * @energy_full_design_uwh: energy content when fully charged in microwatt 478 * hours 479 * @charge_full_design_uah: charge content when fully charged in microampere 480 * hours 481 * @voltage_min_design_uv: minimum voltage across the poles when the battery 482 * is at minimum voltage level in microvolts. If the voltage drops below this 483 * level the battery will need precharging when using CC/CV charging. 484 * @voltage_max_design_uv: voltage across the poles when the battery is fully 485 * charged in microvolts. This is the "nominal voltage" i.e. the voltage 486 * printed on the label of the battery. 487 * @tricklecharge_current_ua: the tricklecharge current used when trickle 488 * charging the battery in microamperes. This is the charging phase when the 489 * battery is completely empty and we need to carefully trickle in some 490 * charge until we reach the precharging voltage. 491 * @precharge_current_ua: current to use in the precharge phase in microamperes, 492 * the precharge rate is limited by limiting the current to this value. 493 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in 494 * microvolts. When we pass this voltage we will nominally switch over to the 495 * CC (constant current) charging phase defined by constant_charge_current_ua 496 * and constant_charge_voltage_max_uv. 497 * @charge_term_current_ua: when the current in the CV (constant voltage) 498 * charging phase drops below this value in microamperes the charging will 499 * terminate completely and not restart until the voltage over the battery 500 * poles reach charge_restart_voltage_uv unless we use maintenance charging. 501 * @charge_restart_voltage_uv: when the battery has been fully charged by 502 * CC/CV charging and charging has been disabled, and the voltage subsequently 503 * drops below this value in microvolts, the charging will be restarted 504 * (typically using CV charging). 505 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage 506 * voltage_max_design_uv and we reach this voltage level, all charging must 507 * stop and emergency procedures take place, such as shutting down the system 508 * in some cases. 509 * @constant_charge_current_max_ua: current in microamperes to use in the CC 510 * (constant current) charging phase. The charging rate is limited 511 * by this current. This is the main charging phase and as the current is 512 * constant into the battery the voltage slowly ascends to 513 * constant_charge_voltage_max_uv. 514 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of 515 * the CC (constant current) charging phase and the beginning of the CV 516 * (constant voltage) charging phase. 517 * @maintenance_charge: an array of maintenance charging settings to be used 518 * after the main CC/CV charging phase is complete. 519 * @maintenance_charge_size: the number of maintenance charging settings in 520 * maintenance_charge. 521 * @alert_low_temp_charge_current_ua: The charging current to use if the battery 522 * enters low alert temperature, i.e. if the internal temperature is between 523 * temp_alert_min and temp_min. No matter the charging phase, this 524 * and alert_high_temp_charge_voltage_uv will be applied. 525 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua, 526 * but for the charging voltage. 527 * @alert_high_temp_charge_current_ua: The charging current to use if the 528 * battery enters high alert temperature, i.e. if the internal temperature is 529 * between temp_alert_max and temp_max. No matter the charging phase, this 530 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering 531 * the charging current as an evasive manouver. 532 * @alert_high_temp_charge_voltage_uv: Same as 533 * alert_high_temp_charge_current_ua, but for the charging voltage. 534 * @factory_internal_resistance_uohm: the internal resistance of the battery 535 * at fabrication time, expressed in microohms. This resistance will vary 536 * depending on the lifetime and charge of the battery, so this is just a 537 * nominal ballpark figure. This internal resistance is given for the state 538 * when the battery is discharging. 539 * @factory_internal_resistance_charging_uohm: the internal resistance of the 540 * battery at fabrication time while charging, expressed in microohms. 541 * The charging process will affect the internal resistance of the battery 542 * so this value provides a better resistance under these circumstances. 543 * This resistance will vary depending on the lifetime and charge of the 544 * battery, so this is just a nominal ballpark figure. 545 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity 546 * temperature indices. This is an array of temperatures in degrees Celsius 547 * indicating which capacity table to use for a certain temperature, since 548 * the capacity for reasons of chemistry will be different at different 549 * temperatures. Determining capacity is a multivariate problem and the 550 * temperature is the first variable we determine. 551 * @temp_ambient_alert_min: the battery will go outside of operating conditions 552 * when the ambient temperature goes below this temperature in degrees 553 * Celsius. 554 * @temp_ambient_alert_max: the battery will go outside of operating conditions 555 * when the ambient temperature goes above this temperature in degrees 556 * Celsius. 557 * @temp_alert_min: the battery should issue an alert if the internal 558 * temperature goes below this temperature in degrees Celsius. 559 * @temp_alert_max: the battery should issue an alert if the internal 560 * temperature goes above this temperature in degrees Celsius. 561 * @temp_min: the battery will go outside of operating conditions when 562 * the internal temperature goes below this temperature in degrees Celsius. 563 * Normally this means the system should shut down. 564 * @temp_max: the battery will go outside of operating conditions when 565 * the internal temperature goes above this temperature in degrees Celsius. 566 * Normally this means the system should shut down. 567 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in 568 * ocv_table and a size for each entry in ocv_table_size. These arrays 569 * determine the capacity in percent in relation to the voltage in microvolts 570 * at the indexed temperature. 571 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of 572 * each entry in the array of capacity arrays in ocv_table. 573 * @resist_table: this is a table that correlates a battery temperature to the 574 * expected internal resistance at this temperature. The resistance is given 575 * as a percentage of factory_internal_resistance_uohm. Knowing the 576 * resistance of the battery is usually necessary for calculating the open 577 * circuit voltage (OCV) that is then used with the ocv_table to calculate 578 * the capacity of the battery. The resist_table must be ordered descending 579 * by temperature: highest temperature with lowest resistance first, lowest 580 * temperature with highest resistance last. 581 * @resist_table_size: the number of items in the resist_table. 582 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT) 583 * to internal resistance (Ri). The resistance is given in microohm for the 584 * corresponding voltage in microvolts. The internal resistance is used to 585 * determine the open circuit voltage so that we can determine the capacity 586 * of the battery. These voltages to resistance tables apply when the battery 587 * is discharging. The table must be ordered descending by voltage: highest 588 * voltage first. 589 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging 590 * table. 591 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state 592 * when the battery is charging. Being under charge changes the battery's 593 * internal resistance characteristics so a separate table is needed.* 594 * The table must be ordered descending by voltage: highest voltage first. 595 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging 596 * table. 597 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance 598 * in ohms for this battery, if an identification resistor is mounted 599 * between a third battery terminal and ground. This scheme is used by a lot 600 * of mobile device batteries. 601 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance, 602 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the 603 * tolerance is 10% we will detect a proper battery if the BTI resistance 604 * is between 6300 and 7700 Ohm. 605 * 606 * This is the recommended struct to manage static battery parameters, 607 * populated by power_supply_get_battery_info(). Most platform drivers should 608 * use these for consistency. 609 * 610 * Its field names must correspond to elements in enum power_supply_property. 611 * The default field value is -EINVAL or NULL for pointers. 612 * 613 * CC/CV CHARGING: 614 * 615 * The charging parameters here assume a CC/CV charging scheme. This method 616 * is most common with Lithium Ion batteries (other methods are possible) and 617 * looks as follows: 618 * 619 * ^ Battery voltage 620 * | --- overvoltage_limit_uv 621 * | 622 * | ................................................... 623 * | .. constant_charge_voltage_max_uv 624 * | .. 625 * | . 626 * | . 627 * | . 628 * | . 629 * | . 630 * | .. precharge_voltage_max_uv 631 * | .. 632 * |. (trickle charging) 633 * +------------------------------------------------------------------> time 634 * 635 * ^ Current into the battery 636 * | 637 * | ............. constant_charge_current_max_ua 638 * | . . 639 * | . . 640 * | . . 641 * | . . 642 * | . .. 643 * | . .... 644 * | . ..... 645 * | ... precharge_current_ua ....... charge_term_current_ua 646 * | . . 647 * | . . 648 * |.... tricklecharge_current_ua . 649 * | . 650 * +-----------------------------------------------------------------> time 651 * 652 * These diagrams are synchronized on time and the voltage and current 653 * follow each other. 654 * 655 * With CC/CV charging commence over time like this for an empty battery: 656 * 657 * 1. When the battery is completely empty it may need to be charged with 658 * an especially small current so that electrons just "trickle in", 659 * this is the tricklecharge_current_ua. 660 * 661 * 2. Next a small initial pre-charge current (precharge_current_ua) 662 * is applied if the voltage is below precharge_voltage_max_uv until we 663 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred 664 * to as "trickle charging" but the use in the Linux kernel is different 665 * see below! 666 * 667 * 3. Then the main charging current is applied, which is called the constant 668 * current (CC) phase. A current regulator is set up to allow 669 * constant_charge_current_max_ua of current to flow into the battery. 670 * The chemical reaction in the battery will make the voltage go up as 671 * charge goes into the battery. This current is applied until we reach 672 * the constant_charge_voltage_max_uv voltage. 673 * 674 * 4. At this voltage we switch over to the constant voltage (CV) phase. This 675 * means we allow current to go into the battery, but we keep the voltage 676 * fixed. This current will continue to charge the battery while keeping 677 * the voltage the same. A chemical reaction in the battery goes on 678 * storing energy without affecting the voltage. Over time the current 679 * will slowly drop and when we reach charge_term_current_ua we will 680 * end the constant voltage phase. 681 * 682 * After this the battery is fully charged, and if we do not support maintenance 683 * charging, the charging will not restart until power dissipation makes the 684 * voltage fall so that we reach charge_restart_voltage_uv and at this point 685 * we restart charging at the appropriate phase, usually this will be inside 686 * the CV phase. 687 * 688 * If we support maintenance charging the voltage is however kept high after 689 * the CV phase with a very low current. This is meant to let the same charge 690 * go in for usage while the charger is still connected, mainly for 691 * dissipation for the power consuming entity while connected to the 692 * charger. 693 * 694 * All charging MUST terminate if the overvoltage_limit_uv is ever reached. 695 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or 696 * explosions. 697 * 698 * DETERMINING BATTERY CAPACITY: 699 * 700 * Several members of the struct deal with trying to determine the remaining 701 * capacity in the battery, usually as a percentage of charge. In practice 702 * many chargers uses a so-called fuel gauge or coloumb counter that measure 703 * how much charge goes into the battery and how much goes out (+/- leak 704 * consumption). This does not help if we do not know how much capacity the 705 * battery has to begin with, such as when it is first used or was taken out 706 * and charged in a separate charger. Therefore many capacity algorithms use 707 * the open circuit voltage with a look-up table to determine the rough 708 * capacity of the battery. The open circuit voltage can be conceptualized 709 * with an ideal voltage source (V) in series with an internal resistance (Ri) 710 * like this: 711 * 712 * +-------> IBAT >----------------+ 713 * | ^ | 714 * [ ] Ri | | 715 * | | VBAT | 716 * o <---------- | | 717 * +| ^ | [ ] Rload 718 * .---. | | | 719 * | V | | OCV | | 720 * '---' | | | 721 * | | | | 722 * GND +-------------------------------+ 723 * 724 * If we disconnect the load (here simplified as a fixed resistance Rload) 725 * and measure VBAT with a infinite impedance voltage meter we will get 726 * VBAT = OCV and this assumption is sometimes made even under load, assuming 727 * Rload is insignificant. However this will be of dubious quality because the 728 * load is rarely that small and Ri is strongly nonlinear depending on 729 * temperature and how much capacity is left in the battery due to the 730 * chemistry involved. 731 * 732 * In many practical applications we cannot just disconnect the battery from 733 * the load, so instead we often try to measure the instantaneous IBAT (the 734 * current out from the battery), estimate the Ri and thus calculate the 735 * voltage drop over Ri and compensate like this: 736 * 737 * OCV = VBAT - (IBAT * Ri) 738 * 739 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine 740 * (by interpolation) the Ri from the VBAT under load. These curves are highly 741 * nonlinear and may need many datapoints but can be found in datasheets for 742 * some batteries. This gives the compensated open circuit voltage (OCV) for 743 * the battery even under load. Using this method will also compensate for 744 * temperature changes in the environment: this will also make the internal 745 * resistance change, and it will affect the VBAT under load, so correlating 746 * VBAT to Ri takes both remaining capacity and temperature into consideration. 747 * 748 * Alternatively a manufacturer can specify how the capacity of the battery 749 * is dependent on the battery temperature which is the main factor affecting 750 * Ri. As we know all checmical reactions are faster when it is warm and slower 751 * when it is cold. You can put in 1500mAh and only get 800mAh out before the 752 * voltage drops too low for example. This effect is also highly nonlinear and 753 * the purpose of the table resist_table: this will take a temperature and 754 * tell us how big percentage of Ri the specified temperature correlates to. 755 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees 756 * Celsius. 757 * 758 * The power supply class itself doesn't use this struct as of now. 759 */ 760 761struct power_supply_battery_info { 762 unsigned int technology; 763 int energy_full_design_uwh; 764 int charge_full_design_uah; 765 int voltage_min_design_uv; 766 int voltage_max_design_uv; 767 int tricklecharge_current_ua; 768 int precharge_current_ua; 769 int precharge_voltage_max_uv; 770 int charge_term_current_ua; 771 int charge_restart_voltage_uv; 772 int overvoltage_limit_uv; 773 int constant_charge_current_max_ua; 774 int constant_charge_voltage_max_uv; 775 const struct power_supply_maintenance_charge_table *maintenance_charge; 776 int maintenance_charge_size; 777 int alert_low_temp_charge_current_ua; 778 int alert_low_temp_charge_voltage_uv; 779 int alert_high_temp_charge_current_ua; 780 int alert_high_temp_charge_voltage_uv; 781 int factory_internal_resistance_uohm; 782 int factory_internal_resistance_charging_uohm; 783 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; 784 int temp_ambient_alert_min; 785 int temp_ambient_alert_max; 786 int temp_alert_min; 787 int temp_alert_max; 788 int temp_min; 789 int temp_max; 790 const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; 791 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; 792 const struct power_supply_resistance_temp_table *resist_table; 793 int resist_table_size; 794 const struct power_supply_vbat_ri_table *vbat2ri_discharging; 795 int vbat2ri_discharging_size; 796 const struct power_supply_vbat_ri_table *vbat2ri_charging; 797 int vbat2ri_charging_size; 798 int bti_resistance_ohm; 799 int bti_resistance_tolerance; 800}; 801 802extern int power_supply_reg_notifier(struct notifier_block *nb); 803extern void power_supply_unreg_notifier(struct notifier_block *nb); 804#if IS_ENABLED(CONFIG_POWER_SUPPLY) 805extern struct power_supply *power_supply_get_by_name(const char *name); 806extern void power_supply_put(struct power_supply *psy); 807#else 808static inline void power_supply_put(struct power_supply *psy) {} 809static inline struct power_supply *power_supply_get_by_name(const char *name) 810{ return NULL; } 811#endif 812extern struct power_supply *power_supply_get_by_reference(struct fwnode_handle *fwnode, 813 const char *property); 814extern struct power_supply *devm_power_supply_get_by_reference( 815 struct device *dev, const char *property); 816 817extern const enum power_supply_property power_supply_battery_info_properties[]; 818extern const size_t power_supply_battery_info_properties_size; 819extern int power_supply_get_battery_info(struct power_supply *psy, 820 struct power_supply_battery_info **info_out); 821extern void power_supply_put_battery_info(struct power_supply *psy, 822 struct power_supply_battery_info *info); 823extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 824 enum power_supply_property psp); 825extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 826 enum power_supply_property psp, 827 union power_supply_propval *val); 828extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table, 829 int table_len, int ocv); 830extern const struct power_supply_battery_ocv_table * 831power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 832 int temp, int *table_len); 833extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 834 int ocv, int temp); 835extern int 836power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table, 837 int table_len, int temp); 838extern int power_supply_vbat2ri(struct power_supply_battery_info *info, 839 int vbat_uv, bool charging); 840extern const struct power_supply_maintenance_charge_table * 841power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index); 842extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 843 int resistance); 844extern void power_supply_changed(struct power_supply *psy); 845extern int power_supply_am_i_supplied(struct power_supply *psy); 846int power_supply_get_property_from_supplier(struct power_supply *psy, 847 enum power_supply_property psp, 848 union power_supply_propval *val); 849 850static inline bool 851power_supply_supports_maintenance_charging(struct power_supply_battery_info *info) 852{ 853 const struct power_supply_maintenance_charge_table *mt; 854 855 mt = power_supply_get_maintenance_charging_setting(info, 0); 856 857 return (mt != NULL); 858} 859 860static inline bool 861power_supply_supports_vbat2ri(struct power_supply_battery_info *info) 862{ 863 return ((info->vbat2ri_discharging != NULL) && 864 info->vbat2ri_discharging_size > 0); 865} 866 867static inline bool 868power_supply_supports_temp2ri(struct power_supply_battery_info *info) 869{ 870 return ((info->resist_table != NULL) && 871 info->resist_table_size > 0); 872} 873 874#ifdef CONFIG_POWER_SUPPLY 875extern int power_supply_is_system_supplied(void); 876#else 877static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } 878#endif 879 880extern int power_supply_get_property(struct power_supply *psy, 881 enum power_supply_property psp, 882 union power_supply_propval *val); 883int power_supply_get_property_direct(struct power_supply *psy, enum power_supply_property psp, 884 union power_supply_propval *val); 885#if IS_ENABLED(CONFIG_POWER_SUPPLY) 886extern int power_supply_set_property(struct power_supply *psy, 887 enum power_supply_property psp, 888 const union power_supply_propval *val); 889int power_supply_set_property_direct(struct power_supply *psy, enum power_supply_property psp, 890 const union power_supply_propval *val); 891#else 892static inline int power_supply_set_property(struct power_supply *psy, 893 enum power_supply_property psp, 894 const union power_supply_propval *val) 895{ return 0; } 896static inline int power_supply_set_property_direct(struct power_supply *psy, 897 enum power_supply_property psp, 898 const union power_supply_propval *val) 899{ return 0; } 900#endif 901extern void power_supply_external_power_changed(struct power_supply *psy); 902 903extern struct power_supply *__must_check 904power_supply_register(struct device *parent, 905 const struct power_supply_desc *desc, 906 const struct power_supply_config *cfg); 907extern struct power_supply *__must_check 908devm_power_supply_register(struct device *parent, 909 const struct power_supply_desc *desc, 910 const struct power_supply_config *cfg); 911extern void power_supply_unregister(struct power_supply *psy); 912extern int power_supply_powers(struct power_supply *psy, struct device *dev); 913 914extern int __must_check 915power_supply_register_extension(struct power_supply *psy, 916 const struct power_supply_ext *ext, 917 struct device *dev, 918 void *data); 919extern void power_supply_unregister_extension(struct power_supply *psy, 920 const struct power_supply_ext *ext); 921 922#define to_power_supply(device) container_of(device, struct power_supply, dev) 923 924extern void *power_supply_get_drvdata(struct power_supply *psy); 925extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data)); 926 927static inline bool power_supply_is_amp_property(enum power_supply_property psp) 928{ 929 switch (psp) { 930 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 931 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: 932 case POWER_SUPPLY_PROP_CHARGE_FULL: 933 case POWER_SUPPLY_PROP_CHARGE_EMPTY: 934 case POWER_SUPPLY_PROP_CHARGE_NOW: 935 case POWER_SUPPLY_PROP_CHARGE_AVG: 936 case POWER_SUPPLY_PROP_CHARGE_COUNTER: 937 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 938 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 939 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 940 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 941 case POWER_SUPPLY_PROP_CURRENT_MAX: 942 case POWER_SUPPLY_PROP_CURRENT_NOW: 943 case POWER_SUPPLY_PROP_CURRENT_AVG: 944 case POWER_SUPPLY_PROP_CURRENT_BOOT: 945 return true; 946 default: 947 break; 948 } 949 950 return false; 951} 952 953static inline bool power_supply_is_watt_property(enum power_supply_property psp) 954{ 955 switch (psp) { 956 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 957 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: 958 case POWER_SUPPLY_PROP_ENERGY_FULL: 959 case POWER_SUPPLY_PROP_ENERGY_EMPTY: 960 case POWER_SUPPLY_PROP_ENERGY_NOW: 961 case POWER_SUPPLY_PROP_ENERGY_AVG: 962 case POWER_SUPPLY_PROP_VOLTAGE_MAX: 963 case POWER_SUPPLY_PROP_VOLTAGE_MIN: 964 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 965 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 966 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 967 case POWER_SUPPLY_PROP_VOLTAGE_AVG: 968 case POWER_SUPPLY_PROP_VOLTAGE_OCV: 969 case POWER_SUPPLY_PROP_VOLTAGE_BOOT: 970 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 971 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 972 case POWER_SUPPLY_PROP_POWER_NOW: 973 return true; 974 default: 975 break; 976 } 977 978 return false; 979} 980 981#ifdef CONFIG_SYSFS 982ssize_t power_supply_charge_behaviour_show(struct device *dev, 983 unsigned int available_behaviours, 984 enum power_supply_charge_behaviour behaviour, 985 char *buf); 986 987int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); 988ssize_t power_supply_charge_types_show(struct device *dev, 989 unsigned int available_types, 990 enum power_supply_charge_type current_type, 991 char *buf); 992int power_supply_charge_types_parse(unsigned int available_types, const char *buf); 993#else 994static inline 995ssize_t power_supply_charge_behaviour_show(struct device *dev, 996 unsigned int available_behaviours, 997 enum power_supply_charge_behaviour behaviour, 998 char *buf) 999{ 1000 return -EOPNOTSUPP; 1001} 1002 1003static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, 1004 const char *buf) 1005{ 1006 return -EOPNOTSUPP; 1007} 1008 1009static inline 1010ssize_t power_supply_charge_types_show(struct device *dev, 1011 unsigned int available_types, 1012 enum power_supply_charge_type current_type, 1013 char *buf) 1014{ 1015 return -EOPNOTSUPP; 1016} 1017 1018static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf) 1019{ 1020 return -EOPNOTSUPP; 1021} 1022#endif 1023 1024#endif /* __LINUX_POWER_SUPPLY_H__ */