Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Host communication command constants for ChromeOS EC
4 *
5 * Copyright (C) 2012 Google, Inc
6 *
7 * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
8 * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
9 */
10
11/* Host communication command constants for Chrome EC */
12
13#ifndef __CROS_EC_COMMANDS_H
14#define __CROS_EC_COMMANDS_H
15
16#include <linux/bits.h>
17#include <linux/types.h>
18
19#define BUILD_ASSERT(_cond)
20
21/*
22 * Current version of this protocol
23 *
24 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
25 * determined in other ways. Remove this once the kernel code no longer
26 * depends on it.
27 */
28#define EC_PROTO_VERSION 0x00000002
29
30/* Command version mask */
31#define EC_VER_MASK(version) BIT(version)
32
33/* I/O addresses for ACPI commands */
34#define EC_LPC_ADDR_ACPI_DATA 0x62
35#define EC_LPC_ADDR_ACPI_CMD 0x66
36
37/* I/O addresses for host command */
38#define EC_LPC_ADDR_HOST_DATA 0x200
39#define EC_LPC_ADDR_HOST_CMD 0x204
40
41/* I/O addresses for host command args and params */
42/* Protocol version 2 */
43#define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */
44#define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is
45 * EC_PROTO2_MAX_PARAM_SIZE
46 */
47/* Protocol version 3 */
48#define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */
49#define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */
50
51/*
52 * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
53 * and they tell the kernel that so we have to think of it as two parts.
54 *
55 * Other BIOSes report only the I/O port region spanned by the Microchip
56 * MEC series EC; an attempt to address a larger region may fail.
57 */
58#define EC_HOST_CMD_REGION0 0x800
59#define EC_HOST_CMD_REGION1 0x880
60#define EC_HOST_CMD_REGION_SIZE 0x80
61#define EC_HOST_CMD_MEC_REGION_SIZE 0x8
62
63/* EC command register bit functions */
64#define EC_LPC_CMDR_DATA BIT(0) /* Data ready for host to read */
65#define EC_LPC_CMDR_PENDING BIT(1) /* Write pending to EC */
66#define EC_LPC_CMDR_BUSY BIT(2) /* EC is busy processing a command */
67#define EC_LPC_CMDR_CMD BIT(3) /* Last host write was a command */
68#define EC_LPC_CMDR_ACPI_BRST BIT(4) /* Burst mode (not used) */
69#define EC_LPC_CMDR_SCI BIT(5) /* SCI event is pending */
70#define EC_LPC_CMDR_SMI BIT(6) /* SMI event is pending */
71
72#define EC_LPC_ADDR_MEMMAP 0x900
73#define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */
74#define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */
75
76/* The offset address of each type of data in mapped memory. */
77#define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */
78#define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */
79#define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */
80#define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */
81#define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */
82#define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */
83#define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */
84#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
85#define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */
86#define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */
87/* Unused 0x28 - 0x2f */
88#define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */
89/* Unused 0x31 - 0x33 */
90#define EC_MEMMAP_HOST_EVENTS 0x34 /* 64 bits */
91/* Battery values are all 32 bits, unless otherwise noted. */
92#define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */
93#define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */
94#define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */
95#define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, see below (8-bit) */
96#define EC_MEMMAP_BATT_COUNT 0x4d /* Battery Count (8-bit) */
97#define EC_MEMMAP_BATT_INDEX 0x4e /* Current Battery Data Index (8-bit) */
98/* Unused 0x4f */
99#define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */
100#define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */
101#define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */
102#define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */
103/* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
104#define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */
105#define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */
106#define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */
107#define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */
108#define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */
109/* Unused 0x84 - 0x8f */
110#define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/
111/* Unused 0x91 */
112#define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometers data 0x92 - 0x9f */
113/* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
114/* 0x94 - 0x99: 1st Accelerometer */
115/* 0x9a - 0x9f: 2nd Accelerometer */
116#define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */
117/* Unused 0xa6 - 0xdf */
118
119/*
120 * ACPI is unable to access memory mapped data at or above this offset due to
121 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
122 * which might be needed by ACPI.
123 */
124#define EC_MEMMAP_NO_ACPI 0xe0
125
126/* Define the format of the accelerometer mapped memory status byte. */
127#define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f
128#define EC_MEMMAP_ACC_STATUS_BUSY_BIT BIT(4)
129#define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT BIT(7)
130
131/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
132#define EC_TEMP_SENSOR_ENTRIES 16
133/*
134 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
135 *
136 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
137 */
138#define EC_TEMP_SENSOR_B_ENTRIES 8
139
140/* Special values for mapped temperature sensors */
141#define EC_TEMP_SENSOR_NOT_PRESENT 0xff
142#define EC_TEMP_SENSOR_ERROR 0xfe
143#define EC_TEMP_SENSOR_NOT_POWERED 0xfd
144#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
145/*
146 * The offset of temperature value stored in mapped memory. This allows
147 * reporting a temperature range of 200K to 454K = -73C to 181C.
148 */
149#define EC_TEMP_SENSOR_OFFSET 200
150
151/*
152 * Number of ALS readings at EC_MEMMAP_ALS
153 */
154#define EC_ALS_ENTRIES 2
155
156/*
157 * The default value a temperature sensor will return when it is present but
158 * has not been read this boot. This is a reasonable number to avoid
159 * triggering alarms on the host.
160 */
161#define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET)
162
163#define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */
164#define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */
165#define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */
166
167/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
168#define EC_BATT_FLAG_AC_PRESENT 0x01
169#define EC_BATT_FLAG_BATT_PRESENT 0x02
170#define EC_BATT_FLAG_DISCHARGING 0x04
171#define EC_BATT_FLAG_CHARGING 0x08
172#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
173/* Set if some of the static/dynamic data is invalid (or outdated). */
174#define EC_BATT_FLAG_INVALID_DATA 0x20
175
176/* Switch flags at EC_MEMMAP_SWITCHES */
177#define EC_SWITCH_LID_OPEN 0x01
178#define EC_SWITCH_POWER_BUTTON_PRESSED 0x02
179#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
180/* Was recovery requested via keyboard; now unused. */
181#define EC_SWITCH_IGNORE1 0x08
182/* Recovery requested via dedicated signal (from servo board) */
183#define EC_SWITCH_DEDICATED_RECOVERY 0x10
184/* Was fake developer mode switch; now unused. Remove in next refactor. */
185#define EC_SWITCH_IGNORE0 0x20
186
187/* Host command interface flags */
188/* Host command interface supports LPC args (LPC interface only) */
189#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01
190/* Host command interface supports version 3 protocol */
191#define EC_HOST_CMD_FLAG_VERSION_3 0x02
192
193/* Wireless switch flags */
194#define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */
195#define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */
196#define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */
197#define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */
198#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */
199
200/*****************************************************************************/
201/*
202 * ACPI commands
203 *
204 * These are valid ONLY on the ACPI command/data port.
205 */
206
207/*
208 * ACPI Read Embedded Controller
209 *
210 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
211 *
212 * Use the following sequence:
213 *
214 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
215 * - Wait for EC_LPC_CMDR_PENDING bit to clear
216 * - Write address to EC_LPC_ADDR_ACPI_DATA
217 * - Wait for EC_LPC_CMDR_DATA bit to set
218 * - Read value from EC_LPC_ADDR_ACPI_DATA
219 */
220#define EC_CMD_ACPI_READ 0x0080
221
222/*
223 * ACPI Write Embedded Controller
224 *
225 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
226 *
227 * Use the following sequence:
228 *
229 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
230 * - Wait for EC_LPC_CMDR_PENDING bit to clear
231 * - Write address to EC_LPC_ADDR_ACPI_DATA
232 * - Wait for EC_LPC_CMDR_PENDING bit to clear
233 * - Write value to EC_LPC_ADDR_ACPI_DATA
234 */
235#define EC_CMD_ACPI_WRITE 0x0081
236
237/*
238 * ACPI Burst Enable Embedded Controller
239 *
240 * This enables burst mode on the EC to allow the host to issue several
241 * commands back-to-back. While in this mode, writes to mapped multi-byte
242 * data are locked out to ensure data consistency.
243 */
244#define EC_CMD_ACPI_BURST_ENABLE 0x0082
245
246/*
247 * ACPI Burst Disable Embedded Controller
248 *
249 * This disables burst mode on the EC and stops preventing EC writes to mapped
250 * multi-byte data.
251 */
252#define EC_CMD_ACPI_BURST_DISABLE 0x0083
253
254/*
255 * ACPI Query Embedded Controller
256 *
257 * This clears the lowest-order bit in the currently pending host events, and
258 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
259 * event 0x80000000 = 32), or 0 if no event was pending.
260 */
261#define EC_CMD_ACPI_QUERY_EVENT 0x0084
262
263/* Valid addresses in ACPI memory space, for read/write commands */
264
265/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
266#define EC_ACPI_MEM_VERSION 0x00
267/*
268 * Test location; writing value here updates test compliment byte to (0xff -
269 * value).
270 */
271#define EC_ACPI_MEM_TEST 0x01
272/* Test compliment; writes here are ignored. */
273#define EC_ACPI_MEM_TEST_COMPLIMENT 0x02
274
275/* Keyboard backlight brightness percent (0 - 100) */
276#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
277/* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
278#define EC_ACPI_MEM_FAN_DUTY 0x04
279
280/*
281 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
282 * independent thresholds attached to them. The current value of the ID
283 * register determines which sensor is affected by the THRESHOLD and COMMIT
284 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
285 * as the memory-mapped sensors. The COMMIT register applies those settings.
286 *
287 * The spec does not mandate any way to read back the threshold settings
288 * themselves, but when a threshold is crossed the AP needs a way to determine
289 * which sensor(s) are responsible. Each reading of the ID register clears and
290 * returns one sensor ID that has crossed one of its threshold (in either
291 * direction) since the last read. A value of 0xFF means "no new thresholds
292 * have tripped". Setting or enabling the thresholds for a sensor will clear
293 * the unread event count for that sensor.
294 */
295#define EC_ACPI_MEM_TEMP_ID 0x05
296#define EC_ACPI_MEM_TEMP_THRESHOLD 0x06
297#define EC_ACPI_MEM_TEMP_COMMIT 0x07
298/*
299 * Here are the bits for the COMMIT register:
300 * bit 0 selects the threshold index for the chosen sensor (0/1)
301 * bit 1 enables/disables the selected threshold (0 = off, 1 = on)
302 * Each write to the commit register affects one threshold.
303 */
304#define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
305#define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
306/*
307 * Example:
308 *
309 * Set the thresholds for sensor 2 to 50 C and 60 C:
310 * write 2 to [0x05] -- select temp sensor 2
311 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
312 * write 0x2 to [0x07] -- enable threshold 0 with this value
313 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
314 * write 0x3 to [0x07] -- enable threshold 1 with this value
315 *
316 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
317 * write 2 to [0x05] -- select temp sensor 2
318 * write 0x1 to [0x07] -- disable threshold 1
319 */
320
321/* DPTF battery charging current limit */
322#define EC_ACPI_MEM_CHARGING_LIMIT 0x08
323
324/* Charging limit is specified in 64 mA steps */
325#define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64
326/* Value to disable DPTF battery charging limit */
327#define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff
328
329/*
330 * Report device orientation
331 * Bits Definition
332 * 3:1 Device DPTF Profile Number (DDPN)
333 * 0 = Reserved for backward compatibility (indicates no valid
334 * profile number. Host should fall back to using TBMD).
335 * 1..7 = DPTF Profile number to indicate to host which table needs
336 * to be loaded.
337 * 0 Tablet Mode Device Indicator (TBMD)
338 */
339#define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
340#define EC_ACPI_MEM_TBMD_SHIFT 0
341#define EC_ACPI_MEM_TBMD_MASK 0x1
342#define EC_ACPI_MEM_DDPN_SHIFT 1
343#define EC_ACPI_MEM_DDPN_MASK 0x7
344
345/*
346 * Report device features. Uses the same format as the host command, except:
347 *
348 * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
349 * of features", which is of limited interest when the system is already
350 * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
351 * these are supported, it defaults to 0.
352 * This allows detecting the presence of this field since older versions of
353 * the EC codebase would simply return 0xff to that unknown address. Check
354 * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
355 * are valid.
356 */
357#define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
358#define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
359#define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
360#define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
361#define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
362#define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
363#define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
364#define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
365
366#define EC_ACPI_MEM_BATTERY_INDEX 0x12
367
368/*
369 * USB Port Power. Each bit indicates whether the corresponding USB ports' power
370 * is enabled (1) or disabled (0).
371 * bit 0 USB port ID 0
372 * ...
373 * bit 7 USB port ID 7
374 */
375#define EC_ACPI_MEM_USB_PORT_POWER 0x13
376
377/*
378 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf. This data
379 * is read-only from the AP. Added in EC_ACPI_MEM_VERSION 2.
380 */
381#define EC_ACPI_MEM_MAPPED_BEGIN 0x20
382#define EC_ACPI_MEM_MAPPED_SIZE 0xe0
383
384/* Current version of ACPI memory address space */
385#define EC_ACPI_MEM_VERSION_CURRENT 2
386
387
388/*
389 * This header file is used in coreboot both in C and ACPI code. The ACPI code
390 * is pre-processed to handle constants but the ASL compiler is unable to
391 * handle actual C code so keep it separate.
392 */
393
394
395/*
396 * Attributes for EC request and response packets. Just defining __packed
397 * results in inefficient assembly code on ARM, if the structure is actually
398 * 32-bit aligned, as it should be for all buffers.
399 *
400 * Be very careful when adding these to existing structures. They will round
401 * up the structure size to the specified boundary.
402 *
403 * Also be very careful to make that if a structure is included in some other
404 * parent structure that the alignment will still be true given the packing of
405 * the parent structure. This is particularly important if the sub-structure
406 * will be passed as a pointer to another function, since that function will
407 * not know about the misaligment caused by the parent structure's packing.
408 *
409 * Also be very careful using __packed - particularly when nesting non-packed
410 * structures inside packed ones. In fact, DO NOT use __packed directly;
411 * always use one of these attributes.
412 *
413 * Once everything is annotated properly, the following search strings should
414 * not return ANY matches in this file other than right here:
415 *
416 * "__packed" - generates inefficient code; all sub-structs must also be packed
417 *
418 * "struct [^_]" - all structs should be annotated, except for structs that are
419 * members of other structs/unions (and their original declarations should be
420 * annotated).
421 */
422
423/*
424 * Packed structures make no assumption about alignment, so they do inefficient
425 * byte-wise reads.
426 */
427#define __ec_align1 __packed
428#define __ec_align2 __packed
429#define __ec_align4 __packed
430#define __ec_align_size1 __packed
431#define __ec_align_offset1 __packed
432#define __ec_align_offset2 __packed
433#define __ec_todo_packed __packed
434#define __ec_todo_unpacked
435
436
437/* LPC command status byte masks */
438/* EC has written a byte in the data register and host hasn't read it yet */
439#define EC_LPC_STATUS_TO_HOST 0x01
440/* Host has written a command/data byte and the EC hasn't read it yet */
441#define EC_LPC_STATUS_FROM_HOST 0x02
442/* EC is processing a command */
443#define EC_LPC_STATUS_PROCESSING 0x04
444/* Last write to EC was a command, not data */
445#define EC_LPC_STATUS_LAST_CMD 0x08
446/* EC is in burst mode */
447#define EC_LPC_STATUS_BURST_MODE 0x10
448/* SCI event is pending (requesting SCI query) */
449#define EC_LPC_STATUS_SCI_PENDING 0x20
450/* SMI event is pending (requesting SMI query) */
451#define EC_LPC_STATUS_SMI_PENDING 0x40
452/* (reserved) */
453#define EC_LPC_STATUS_RESERVED 0x80
454
455/*
456 * EC is busy. This covers both the EC processing a command, and the host has
457 * written a new command but the EC hasn't picked it up yet.
458 */
459#define EC_LPC_STATUS_BUSY_MASK \
460 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
461
462/*
463 * Host command response codes (16-bit). Note that response codes should be
464 * stored in a uint16_t rather than directly in a value of this type.
465 */
466enum ec_status {
467 EC_RES_SUCCESS = 0,
468 EC_RES_INVALID_COMMAND = 1,
469 EC_RES_ERROR = 2,
470 EC_RES_INVALID_PARAM = 3,
471 EC_RES_ACCESS_DENIED = 4,
472 EC_RES_INVALID_RESPONSE = 5,
473 EC_RES_INVALID_VERSION = 6,
474 EC_RES_INVALID_CHECKSUM = 7,
475 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */
476 EC_RES_UNAVAILABLE = 9, /* No response available */
477 EC_RES_TIMEOUT = 10, /* We got a timeout */
478 EC_RES_OVERFLOW = 11, /* Table / data overflow */
479 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */
480 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */
481 EC_RES_RESPONSE_TOO_BIG = 14, /* Response was too big to handle */
482 EC_RES_BUS_ERROR = 15, /* Communications bus error */
483 EC_RES_BUSY = 16, /* Up but too busy. Should retry */
484 EC_RES_INVALID_HEADER_VERSION = 17, /* Header version invalid */
485 EC_RES_INVALID_HEADER_CRC = 18, /* Header CRC invalid */
486 EC_RES_INVALID_DATA_CRC = 19, /* Data CRC invalid */
487 EC_RES_DUP_UNAVAILABLE = 20, /* Can't resend response */
488};
489
490/*
491 * Host event codes. Note these are 1-based, not 0-based, because ACPI query
492 * EC command uses code 0 to mean "no event pending". We explicitly specify
493 * each value in the enum listing so they won't change if we delete/insert an
494 * item or rearrange the list (it needs to be stable across platforms, not
495 * just within a single compiled instance).
496 */
497enum host_event_code {
498 EC_HOST_EVENT_LID_CLOSED = 1,
499 EC_HOST_EVENT_LID_OPEN = 2,
500 EC_HOST_EVENT_POWER_BUTTON = 3,
501 EC_HOST_EVENT_AC_CONNECTED = 4,
502 EC_HOST_EVENT_AC_DISCONNECTED = 5,
503 EC_HOST_EVENT_BATTERY_LOW = 6,
504 EC_HOST_EVENT_BATTERY_CRITICAL = 7,
505 EC_HOST_EVENT_BATTERY = 8,
506 EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
507 /* Event generated by a device attached to the EC */
508 EC_HOST_EVENT_DEVICE = 10,
509 EC_HOST_EVENT_THERMAL = 11,
510 EC_HOST_EVENT_USB_CHARGER = 12,
511 EC_HOST_EVENT_KEY_PRESSED = 13,
512 /*
513 * EC has finished initializing the host interface. The host can check
514 * for this event following sending a EC_CMD_REBOOT_EC command to
515 * determine when the EC is ready to accept subsequent commands.
516 */
517 EC_HOST_EVENT_INTERFACE_READY = 14,
518 /* Keyboard recovery combo has been pressed */
519 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
520
521 /* Shutdown due to thermal overload */
522 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
523 /* Shutdown due to battery level too low */
524 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
525
526 /* Suggest that the AP throttle itself */
527 EC_HOST_EVENT_THROTTLE_START = 18,
528 /* Suggest that the AP resume normal speed */
529 EC_HOST_EVENT_THROTTLE_STOP = 19,
530
531 /* Hang detect logic detected a hang and host event timeout expired */
532 EC_HOST_EVENT_HANG_DETECT = 20,
533 /* Hang detect logic detected a hang and warm rebooted the AP */
534 EC_HOST_EVENT_HANG_REBOOT = 21,
535
536 /* PD MCU triggering host event */
537 EC_HOST_EVENT_PD_MCU = 22,
538
539 /* Battery Status flags have changed */
540 EC_HOST_EVENT_BATTERY_STATUS = 23,
541
542 /* EC encountered a panic, triggering a reset */
543 EC_HOST_EVENT_PANIC = 24,
544
545 /* Keyboard fastboot combo has been pressed */
546 EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
547
548 /* EC RTC event occurred */
549 EC_HOST_EVENT_RTC = 26,
550
551 /* Emulate MKBP event */
552 EC_HOST_EVENT_MKBP = 27,
553
554 /* EC desires to change state of host-controlled USB mux */
555 EC_HOST_EVENT_USB_MUX = 28,
556
557 /* TABLET/LAPTOP mode or detachable base attach/detach event */
558 EC_HOST_EVENT_MODE_CHANGE = 29,
559
560 /* Keyboard recovery combo with hardware reinitialization */
561 EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
562
563 /* WoV */
564 EC_HOST_EVENT_WOV = 31,
565
566 /*
567 * The high bit of the event mask is not used as a host event code. If
568 * it reads back as set, then the entire event mask should be
569 * considered invalid by the host. This can happen when reading the
570 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
571 * not initialized on the EC, or improperly configured on the host.
572 */
573 EC_HOST_EVENT_INVALID = 32
574};
575/* Host event mask */
576#define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
577
578/**
579 * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
580 * @flags: The host argument flags.
581 * @command_version: Command version.
582 * @data_size: The length of data.
583 * @checksum: Checksum; sum of command + flags + command_version + data_size +
584 * all params/response data bytes.
585 */
586struct ec_lpc_host_args {
587 uint8_t flags;
588 uint8_t command_version;
589 uint8_t data_size;
590 uint8_t checksum;
591} __ec_align4;
592
593/* Flags for ec_lpc_host_args.flags */
594/*
595 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command
596 * params.
597 *
598 * If EC gets a command and this flag is not set, this is an old-style command.
599 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
600 * unknown length. EC must respond with an old-style response (that is,
601 * without setting EC_HOST_ARGS_FLAG_TO_HOST).
602 */
603#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
604/*
605 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response.
606 *
607 * If EC responds to a command and this flag is not set, this is an old-style
608 * response. Command version is 0 and response data from EC is at
609 * EC_LPC_ADDR_OLD_PARAM with unknown length.
610 */
611#define EC_HOST_ARGS_FLAG_TO_HOST 0x02
612
613/*****************************************************************************/
614/*
615 * Byte codes returned by EC over SPI interface.
616 *
617 * These can be used by the AP to debug the EC interface, and to determine
618 * when the EC is not in a state where it will ever get around to responding
619 * to the AP.
620 *
621 * Example of sequence of bytes read from EC for a current good transfer:
622 * 1. - - AP asserts chip select (CS#)
623 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request
624 * 3. - - EC starts handling CS# interrupt
625 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request
626 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in
627 * bytes looking for EC_SPI_FRAME_START
628 * 6. - - EC finishes processing and sets up response
629 * 7. EC_SPI_FRAME_START - AP reads frame byte
630 * 8. (response packet) - AP reads response packet
631 * 9. EC_SPI_PAST_END - Any additional bytes read by AP
632 * 10 - - AP deasserts chip select
633 * 11 - - EC processes CS# interrupt and sets up DMA for
634 * next request
635 *
636 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
637 * the following byte values:
638 * EC_SPI_OLD_READY
639 * EC_SPI_RX_READY
640 * EC_SPI_RECEIVING
641 * EC_SPI_PROCESSING
642 *
643 * Then the EC found an error in the request, or was not ready for the request
644 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START,
645 * because the EC is unable to tell when the AP is done sending its request.
646 */
647
648/*
649 * Framing byte which precedes a response packet from the EC. After sending a
650 * request, the AP will clock in bytes until it sees the framing byte, then
651 * clock in the response packet.
652 */
653#define EC_SPI_FRAME_START 0xec
654
655/*
656 * Padding bytes which are clocked out after the end of a response packet.
657 */
658#define EC_SPI_PAST_END 0xed
659
660/*
661 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects
662 * that the AP will send a valid packet header (starting with
663 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
664 */
665#define EC_SPI_RX_READY 0xf8
666
667/*
668 * EC has started receiving the request from the AP, but hasn't started
669 * processing it yet.
670 */
671#define EC_SPI_RECEIVING 0xf9
672
673/* EC has received the entire request from the AP and is processing it. */
674#define EC_SPI_PROCESSING 0xfa
675
676/*
677 * EC received bad data from the AP, such as a packet header with an invalid
678 * length. EC will ignore all data until chip select deasserts.
679 */
680#define EC_SPI_RX_BAD_DATA 0xfb
681
682/*
683 * EC received data from the AP before it was ready. That is, the AP asserted
684 * chip select and started clocking data before the EC was ready to receive it.
685 * EC will ignore all data until chip select deasserts.
686 */
687#define EC_SPI_NOT_READY 0xfc
688
689/*
690 * EC was ready to receive a request from the AP. EC has treated the byte sent
691 * by the AP as part of a request packet, or (for old-style ECs) is processing
692 * a fully received packet but is not ready to respond yet.
693 */
694#define EC_SPI_OLD_READY 0xfd
695
696/*****************************************************************************/
697
698/*
699 * Protocol version 2 for I2C and SPI send a request this way:
700 *
701 * 0 EC_CMD_VERSION0 + (command version)
702 * 1 Command number
703 * 2 Length of params = N
704 * 3..N+2 Params, if any
705 * N+3 8-bit checksum of bytes 0..N+2
706 *
707 * The corresponding response is:
708 *
709 * 0 Result code (EC_RES_*)
710 * 1 Length of params = M
711 * 2..M+1 Params, if any
712 * M+2 8-bit checksum of bytes 0..M+1
713 */
714#define EC_PROTO2_REQUEST_HEADER_BYTES 3
715#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
716#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \
717 EC_PROTO2_REQUEST_TRAILER_BYTES)
718
719#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
720#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
721#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \
722 EC_PROTO2_RESPONSE_TRAILER_BYTES)
723
724/* Parameter length was limited by the LPC interface */
725#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
726
727/* Maximum request and response packet sizes for protocol version 2 */
728#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \
729 EC_PROTO2_MAX_PARAM_SIZE)
730#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \
731 EC_PROTO2_MAX_PARAM_SIZE)
732
733/*****************************************************************************/
734
735/*
736 * Value written to legacy command port / prefix byte to indicate protocol
737 * 3+ structs are being used. Usage is bus-dependent.
738 */
739#define EC_COMMAND_PROTOCOL_3 0xda
740
741#define EC_HOST_REQUEST_VERSION 3
742
743/**
744 * struct ec_host_request - Version 3 request from host.
745 * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
746 * receives a header with a version it doesn't know how to
747 * parse.
748 * @checksum: Checksum of request and data; sum of all bytes including checksum
749 * should total to 0.
750 * @command: Command to send (EC_CMD_...)
751 * @command_version: Command version.
752 * @reserved: Unused byte in current protocol version; set to 0.
753 * @data_len: Length of data which follows this header.
754 */
755struct ec_host_request {
756 uint8_t struct_version;
757 uint8_t checksum;
758 uint16_t command;
759 uint8_t command_version;
760 uint8_t reserved;
761 uint16_t data_len;
762} __ec_align4;
763
764#define EC_HOST_RESPONSE_VERSION 3
765
766/**
767 * struct ec_host_response - Version 3 response from EC.
768 * @struct_version: Struct version (=3).
769 * @checksum: Checksum of response and data; sum of all bytes including
770 * checksum should total to 0.
771 * @result: EC's response to the command (separate from communication failure)
772 * @data_len: Length of data which follows this header.
773 * @reserved: Unused bytes in current protocol version; set to 0.
774 */
775struct ec_host_response {
776 uint8_t struct_version;
777 uint8_t checksum;
778 uint16_t result;
779 uint16_t data_len;
780 uint16_t reserved;
781} __ec_align4;
782
783/*****************************************************************************/
784
785/*
786 * Host command protocol V4.
787 *
788 * Packets always start with a request or response header. They are followed
789 * by data_len bytes of data. If the data_crc_present flag is set, the data
790 * bytes are followed by a CRC-8 of that data, using x^8 + x^2 + x + 1
791 * polynomial.
792 *
793 * Host algorithm when sending a request q:
794 *
795 * 101) tries_left=(some value, e.g. 3);
796 * 102) q.seq_num++
797 * 103) q.seq_dup=0
798 * 104) Calculate q.header_crc.
799 * 105) Send request q to EC.
800 * 106) Wait for response r. Go to 201 if received or 301 if timeout.
801 *
802 * 201) If r.struct_version != 4, go to 301.
803 * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
804 * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
805 * 204) If r.seq_num != q.seq_num, go to 301.
806 * 205) If r.seq_dup == q.seq_dup, return success.
807 * 207) If r.seq_dup == 1, go to 301.
808 * 208) Return error.
809 *
810 * 301) If --tries_left <= 0, return error.
811 * 302) If q.seq_dup == 1, go to 105.
812 * 303) q.seq_dup = 1
813 * 304) Go to 104.
814 *
815 * EC algorithm when receiving a request q.
816 * EC has response buffer r, error buffer e.
817 *
818 * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
819 * and go to 301
820 * 102) If q.header_crc mismatches calculated CRC, set e.result =
821 * EC_RES_INVALID_HEADER_CRC and go to 301
822 * 103) If q.data_crc_present, calculate data CRC. If that mismatches the CRC
823 * byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
824 * and go to 301.
825 * 104) If q.seq_dup == 0, go to 201.
826 * 105) If q.seq_num != r.seq_num, go to 201.
827 * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
828 *
829 * 201) Process request q into response r.
830 * 202) r.seq_num = q.seq_num
831 * 203) r.seq_dup = q.seq_dup
832 * 204) Calculate r.header_crc
833 * 205) If r.data_len > 0 and data is no longer available, set e.result =
834 * EC_RES_DUP_UNAVAILABLE and go to 301.
835 * 206) Send response r.
836 *
837 * 301) e.seq_num = q.seq_num
838 * 302) e.seq_dup = q.seq_dup
839 * 303) Calculate e.header_crc.
840 * 304) Send error response e.
841 */
842
843/* Version 4 request from host */
844struct ec_host_request4 {
845 /*
846 * bits 0-3: struct_version: Structure version (=4)
847 * bit 4: is_response: Is response (=0)
848 * bits 5-6: seq_num: Sequence number
849 * bit 7: seq_dup: Sequence duplicate flag
850 */
851 uint8_t fields0;
852
853 /*
854 * bits 0-4: command_version: Command version
855 * bits 5-6: Reserved (set 0, ignore on read)
856 * bit 7: data_crc_present: Is data CRC present after data
857 */
858 uint8_t fields1;
859
860 /* Command code (EC_CMD_*) */
861 uint16_t command;
862
863 /* Length of data which follows this header (not including data CRC) */
864 uint16_t data_len;
865
866 /* Reserved (set 0, ignore on read) */
867 uint8_t reserved;
868
869 /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
870 uint8_t header_crc;
871} __ec_align4;
872
873/* Version 4 response from EC */
874struct ec_host_response4 {
875 /*
876 * bits 0-3: struct_version: Structure version (=4)
877 * bit 4: is_response: Is response (=1)
878 * bits 5-6: seq_num: Sequence number
879 * bit 7: seq_dup: Sequence duplicate flag
880 */
881 uint8_t fields0;
882
883 /*
884 * bits 0-6: Reserved (set 0, ignore on read)
885 * bit 7: data_crc_present: Is data CRC present after data
886 */
887 uint8_t fields1;
888
889 /* Result code (EC_RES_*) */
890 uint16_t result;
891
892 /* Length of data which follows this header (not including data CRC) */
893 uint16_t data_len;
894
895 /* Reserved (set 0, ignore on read) */
896 uint8_t reserved;
897
898 /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
899 uint8_t header_crc;
900} __ec_align4;
901
902/* Fields in fields0 byte */
903#define EC_PACKET4_0_STRUCT_VERSION_MASK 0x0f
904#define EC_PACKET4_0_IS_RESPONSE_MASK 0x10
905#define EC_PACKET4_0_SEQ_NUM_SHIFT 5
906#define EC_PACKET4_0_SEQ_NUM_MASK 0x60
907#define EC_PACKET4_0_SEQ_DUP_MASK 0x80
908
909/* Fields in fields1 byte */
910#define EC_PACKET4_1_COMMAND_VERSION_MASK 0x1f /* (request only) */
911#define EC_PACKET4_1_DATA_CRC_PRESENT_MASK 0x80
912
913/*****************************************************************************/
914/*
915 * Notes on commands:
916 *
917 * Each command is an 16-bit command value. Commands which take params or
918 * return response data specify structures for that data. If no structure is
919 * specified, the command does not input or output data, respectively.
920 * Parameter/response length is implicit in the structs. Some underlying
921 * communication protocols (I2C, SPI) may add length or checksum headers, but
922 * those are implementation-dependent and not defined here.
923 *
924 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
925 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
926 */
927
928/*****************************************************************************/
929/* General / test commands */
930
931/*
932 * Get protocol version, used to deal with non-backward compatible protocol
933 * changes.
934 */
935#define EC_CMD_PROTO_VERSION 0x0000
936
937/**
938 * struct ec_response_proto_version - Response to the proto version command.
939 * @version: The protocol version.
940 */
941struct ec_response_proto_version {
942 uint32_t version;
943} __ec_align4;
944
945/*
946 * Hello. This is a simple command to test the EC is responsive to
947 * commands.
948 */
949#define EC_CMD_HELLO 0x0001
950
951/**
952 * struct ec_params_hello - Parameters to the hello command.
953 * @in_data: Pass anything here.
954 */
955struct ec_params_hello {
956 uint32_t in_data;
957} __ec_align4;
958
959/**
960 * struct ec_response_hello - Response to the hello command.
961 * @out_data: Output will be in_data + 0x01020304.
962 */
963struct ec_response_hello {
964 uint32_t out_data;
965} __ec_align4;
966
967/* Get version number */
968#define EC_CMD_GET_VERSION 0x0002
969
970enum ec_current_image {
971 EC_IMAGE_UNKNOWN = 0,
972 EC_IMAGE_RO,
973 EC_IMAGE_RW
974};
975
976/**
977 * struct ec_response_get_version - Response to the get version command.
978 * @version_string_ro: Null-terminated RO firmware version string.
979 * @version_string_rw: Null-terminated RW firmware version string.
980 * @reserved: Unused bytes; was previously RW-B firmware version string.
981 * @current_image: One of ec_current_image.
982 */
983struct ec_response_get_version {
984 char version_string_ro[32];
985 char version_string_rw[32];
986 char reserved[32];
987 uint32_t current_image;
988} __ec_align4;
989
990/* Read test */
991#define EC_CMD_READ_TEST 0x0003
992
993/**
994 * struct ec_params_read_test - Parameters for the read test command.
995 * @offset: Starting value for read buffer.
996 * @size: Size to read in bytes.
997 */
998struct ec_params_read_test {
999 uint32_t offset;
1000 uint32_t size;
1001} __ec_align4;
1002
1003/**
1004 * struct ec_response_read_test - Response to the read test command.
1005 * @data: Data returned by the read test command.
1006 */
1007struct ec_response_read_test {
1008 uint32_t data[32];
1009} __ec_align4;
1010
1011/*
1012 * Get build information
1013 *
1014 * Response is null-terminated string.
1015 */
1016#define EC_CMD_GET_BUILD_INFO 0x0004
1017
1018/* Get chip info */
1019#define EC_CMD_GET_CHIP_INFO 0x0005
1020
1021/**
1022 * struct ec_response_get_chip_info - Response to the get chip info command.
1023 * @vendor: Null-terminated string for chip vendor.
1024 * @name: Null-terminated string for chip name.
1025 * @revision: Null-terminated string for chip mask version.
1026 */
1027struct ec_response_get_chip_info {
1028 char vendor[32];
1029 char name[32];
1030 char revision[32];
1031} __ec_align4;
1032
1033/* Get board HW version */
1034#define EC_CMD_GET_BOARD_VERSION 0x0006
1035
1036/**
1037 * struct ec_response_board_version - Response to the board version command.
1038 * @board_version: A monotonously incrementing number.
1039 */
1040struct ec_response_board_version {
1041 uint16_t board_version;
1042} __ec_align2;
1043
1044/*
1045 * Read memory-mapped data.
1046 *
1047 * This is an alternate interface to memory-mapped data for bus protocols
1048 * which don't support direct-mapped memory - I2C, SPI, etc.
1049 *
1050 * Response is params.size bytes of data.
1051 */
1052#define EC_CMD_READ_MEMMAP 0x0007
1053
1054/**
1055 * struct ec_params_read_memmap - Parameters for the read memory map command.
1056 * @offset: Offset in memmap (EC_MEMMAP_*).
1057 * @size: Size to read in bytes.
1058 */
1059struct ec_params_read_memmap {
1060 uint8_t offset;
1061 uint8_t size;
1062} __ec_align1;
1063
1064/* Read versions supported for a command */
1065#define EC_CMD_GET_CMD_VERSIONS 0x0008
1066
1067/**
1068 * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1069 * @cmd: Command to check.
1070 */
1071struct ec_params_get_cmd_versions {
1072 uint8_t cmd;
1073} __ec_align1;
1074
1075/**
1076 * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1077 * versions (v1)
1078 * @cmd: Command to check.
1079 */
1080struct ec_params_get_cmd_versions_v1 {
1081 uint16_t cmd;
1082} __ec_align2;
1083
1084/**
1085 * struct ec_response_get_cmd_versions - Response to the get command versions.
1086 * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1087 * a desired version.
1088 */
1089struct ec_response_get_cmd_versions {
1090 uint32_t version_mask;
1091} __ec_align4;
1092
1093/*
1094 * Check EC communications status (busy). This is needed on i2c/spi but not
1095 * on lpc since it has its own out-of-band busy indicator.
1096 *
1097 * lpc must read the status from the command register. Attempting this on
1098 * lpc will overwrite the args/parameter space and corrupt its data.
1099 */
1100#define EC_CMD_GET_COMMS_STATUS 0x0009
1101
1102/* Avoid using ec_status which is for return values */
1103enum ec_comms_status {
1104 EC_COMMS_STATUS_PROCESSING = BIT(0), /* Processing cmd */
1105};
1106
1107/**
1108 * struct ec_response_get_comms_status - Response to the get comms status
1109 * command.
1110 * @flags: Mask of enum ec_comms_status.
1111 */
1112struct ec_response_get_comms_status {
1113 uint32_t flags; /* Mask of enum ec_comms_status */
1114} __ec_align4;
1115
1116/* Fake a variety of responses, purely for testing purposes. */
1117#define EC_CMD_TEST_PROTOCOL 0x000A
1118
1119/* Tell the EC what to send back to us. */
1120struct ec_params_test_protocol {
1121 uint32_t ec_result;
1122 uint32_t ret_len;
1123 uint8_t buf[32];
1124} __ec_align4;
1125
1126/* Here it comes... */
1127struct ec_response_test_protocol {
1128 uint8_t buf[32];
1129} __ec_align4;
1130
1131/* Get protocol information */
1132#define EC_CMD_GET_PROTOCOL_INFO 0x000B
1133
1134/* Flags for ec_response_get_protocol_info.flags */
1135/* EC_RES_IN_PROGRESS may be returned if a command is slow */
1136#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1137
1138/**
1139 * struct ec_response_get_protocol_info - Response to the get protocol info.
1140 * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1141 * version n).
1142 * @max_request_packet_size: Maximum request packet size in bytes.
1143 * @max_response_packet_size: Maximum response packet size in bytes.
1144 * @flags: see EC_PROTOCOL_INFO_*
1145 */
1146struct ec_response_get_protocol_info {
1147 /* Fields which exist if at least protocol version 3 supported */
1148 uint32_t protocol_versions;
1149 uint16_t max_request_packet_size;
1150 uint16_t max_response_packet_size;
1151 uint32_t flags;
1152} __ec_align4;
1153
1154
1155/*****************************************************************************/
1156/* Get/Set miscellaneous values */
1157
1158/* The upper byte of .flags tells what to do (nothing means "get") */
1159#define EC_GSV_SET 0x80000000
1160
1161/*
1162 * The lower three bytes of .flags identifies the parameter, if that has
1163 * meaning for an individual command.
1164 */
1165#define EC_GSV_PARAM_MASK 0x00ffffff
1166
1167struct ec_params_get_set_value {
1168 uint32_t flags;
1169 uint32_t value;
1170} __ec_align4;
1171
1172struct ec_response_get_set_value {
1173 uint32_t flags;
1174 uint32_t value;
1175} __ec_align4;
1176
1177/* More than one command can use these structs to get/set parameters. */
1178#define EC_CMD_GSV_PAUSE_IN_S5 0x000C
1179
1180/*****************************************************************************/
1181/* List the features supported by the firmware */
1182#define EC_CMD_GET_FEATURES 0x000D
1183
1184/* Supported features */
1185enum ec_feature_code {
1186 /*
1187 * This image contains a limited set of features. Another image
1188 * in RW partition may support more features.
1189 */
1190 EC_FEATURE_LIMITED = 0,
1191 /*
1192 * Commands for probing/reading/writing/erasing the flash in the
1193 * EC are present.
1194 */
1195 EC_FEATURE_FLASH = 1,
1196 /*
1197 * Can control the fan speed directly.
1198 */
1199 EC_FEATURE_PWM_FAN = 2,
1200 /*
1201 * Can control the intensity of the keyboard backlight.
1202 */
1203 EC_FEATURE_PWM_KEYB = 3,
1204 /*
1205 * Support Google lightbar, introduced on Pixel.
1206 */
1207 EC_FEATURE_LIGHTBAR = 4,
1208 /* Control of LEDs */
1209 EC_FEATURE_LED = 5,
1210 /* Exposes an interface to control gyro and sensors.
1211 * The host goes through the EC to access these sensors.
1212 * In addition, the EC may provide composite sensors, like lid angle.
1213 */
1214 EC_FEATURE_MOTION_SENSE = 6,
1215 /* The keyboard is controlled by the EC */
1216 EC_FEATURE_KEYB = 7,
1217 /* The AP can use part of the EC flash as persistent storage. */
1218 EC_FEATURE_PSTORE = 8,
1219 /* The EC monitors BIOS port 80h, and can return POST codes. */
1220 EC_FEATURE_PORT80 = 9,
1221 /*
1222 * Thermal management: include TMP specific commands.
1223 * Higher level than direct fan control.
1224 */
1225 EC_FEATURE_THERMAL = 10,
1226 /* Can switch the screen backlight on/off */
1227 EC_FEATURE_BKLIGHT_SWITCH = 11,
1228 /* Can switch the wifi module on/off */
1229 EC_FEATURE_WIFI_SWITCH = 12,
1230 /* Monitor host events, through for example SMI or SCI */
1231 EC_FEATURE_HOST_EVENTS = 13,
1232 /* The EC exposes GPIO commands to control/monitor connected devices. */
1233 EC_FEATURE_GPIO = 14,
1234 /* The EC can send i2c messages to downstream devices. */
1235 EC_FEATURE_I2C = 15,
1236 /* Command to control charger are included */
1237 EC_FEATURE_CHARGER = 16,
1238 /* Simple battery support. */
1239 EC_FEATURE_BATTERY = 17,
1240 /*
1241 * Support Smart battery protocol
1242 * (Common Smart Battery System Interface Specification)
1243 */
1244 EC_FEATURE_SMART_BATTERY = 18,
1245 /* EC can detect when the host hangs. */
1246 EC_FEATURE_HANG_DETECT = 19,
1247 /* Report power information, for pit only */
1248 EC_FEATURE_PMU = 20,
1249 /* Another Cros EC device is present downstream of this one */
1250 EC_FEATURE_SUB_MCU = 21,
1251 /* Support USB Power delivery (PD) commands */
1252 EC_FEATURE_USB_PD = 22,
1253 /* Control USB multiplexer, for audio through USB port for instance. */
1254 EC_FEATURE_USB_MUX = 23,
1255 /* Motion Sensor code has an internal software FIFO */
1256 EC_FEATURE_MOTION_SENSE_FIFO = 24,
1257 /* Support temporary secure vstore */
1258 EC_FEATURE_VSTORE = 25,
1259 /* EC decides on USB-C SS mux state, muxes configured by host */
1260 EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1261 /* EC has RTC feature that can be controlled by host commands */
1262 EC_FEATURE_RTC = 27,
1263 /* The MCU exposes a Fingerprint sensor */
1264 EC_FEATURE_FINGERPRINT = 28,
1265 /* The MCU exposes a Touchpad */
1266 EC_FEATURE_TOUCHPAD = 29,
1267 /* The MCU has RWSIG task enabled */
1268 EC_FEATURE_RWSIG = 30,
1269 /* EC has device events support */
1270 EC_FEATURE_DEVICE_EVENT = 31,
1271 /* EC supports the unified wake masks for LPC/eSPI systems */
1272 EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1273 /* EC supports 64-bit host events */
1274 EC_FEATURE_HOST_EVENT64 = 33,
1275 /* EC runs code in RAM (not in place, a.k.a. XIP) */
1276 EC_FEATURE_EXEC_IN_RAM = 34,
1277 /* EC supports CEC commands */
1278 EC_FEATURE_CEC = 35,
1279 /* EC supports tight sensor timestamping. */
1280 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1281 /*
1282 * EC supports tablet mode detection aligned to Chrome and allows
1283 * setting of threshold by host command using
1284 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1285 */
1286 EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1287 /* The MCU is a System Companion Processor (SCP). */
1288 EC_FEATURE_SCP = 39,
1289 /* The MCU is an Integrated Sensor Hub */
1290 EC_FEATURE_ISH = 40,
1291 /* New TCPMv2 TYPEC_ prefaced commands supported */
1292 EC_FEATURE_TYPEC_CMD = 41,
1293 /*
1294 * The EC will wait for direction from the AP to enter Type-C alternate
1295 * modes or USB4.
1296 */
1297 EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42,
1298 /*
1299 * The EC will wait for an acknowledge from the AP after setting the
1300 * mux.
1301 */
1302 EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43,
1303 /*
1304 * The EC supports entering and residing in S4.
1305 */
1306 EC_FEATURE_S4_RESIDENCY = 44,
1307 /*
1308 * The EC supports the AP directing mux sets for the board.
1309 */
1310 EC_FEATURE_TYPEC_AP_MUX_SET = 45,
1311 /*
1312 * The EC supports the AP composing VDMs for us to send.
1313 */
1314 EC_FEATURE_TYPEC_AP_VDM_SEND = 46,
1315 /*
1316 * The EC supports system safe mode panic recovery.
1317 */
1318 EC_FEATURE_SYSTEM_SAFE_MODE = 47,
1319 /*
1320 * The EC will reboot on runtime assertion failures.
1321 */
1322 EC_FEATURE_ASSERT_REBOOTS = 48,
1323 /*
1324 * The EC image is built with tokenized logging enabled.
1325 */
1326 EC_FEATURE_TOKENIZED_LOGGING = 49,
1327 /*
1328 * The EC supports triggering an STB dump.
1329 */
1330 EC_FEATURE_AMD_STB_DUMP = 50,
1331 /*
1332 * The EC supports memory dump commands.
1333 */
1334 EC_FEATURE_MEMORY_DUMP = 51,
1335 /*
1336 * The EC supports DP2.1 capability
1337 */
1338 EC_FEATURE_TYPEC_DP2_1 = 52,
1339 /*
1340 * The MCU is System Companion Processor Core 1
1341 */
1342 EC_FEATURE_SCP_C1 = 53,
1343 /*
1344 * The EC supports UCSI PPM.
1345 */
1346 EC_FEATURE_UCSI_PPM = 54,
1347};
1348
1349#define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1350#define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1351
1352struct ec_response_get_features {
1353 uint32_t flags[2];
1354} __ec_align4;
1355
1356/*****************************************************************************/
1357/* Get the board's SKU ID from EC */
1358#define EC_CMD_GET_SKU_ID 0x000E
1359
1360/* Set SKU ID from AP */
1361#define EC_CMD_SET_SKU_ID 0x000F
1362
1363struct ec_sku_id_info {
1364 uint32_t sku_id;
1365} __ec_align4;
1366
1367/*****************************************************************************/
1368/* Flash commands */
1369
1370/* Get flash info */
1371#define EC_CMD_FLASH_INFO 0x0010
1372#define EC_VER_FLASH_INFO 2
1373
1374/**
1375 * struct ec_response_flash_info - Response to the flash info command.
1376 * @flash_size: Usable flash size in bytes.
1377 * @write_block_size: Write block size. Write offset and size must be a
1378 * multiple of this.
1379 * @erase_block_size: Erase block size. Erase offset and size must be a
1380 * multiple of this.
1381 * @protect_block_size: Protection block size. Protection offset and size
1382 * must be a multiple of this.
1383 *
1384 * Version 0 returns these fields.
1385 */
1386struct ec_response_flash_info {
1387 uint32_t flash_size;
1388 uint32_t write_block_size;
1389 uint32_t erase_block_size;
1390 uint32_t protect_block_size;
1391} __ec_align4;
1392
1393/*
1394 * Flags for version 1+ flash info command
1395 * EC flash erases bits to 0 instead of 1.
1396 */
1397#define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1398
1399/*
1400 * Flash must be selected for read/write/erase operations to succeed. This may
1401 * be necessary on a chip where write/erase can be corrupted by other board
1402 * activity, or where the chip needs to enable some sort of programming voltage,
1403 * or where the read/write/erase operations require cleanly suspending other
1404 * chip functionality.
1405 */
1406#define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1407
1408/**
1409 * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1410 * @flash_size: Usable flash size in bytes.
1411 * @write_block_size: Write block size. Write offset and size must be a
1412 * multiple of this.
1413 * @erase_block_size: Erase block size. Erase offset and size must be a
1414 * multiple of this.
1415 * @protect_block_size: Protection block size. Protection offset and size
1416 * must be a multiple of this.
1417 * @write_ideal_size: Ideal write size in bytes. Writes will be fastest if
1418 * size is exactly this and offset is a multiple of this.
1419 * For example, an EC may have a write buffer which can do
1420 * half-page operations if data is aligned, and a slower
1421 * word-at-a-time write mode.
1422 * @flags: Flags; see EC_FLASH_INFO_*
1423 *
1424 * Version 1 returns the same initial fields as version 0, with additional
1425 * fields following.
1426 *
1427 * gcc anonymous structs don't seem to get along with the __packed directive;
1428 * if they did we'd define the version 0 structure as a sub-structure of this
1429 * one.
1430 *
1431 * Version 2 supports flash banks of different sizes:
1432 * The caller specified the number of banks it has preallocated
1433 * (num_banks_desc)
1434 * The EC returns the number of banks describing the flash memory.
1435 * It adds banks descriptions up to num_banks_desc.
1436 */
1437struct ec_response_flash_info_1 {
1438 /* Version 0 fields; see above for description */
1439 uint32_t flash_size;
1440 uint32_t write_block_size;
1441 uint32_t erase_block_size;
1442 uint32_t protect_block_size;
1443
1444 /* Version 1 adds these fields: */
1445 uint32_t write_ideal_size;
1446 uint32_t flags;
1447} __ec_align4;
1448
1449struct ec_params_flash_info_2 {
1450 /* Number of banks to describe */
1451 uint16_t num_banks_desc;
1452 /* Reserved; set 0; ignore on read */
1453 uint8_t reserved[2];
1454} __ec_align4;
1455
1456struct ec_flash_bank {
1457 /* Number of sector is in this bank. */
1458 uint16_t count;
1459 /* Size in power of 2 of each sector (8 --> 256 bytes) */
1460 uint8_t size_exp;
1461 /* Minimal write size for the sectors in this bank */
1462 uint8_t write_size_exp;
1463 /* Erase size for the sectors in this bank */
1464 uint8_t erase_size_exp;
1465 /* Size for write protection, usually identical to erase size. */
1466 uint8_t protect_size_exp;
1467 /* Reserved; set 0; ignore on read */
1468 uint8_t reserved[2];
1469};
1470
1471struct ec_response_flash_info_2 {
1472 /* Total flash in the EC. */
1473 uint32_t flash_size;
1474 /* Flags; see EC_FLASH_INFO_* */
1475 uint32_t flags;
1476 /* Maximum size to use to send data to write to the EC. */
1477 uint32_t write_ideal_size;
1478 /* Number of banks present in the EC. */
1479 uint16_t num_banks_total;
1480 /* Number of banks described in banks array. */
1481 uint16_t num_banks_desc;
1482 struct ec_flash_bank banks[];
1483} __ec_align4;
1484
1485/*
1486 * Read flash
1487 *
1488 * Response is params.size bytes of data.
1489 */
1490#define EC_CMD_FLASH_READ 0x0011
1491
1492/**
1493 * struct ec_params_flash_read - Parameters for the flash read command.
1494 * @offset: Byte offset to read.
1495 * @size: Size to read in bytes.
1496 */
1497struct ec_params_flash_read {
1498 uint32_t offset;
1499 uint32_t size;
1500} __ec_align4;
1501
1502/* Write flash */
1503#define EC_CMD_FLASH_WRITE 0x0012
1504#define EC_VER_FLASH_WRITE 1
1505
1506/* Version 0 of the flash command supported only 64 bytes of data */
1507#define EC_FLASH_WRITE_VER0_SIZE 64
1508
1509/**
1510 * struct ec_params_flash_write - Parameters for the flash write command.
1511 * @offset: Byte offset to write.
1512 * @size: Size to write in bytes.
1513 */
1514struct ec_params_flash_write {
1515 uint32_t offset;
1516 uint32_t size;
1517 /* Followed by data to write */
1518} __ec_align4;
1519
1520/* Erase flash */
1521#define EC_CMD_FLASH_ERASE 0x0013
1522
1523/**
1524 * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1525 * @offset: Byte offset to erase.
1526 * @size: Size to erase in bytes.
1527 */
1528struct ec_params_flash_erase {
1529 uint32_t offset;
1530 uint32_t size;
1531} __ec_align4;
1532
1533/*
1534 * v1 add async erase:
1535 * subcommands can returns:
1536 * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1537 * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1538 * EC_RES_ERROR : other errors.
1539 * EC_RES_BUSY : an existing erase operation is in progress.
1540 * EC_RES_ACCESS_DENIED: Trying to erase running image.
1541 *
1542 * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1543 * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1544 * the proper result.
1545 * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1546 * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1547 * ERASE_GET_RESULT command may timeout on EC where flash access is not
1548 * permitted while erasing. (For instance, STM32F4).
1549 */
1550enum ec_flash_erase_cmd {
1551 FLASH_ERASE_SECTOR, /* Erase and wait for result */
1552 FLASH_ERASE_SECTOR_ASYNC, /* Erase and return immediately. */
1553 FLASH_ERASE_GET_RESULT, /* Ask for last erase result */
1554};
1555
1556/**
1557 * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1558 * @cmd: One of ec_flash_erase_cmd.
1559 * @reserved: Pad byte; currently always contains 0.
1560 * @flag: No flags defined yet; set to 0.
1561 * @params: Same as v0 parameters.
1562 */
1563struct ec_params_flash_erase_v1 {
1564 uint8_t cmd;
1565 uint8_t reserved;
1566 uint16_t flag;
1567 struct ec_params_flash_erase params;
1568} __ec_align4;
1569
1570/*
1571 * Get/set flash protection.
1572 *
1573 * If mask!=0, sets/clear the requested bits of flags. Depending on the
1574 * firmware write protect GPIO, not all flags will take effect immediately;
1575 * some flags require a subsequent hard reset to take effect. Check the
1576 * returned flags bits to see what actually happened.
1577 *
1578 * If mask=0, simply returns the current flags state.
1579 */
1580#define EC_CMD_FLASH_PROTECT 0x0015
1581#define EC_VER_FLASH_PROTECT 1 /* Command version 1 */
1582
1583/* Flags for flash protection */
1584/* RO flash code protected when the EC boots */
1585#define EC_FLASH_PROTECT_RO_AT_BOOT BIT(0)
1586/*
1587 * RO flash code protected now. If this bit is set, at-boot status cannot
1588 * be changed.
1589 */
1590#define EC_FLASH_PROTECT_RO_NOW BIT(1)
1591/* Entire flash code protected now, until reboot. */
1592#define EC_FLASH_PROTECT_ALL_NOW BIT(2)
1593/* Flash write protect GPIO is asserted now */
1594#define EC_FLASH_PROTECT_GPIO_ASSERTED BIT(3)
1595/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1596#define EC_FLASH_PROTECT_ERROR_STUCK BIT(4)
1597/*
1598 * Error - flash protection is in inconsistent state. At least one bank of
1599 * flash which should be protected is not protected. Usually fixed by
1600 * re-requesting the desired flags, or by a hard reset if that fails.
1601 */
1602#define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1603/* Entire flash code protected when the EC boots */
1604#define EC_FLASH_PROTECT_ALL_AT_BOOT BIT(6)
1605/* RW flash code protected when the EC boots */
1606#define EC_FLASH_PROTECT_RW_AT_BOOT BIT(7)
1607/* RW flash code protected now. */
1608#define EC_FLASH_PROTECT_RW_NOW BIT(8)
1609/* Rollback information flash region protected when the EC boots */
1610#define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT BIT(9)
1611/* Rollback information flash region protected now */
1612#define EC_FLASH_PROTECT_ROLLBACK_NOW BIT(10)
1613
1614
1615/**
1616 * struct ec_params_flash_protect - Parameters for the flash protect command.
1617 * @mask: Bits in flags to apply.
1618 * @flags: New flags to apply.
1619 */
1620struct ec_params_flash_protect {
1621 uint32_t mask;
1622 uint32_t flags;
1623} __ec_align4;
1624
1625/**
1626 * struct ec_response_flash_protect - Response to the flash protect command.
1627 * @flags: Current value of flash protect flags.
1628 * @valid_flags: Flags which are valid on this platform. This allows the
1629 * caller to distinguish between flags which aren't set vs. flags
1630 * which can't be set on this platform.
1631 * @writable_flags: Flags which can be changed given the current protection
1632 * state.
1633 */
1634struct ec_response_flash_protect {
1635 uint32_t flags;
1636 uint32_t valid_flags;
1637 uint32_t writable_flags;
1638} __ec_align4;
1639
1640/*
1641 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1642 * write protect. These commands may be reused with version > 0.
1643 */
1644
1645/* Get the region offset/size */
1646#define EC_CMD_FLASH_REGION_INFO 0x0016
1647#define EC_VER_FLASH_REGION_INFO 1
1648
1649enum ec_flash_region {
1650 /* Region which holds read-only EC image */
1651 EC_FLASH_REGION_RO = 0,
1652 /*
1653 * Region which holds active RW image. 'Active' is different from
1654 * 'running'. Active means 'scheduled-to-run'. Since RO image always
1655 * scheduled to run, active/non-active applies only to RW images (for
1656 * the same reason 'update' applies only to RW images. It's a state of
1657 * an image on a flash. Running image can be RO, RW_A, RW_B but active
1658 * image can only be RW_A or RW_B. In recovery mode, an active RW image
1659 * doesn't enter 'running' state but it's still active on a flash.
1660 */
1661 EC_FLASH_REGION_ACTIVE,
1662 /*
1663 * Region which should be write-protected in the factory (a superset of
1664 * EC_FLASH_REGION_RO)
1665 */
1666 EC_FLASH_REGION_WP_RO,
1667 /* Region which holds updatable (non-active) RW image */
1668 EC_FLASH_REGION_UPDATE,
1669 /* Number of regions */
1670 EC_FLASH_REGION_COUNT,
1671};
1672/*
1673 * 'RW' is vague if there are multiple RW images; we mean the active one,
1674 * so the old constant is deprecated.
1675 */
1676#define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1677
1678/**
1679 * struct ec_params_flash_region_info - Parameters for the flash region info
1680 * command.
1681 * @region: Flash region; see EC_FLASH_REGION_*
1682 */
1683struct ec_params_flash_region_info {
1684 uint32_t region;
1685} __ec_align4;
1686
1687struct ec_response_flash_region_info {
1688 uint32_t offset;
1689 uint32_t size;
1690} __ec_align4;
1691
1692/* Read/write VbNvContext */
1693#define EC_CMD_VBNV_CONTEXT 0x0017
1694#define EC_VER_VBNV_CONTEXT 1
1695#define EC_VBNV_BLOCK_SIZE 16
1696
1697enum ec_vbnvcontext_op {
1698 EC_VBNV_CONTEXT_OP_READ,
1699 EC_VBNV_CONTEXT_OP_WRITE,
1700};
1701
1702struct ec_params_vbnvcontext {
1703 uint32_t op;
1704 uint8_t block[EC_VBNV_BLOCK_SIZE];
1705} __ec_align4;
1706
1707struct ec_response_vbnvcontext {
1708 uint8_t block[EC_VBNV_BLOCK_SIZE];
1709} __ec_align4;
1710
1711
1712/* Get SPI flash information */
1713#define EC_CMD_FLASH_SPI_INFO 0x0018
1714
1715struct ec_response_flash_spi_info {
1716 /* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1717 uint8_t jedec[3];
1718
1719 /* Pad byte; currently always contains 0 */
1720 uint8_t reserved0;
1721
1722 /* Manufacturer / device ID from command 0x90 */
1723 uint8_t mfr_dev_id[2];
1724
1725 /* Status registers from command 0x05 and 0x35 */
1726 uint8_t sr1, sr2;
1727} __ec_align1;
1728
1729
1730/* Select flash during flash operations */
1731#define EC_CMD_FLASH_SELECT 0x0019
1732
1733/**
1734 * struct ec_params_flash_select - Parameters for the flash select command.
1735 * @select: 1 to select flash, 0 to deselect flash
1736 */
1737struct ec_params_flash_select {
1738 uint8_t select;
1739} __ec_align4;
1740
1741
1742/*****************************************************************************/
1743/* PWM commands */
1744
1745/* Get fan target RPM */
1746#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1747
1748struct ec_response_pwm_get_fan_rpm {
1749 uint32_t rpm;
1750} __ec_align4;
1751
1752/* Set target fan RPM */
1753#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1754
1755/* Version 0 of input params */
1756struct ec_params_pwm_set_fan_target_rpm_v0 {
1757 uint32_t rpm;
1758} __ec_align4;
1759
1760/* Version 1 of input params */
1761struct ec_params_pwm_set_fan_target_rpm_v1 {
1762 uint32_t rpm;
1763 uint8_t fan_idx;
1764} __ec_align_size1;
1765
1766/* Get keyboard backlight */
1767/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1768#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1769
1770struct ec_response_pwm_get_keyboard_backlight {
1771 uint8_t percent;
1772 uint8_t enabled;
1773} __ec_align1;
1774
1775/* Set keyboard backlight */
1776/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1777#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1778
1779struct ec_params_pwm_set_keyboard_backlight {
1780 uint8_t percent;
1781} __ec_align1;
1782
1783/* Set target fan PWM duty cycle */
1784#define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1785
1786/* Version 0 of input params */
1787struct ec_params_pwm_set_fan_duty_v0 {
1788 uint32_t percent;
1789} __ec_align4;
1790
1791/* Version 1 of input params */
1792struct ec_params_pwm_set_fan_duty_v1 {
1793 uint32_t percent;
1794 uint8_t fan_idx;
1795} __ec_align_size1;
1796
1797#define EC_CMD_PWM_SET_DUTY 0x0025
1798/* 16 bit duty cycle, 0xffff = 100% */
1799#define EC_PWM_MAX_DUTY 0xffff
1800
1801enum ec_pwm_type {
1802 /* All types, indexed by board-specific enum pwm_channel */
1803 EC_PWM_TYPE_GENERIC = 0,
1804 /* Keyboard backlight */
1805 EC_PWM_TYPE_KB_LIGHT,
1806 /* Display backlight */
1807 EC_PWM_TYPE_DISPLAY_LIGHT,
1808 EC_PWM_TYPE_COUNT,
1809};
1810
1811struct ec_params_pwm_set_duty {
1812 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1813 uint8_t pwm_type; /* ec_pwm_type */
1814 uint8_t index; /* Type-specific index, or 0 if unique */
1815} __ec_align4;
1816
1817#define EC_CMD_PWM_GET_DUTY 0x0026
1818
1819struct ec_params_pwm_get_duty {
1820 uint8_t pwm_type; /* ec_pwm_type */
1821 uint8_t index; /* Type-specific index, or 0 if unique */
1822} __ec_align1;
1823
1824struct ec_response_pwm_get_duty {
1825 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1826} __ec_align2;
1827
1828#define EC_CMD_PWM_GET_FAN_DUTY 0x0027
1829
1830struct ec_params_pwm_get_fan_duty {
1831 uint8_t fan_idx;
1832} __ec_align1;
1833
1834struct ec_response_pwm_get_fan_duty {
1835 uint32_t percent; /* Percentage of duty cycle, ranging from 0 ~ 100 */
1836} __ec_align4;
1837
1838/*****************************************************************************/
1839/*
1840 * Lightbar commands. This looks worse than it is. Since we only use one HOST
1841 * command to say "talk to the lightbar", we put the "and tell it to do X" part
1842 * into a subcommand. We'll make separate structs for subcommands with
1843 * different input args, so that we know how much to expect.
1844 */
1845#define EC_CMD_LIGHTBAR_CMD 0x0028
1846
1847struct rgb_s {
1848 uint8_t r, g, b;
1849} __ec_todo_unpacked;
1850
1851#define LB_BATTERY_LEVELS 4
1852
1853/*
1854 * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1855 * host command, but the alignment is the same regardless. Keep it that way.
1856 */
1857struct lightbar_params_v0 {
1858 /* Timing */
1859 int32_t google_ramp_up;
1860 int32_t google_ramp_down;
1861 int32_t s3s0_ramp_up;
1862 int32_t s0_tick_delay[2]; /* AC=0/1 */
1863 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1864 int32_t s0s3_ramp_down;
1865 int32_t s3_sleep_for;
1866 int32_t s3_ramp_up;
1867 int32_t s3_ramp_down;
1868
1869 /* Oscillation */
1870 uint8_t new_s0;
1871 uint8_t osc_min[2]; /* AC=0/1 */
1872 uint8_t osc_max[2]; /* AC=0/1 */
1873 uint8_t w_ofs[2]; /* AC=0/1 */
1874
1875 /* Brightness limits based on the backlight and AC. */
1876 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1877 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1878 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1879
1880 /* Battery level thresholds */
1881 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1882
1883 /* Map [AC][battery_level] to color index */
1884 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1885 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1886
1887 /* Color palette */
1888 struct rgb_s color[8]; /* 0-3 are Google colors */
1889} __ec_todo_packed;
1890
1891struct lightbar_params_v1 {
1892 /* Timing */
1893 int32_t google_ramp_up;
1894 int32_t google_ramp_down;
1895 int32_t s3s0_ramp_up;
1896 int32_t s0_tick_delay[2]; /* AC=0/1 */
1897 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1898 int32_t s0s3_ramp_down;
1899 int32_t s3_sleep_for;
1900 int32_t s3_ramp_up;
1901 int32_t s3_ramp_down;
1902 int32_t s5_ramp_up;
1903 int32_t s5_ramp_down;
1904 int32_t tap_tick_delay;
1905 int32_t tap_gate_delay;
1906 int32_t tap_display_time;
1907
1908 /* Tap-for-battery params */
1909 uint8_t tap_pct_red;
1910 uint8_t tap_pct_green;
1911 uint8_t tap_seg_min_on;
1912 uint8_t tap_seg_max_on;
1913 uint8_t tap_seg_osc;
1914 uint8_t tap_idx[3];
1915
1916 /* Oscillation */
1917 uint8_t osc_min[2]; /* AC=0/1 */
1918 uint8_t osc_max[2]; /* AC=0/1 */
1919 uint8_t w_ofs[2]; /* AC=0/1 */
1920
1921 /* Brightness limits based on the backlight and AC. */
1922 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1923 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1924 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1925
1926 /* Battery level thresholds */
1927 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1928
1929 /* Map [AC][battery_level] to color index */
1930 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1931 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1932
1933 /* s5: single color pulse on inhibited power-up */
1934 uint8_t s5_idx;
1935
1936 /* Color palette */
1937 struct rgb_s color[8]; /* 0-3 are Google colors */
1938} __ec_todo_packed;
1939
1940/* Lightbar command params v2
1941 * crbug.com/467716
1942 *
1943 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1944 * logical groups to make it more manageable ( < 120 bytes).
1945 *
1946 * NOTE: Each of these groups must be less than 120 bytes.
1947 */
1948
1949struct lightbar_params_v2_timing {
1950 /* Timing */
1951 int32_t google_ramp_up;
1952 int32_t google_ramp_down;
1953 int32_t s3s0_ramp_up;
1954 int32_t s0_tick_delay[2]; /* AC=0/1 */
1955 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1956 int32_t s0s3_ramp_down;
1957 int32_t s3_sleep_for;
1958 int32_t s3_ramp_up;
1959 int32_t s3_ramp_down;
1960 int32_t s5_ramp_up;
1961 int32_t s5_ramp_down;
1962 int32_t tap_tick_delay;
1963 int32_t tap_gate_delay;
1964 int32_t tap_display_time;
1965} __ec_todo_packed;
1966
1967struct lightbar_params_v2_tap {
1968 /* Tap-for-battery params */
1969 uint8_t tap_pct_red;
1970 uint8_t tap_pct_green;
1971 uint8_t tap_seg_min_on;
1972 uint8_t tap_seg_max_on;
1973 uint8_t tap_seg_osc;
1974 uint8_t tap_idx[3];
1975} __ec_todo_packed;
1976
1977struct lightbar_params_v2_oscillation {
1978 /* Oscillation */
1979 uint8_t osc_min[2]; /* AC=0/1 */
1980 uint8_t osc_max[2]; /* AC=0/1 */
1981 uint8_t w_ofs[2]; /* AC=0/1 */
1982} __ec_todo_packed;
1983
1984struct lightbar_params_v2_brightness {
1985 /* Brightness limits based on the backlight and AC. */
1986 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1987 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1988 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1989} __ec_todo_packed;
1990
1991struct lightbar_params_v2_thresholds {
1992 /* Battery level thresholds */
1993 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1994} __ec_todo_packed;
1995
1996struct lightbar_params_v2_colors {
1997 /* Map [AC][battery_level] to color index */
1998 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1999 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
2000
2001 /* s5: single color pulse on inhibited power-up */
2002 uint8_t s5_idx;
2003
2004 /* Color palette */
2005 struct rgb_s color[8]; /* 0-3 are Google colors */
2006} __ec_todo_packed;
2007
2008/* Lightbar program. */
2009#define EC_LB_PROG_LEN 192
2010struct lightbar_program {
2011 uint8_t size;
2012 uint8_t data[EC_LB_PROG_LEN];
2013} __ec_todo_unpacked;
2014
2015struct ec_params_lightbar {
2016 uint8_t cmd; /* Command (see enum lightbar_command) */
2017 union {
2018 /*
2019 * The following commands have no args:
2020 *
2021 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
2022 * version, get_brightness, get_demo, suspend, resume,
2023 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
2024 * get_params_v2_bright, get_params_v2_thlds,
2025 * get_params_v2_colors
2026 *
2027 * Don't use an empty struct, because C++ hates that.
2028 */
2029
2030 struct __ec_todo_unpacked {
2031 uint8_t num;
2032 } set_brightness, seq, demo;
2033
2034 struct __ec_todo_unpacked {
2035 uint8_t ctrl, reg, value;
2036 } reg;
2037
2038 struct __ec_todo_unpacked {
2039 uint8_t led, red, green, blue;
2040 } set_rgb;
2041
2042 struct __ec_todo_unpacked {
2043 uint8_t led;
2044 } get_rgb;
2045
2046 struct __ec_todo_unpacked {
2047 uint8_t enable;
2048 } manual_suspend_ctrl;
2049
2050 struct lightbar_params_v0 set_params_v0;
2051 struct lightbar_params_v1 set_params_v1;
2052
2053 struct lightbar_params_v2_timing set_v2par_timing;
2054 struct lightbar_params_v2_tap set_v2par_tap;
2055 struct lightbar_params_v2_oscillation set_v2par_osc;
2056 struct lightbar_params_v2_brightness set_v2par_bright;
2057 struct lightbar_params_v2_thresholds set_v2par_thlds;
2058 struct lightbar_params_v2_colors set_v2par_colors;
2059
2060 struct lightbar_program set_program;
2061 };
2062} __ec_todo_packed;
2063
2064struct ec_response_lightbar {
2065 union {
2066 struct __ec_todo_unpacked {
2067 struct __ec_todo_unpacked {
2068 uint8_t reg;
2069 uint8_t ic0;
2070 uint8_t ic1;
2071 } vals[23];
2072 } dump;
2073
2074 struct __ec_todo_unpacked {
2075 uint8_t num;
2076 } get_seq, get_brightness, get_demo;
2077
2078 struct lightbar_params_v0 get_params_v0;
2079 struct lightbar_params_v1 get_params_v1;
2080
2081
2082 struct lightbar_params_v2_timing get_params_v2_timing;
2083 struct lightbar_params_v2_tap get_params_v2_tap;
2084 struct lightbar_params_v2_oscillation get_params_v2_osc;
2085 struct lightbar_params_v2_brightness get_params_v2_bright;
2086 struct lightbar_params_v2_thresholds get_params_v2_thlds;
2087 struct lightbar_params_v2_colors get_params_v2_colors;
2088
2089 struct __ec_todo_unpacked {
2090 uint32_t num;
2091 uint32_t flags;
2092 } version;
2093
2094 struct __ec_todo_unpacked {
2095 uint8_t red, green, blue;
2096 } get_rgb;
2097
2098 /*
2099 * The following commands have no response:
2100 *
2101 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2102 * set_params_v0, set_params_v1, set_program,
2103 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2104 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2105 * set_v2par_thlds, set_v2par_colors
2106 */
2107 };
2108} __ec_todo_packed;
2109
2110/* Lightbar commands */
2111enum lightbar_command {
2112 LIGHTBAR_CMD_DUMP = 0,
2113 LIGHTBAR_CMD_OFF = 1,
2114 LIGHTBAR_CMD_ON = 2,
2115 LIGHTBAR_CMD_INIT = 3,
2116 LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2117 LIGHTBAR_CMD_SEQ = 5,
2118 LIGHTBAR_CMD_REG = 6,
2119 LIGHTBAR_CMD_SET_RGB = 7,
2120 LIGHTBAR_CMD_GET_SEQ = 8,
2121 LIGHTBAR_CMD_DEMO = 9,
2122 LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2123 LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2124 LIGHTBAR_CMD_VERSION = 12,
2125 LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2126 LIGHTBAR_CMD_GET_RGB = 14,
2127 LIGHTBAR_CMD_GET_DEMO = 15,
2128 LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2129 LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2130 LIGHTBAR_CMD_SET_PROGRAM = 18,
2131 LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2132 LIGHTBAR_CMD_SUSPEND = 20,
2133 LIGHTBAR_CMD_RESUME = 21,
2134 LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2135 LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2136 LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2137 LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2138 LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2139 LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2140 LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2141 LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2142 LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2143 LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2144 LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2145 LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2146 LIGHTBAR_NUM_CMDS
2147};
2148
2149/*****************************************************************************/
2150/* LED control commands */
2151
2152#define EC_CMD_LED_CONTROL 0x0029
2153
2154enum ec_led_id {
2155 /* LED to indicate battery state of charge */
2156 EC_LED_ID_BATTERY_LED = 0,
2157 /*
2158 * LED to indicate system power state (on or in suspend).
2159 * May be on power button or on C-panel.
2160 */
2161 EC_LED_ID_POWER_LED,
2162 /* LED on power adapter or its plug */
2163 EC_LED_ID_ADAPTER_LED,
2164 /* LED to indicate left side */
2165 EC_LED_ID_LEFT_LED,
2166 /* LED to indicate right side */
2167 EC_LED_ID_RIGHT_LED,
2168 /* LED to indicate recovery mode with HW_REINIT */
2169 EC_LED_ID_RECOVERY_HW_REINIT_LED,
2170 /* LED to indicate sysrq debug mode. */
2171 EC_LED_ID_SYSRQ_DEBUG_LED,
2172
2173 EC_LED_ID_COUNT
2174};
2175
2176/* LED control flags */
2177#define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2178#define EC_LED_FLAGS_AUTO BIT(1) /* Switch LED back to automatic control */
2179
2180enum ec_led_colors {
2181 EC_LED_COLOR_RED = 0,
2182 EC_LED_COLOR_GREEN,
2183 EC_LED_COLOR_BLUE,
2184 EC_LED_COLOR_YELLOW,
2185 EC_LED_COLOR_WHITE,
2186 EC_LED_COLOR_AMBER,
2187
2188 EC_LED_COLOR_COUNT
2189};
2190
2191struct ec_params_led_control {
2192 uint8_t led_id; /* Which LED to control */
2193 uint8_t flags; /* Control flags */
2194
2195 uint8_t brightness[EC_LED_COLOR_COUNT];
2196} __ec_align1;
2197
2198struct ec_response_led_control {
2199 /*
2200 * Available brightness value range.
2201 *
2202 * Range 0 means color channel not present.
2203 * Range 1 means on/off control.
2204 * Other values means the LED is control by PWM.
2205 */
2206 uint8_t brightness_range[EC_LED_COLOR_COUNT];
2207} __ec_align1;
2208
2209/*****************************************************************************/
2210/* Verified boot commands */
2211
2212/*
2213 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2214 * reused for other purposes with version > 0.
2215 */
2216
2217/* Verified boot hash command */
2218#define EC_CMD_VBOOT_HASH 0x002A
2219
2220struct ec_params_vboot_hash {
2221 uint8_t cmd; /* enum ec_vboot_hash_cmd */
2222 uint8_t hash_type; /* enum ec_vboot_hash_type */
2223 uint8_t nonce_size; /* Nonce size; may be 0 */
2224 uint8_t reserved0; /* Reserved; set 0 */
2225 uint32_t offset; /* Offset in flash to hash */
2226 uint32_t size; /* Number of bytes to hash */
2227 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */
2228} __ec_align4;
2229
2230struct ec_response_vboot_hash {
2231 uint8_t status; /* enum ec_vboot_hash_status */
2232 uint8_t hash_type; /* enum ec_vboot_hash_type */
2233 uint8_t digest_size; /* Size of hash digest in bytes */
2234 uint8_t reserved0; /* Ignore; will be 0 */
2235 uint32_t offset; /* Offset in flash which was hashed */
2236 uint32_t size; /* Number of bytes hashed */
2237 uint8_t hash_digest[64]; /* Hash digest data */
2238} __ec_align4;
2239
2240enum ec_vboot_hash_cmd {
2241 EC_VBOOT_HASH_GET = 0, /* Get current hash status */
2242 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */
2243 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */
2244 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */
2245};
2246
2247enum ec_vboot_hash_type {
2248 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2249};
2250
2251enum ec_vboot_hash_status {
2252 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2253 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2254 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2255};
2256
2257/*
2258 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2259 * If one of these is specified, the EC will automatically update offset and
2260 * size to the correct values for the specified image (RO or RW).
2261 */
2262#define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
2263#define EC_VBOOT_HASH_OFFSET_ACTIVE 0xfffffffd
2264#define EC_VBOOT_HASH_OFFSET_UPDATE 0xfffffffc
2265
2266/*
2267 * 'RW' is vague if there are multiple RW images; we mean the active one,
2268 * so the old constant is deprecated.
2269 */
2270#define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2271
2272/*****************************************************************************/
2273/*
2274 * Motion sense commands. We'll make separate structs for sub-commands with
2275 * different input args, so that we know how much to expect.
2276 */
2277#define EC_CMD_MOTION_SENSE_CMD 0x002B
2278
2279/* Motion sense commands */
2280enum motionsense_command {
2281 /*
2282 * Dump command returns all motion sensor data including motion sense
2283 * module flags and individual sensor flags.
2284 */
2285 MOTIONSENSE_CMD_DUMP = 0,
2286
2287 /*
2288 * Info command returns data describing the details of a given sensor,
2289 * including enum motionsensor_type, enum motionsensor_location, and
2290 * enum motionsensor_chip.
2291 */
2292 MOTIONSENSE_CMD_INFO = 1,
2293
2294 /*
2295 * EC Rate command is a setter/getter command for the EC sampling rate
2296 * in milliseconds.
2297 * It is per sensor, the EC run sample task at the minimum of all
2298 * sensors EC_RATE.
2299 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2300 * to collect all the sensor samples.
2301 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2302 * to process of all motion sensors in milliseconds.
2303 */
2304 MOTIONSENSE_CMD_EC_RATE = 2,
2305
2306 /*
2307 * Sensor ODR command is a setter/getter command for the output data
2308 * rate of a specific motion sensor in millihertz.
2309 */
2310 MOTIONSENSE_CMD_SENSOR_ODR = 3,
2311
2312 /*
2313 * Sensor range command is a setter/getter command for the range of
2314 * a specified motion sensor in +/-G's or +/- deg/s.
2315 */
2316 MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2317
2318 /*
2319 * Setter/getter command for the keyboard wake angle. When the lid
2320 * angle is greater than this value, keyboard wake is disabled in S3,
2321 * and when the lid angle goes less than this value, keyboard wake is
2322 * enabled. Note, the lid angle measurement is an approximate,
2323 * un-calibrated value, hence the wake angle isn't exact.
2324 */
2325 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2326
2327 /*
2328 * Returns a single sensor data.
2329 */
2330 MOTIONSENSE_CMD_DATA = 6,
2331
2332 /*
2333 * Return sensor fifo info.
2334 */
2335 MOTIONSENSE_CMD_FIFO_INFO = 7,
2336
2337 /*
2338 * Insert a flush element in the fifo and return sensor fifo info.
2339 * The host can use that element to synchronize its operation.
2340 */
2341 MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2342
2343 /*
2344 * Return a portion of the fifo.
2345 */
2346 MOTIONSENSE_CMD_FIFO_READ = 9,
2347
2348 /*
2349 * Perform low level calibration.
2350 * On sensors that support it, ask to do offset calibration.
2351 */
2352 MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2353
2354 /*
2355 * Sensor Offset command is a setter/getter command for the offset
2356 * used for calibration.
2357 * The offsets can be calculated by the host, or via
2358 * PERFORM_CALIB command.
2359 */
2360 MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2361
2362 /*
2363 * List available activities for a MOTION sensor.
2364 * Indicates if they are enabled or disabled.
2365 */
2366 MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2367
2368 /*
2369 * Activity management
2370 * Enable/Disable activity recognition.
2371 */
2372 MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2373
2374 /*
2375 * Lid Angle
2376 */
2377 MOTIONSENSE_CMD_LID_ANGLE = 14,
2378
2379 /*
2380 * Allow the FIFO to trigger interrupt via MKBP events.
2381 * By default the FIFO does not send interrupt to process the FIFO
2382 * until the AP is ready or it is coming from a wakeup sensor.
2383 */
2384 MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2385
2386 /*
2387 * Spoof the readings of the sensors. The spoofed readings can be set
2388 * to arbitrary values, or will lock to the last read actual values.
2389 */
2390 MOTIONSENSE_CMD_SPOOF = 16,
2391
2392 /* Set lid angle for tablet mode detection. */
2393 MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2394
2395 /*
2396 * Sensor Scale command is a setter/getter command for the calibration
2397 * scale.
2398 */
2399 MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2400
2401 /*
2402 * Activity management
2403 * Retrieve current status of given activity.
2404 */
2405 MOTIONSENSE_CMD_GET_ACTIVITY = 20,
2406
2407 /* Number of motionsense sub-commands. */
2408 MOTIONSENSE_NUM_CMDS
2409};
2410
2411/* List of motion sensor types. */
2412enum motionsensor_type {
2413 MOTIONSENSE_TYPE_ACCEL = 0,
2414 MOTIONSENSE_TYPE_GYRO = 1,
2415 MOTIONSENSE_TYPE_MAG = 2,
2416 MOTIONSENSE_TYPE_PROX = 3,
2417 MOTIONSENSE_TYPE_LIGHT = 4,
2418 MOTIONSENSE_TYPE_ACTIVITY = 5,
2419 MOTIONSENSE_TYPE_BARO = 6,
2420 MOTIONSENSE_TYPE_SYNC = 7,
2421 MOTIONSENSE_TYPE_MAX,
2422};
2423
2424/* List of motion sensor locations. */
2425enum motionsensor_location {
2426 MOTIONSENSE_LOC_BASE = 0,
2427 MOTIONSENSE_LOC_LID = 1,
2428 MOTIONSENSE_LOC_CAMERA = 2,
2429 MOTIONSENSE_LOC_MAX,
2430};
2431
2432/* List of motion sensor chips. */
2433enum motionsensor_chip {
2434 MOTIONSENSE_CHIP_KXCJ9 = 0,
2435 MOTIONSENSE_CHIP_LSM6DS0 = 1,
2436 MOTIONSENSE_CHIP_BMI160 = 2,
2437 MOTIONSENSE_CHIP_SI1141 = 3,
2438 MOTIONSENSE_CHIP_SI1142 = 4,
2439 MOTIONSENSE_CHIP_SI1143 = 5,
2440 MOTIONSENSE_CHIP_KX022 = 6,
2441 MOTIONSENSE_CHIP_L3GD20H = 7,
2442 MOTIONSENSE_CHIP_BMA255 = 8,
2443 MOTIONSENSE_CHIP_BMP280 = 9,
2444 MOTIONSENSE_CHIP_OPT3001 = 10,
2445 MOTIONSENSE_CHIP_BH1730 = 11,
2446 MOTIONSENSE_CHIP_GPIO = 12,
2447 MOTIONSENSE_CHIP_LIS2DH = 13,
2448 MOTIONSENSE_CHIP_LSM6DSM = 14,
2449 MOTIONSENSE_CHIP_LIS2DE = 15,
2450 MOTIONSENSE_CHIP_LIS2MDL = 16,
2451 MOTIONSENSE_CHIP_LSM6DS3 = 17,
2452 MOTIONSENSE_CHIP_LSM6DSO = 18,
2453 MOTIONSENSE_CHIP_LNG2DM = 19,
2454 MOTIONSENSE_CHIP_MAX,
2455};
2456
2457/* List of orientation positions */
2458enum motionsensor_orientation {
2459 MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2460 MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2461 MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2462 MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2463 MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2464};
2465
2466struct ec_response_activity_data {
2467 uint8_t activity; /* motionsensor_activity */
2468 uint8_t state;
2469} __ec_todo_packed;
2470
2471struct ec_response_motion_sensor_data {
2472 /* Flags for each sensor. */
2473 uint8_t flags;
2474 /* Sensor number the data comes from. */
2475 uint8_t sensor_num;
2476 /* Each sensor is up to 3-axis. */
2477 union {
2478 int16_t data[3];
2479 struct __ec_todo_packed {
2480 uint16_t reserved;
2481 uint32_t timestamp;
2482 };
2483 struct __ec_todo_unpacked {
2484 struct ec_response_activity_data activity_data;
2485 int16_t add_info[2];
2486 };
2487 };
2488} __ec_todo_packed;
2489
2490/* Note: used in ec_response_get_next_data */
2491struct ec_response_motion_sense_fifo_info {
2492 /* Size of the fifo */
2493 uint16_t size;
2494 /* Amount of space used in the fifo */
2495 uint16_t count;
2496 /* Timestamp recorded in us.
2497 * aka accurate timestamp when host event was triggered.
2498 */
2499 uint32_t timestamp;
2500 /* Total amount of vector lost */
2501 uint16_t total_lost;
2502 /* Lost events since the last fifo_info, per sensors */
2503 uint16_t lost[];
2504} __ec_todo_packed;
2505
2506struct ec_response_motion_sense_fifo_data {
2507 uint32_t number_data;
2508 struct ec_response_motion_sensor_data data[];
2509} __ec_todo_packed;
2510
2511/* List supported activity recognition */
2512enum motionsensor_activity {
2513 MOTIONSENSE_ACTIVITY_RESERVED = 0,
2514 MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2515 MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2516 MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2517 MOTIONSENSE_ACTIVITY_BODY_DETECTION = 4,
2518};
2519
2520struct ec_motion_sense_activity {
2521 uint8_t sensor_num;
2522 uint8_t activity; /* one of enum motionsensor_activity */
2523 uint8_t enable; /* 1: enable, 0: disable */
2524 uint8_t reserved;
2525 uint16_t parameters[3]; /* activity dependent parameters */
2526} __ec_todo_unpacked;
2527
2528/* Module flag masks used for the dump sub-command. */
2529#define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2530
2531/* Sensor flag masks used for the dump sub-command. */
2532#define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2533
2534/*
2535 * Flush entry for synchronization.
2536 * data contains time stamp
2537 */
2538#define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2539#define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2540#define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2541#define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2542#define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2543
2544/*
2545 * Send this value for the data element to only perform a read. If you
2546 * send any other value, the EC will interpret it as data to set and will
2547 * return the actual value set.
2548 */
2549#define EC_MOTION_SENSE_NO_VALUE -1
2550
2551#define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2552
2553/* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2554/* Set Calibration information */
2555#define MOTION_SENSE_SET_OFFSET BIT(0)
2556
2557/* Default Scale value, factor 1. */
2558#define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2559
2560#define LID_ANGLE_UNRELIABLE 500
2561
2562enum motionsense_spoof_mode {
2563 /* Disable spoof mode. */
2564 MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2565
2566 /* Enable spoof mode, but use provided component values. */
2567 MOTIONSENSE_SPOOF_MODE_CUSTOM,
2568
2569 /* Enable spoof mode, but use the current sensor values. */
2570 MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2571
2572 /* Query the current spoof mode status for the sensor. */
2573 MOTIONSENSE_SPOOF_MODE_QUERY,
2574};
2575
2576struct ec_params_motion_sense {
2577 uint8_t cmd;
2578 union {
2579 /* Used for MOTIONSENSE_CMD_DUMP. */
2580 struct __ec_todo_unpacked {
2581 /*
2582 * Maximal number of sensor the host is expecting.
2583 * 0 means the host is only interested in the number
2584 * of sensors controlled by the EC.
2585 */
2586 uint8_t max_sensor_count;
2587 } dump;
2588
2589 /*
2590 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2591 */
2592 struct __ec_todo_unpacked {
2593 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2594 * kb_wake_angle: angle to wakup AP.
2595 */
2596 int16_t data;
2597 } kb_wake_angle;
2598
2599 /*
2600 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2601 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2602 */
2603 struct __ec_todo_unpacked {
2604 uint8_t sensor_num;
2605 } info, info_3, data, fifo_flush, perform_calib,
2606 list_activities;
2607
2608 /*
2609 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2610 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2611 */
2612 struct __ec_todo_unpacked {
2613 uint8_t sensor_num;
2614
2615 /* Rounding flag, true for round-up, false for down. */
2616 uint8_t roundup;
2617
2618 uint16_t reserved;
2619
2620 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2621 int32_t data;
2622 } ec_rate, sensor_odr, sensor_range;
2623
2624 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2625 struct __ec_todo_packed {
2626 uint8_t sensor_num;
2627
2628 /*
2629 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2630 * the calibration information in the EC.
2631 * If unset, just retrieve calibration information.
2632 */
2633 uint16_t flags;
2634
2635 /*
2636 * Temperature at calibration, in units of 0.01 C
2637 * 0x8000: invalid / unknown.
2638 * 0x0: 0C
2639 * 0x7fff: +327.67C
2640 */
2641 int16_t temp;
2642
2643 /*
2644 * Offset for calibration.
2645 * Unit:
2646 * Accelerometer: 1/1024 g
2647 * Gyro: 1/1024 deg/s
2648 * Compass: 1/16 uT
2649 */
2650 int16_t offset[3];
2651 } sensor_offset;
2652
2653 /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2654 struct __ec_todo_packed {
2655 uint8_t sensor_num;
2656
2657 /*
2658 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2659 * the calibration information in the EC.
2660 * If unset, just retrieve calibration information.
2661 */
2662 uint16_t flags;
2663
2664 /*
2665 * Temperature at calibration, in units of 0.01 C
2666 * 0x8000: invalid / unknown.
2667 * 0x0: 0C
2668 * 0x7fff: +327.67C
2669 */
2670 int16_t temp;
2671
2672 /*
2673 * Scale for calibration:
2674 * By default scale is 1, it is encoded on 16bits:
2675 * 1 = BIT(15)
2676 * ~2 = 0xFFFF
2677 * ~0 = 0.
2678 */
2679 uint16_t scale[3];
2680 } sensor_scale;
2681
2682
2683 /* Used for MOTIONSENSE_CMD_FIFO_INFO */
2684 /* (no params) */
2685
2686 /* Used for MOTIONSENSE_CMD_FIFO_READ */
2687 struct __ec_todo_unpacked {
2688 /*
2689 * Number of expected vector to return.
2690 * EC may return less or 0 if none available.
2691 */
2692 uint32_t max_data_vector;
2693 } fifo_read;
2694
2695 /* Used for MOTIONSENSE_CMD_SET_ACTIVITY */
2696 struct ec_motion_sense_activity set_activity;
2697
2698 /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2699 /* (no params) */
2700
2701 /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2702 struct __ec_todo_unpacked {
2703 /*
2704 * 1: enable, 0 disable fifo,
2705 * EC_MOTION_SENSE_NO_VALUE return value.
2706 */
2707 int8_t enable;
2708 } fifo_int_enable;
2709
2710 /* Used for MOTIONSENSE_CMD_SPOOF */
2711 struct __ec_todo_packed {
2712 uint8_t sensor_id;
2713
2714 /* See enum motionsense_spoof_mode. */
2715 uint8_t spoof_enable;
2716
2717 /* Ignored, used for alignment. */
2718 uint8_t reserved;
2719
2720 /* Individual component values to spoof. */
2721 int16_t components[3];
2722 } spoof;
2723
2724 /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2725 struct __ec_todo_unpacked {
2726 /*
2727 * Lid angle threshold for switching between tablet and
2728 * clamshell mode.
2729 */
2730 int16_t lid_angle;
2731
2732 /*
2733 * Hysteresis degree to prevent fluctuations between
2734 * clamshell and tablet mode if lid angle keeps
2735 * changing around the threshold. Lid motion driver will
2736 * use lid_angle + hys_degree to trigger tablet mode and
2737 * lid_angle - hys_degree to trigger clamshell mode.
2738 */
2739 int16_t hys_degree;
2740 } tablet_mode_threshold;
2741
2742 /* Used for MOTIONSENSE_CMD_GET_ACTIVITY */
2743 struct __ec_todo_unpacked {
2744 uint8_t sensor_num;
2745 uint8_t activity; /* enum motionsensor_activity */
2746 } get_activity;
2747 };
2748} __ec_todo_packed;
2749
2750struct ec_response_motion_sense {
2751 union {
2752 /* Used for MOTIONSENSE_CMD_DUMP */
2753 struct __ec_todo_unpacked {
2754 /* Flags representing the motion sensor module. */
2755 uint8_t module_flags;
2756
2757 /* Number of sensors managed directly by the EC. */
2758 uint8_t sensor_count;
2759
2760 /*
2761 * Sensor data is truncated if response_max is too small
2762 * for holding all the data.
2763 */
2764 DECLARE_FLEX_ARRAY(struct ec_response_motion_sensor_data, sensor);
2765 } dump;
2766
2767 /* Used for MOTIONSENSE_CMD_INFO. */
2768 struct __ec_todo_unpacked {
2769 /* Should be element of enum motionsensor_type. */
2770 uint8_t type;
2771
2772 /* Should be element of enum motionsensor_location. */
2773 uint8_t location;
2774
2775 /* Should be element of enum motionsensor_chip. */
2776 uint8_t chip;
2777 } info;
2778
2779 /* Used for MOTIONSENSE_CMD_INFO version 3 */
2780 struct __ec_todo_unpacked {
2781 /* Should be element of enum motionsensor_type. */
2782 uint8_t type;
2783
2784 /* Should be element of enum motionsensor_location. */
2785 uint8_t location;
2786
2787 /* Should be element of enum motionsensor_chip. */
2788 uint8_t chip;
2789
2790 /* Minimum sensor sampling frequency */
2791 uint32_t min_frequency;
2792
2793 /* Maximum sensor sampling frequency */
2794 uint32_t max_frequency;
2795
2796 /* Max number of sensor events that could be in fifo */
2797 uint32_t fifo_max_event_count;
2798 } info_3;
2799
2800 /* Used for MOTIONSENSE_CMD_DATA */
2801 struct ec_response_motion_sensor_data data;
2802
2803 /*
2804 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2805 * MOTIONSENSE_CMD_SENSOR_RANGE,
2806 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2807 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2808 * MOTIONSENSE_CMD_SPOOF.
2809 */
2810 struct __ec_todo_unpacked {
2811 /* Current value of the parameter queried. */
2812 int32_t ret;
2813 } ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2814 fifo_int_enable, spoof;
2815
2816 /*
2817 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2818 * PERFORM_CALIB.
2819 */
2820 struct __ec_todo_unpacked {
2821 int16_t temp;
2822 int16_t offset[3];
2823 } sensor_offset, perform_calib;
2824
2825 /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2826 struct __ec_todo_unpacked {
2827 int16_t temp;
2828 uint16_t scale[3];
2829 } sensor_scale;
2830
2831 struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2832
2833 struct ec_response_motion_sense_fifo_data fifo_read;
2834
2835 struct __ec_todo_packed {
2836 uint16_t reserved;
2837 uint32_t enabled;
2838 uint32_t disabled;
2839 } list_activities;
2840
2841 /* No params for set activity */
2842
2843 /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2844 struct __ec_todo_unpacked {
2845 /*
2846 * Angle between 0 and 360 degree if available,
2847 * LID_ANGLE_UNRELIABLE otherwise.
2848 */
2849 uint16_t value;
2850 } lid_angle;
2851
2852 /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2853 struct __ec_todo_unpacked {
2854 /*
2855 * Lid angle threshold for switching between tablet and
2856 * clamshell mode.
2857 */
2858 uint16_t lid_angle;
2859
2860 /* Hysteresis degree. */
2861 uint16_t hys_degree;
2862 } tablet_mode_threshold;
2863
2864 /* USED for MOTIONSENSE_CMD_GET_ACTIVITY. */
2865 struct __ec_todo_unpacked {
2866 uint8_t state;
2867 } get_activity;
2868 };
2869} __ec_todo_packed;
2870
2871/*****************************************************************************/
2872/* Force lid open command */
2873
2874/* Make lid event always open */
2875#define EC_CMD_FORCE_LID_OPEN 0x002C
2876
2877struct ec_params_force_lid_open {
2878 uint8_t enabled;
2879} __ec_align1;
2880
2881/*****************************************************************************/
2882/* Configure the behavior of the power button */
2883#define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2884
2885enum ec_config_power_button_flags {
2886 /* Enable/Disable power button pulses for x86 devices */
2887 EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2888};
2889
2890struct ec_params_config_power_button {
2891 /* See enum ec_config_power_button_flags */
2892 uint8_t flags;
2893} __ec_align1;
2894
2895/*****************************************************************************/
2896/* USB charging control commands */
2897
2898/* Set USB port charging mode */
2899#define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2900
2901struct ec_params_usb_charge_set_mode {
2902 uint8_t usb_port_id;
2903 uint8_t mode:7;
2904 uint8_t inhibit_charge:1;
2905} __ec_align1;
2906
2907/*****************************************************************************/
2908/* Persistent storage for host */
2909
2910/* Maximum bytes that can be read/written in a single command */
2911#define EC_PSTORE_SIZE_MAX 64
2912
2913/* Get persistent storage info */
2914#define EC_CMD_PSTORE_INFO 0x0040
2915
2916struct ec_response_pstore_info {
2917 /* Persistent storage size, in bytes */
2918 uint32_t pstore_size;
2919 /* Access size; read/write offset and size must be a multiple of this */
2920 uint32_t access_size;
2921} __ec_align4;
2922
2923/*
2924 * Read persistent storage
2925 *
2926 * Response is params.size bytes of data.
2927 */
2928#define EC_CMD_PSTORE_READ 0x0041
2929
2930struct ec_params_pstore_read {
2931 uint32_t offset; /* Byte offset to read */
2932 uint32_t size; /* Size to read in bytes */
2933} __ec_align4;
2934
2935/* Write persistent storage */
2936#define EC_CMD_PSTORE_WRITE 0x0042
2937
2938struct ec_params_pstore_write {
2939 uint32_t offset; /* Byte offset to write */
2940 uint32_t size; /* Size to write in bytes */
2941 uint8_t data[EC_PSTORE_SIZE_MAX];
2942} __ec_align4;
2943
2944/*****************************************************************************/
2945/* Real-time clock */
2946
2947/* RTC params and response structures */
2948struct ec_params_rtc {
2949 uint32_t time;
2950} __ec_align4;
2951
2952struct ec_response_rtc {
2953 uint32_t time;
2954} __ec_align4;
2955
2956/* These use ec_response_rtc */
2957#define EC_CMD_RTC_GET_VALUE 0x0044
2958#define EC_CMD_RTC_GET_ALARM 0x0045
2959
2960/* These all use ec_params_rtc */
2961#define EC_CMD_RTC_SET_VALUE 0x0046
2962#define EC_CMD_RTC_SET_ALARM 0x0047
2963
2964/* Pass as time param to SET_ALARM to clear the current alarm */
2965#define EC_RTC_ALARM_CLEAR 0
2966
2967/*****************************************************************************/
2968/* Port80 log access */
2969
2970/* Maximum entries that can be read/written in a single command */
2971#define EC_PORT80_SIZE_MAX 32
2972
2973/* Get last port80 code from previous boot */
2974#define EC_CMD_PORT80_LAST_BOOT 0x0048
2975#define EC_CMD_PORT80_READ 0x0048
2976
2977enum ec_port80_subcmd {
2978 EC_PORT80_GET_INFO = 0,
2979 EC_PORT80_READ_BUFFER,
2980};
2981
2982struct ec_params_port80_read {
2983 uint16_t subcmd;
2984 union {
2985 struct __ec_todo_unpacked {
2986 uint32_t offset;
2987 uint32_t num_entries;
2988 } read_buffer;
2989 };
2990} __ec_todo_packed;
2991
2992struct ec_response_port80_read {
2993 union {
2994 struct __ec_todo_unpacked {
2995 uint32_t writes;
2996 uint32_t history_size;
2997 uint32_t last_boot;
2998 } get_info;
2999 struct __ec_todo_unpacked {
3000 uint16_t codes[EC_PORT80_SIZE_MAX];
3001 } data;
3002 };
3003} __ec_todo_packed;
3004
3005struct ec_response_port80_last_boot {
3006 uint16_t code;
3007} __ec_align2;
3008
3009/*****************************************************************************/
3010/* Temporary secure storage for host verified boot use */
3011
3012/* Number of bytes in a vstore slot */
3013#define EC_VSTORE_SLOT_SIZE 64
3014
3015/* Maximum number of vstore slots */
3016#define EC_VSTORE_SLOT_MAX 32
3017
3018/* Get persistent storage info */
3019#define EC_CMD_VSTORE_INFO 0x0049
3020struct ec_response_vstore_info {
3021 /* Indicates which slots are locked */
3022 uint32_t slot_locked;
3023 /* Total number of slots available */
3024 uint8_t slot_count;
3025} __ec_align_size1;
3026
3027/*
3028 * Read temporary secure storage
3029 *
3030 * Response is EC_VSTORE_SLOT_SIZE bytes of data.
3031 */
3032#define EC_CMD_VSTORE_READ 0x004A
3033
3034struct ec_params_vstore_read {
3035 uint8_t slot; /* Slot to read from */
3036} __ec_align1;
3037
3038struct ec_response_vstore_read {
3039 uint8_t data[EC_VSTORE_SLOT_SIZE];
3040} __ec_align1;
3041
3042/*
3043 * Write temporary secure storage and lock it.
3044 */
3045#define EC_CMD_VSTORE_WRITE 0x004B
3046
3047struct ec_params_vstore_write {
3048 uint8_t slot; /* Slot to write to */
3049 uint8_t data[EC_VSTORE_SLOT_SIZE];
3050} __ec_align1;
3051
3052/*****************************************************************************/
3053/* Thermal engine commands. Note that there are two implementations. We'll
3054 * reuse the command number, but the data and behavior is incompatible.
3055 * Version 0 is what originally shipped on Link.
3056 * Version 1 separates the CPU thermal limits from the fan control.
3057 */
3058
3059#define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
3060#define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
3061
3062/* The version 0 structs are opaque. You have to know what they are for
3063 * the get/set commands to make any sense.
3064 */
3065
3066/* Version 0 - set */
3067struct ec_params_thermal_set_threshold {
3068 uint8_t sensor_type;
3069 uint8_t threshold_id;
3070 uint16_t value;
3071} __ec_align2;
3072
3073/* Version 0 - get */
3074struct ec_params_thermal_get_threshold {
3075 uint8_t sensor_type;
3076 uint8_t threshold_id;
3077} __ec_align1;
3078
3079struct ec_response_thermal_get_threshold {
3080 uint16_t value;
3081} __ec_align2;
3082
3083
3084/* The version 1 structs are visible. */
3085enum ec_temp_thresholds {
3086 EC_TEMP_THRESH_WARN = 0,
3087 EC_TEMP_THRESH_HIGH,
3088 EC_TEMP_THRESH_HALT,
3089
3090 EC_TEMP_THRESH_COUNT
3091};
3092
3093/*
3094 * Thermal configuration for one temperature sensor. Temps are in degrees K.
3095 * Zero values will be silently ignored by the thermal task.
3096 *
3097 * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3098 * hysteresis.
3099 * For example,
3100 * temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3101 * temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3102 * EC will throttle ap when temperature >= 301 K, and release throttling when
3103 * temperature <= 299 K.
3104 *
3105 * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3106 * For example,
3107 * temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3108 * temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3109 * EC will throttle ap when temperature >= 301 K, and release throttling when
3110 * temperature <= 294 K.
3111 *
3112 * Note that this structure is a sub-structure of
3113 * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3114 */
3115struct ec_thermal_config {
3116 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3117 uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3118 uint32_t temp_fan_off; /* no active cooling needed */
3119 uint32_t temp_fan_max; /* max active cooling needed */
3120} __ec_align4;
3121
3122/* Version 1 - get config for one sensor. */
3123struct ec_params_thermal_get_threshold_v1 {
3124 uint32_t sensor_num;
3125} __ec_align4;
3126/* This returns a struct ec_thermal_config */
3127
3128/*
3129 * Version 1 - set config for one sensor.
3130 * Use read-modify-write for best results!
3131 */
3132struct ec_params_thermal_set_threshold_v1 {
3133 uint32_t sensor_num;
3134 struct ec_thermal_config cfg;
3135} __ec_align4;
3136/* This returns no data */
3137
3138/****************************************************************************/
3139
3140/* Set or get fan control mode */
3141#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3142
3143enum ec_auto_fan_ctrl_cmd {
3144 EC_AUTO_FAN_CONTROL_CMD_SET = 0,
3145 EC_AUTO_FAN_CONTROL_CMD_GET,
3146};
3147
3148/* Version 1 of input params */
3149struct ec_params_auto_fan_ctrl_v1 {
3150 uint8_t fan_idx;
3151} __ec_align1;
3152
3153/* Version 2 of input params */
3154struct ec_params_auto_fan_ctrl_v2 {
3155 uint8_t fan_idx;
3156 uint8_t cmd; /* enum ec_auto_fan_ctrl_cmd */
3157 uint8_t set_auto; /* only used with EC_AUTO_FAN_CONTROL_CMD_SET - bool
3158 */
3159} __ec_align4;
3160
3161struct ec_response_auto_fan_control {
3162 uint8_t is_auto; /* bool */
3163} __ec_align1;
3164
3165/* Get/Set TMP006 calibration data */
3166#define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3167#define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3168
3169/*
3170 * The original TMP006 calibration only needed four params, but now we need
3171 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3172 * the params opaque. The v1 "get" response will include the algorithm number
3173 * and how many params it requires. That way we can change the EC code without
3174 * needing to update this file. We can also use a different algorithm on each
3175 * sensor.
3176 */
3177
3178/* This is the same struct for both v0 and v1. */
3179struct ec_params_tmp006_get_calibration {
3180 uint8_t index;
3181} __ec_align1;
3182
3183/* Version 0 */
3184struct ec_response_tmp006_get_calibration_v0 {
3185 float s0;
3186 float b0;
3187 float b1;
3188 float b2;
3189} __ec_align4;
3190
3191struct ec_params_tmp006_set_calibration_v0 {
3192 uint8_t index;
3193 uint8_t reserved[3];
3194 float s0;
3195 float b0;
3196 float b1;
3197 float b2;
3198} __ec_align4;
3199
3200/* Version 1 */
3201struct ec_response_tmp006_get_calibration_v1 {
3202 uint8_t algorithm;
3203 uint8_t num_params;
3204 uint8_t reserved[2];
3205 float val[];
3206} __ec_align4;
3207
3208struct ec_params_tmp006_set_calibration_v1 {
3209 uint8_t index;
3210 uint8_t algorithm;
3211 uint8_t num_params;
3212 uint8_t reserved;
3213 float val[];
3214} __ec_align4;
3215
3216
3217/* Read raw TMP006 data */
3218#define EC_CMD_TMP006_GET_RAW 0x0055
3219
3220struct ec_params_tmp006_get_raw {
3221 uint8_t index;
3222} __ec_align1;
3223
3224struct ec_response_tmp006_get_raw {
3225 int32_t t; /* In 1/100 K */
3226 int32_t v; /* In nV */
3227} __ec_align4;
3228
3229/*****************************************************************************/
3230/* MKBP - Matrix KeyBoard Protocol */
3231
3232/*
3233 * Read key state
3234 *
3235 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3236 * expected response size.
3237 *
3238 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish
3239 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3240 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3241 */
3242#define EC_CMD_MKBP_STATE 0x0060
3243
3244/*
3245 * Provide information about various MKBP things. See enum ec_mkbp_info_type.
3246 */
3247#define EC_CMD_MKBP_INFO 0x0061
3248
3249struct ec_response_mkbp_info {
3250 uint32_t rows;
3251 uint32_t cols;
3252 /* Formerly "switches", which was 0. */
3253 uint8_t reserved;
3254} __ec_align_size1;
3255
3256struct ec_params_mkbp_info {
3257 uint8_t info_type;
3258 uint8_t event_type;
3259} __ec_align1;
3260
3261enum ec_mkbp_info_type {
3262 /*
3263 * Info about the keyboard matrix: number of rows and columns.
3264 *
3265 * Returns struct ec_response_mkbp_info.
3266 */
3267 EC_MKBP_INFO_KBD = 0,
3268
3269 /*
3270 * For buttons and switches, info about which specifically are
3271 * supported. event_type must be set to one of the values in enum
3272 * ec_mkbp_event.
3273 *
3274 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3275 * bitmask indicating which buttons or switches are present. See the
3276 * bit inidices below.
3277 */
3278 EC_MKBP_INFO_SUPPORTED = 1,
3279
3280 /*
3281 * Instantaneous state of buttons and switches.
3282 *
3283 * event_type must be set to one of the values in enum ec_mkbp_event.
3284 *
3285 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3286 * indicating the current state of the keyboard matrix.
3287 *
3288 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3289 * event state.
3290 *
3291 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3292 * state of supported buttons.
3293 *
3294 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3295 * state of supported switches.
3296 */
3297 EC_MKBP_INFO_CURRENT = 2,
3298};
3299
3300/* Simulate key press */
3301#define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3302
3303struct ec_params_mkbp_simulate_key {
3304 uint8_t col;
3305 uint8_t row;
3306 uint8_t pressed;
3307} __ec_align1;
3308
3309#define EC_CMD_GET_KEYBOARD_ID 0x0063
3310
3311struct ec_response_keyboard_id {
3312 uint32_t keyboard_id;
3313} __ec_align4;
3314
3315enum keyboard_id {
3316 KEYBOARD_ID_UNSUPPORTED = 0,
3317 KEYBOARD_ID_UNREADABLE = 0xffffffff,
3318};
3319
3320/* Configure keyboard scanning */
3321#define EC_CMD_MKBP_SET_CONFIG 0x0064
3322#define EC_CMD_MKBP_GET_CONFIG 0x0065
3323
3324/* flags */
3325enum mkbp_config_flags {
3326 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */
3327};
3328
3329enum mkbp_config_valid {
3330 EC_MKBP_VALID_SCAN_PERIOD = BIT(0),
3331 EC_MKBP_VALID_POLL_TIMEOUT = BIT(1),
3332 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = BIT(3),
3333 EC_MKBP_VALID_OUTPUT_SETTLE = BIT(4),
3334 EC_MKBP_VALID_DEBOUNCE_DOWN = BIT(5),
3335 EC_MKBP_VALID_DEBOUNCE_UP = BIT(6),
3336 EC_MKBP_VALID_FIFO_MAX_DEPTH = BIT(7),
3337};
3338
3339/*
3340 * Configuration for our key scanning algorithm.
3341 *
3342 * Note that this is used as a sub-structure of
3343 * ec_{params/response}_mkbp_get_config.
3344 */
3345struct ec_mkbp_config {
3346 uint32_t valid_mask; /* valid fields */
3347 uint8_t flags; /* some flags (enum mkbp_config_flags) */
3348 uint8_t valid_flags; /* which flags are valid */
3349 uint16_t scan_period_us; /* period between start of scans */
3350 /* revert to interrupt mode after no activity for this long */
3351 uint32_t poll_timeout_us;
3352 /*
3353 * minimum post-scan relax time. Once we finish a scan we check
3354 * the time until we are due to start the next one. If this time is
3355 * shorter this field, we use this instead.
3356 */
3357 uint16_t min_post_scan_delay_us;
3358 /* delay between setting up output and waiting for it to settle */
3359 uint16_t output_settle_us;
3360 uint16_t debounce_down_us; /* time for debounce on key down */
3361 uint16_t debounce_up_us; /* time for debounce on key up */
3362 /* maximum depth to allow for fifo (0 = no keyscan output) */
3363 uint8_t fifo_max_depth;
3364} __ec_align_size1;
3365
3366struct ec_params_mkbp_set_config {
3367 struct ec_mkbp_config config;
3368} __ec_align_size1;
3369
3370struct ec_response_mkbp_get_config {
3371 struct ec_mkbp_config config;
3372} __ec_align_size1;
3373
3374/* Run the key scan emulation */
3375#define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3376
3377enum ec_keyscan_seq_cmd {
3378 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */
3379 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */
3380 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */
3381 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */
3382 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */
3383};
3384
3385enum ec_collect_flags {
3386 /*
3387 * Indicates this scan was processed by the EC. Due to timing, some
3388 * scans may be skipped.
3389 */
3390 EC_KEYSCAN_SEQ_FLAG_DONE = BIT(0),
3391};
3392
3393struct ec_collect_item {
3394 uint8_t flags; /* some flags (enum ec_collect_flags) */
3395} __ec_align1;
3396
3397struct ec_params_keyscan_seq_ctrl {
3398 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */
3399 union {
3400 struct __ec_align1 {
3401 uint8_t active; /* still active */
3402 uint8_t num_items; /* number of items */
3403 /* Current item being presented */
3404 uint8_t cur_item;
3405 } status;
3406 struct __ec_todo_unpacked {
3407 /*
3408 * Absolute time for this scan, measured from the
3409 * start of the sequence.
3410 */
3411 uint32_t time_us;
3412 uint8_t scan[0]; /* keyscan data */
3413 } add;
3414 struct __ec_align1 {
3415 uint8_t start_item; /* First item to return */
3416 uint8_t num_items; /* Number of items to return */
3417 } collect;
3418 };
3419} __ec_todo_packed;
3420
3421struct ec_result_keyscan_seq_ctrl {
3422 union {
3423 struct __ec_todo_unpacked {
3424 uint8_t num_items; /* Number of items */
3425 /* Data for each item */
3426 struct ec_collect_item item[0];
3427 } collect;
3428 };
3429} __ec_todo_packed;
3430
3431/*
3432 * Get the next pending MKBP event.
3433 *
3434 * Returns EC_RES_UNAVAILABLE if there is no event pending.
3435 */
3436#define EC_CMD_GET_NEXT_EVENT 0x0067
3437
3438#define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3439
3440/*
3441 * We use the most significant bit of the event type to indicate to the host
3442 * that the EC has more MKBP events available to provide.
3443 */
3444#define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3445
3446/* The mask to apply to get the raw event type */
3447#define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3448
3449enum ec_mkbp_event {
3450 /* Keyboard matrix changed. The event data is the new matrix state. */
3451 EC_MKBP_EVENT_KEY_MATRIX = 0,
3452
3453 /* New host event. The event data is 4 bytes of host event flags. */
3454 EC_MKBP_EVENT_HOST_EVENT = 1,
3455
3456 /* New Sensor FIFO data. The event data is fifo_info structure. */
3457 EC_MKBP_EVENT_SENSOR_FIFO = 2,
3458
3459 /* The state of the non-matrixed buttons have changed. */
3460 EC_MKBP_EVENT_BUTTON = 3,
3461
3462 /* The state of the switches have changed. */
3463 EC_MKBP_EVENT_SWITCH = 4,
3464
3465 /* New Fingerprint sensor event, the event data is fp_events bitmap. */
3466 EC_MKBP_EVENT_FINGERPRINT = 5,
3467
3468 /*
3469 * Sysrq event: send emulated sysrq. The event data is sysrq,
3470 * corresponding to the key to be pressed.
3471 */
3472 EC_MKBP_EVENT_SYSRQ = 6,
3473
3474 /*
3475 * New 64-bit host event.
3476 * The event data is 8 bytes of host event flags.
3477 */
3478 EC_MKBP_EVENT_HOST_EVENT64 = 7,
3479
3480 /* Notify the AP that something happened on CEC */
3481 EC_MKBP_EVENT_CEC_EVENT = 8,
3482
3483 /* Send an incoming CEC message to the AP */
3484 EC_MKBP_EVENT_CEC_MESSAGE = 9,
3485
3486 /* Peripheral device charger event */
3487 EC_MKBP_EVENT_PCHG = 12,
3488
3489 /* Number of MKBP events */
3490 EC_MKBP_EVENT_COUNT,
3491};
3492BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3493
3494union __ec_align_offset1 ec_response_get_next_data {
3495 uint8_t key_matrix[13];
3496
3497 /* Unaligned */
3498 uint32_t host_event;
3499 uint64_t host_event64;
3500
3501 struct __ec_todo_unpacked {
3502 /* For aligning the fifo_info */
3503 uint8_t reserved[3];
3504 struct ec_response_motion_sense_fifo_info info;
3505 } sensor_fifo;
3506
3507 uint32_t buttons;
3508
3509 uint32_t switches;
3510
3511 uint32_t fp_events;
3512
3513 uint32_t sysrq;
3514
3515 /* CEC events from enum mkbp_cec_event */
3516 uint32_t cec_events;
3517};
3518
3519union __ec_align_offset1 ec_response_get_next_data_v1 {
3520 uint8_t key_matrix[16];
3521
3522 /* Unaligned */
3523 uint32_t host_event;
3524 uint64_t host_event64;
3525
3526 struct __ec_todo_unpacked {
3527 /* For aligning the fifo_info */
3528 uint8_t reserved[3];
3529 struct ec_response_motion_sense_fifo_info info;
3530 } sensor_fifo;
3531
3532 uint32_t buttons;
3533
3534 uint32_t switches;
3535
3536 uint32_t fp_events;
3537
3538 uint32_t sysrq;
3539
3540 /* CEC events from enum mkbp_cec_event */
3541 uint32_t cec_events;
3542
3543 uint8_t cec_message[16];
3544};
3545BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3546
3547union __ec_align_offset1 ec_response_get_next_data_v3 {
3548 uint8_t key_matrix[18];
3549
3550 /* Unaligned */
3551 uint32_t host_event;
3552 uint64_t host_event64;
3553
3554 struct __ec_todo_unpacked {
3555 /* For aligning the fifo_info */
3556 uint8_t reserved[3];
3557 struct ec_response_motion_sense_fifo_info info;
3558 } sensor_fifo;
3559
3560 uint32_t buttons;
3561
3562 uint32_t switches;
3563
3564 uint32_t fp_events;
3565
3566 uint32_t sysrq;
3567
3568 /* CEC events from enum mkbp_cec_event */
3569 uint32_t cec_events;
3570
3571 uint8_t cec_message[16];
3572};
3573BUILD_ASSERT(sizeof(union ec_response_get_next_data_v3) == 18);
3574
3575struct ec_response_get_next_event {
3576 uint8_t event_type;
3577 /* Followed by event data if any */
3578 union ec_response_get_next_data data;
3579} __ec_align1;
3580
3581struct ec_response_get_next_event_v1 {
3582 uint8_t event_type;
3583 /* Followed by event data if any */
3584 union ec_response_get_next_data_v1 data;
3585} __ec_align1;
3586
3587struct ec_response_get_next_event_v3 {
3588 uint8_t event_type;
3589 /* Followed by event data if any */
3590 union ec_response_get_next_data_v3 data;
3591} __ec_align1;
3592
3593/* Bit indices for buttons and switches.*/
3594/* Buttons */
3595#define EC_MKBP_POWER_BUTTON 0
3596#define EC_MKBP_VOL_UP 1
3597#define EC_MKBP_VOL_DOWN 2
3598#define EC_MKBP_RECOVERY 3
3599#define EC_MKBP_BRI_UP 4
3600#define EC_MKBP_BRI_DOWN 5
3601#define EC_MKBP_SCREEN_LOCK 6
3602
3603/* Switches */
3604#define EC_MKBP_LID_OPEN 0
3605#define EC_MKBP_TABLET_MODE 1
3606#define EC_MKBP_BASE_ATTACHED 2
3607#define EC_MKBP_FRONT_PROXIMITY 3
3608
3609/* Run keyboard factory test scanning */
3610#define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3611
3612struct ec_response_keyboard_factory_test {
3613 uint16_t shorted; /* Keyboard pins are shorted */
3614} __ec_align2;
3615
3616/* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3617#define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3618#define EC_MKBP_FP_ERRCODE(fp_events) ((fp_events) & 0x0000000F)
3619#define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3620#define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3621 >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3622#define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3623#define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3624#define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3625 >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3626#define EC_MKBP_FP_ENROLL BIT(27)
3627#define EC_MKBP_FP_MATCH BIT(28)
3628#define EC_MKBP_FP_FINGER_DOWN BIT(29)
3629#define EC_MKBP_FP_FINGER_UP BIT(30)
3630#define EC_MKBP_FP_IMAGE_READY BIT(31)
3631/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3632#define EC_MKBP_FP_ERR_ENROLL_OK 0
3633#define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY 1
3634#define EC_MKBP_FP_ERR_ENROLL_IMMOBILE 2
3635#define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE 3
3636#define EC_MKBP_FP_ERR_ENROLL_INTERNAL 5
3637/* Can be used to detect if image was usable for enrollment or not. */
3638#define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK 1
3639/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3640#define EC_MKBP_FP_ERR_MATCH_NO 0
3641#define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL 6
3642#define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES 7
3643#define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY 2
3644#define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE 4
3645#define EC_MKBP_FP_ERR_MATCH_YES 1
3646#define EC_MKBP_FP_ERR_MATCH_YES_UPDATED 3
3647#define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3648
3649
3650/*****************************************************************************/
3651/* Temperature sensor commands */
3652
3653/* Read temperature sensor info */
3654#define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3655
3656struct ec_params_temp_sensor_get_info {
3657 uint8_t id;
3658} __ec_align1;
3659
3660struct ec_response_temp_sensor_get_info {
3661 char sensor_name[32];
3662 uint8_t sensor_type;
3663} __ec_align1;
3664
3665/*****************************************************************************/
3666
3667/*
3668 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3669 * commands accidentally sent to the wrong interface. See the ACPI section
3670 * below.
3671 */
3672
3673/*****************************************************************************/
3674/* Host event commands */
3675
3676
3677/* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3678/*
3679 * Host event mask params and response structures, shared by all of the host
3680 * event commands below.
3681 */
3682struct ec_params_host_event_mask {
3683 uint32_t mask;
3684} __ec_align4;
3685
3686struct ec_response_host_event_mask {
3687 uint32_t mask;
3688} __ec_align4;
3689
3690/* These all use ec_response_host_event_mask */
3691#define EC_CMD_HOST_EVENT_GET_B 0x0087
3692#define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x0088
3693#define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x0089
3694#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3695
3696/* These all use ec_params_host_event_mask */
3697#define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x008A
3698#define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x008B
3699#define EC_CMD_HOST_EVENT_CLEAR 0x008C
3700#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3701#define EC_CMD_HOST_EVENT_CLEAR_B 0x008F
3702
3703/*
3704 * Unified host event programming interface - Should be used by newer versions
3705 * of BIOS/OS to program host events and masks
3706 */
3707
3708struct ec_params_host_event {
3709
3710 /* Action requested by host - one of enum ec_host_event_action. */
3711 uint8_t action;
3712
3713 /*
3714 * Mask type that the host requested the action on - one of
3715 * enum ec_host_event_mask_type.
3716 */
3717 uint8_t mask_type;
3718
3719 /* Set to 0, ignore on read */
3720 uint16_t reserved;
3721
3722 /* Value to be used in case of set operations. */
3723 uint64_t value;
3724} __ec_align4;
3725
3726/*
3727 * Response structure returned by EC_CMD_HOST_EVENT.
3728 * Update the value on a GET request. Set to 0 on GET/CLEAR
3729 */
3730
3731struct ec_response_host_event {
3732
3733 /* Mask value in case of get operation */
3734 uint64_t value;
3735} __ec_align4;
3736
3737enum ec_host_event_action {
3738 /*
3739 * params.value is ignored. Value of mask_type populated
3740 * in response.value
3741 */
3742 EC_HOST_EVENT_GET,
3743
3744 /* Bits in params.value are set */
3745 EC_HOST_EVENT_SET,
3746
3747 /* Bits in params.value are cleared */
3748 EC_HOST_EVENT_CLEAR,
3749};
3750
3751enum ec_host_event_mask_type {
3752
3753 /* Main host event copy */
3754 EC_HOST_EVENT_MAIN,
3755
3756 /* Copy B of host events */
3757 EC_HOST_EVENT_B,
3758
3759 /* SCI Mask */
3760 EC_HOST_EVENT_SCI_MASK,
3761
3762 /* SMI Mask */
3763 EC_HOST_EVENT_SMI_MASK,
3764
3765 /* Mask of events that should be always reported in hostevents */
3766 EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3767
3768 /* Active wake mask */
3769 EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3770
3771 /* Lazy wake mask for S0ix */
3772 EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3773
3774 /* Lazy wake mask for S3 */
3775 EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3776
3777 /* Lazy wake mask for S5 */
3778 EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3779};
3780
3781#define EC_CMD_HOST_EVENT 0x00A4
3782
3783/*****************************************************************************/
3784/* Switch commands */
3785
3786/* Enable/disable LCD backlight */
3787#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3788
3789struct ec_params_switch_enable_backlight {
3790 uint8_t enabled;
3791} __ec_align1;
3792
3793/* Enable/disable WLAN/Bluetooth */
3794#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3795#define EC_VER_SWITCH_ENABLE_WIRELESS 1
3796
3797/* Version 0 params; no response */
3798struct ec_params_switch_enable_wireless_v0 {
3799 uint8_t enabled;
3800} __ec_align1;
3801
3802/* Version 1 params */
3803struct ec_params_switch_enable_wireless_v1 {
3804 /* Flags to enable now */
3805 uint8_t now_flags;
3806
3807 /* Which flags to copy from now_flags */
3808 uint8_t now_mask;
3809
3810 /*
3811 * Flags to leave enabled in S3, if they're on at the S0->S3
3812 * transition. (Other flags will be disabled by the S0->S3
3813 * transition.)
3814 */
3815 uint8_t suspend_flags;
3816
3817 /* Which flags to copy from suspend_flags */
3818 uint8_t suspend_mask;
3819} __ec_align1;
3820
3821/* Version 1 response */
3822struct ec_response_switch_enable_wireless_v1 {
3823 /* Flags to enable now */
3824 uint8_t now_flags;
3825
3826 /* Flags to leave enabled in S3 */
3827 uint8_t suspend_flags;
3828} __ec_align1;
3829
3830/*****************************************************************************/
3831/* GPIO commands. Only available on EC if write protect has been disabled. */
3832
3833/* Set GPIO output value */
3834#define EC_CMD_GPIO_SET 0x0092
3835
3836struct ec_params_gpio_set {
3837 char name[32];
3838 uint8_t val;
3839} __ec_align1;
3840
3841/* Get GPIO value */
3842#define EC_CMD_GPIO_GET 0x0093
3843
3844/* Version 0 of input params and response */
3845struct ec_params_gpio_get {
3846 char name[32];
3847} __ec_align1;
3848
3849struct ec_response_gpio_get {
3850 uint8_t val;
3851} __ec_align1;
3852
3853/* Version 1 of input params and response */
3854struct ec_params_gpio_get_v1 {
3855 uint8_t subcmd;
3856 union {
3857 struct __ec_align1 {
3858 char name[32];
3859 } get_value_by_name;
3860 struct __ec_align1 {
3861 uint8_t index;
3862 } get_info;
3863 };
3864} __ec_align1;
3865
3866struct ec_response_gpio_get_v1 {
3867 union {
3868 struct __ec_align1 {
3869 uint8_t val;
3870 } get_value_by_name, get_count;
3871 struct __ec_todo_unpacked {
3872 uint8_t val;
3873 char name[32];
3874 uint32_t flags;
3875 } get_info;
3876 };
3877} __ec_todo_packed;
3878
3879enum gpio_get_subcmd {
3880 EC_GPIO_GET_BY_NAME = 0,
3881 EC_GPIO_GET_COUNT = 1,
3882 EC_GPIO_GET_INFO = 2,
3883};
3884
3885/*****************************************************************************/
3886/* I2C commands. Only available when flash write protect is unlocked. */
3887
3888/*
3889 * CAUTION: These commands are deprecated, and are not supported anymore in EC
3890 * builds >= 8398.0.0 (see crosbug.com/p/23570).
3891 *
3892 * Use EC_CMD_I2C_PASSTHRU instead.
3893 */
3894
3895/* Read I2C bus */
3896#define EC_CMD_I2C_READ 0x0094
3897
3898struct ec_params_i2c_read {
3899 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3900 uint8_t read_size; /* Either 8 or 16. */
3901 uint8_t port;
3902 uint8_t offset;
3903} __ec_align_size1;
3904
3905struct ec_response_i2c_read {
3906 uint16_t data;
3907} __ec_align2;
3908
3909/* Write I2C bus */
3910#define EC_CMD_I2C_WRITE 0x0095
3911
3912struct ec_params_i2c_write {
3913 uint16_t data;
3914 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3915 uint8_t write_size; /* Either 8 or 16. */
3916 uint8_t port;
3917 uint8_t offset;
3918} __ec_align_size1;
3919
3920/*****************************************************************************/
3921/* Charge state commands. Only available when flash write protect unlocked. */
3922
3923/* Force charge state machine to stop charging the battery or force it to
3924 * discharge the battery.
3925 */
3926#define EC_CMD_CHARGE_CONTROL 0x0096
3927#define EC_VER_CHARGE_CONTROL 3
3928
3929enum ec_charge_control_mode {
3930 CHARGE_CONTROL_NORMAL = 0,
3931 CHARGE_CONTROL_IDLE,
3932 CHARGE_CONTROL_DISCHARGE,
3933 /* Add no more entry below. */
3934 CHARGE_CONTROL_COUNT,
3935};
3936
3937#define EC_CHARGE_MODE_TEXT \
3938 { \
3939 [CHARGE_CONTROL_NORMAL] = "NORMAL", \
3940 [CHARGE_CONTROL_IDLE] = "IDLE", \
3941 [CHARGE_CONTROL_DISCHARGE] = "DISCHARGE", \
3942 }
3943
3944enum ec_charge_control_cmd {
3945 EC_CHARGE_CONTROL_CMD_SET = 0,
3946 EC_CHARGE_CONTROL_CMD_GET,
3947};
3948
3949enum ec_charge_control_flag {
3950 EC_CHARGE_CONTROL_FLAG_NO_IDLE = BIT(0),
3951};
3952
3953struct ec_params_charge_control {
3954 uint32_t mode; /* enum charge_control_mode */
3955
3956 /* Below are the fields added in V2. */
3957 uint8_t cmd; /* enum ec_charge_control_cmd. */
3958 uint8_t flags; /* enum ec_charge_control_flag (v3+) */
3959 /*
3960 * Lower and upper thresholds for battery sustainer. This struct isn't
3961 * named to avoid tainting foreign projects' name spaces.
3962 *
3963 * If charge mode is explicitly set (e.g. DISCHARGE), battery sustainer
3964 * will be disabled. To disable battery sustainer, set mode=NORMAL,
3965 * lower=-1, upper=-1.
3966 */
3967 struct {
3968 int8_t lower; /* Display SoC in percentage. */
3969 int8_t upper; /* Display SoC in percentage. */
3970 } sustain_soc;
3971} __ec_align4;
3972
3973/* Added in v2 */
3974struct ec_response_charge_control {
3975 uint32_t mode; /* enum charge_control_mode */
3976 struct { /* Battery sustainer thresholds */
3977 int8_t lower;
3978 int8_t upper;
3979 } sustain_soc;
3980 uint8_t flags; /* enum ec_charge_control_flag (v3+) */
3981 uint8_t reserved;
3982} __ec_align4;
3983
3984/*****************************************************************************/
3985
3986/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3987#define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3988
3989/*
3990 * Read data from the saved snapshot. If the subcmd parameter is
3991 * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3992 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3993 * end of the previous snapshot.
3994 *
3995 * The params are only looked at in version >= 1 of this command. Prior
3996 * versions will just default to CONSOLE_READ_NEXT behavior.
3997 *
3998 * Response is null-terminated string. Empty string, if there is no more
3999 * remaining output.
4000 */
4001#define EC_CMD_CONSOLE_READ 0x0098
4002
4003enum ec_console_read_subcmd {
4004 CONSOLE_READ_NEXT = 0,
4005 CONSOLE_READ_RECENT
4006};
4007
4008struct ec_params_console_read_v1 {
4009 uint8_t subcmd; /* enum ec_console_read_subcmd */
4010} __ec_align1;
4011
4012/*****************************************************************************/
4013
4014/*
4015 * Cut off battery power immediately or after the host has shut down.
4016 *
4017 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
4018 * EC_RES_SUCCESS if the command was successful.
4019 * EC_RES_ERROR if the cut off command failed.
4020 */
4021#define EC_CMD_BATTERY_CUT_OFF 0x0099
4022
4023#define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN BIT(0)
4024
4025struct ec_params_battery_cutoff {
4026 uint8_t flags;
4027} __ec_align1;
4028
4029/*****************************************************************************/
4030/* USB port mux control. */
4031
4032/*
4033 * Switch USB mux or return to automatic switching.
4034 */
4035#define EC_CMD_USB_MUX 0x009A
4036
4037struct ec_params_usb_mux {
4038 uint8_t mux;
4039} __ec_align1;
4040
4041/*****************************************************************************/
4042/* LDOs / FETs control. */
4043
4044enum ec_ldo_state {
4045 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */
4046 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */
4047};
4048
4049/*
4050 * Switch on/off a LDO.
4051 */
4052#define EC_CMD_LDO_SET 0x009B
4053
4054struct ec_params_ldo_set {
4055 uint8_t index;
4056 uint8_t state;
4057} __ec_align1;
4058
4059/*
4060 * Get LDO state.
4061 */
4062#define EC_CMD_LDO_GET 0x009C
4063
4064struct ec_params_ldo_get {
4065 uint8_t index;
4066} __ec_align1;
4067
4068struct ec_response_ldo_get {
4069 uint8_t state;
4070} __ec_align1;
4071
4072/*****************************************************************************/
4073/* Power info. */
4074
4075/*
4076 * Get power info.
4077 */
4078#define EC_CMD_POWER_INFO 0x009D
4079
4080struct ec_response_power_info {
4081 uint32_t usb_dev_type;
4082 uint16_t voltage_ac;
4083 uint16_t voltage_system;
4084 uint16_t current_system;
4085 uint16_t usb_current_limit;
4086} __ec_align4;
4087
4088/*****************************************************************************/
4089/* I2C passthru command */
4090
4091#define EC_CMD_I2C_PASSTHRU 0x009E
4092
4093/* Read data; if not present, message is a write */
4094#define EC_I2C_FLAG_READ BIT(15)
4095
4096/* Mask for address */
4097#define EC_I2C_ADDR_MASK 0x3ff
4098
4099#define EC_I2C_STATUS_NAK BIT(0) /* Transfer was not acknowledged */
4100#define EC_I2C_STATUS_TIMEOUT BIT(1) /* Timeout during transfer */
4101
4102/* Any error */
4103#define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
4104
4105struct ec_params_i2c_passthru_msg {
4106 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */
4107 uint16_t len; /* Number of bytes to read or write */
4108} __ec_align2;
4109
4110struct ec_params_i2c_passthru {
4111 uint8_t port; /* I2C port number */
4112 uint8_t num_msgs; /* Number of messages */
4113 struct ec_params_i2c_passthru_msg msg[];
4114 /* Data to write for all messages is concatenated here */
4115} __ec_align2;
4116
4117struct ec_response_i2c_passthru {
4118 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */
4119 uint8_t num_msgs; /* Number of messages processed */
4120 uint8_t data[]; /* Data read by messages concatenated here */
4121} __ec_align1;
4122
4123/*****************************************************************************/
4124/* AP hang detect */
4125#define EC_CMD_HANG_DETECT 0x009F
4126
4127#define EC_HANG_DETECT_MIN_TIMEOUT 5
4128#define EC_HANG_DETECT_MAX_TIMEOUT 65535
4129
4130/* EC hang detect commands */
4131enum ec_hang_detect_cmds {
4132 /* Reload AP hang detect timer. */
4133 EC_HANG_DETECT_CMD_RELOAD = 0x0,
4134
4135 /* Stop AP hang detect timer. */
4136 EC_HANG_DETECT_CMD_CANCEL = 0x1,
4137
4138 /* Configure watchdog with given reboot timeout and
4139 * cancel currently running AP hang detect timer.
4140 */
4141 EC_HANG_DETECT_CMD_SET_TIMEOUT = 0x2,
4142
4143 /* Get last hang status - whether the AP boot was clear or not */
4144 EC_HANG_DETECT_CMD_GET_STATUS = 0x3,
4145
4146 /* Clear last hang status. Called when AP is rebooting/shutting down
4147 * gracefully.
4148 */
4149 EC_HANG_DETECT_CMD_CLEAR_STATUS = 0x4
4150};
4151
4152struct ec_params_hang_detect {
4153 uint16_t command; /* enum ec_hang_detect_cmds */
4154 /* Timeout in seconds before generating reboot */
4155 uint16_t reboot_timeout_sec;
4156} __ec_align2;
4157
4158/* Status codes that describe whether AP has boot normally or the hang has been
4159 * detected and EC has reset AP
4160 */
4161enum ec_hang_detect_status {
4162 EC_HANG_DETECT_AP_BOOT_NORMAL = 0x0,
4163 EC_HANG_DETECT_AP_BOOT_EC_WDT = 0x1,
4164 EC_HANG_DETECT_AP_BOOT_COUNT,
4165};
4166
4167struct ec_response_hang_detect {
4168 uint8_t status; /* enum ec_hang_detect_status */
4169} __ec_align1;
4170/*****************************************************************************/
4171/* Commands for battery charging */
4172
4173/*
4174 * This is the single catch-all host command to exchange data regarding the
4175 * charge state machine (v2 and up).
4176 */
4177#define EC_CMD_CHARGE_STATE 0x00A0
4178
4179/* Subcommands for this host command */
4180enum charge_state_command {
4181 CHARGE_STATE_CMD_GET_STATE,
4182 CHARGE_STATE_CMD_GET_PARAM,
4183 CHARGE_STATE_CMD_SET_PARAM,
4184 CHARGE_STATE_NUM_CMDS
4185};
4186
4187/*
4188 * Known param numbers are defined here. Ranges are reserved for board-specific
4189 * params, which are handled by the particular implementations.
4190 */
4191enum charge_state_params {
4192 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */
4193 CS_PARAM_CHG_CURRENT, /* charger current limit */
4194 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */
4195 CS_PARAM_CHG_STATUS, /* charger-specific status */
4196 CS_PARAM_CHG_OPTION, /* charger-specific options */
4197 CS_PARAM_LIMIT_POWER, /*
4198 * Check if power is limited due to
4199 * low battery and / or a weak external
4200 * charger. READ ONLY.
4201 */
4202 /* How many so far? */
4203 CS_NUM_BASE_PARAMS,
4204
4205 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4206 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4207 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4208
4209 /* Range for CONFIG_CHARGE_STATE_DEBUG params */
4210 CS_PARAM_DEBUG_MIN = 0x20000,
4211 CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4212 CS_PARAM_DEBUG_MANUAL_MODE,
4213 CS_PARAM_DEBUG_SEEMS_DEAD,
4214 CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4215 CS_PARAM_DEBUG_BATT_REMOVED,
4216 CS_PARAM_DEBUG_MANUAL_CURRENT,
4217 CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4218 CS_PARAM_DEBUG_MAX = 0x2ffff,
4219
4220 /* Other custom param ranges go here... */
4221};
4222
4223struct ec_params_charge_state {
4224 uint8_t cmd; /* enum charge_state_command */
4225 union {
4226 /* get_state has no args */
4227
4228 struct __ec_todo_unpacked {
4229 uint32_t param; /* enum charge_state_param */
4230 } get_param;
4231
4232 struct __ec_todo_unpacked {
4233 uint32_t param; /* param to set */
4234 uint32_t value; /* value to set */
4235 } set_param;
4236 };
4237} __ec_todo_packed;
4238
4239struct ec_response_charge_state {
4240 union {
4241 struct __ec_align4 {
4242 int ac;
4243 int chg_voltage;
4244 int chg_current;
4245 int chg_input_current;
4246 int batt_state_of_charge;
4247 } get_state;
4248
4249 struct __ec_align4 {
4250 uint32_t value;
4251 } get_param;
4252
4253 /* set_param returns no args */
4254 };
4255} __ec_align4;
4256
4257
4258/*
4259 * Set maximum battery charging current.
4260 */
4261#define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4262
4263struct ec_params_current_limit {
4264 uint32_t limit; /* in mA */
4265} __ec_align4;
4266
4267/*
4268 * Set maximum external voltage / current.
4269 */
4270#define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4271
4272/* Command v0 is used only on Spring and is obsolete + unsupported */
4273struct ec_params_external_power_limit_v1 {
4274 uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4275 uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4276} __ec_align2;
4277
4278#define EC_POWER_LIMIT_NONE 0xffff
4279
4280/*
4281 * Set maximum voltage & current of a dedicated charge port
4282 */
4283#define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4284
4285struct ec_params_dedicated_charger_limit {
4286 uint16_t current_lim; /* in mA */
4287 uint16_t voltage_lim; /* in mV */
4288} __ec_align2;
4289
4290/*****************************************************************************/
4291/* Hibernate/Deep Sleep Commands */
4292
4293/* Set the delay before going into hibernation. */
4294#define EC_CMD_HIBERNATION_DELAY 0x00A8
4295
4296struct ec_params_hibernation_delay {
4297 /*
4298 * Seconds to wait in G3 before hibernate. Pass in 0 to read the
4299 * current settings without changing them.
4300 */
4301 uint32_t seconds;
4302} __ec_align4;
4303
4304struct ec_response_hibernation_delay {
4305 /*
4306 * The current time in seconds in which the system has been in the G3
4307 * state. This value is reset if the EC transitions out of G3.
4308 */
4309 uint32_t time_g3;
4310
4311 /*
4312 * The current time remaining in seconds until the EC should hibernate.
4313 * This value is also reset if the EC transitions out of G3.
4314 */
4315 uint32_t time_remaining;
4316
4317 /*
4318 * The current time in seconds that the EC should wait in G3 before
4319 * hibernating.
4320 */
4321 uint32_t hibernate_delay;
4322} __ec_align4;
4323
4324/* Inform the EC when entering a sleep state */
4325#define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4326
4327enum host_sleep_event {
4328 HOST_SLEEP_EVENT_S3_SUSPEND = 1,
4329 HOST_SLEEP_EVENT_S3_RESUME = 2,
4330 HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4331 HOST_SLEEP_EVENT_S0IX_RESUME = 4,
4332 /* S3 suspend with additional enabled wake sources */
4333 HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4334};
4335
4336struct ec_params_host_sleep_event {
4337 uint8_t sleep_event;
4338} __ec_align1;
4339
4340/*
4341 * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4342 * transition failures
4343 */
4344#define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4345
4346/* Disable timeout detection for this sleep transition */
4347#define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4348
4349struct ec_params_host_sleep_event_v1 {
4350 /* The type of sleep being entered or exited. */
4351 uint8_t sleep_event;
4352
4353 /* Padding */
4354 uint8_t reserved;
4355 union {
4356 /* Parameters that apply for suspend messages. */
4357 struct {
4358 /*
4359 * The timeout in milliseconds between when this message
4360 * is received and when the EC will declare sleep
4361 * transition failure if the sleep signal is not
4362 * asserted.
4363 */
4364 uint16_t sleep_timeout_ms;
4365 } suspend_params;
4366
4367 /* No parameters for non-suspend messages. */
4368 };
4369} __ec_align2;
4370
4371/* A timeout occurred when this bit is set */
4372#define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4373
4374/*
4375 * The mask defining which bits correspond to the number of sleep transitions,
4376 * as well as the maximum number of suspend line transitions that will be
4377 * reported back to the host.
4378 */
4379#define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4380
4381struct ec_response_host_sleep_event_v1 {
4382 union {
4383 /* Response fields that apply for resume messages. */
4384 struct {
4385 /*
4386 * The number of sleep power signal transitions that
4387 * occurred since the suspend message. The high bit
4388 * indicates a timeout occurred.
4389 */
4390 uint32_t sleep_transitions;
4391 } resume_response;
4392
4393 /* No response fields for non-resume messages. */
4394 };
4395} __ec_align4;
4396
4397/*****************************************************************************/
4398/* Device events */
4399#define EC_CMD_DEVICE_EVENT 0x00AA
4400
4401enum ec_device_event {
4402 EC_DEVICE_EVENT_TRACKPAD,
4403 EC_DEVICE_EVENT_DSP,
4404 EC_DEVICE_EVENT_WIFI,
4405 EC_DEVICE_EVENT_WLC,
4406};
4407
4408enum ec_device_event_param {
4409 /* Get and clear pending device events */
4410 EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4411 /* Get device event mask */
4412 EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4413 /* Set device event mask */
4414 EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4415};
4416
4417#define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4418
4419struct ec_params_device_event {
4420 uint32_t event_mask;
4421 uint8_t param;
4422} __ec_align_size1;
4423
4424struct ec_response_device_event {
4425 uint32_t event_mask;
4426} __ec_align4;
4427
4428/*****************************************************************************/
4429/* Smart battery pass-through */
4430
4431/* Get / Set 16-bit smart battery registers */
4432#define EC_CMD_SB_READ_WORD 0x00B0
4433#define EC_CMD_SB_WRITE_WORD 0x00B1
4434
4435/* Get / Set string smart battery parameters
4436 * formatted as SMBUS "block".
4437 */
4438#define EC_CMD_SB_READ_BLOCK 0x00B2
4439#define EC_CMD_SB_WRITE_BLOCK 0x00B3
4440
4441struct ec_params_sb_rd {
4442 uint8_t reg;
4443} __ec_align1;
4444
4445struct ec_response_sb_rd_word {
4446 uint16_t value;
4447} __ec_align2;
4448
4449struct ec_params_sb_wr_word {
4450 uint8_t reg;
4451 uint16_t value;
4452} __ec_align1;
4453
4454struct ec_response_sb_rd_block {
4455 uint8_t data[32];
4456} __ec_align1;
4457
4458struct ec_params_sb_wr_block {
4459 uint8_t reg;
4460 uint16_t data[32];
4461} __ec_align1;
4462
4463/*****************************************************************************/
4464/* Battery vendor parameters
4465 *
4466 * Get or set vendor-specific parameters in the battery. Implementations may
4467 * differ between boards or batteries. On a set operation, the response
4468 * contains the actual value set, which may be rounded or clipped from the
4469 * requested value.
4470 */
4471
4472#define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4473
4474enum ec_battery_vendor_param_mode {
4475 BATTERY_VENDOR_PARAM_MODE_GET = 0,
4476 BATTERY_VENDOR_PARAM_MODE_SET,
4477};
4478
4479struct ec_params_battery_vendor_param {
4480 uint32_t param;
4481 uint32_t value;
4482 uint8_t mode;
4483} __ec_align_size1;
4484
4485struct ec_response_battery_vendor_param {
4486 uint32_t value;
4487} __ec_align4;
4488
4489/*****************************************************************************/
4490/*
4491 * Smart Battery Firmware Update Commands
4492 */
4493#define EC_CMD_SB_FW_UPDATE 0x00B5
4494
4495enum ec_sb_fw_update_subcmd {
4496 EC_SB_FW_UPDATE_PREPARE = 0x0,
4497 EC_SB_FW_UPDATE_INFO = 0x1, /*query sb info */
4498 EC_SB_FW_UPDATE_BEGIN = 0x2, /*check if protected */
4499 EC_SB_FW_UPDATE_WRITE = 0x3, /*check if protected */
4500 EC_SB_FW_UPDATE_END = 0x4,
4501 EC_SB_FW_UPDATE_STATUS = 0x5,
4502 EC_SB_FW_UPDATE_PROTECT = 0x6,
4503 EC_SB_FW_UPDATE_MAX = 0x7,
4504};
4505
4506#define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4507#define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4508#define SB_FW_UPDATE_CMD_INFO_SIZE 8
4509
4510struct ec_sb_fw_update_header {
4511 uint16_t subcmd; /* enum ec_sb_fw_update_subcmd */
4512 uint16_t fw_id; /* firmware id */
4513} __ec_align4;
4514
4515struct ec_params_sb_fw_update {
4516 struct ec_sb_fw_update_header hdr;
4517 union {
4518 /* EC_SB_FW_UPDATE_PREPARE = 0x0 */
4519 /* EC_SB_FW_UPDATE_INFO = 0x1 */
4520 /* EC_SB_FW_UPDATE_BEGIN = 0x2 */
4521 /* EC_SB_FW_UPDATE_END = 0x4 */
4522 /* EC_SB_FW_UPDATE_STATUS = 0x5 */
4523 /* EC_SB_FW_UPDATE_PROTECT = 0x6 */
4524 /* Those have no args */
4525
4526 /* EC_SB_FW_UPDATE_WRITE = 0x3 */
4527 struct __ec_align4 {
4528 uint8_t data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4529 } write;
4530 };
4531} __ec_align4;
4532
4533struct ec_response_sb_fw_update {
4534 union {
4535 /* EC_SB_FW_UPDATE_INFO = 0x1 */
4536 struct __ec_align1 {
4537 uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4538 } info;
4539
4540 /* EC_SB_FW_UPDATE_STATUS = 0x5 */
4541 struct __ec_align1 {
4542 uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4543 } status;
4544 };
4545} __ec_align1;
4546
4547/*
4548 * Entering Verified Boot Mode Command
4549 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4550 * Valid Modes are: normal, developer, and recovery.
4551 */
4552#define EC_CMD_ENTERING_MODE 0x00B6
4553
4554struct ec_params_entering_mode {
4555 int vboot_mode;
4556} __ec_align4;
4557
4558#define VBOOT_MODE_NORMAL 0
4559#define VBOOT_MODE_DEVELOPER 1
4560#define VBOOT_MODE_RECOVERY 2
4561
4562/*****************************************************************************/
4563/*
4564 * I2C passthru protection command: Protects I2C tunnels against access on
4565 * certain addresses (board-specific).
4566 */
4567#define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4568
4569enum ec_i2c_passthru_protect_subcmd {
4570 EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4571 EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4572};
4573
4574struct ec_params_i2c_passthru_protect {
4575 uint8_t subcmd;
4576 uint8_t port; /* I2C port number */
4577} __ec_align1;
4578
4579struct ec_response_i2c_passthru_protect {
4580 uint8_t status; /* Status flags (0: unlocked, 1: locked) */
4581} __ec_align1;
4582
4583
4584/*****************************************************************************/
4585/*
4586 * HDMI CEC commands
4587 *
4588 * These commands are for sending and receiving message via HDMI CEC
4589 */
4590
4591#define EC_CEC_MAX_PORTS 16
4592
4593#define MAX_CEC_MSG_LEN 16
4594
4595/*
4596 * Helper macros for packing/unpacking cec_events.
4597 * bits[27:0] : bitmask of events from enum mkbp_cec_event
4598 * bits[31:28]: port number
4599 */
4600#define EC_MKBP_EVENT_CEC_PACK(events, port) \
4601 (((events) & GENMASK(27, 0)) | (((port) & 0xf) << 28))
4602#define EC_MKBP_EVENT_CEC_GET_EVENTS(event) ((event) & GENMASK(27, 0))
4603#define EC_MKBP_EVENT_CEC_GET_PORT(event) (((event) >> 28) & 0xf)
4604
4605/* CEC message from the AP to be written on the CEC bus */
4606#define EC_CMD_CEC_WRITE_MSG 0x00B8
4607
4608/**
4609 * struct ec_params_cec_write - Message to write to the CEC bus
4610 * @msg: message content to write to the CEC bus
4611 */
4612struct ec_params_cec_write {
4613 uint8_t msg[MAX_CEC_MSG_LEN];
4614} __ec_align1;
4615
4616/**
4617 * struct ec_params_cec_write_v1 - Message to write to the CEC bus
4618 * @port: CEC port to write the message on
4619 * @msg_len: length of msg in bytes
4620 * @msg: message content to write to the CEC bus
4621 */
4622struct ec_params_cec_write_v1 {
4623 uint8_t port;
4624 uint8_t msg_len;
4625 uint8_t msg[MAX_CEC_MSG_LEN];
4626} __ec_align1;
4627
4628/* CEC message read from a CEC bus reported back to the AP */
4629#define EC_CMD_CEC_READ_MSG 0x00B9
4630
4631/**
4632 * struct ec_params_cec_read - Read a message from the CEC bus
4633 * @port: CEC port to read a message on
4634 */
4635struct ec_params_cec_read {
4636 uint8_t port;
4637} __ec_align1;
4638
4639/**
4640 * struct ec_response_cec_read - Message read from the CEC bus
4641 * @msg_len: length of msg in bytes
4642 * @msg: message content read from the CEC bus
4643 */
4644struct ec_response_cec_read {
4645 uint8_t msg_len;
4646 uint8_t msg[MAX_CEC_MSG_LEN];
4647} __ec_align1;
4648
4649/* Set various CEC parameters */
4650#define EC_CMD_CEC_SET 0x00BA
4651
4652/**
4653 * struct ec_params_cec_set - CEC parameters set
4654 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4655 * @port: CEC port to set the parameter on
4656 * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4657 * or 1 to enable CEC functionality, in case cmd is
4658 * CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4659 * address between 0 and 15 or 0xff to unregister
4660 */
4661struct ec_params_cec_set {
4662 uint8_t cmd : 4; /* enum cec_command */
4663 uint8_t port : 4;
4664 uint8_t val;
4665} __ec_align1;
4666
4667/* Read various CEC parameters */
4668#define EC_CMD_CEC_GET 0x00BB
4669
4670/**
4671 * struct ec_params_cec_get - CEC parameters get
4672 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4673 * @port: CEC port to get the parameter on
4674 */
4675struct ec_params_cec_get {
4676 uint8_t cmd : 4; /* enum cec_command */
4677 uint8_t port : 4;
4678} __ec_align1;
4679
4680/**
4681 * struct ec_response_cec_get - CEC parameters get response
4682 * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4683 * disabled or 1 if CEC functionality is enabled,
4684 * in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4685 * configured logical address between 0 and 15 or 0xff if unregistered
4686 */
4687struct ec_response_cec_get {
4688 uint8_t val;
4689} __ec_align1;
4690
4691/* Get the number of CEC ports */
4692#define EC_CMD_CEC_PORT_COUNT 0x00C1
4693
4694/**
4695 * struct ec_response_cec_port_count - CEC port count response
4696 * @port_count: number of CEC ports
4697 */
4698struct ec_response_cec_port_count {
4699 uint8_t port_count;
4700} __ec_align1;
4701
4702/* CEC parameters command */
4703enum cec_command {
4704 /* CEC reading, writing and events enable */
4705 CEC_CMD_ENABLE,
4706 /* CEC logical address */
4707 CEC_CMD_LOGICAL_ADDRESS,
4708};
4709
4710/* Events from CEC to AP */
4711enum mkbp_cec_event {
4712 /* Outgoing message was acknowledged by a follower */
4713 EC_MKBP_CEC_SEND_OK = BIT(0),
4714 /* Outgoing message was not acknowledged */
4715 EC_MKBP_CEC_SEND_FAILED = BIT(1),
4716 /* Incoming message can be read out by AP */
4717 EC_MKBP_CEC_HAVE_DATA = BIT(2),
4718};
4719
4720/*****************************************************************************/
4721
4722/* Commands for audio codec. */
4723#define EC_CMD_EC_CODEC 0x00BC
4724
4725enum ec_codec_subcmd {
4726 EC_CODEC_GET_CAPABILITIES = 0x0,
4727 EC_CODEC_GET_SHM_ADDR = 0x1,
4728 EC_CODEC_SET_SHM_ADDR = 0x2,
4729 EC_CODEC_SUBCMD_COUNT,
4730};
4731
4732enum ec_codec_cap {
4733 EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
4734 EC_CODEC_CAP_WOV_LANG_SHM = 1,
4735 EC_CODEC_CAP_LAST = 32,
4736};
4737
4738enum ec_codec_shm_id {
4739 EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
4740 EC_CODEC_SHM_ID_WOV_LANG = 0x1,
4741 EC_CODEC_SHM_ID_LAST,
4742};
4743
4744enum ec_codec_shm_type {
4745 EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
4746 EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
4747};
4748
4749struct __ec_align1 ec_param_ec_codec_get_shm_addr {
4750 uint8_t shm_id;
4751 uint8_t reserved[3];
4752};
4753
4754struct __ec_align4 ec_param_ec_codec_set_shm_addr {
4755 uint64_t phys_addr;
4756 uint32_t len;
4757 uint8_t shm_id;
4758 uint8_t reserved[3];
4759};
4760
4761struct __ec_align4 ec_param_ec_codec {
4762 uint8_t cmd; /* enum ec_codec_subcmd */
4763 uint8_t reserved[3];
4764
4765 union {
4766 struct ec_param_ec_codec_get_shm_addr
4767 get_shm_addr_param;
4768 struct ec_param_ec_codec_set_shm_addr
4769 set_shm_addr_param;
4770 };
4771};
4772
4773struct __ec_align4 ec_response_ec_codec_get_capabilities {
4774 uint32_t capabilities;
4775};
4776
4777struct __ec_align4 ec_response_ec_codec_get_shm_addr {
4778 uint64_t phys_addr;
4779 uint32_t len;
4780 uint8_t type;
4781 uint8_t reserved[3];
4782};
4783
4784/*****************************************************************************/
4785
4786/* Commands for DMIC on audio codec. */
4787#define EC_CMD_EC_CODEC_DMIC 0x00BD
4788
4789enum ec_codec_dmic_subcmd {
4790 EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
4791 EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
4792 EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
4793 EC_CODEC_DMIC_SUBCMD_COUNT,
4794};
4795
4796enum ec_codec_dmic_channel {
4797 EC_CODEC_DMIC_CHANNEL_0 = 0x0,
4798 EC_CODEC_DMIC_CHANNEL_1 = 0x1,
4799 EC_CODEC_DMIC_CHANNEL_2 = 0x2,
4800 EC_CODEC_DMIC_CHANNEL_3 = 0x3,
4801 EC_CODEC_DMIC_CHANNEL_4 = 0x4,
4802 EC_CODEC_DMIC_CHANNEL_5 = 0x5,
4803 EC_CODEC_DMIC_CHANNEL_6 = 0x6,
4804 EC_CODEC_DMIC_CHANNEL_7 = 0x7,
4805 EC_CODEC_DMIC_CHANNEL_COUNT,
4806};
4807
4808struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
4809 uint8_t channel; /* enum ec_codec_dmic_channel */
4810 uint8_t gain;
4811 uint8_t reserved[2];
4812};
4813
4814struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
4815 uint8_t channel; /* enum ec_codec_dmic_channel */
4816 uint8_t reserved[3];
4817};
4818
4819struct __ec_align4 ec_param_ec_codec_dmic {
4820 uint8_t cmd; /* enum ec_codec_dmic_subcmd */
4821 uint8_t reserved[3];
4822
4823 union {
4824 struct ec_param_ec_codec_dmic_set_gain_idx
4825 set_gain_idx_param;
4826 struct ec_param_ec_codec_dmic_get_gain_idx
4827 get_gain_idx_param;
4828 };
4829};
4830
4831struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
4832 uint8_t max_gain;
4833};
4834
4835struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
4836 uint8_t gain;
4837};
4838
4839/*****************************************************************************/
4840
4841/* Commands for I2S RX on audio codec. */
4842
4843#define EC_CMD_EC_CODEC_I2S_RX 0x00BE
4844
4845enum ec_codec_i2s_rx_subcmd {
4846 EC_CODEC_I2S_RX_ENABLE = 0x0,
4847 EC_CODEC_I2S_RX_DISABLE = 0x1,
4848 EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
4849 EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
4850 EC_CODEC_I2S_RX_SET_BCLK = 0x4,
4851 EC_CODEC_I2S_RX_RESET = 0x5,
4852 EC_CODEC_I2S_RX_SUBCMD_COUNT,
4853};
4854
4855enum ec_codec_i2s_rx_sample_depth {
4856 EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
4857 EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
4858 EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
4859};
4860
4861enum ec_codec_i2s_rx_daifmt {
4862 EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
4863 EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
4864 EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
4865 EC_CODEC_I2S_RX_DAIFMT_COUNT,
4866};
4867
4868struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
4869 uint8_t depth;
4870 uint8_t reserved[3];
4871};
4872
4873struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
4874 uint8_t left;
4875 uint8_t right;
4876 uint8_t reserved[2];
4877};
4878
4879struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
4880 uint8_t daifmt;
4881 uint8_t reserved[3];
4882};
4883
4884struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
4885 uint32_t bclk;
4886};
4887
4888struct __ec_align4 ec_param_ec_codec_i2s_rx {
4889 uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
4890 uint8_t reserved[3];
4891
4892 union {
4893 struct ec_param_ec_codec_i2s_rx_set_sample_depth
4894 set_sample_depth_param;
4895 struct ec_param_ec_codec_i2s_rx_set_daifmt
4896 set_daifmt_param;
4897 struct ec_param_ec_codec_i2s_rx_set_bclk
4898 set_bclk_param;
4899 };
4900};
4901
4902/*****************************************************************************/
4903/* Commands for WoV on audio codec. */
4904
4905#define EC_CMD_EC_CODEC_WOV 0x00BF
4906
4907enum ec_codec_wov_subcmd {
4908 EC_CODEC_WOV_SET_LANG = 0x0,
4909 EC_CODEC_WOV_SET_LANG_SHM = 0x1,
4910 EC_CODEC_WOV_GET_LANG = 0x2,
4911 EC_CODEC_WOV_ENABLE = 0x3,
4912 EC_CODEC_WOV_DISABLE = 0x4,
4913 EC_CODEC_WOV_READ_AUDIO = 0x5,
4914 EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
4915 EC_CODEC_WOV_SUBCMD_COUNT,
4916};
4917
4918/*
4919 * @hash is SHA256 of the whole language model.
4920 * @total_len indicates the length of whole language model.
4921 * @offset is the cursor from the beginning of the model.
4922 * @buf is the packet buffer.
4923 * @len denotes how many bytes in the buf.
4924 */
4925struct __ec_align4 ec_param_ec_codec_wov_set_lang {
4926 uint8_t hash[32];
4927 uint32_t total_len;
4928 uint32_t offset;
4929 uint8_t buf[128];
4930 uint32_t len;
4931};
4932
4933struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
4934 uint8_t hash[32];
4935 uint32_t total_len;
4936};
4937
4938struct __ec_align4 ec_param_ec_codec_wov {
4939 uint8_t cmd; /* enum ec_codec_wov_subcmd */
4940 uint8_t reserved[3];
4941
4942 union {
4943 struct ec_param_ec_codec_wov_set_lang
4944 set_lang_param;
4945 struct ec_param_ec_codec_wov_set_lang_shm
4946 set_lang_shm_param;
4947 };
4948};
4949
4950struct __ec_align4 ec_response_ec_codec_wov_get_lang {
4951 uint8_t hash[32];
4952};
4953
4954struct __ec_align4 ec_response_ec_codec_wov_read_audio {
4955 uint8_t buf[128];
4956 uint32_t len;
4957};
4958
4959struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
4960 uint32_t offset;
4961 uint32_t len;
4962};
4963
4964/*****************************************************************************/
4965/* System commands */
4966
4967/*
4968 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4969 * necessarily reboot the EC. Rename to "image" or something similar?
4970 */
4971#define EC_CMD_REBOOT_EC 0x00D2
4972
4973/* Command */
4974enum ec_reboot_cmd {
4975 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */
4976 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */
4977 EC_REBOOT_JUMP_RW = 2, /* Jump to active RW without rebooting */
4978 /* (command 3 was jump to RW-B) */
4979 EC_REBOOT_COLD = 4, /* Cold-reboot */
4980 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */
4981 EC_REBOOT_HIBERNATE = 6, /* Hibernate EC */
4982 EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4983 EC_REBOOT_COLD_AP_OFF = 8, /* Cold-reboot and don't boot AP */
4984};
4985
4986/* Flags for ec_params_reboot_ec.reboot_flags */
4987#define EC_REBOOT_FLAG_RESERVED0 BIT(0) /* Was recovery request */
4988#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1) /* Reboot after AP shutdown */
4989#define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2) /* Switch RW slot */
4990
4991struct ec_params_reboot_ec {
4992 uint8_t cmd; /* enum ec_reboot_cmd */
4993 uint8_t flags; /* See EC_REBOOT_FLAG_* */
4994} __ec_align1;
4995
4996/*
4997 * Get information on last EC panic.
4998 *
4999 * Returns variable-length platform-dependent panic information. See panic.h
5000 * for details.
5001 */
5002#define EC_CMD_GET_PANIC_INFO 0x00D3
5003
5004/*****************************************************************************/
5005/*
5006 * Special commands
5007 *
5008 * These do not follow the normal rules for commands. See each command for
5009 * details.
5010 */
5011
5012/*
5013 * Reboot NOW
5014 *
5015 * This command will work even when the EC LPC interface is busy, because the
5016 * reboot command is processed at interrupt level. Note that when the EC
5017 * reboots, the host will reboot too, so there is no response to this command.
5018 *
5019 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
5020 */
5021#define EC_CMD_REBOOT 0x00D1 /* Think "die" */
5022
5023/*
5024 * Resend last response (not supported on LPC).
5025 *
5026 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
5027 * there was no previous command, or the previous command's response was too
5028 * big to save.
5029 */
5030#define EC_CMD_RESEND_RESPONSE 0x00DB
5031
5032/*
5033 * This header byte on a command indicate version 0. Any header byte less
5034 * than this means that we are talking to an old EC which doesn't support
5035 * versioning. In that case, we assume version 0.
5036 *
5037 * Header bytes greater than this indicate a later version. For example,
5038 * EC_CMD_VERSION0 + 1 means we are using version 1.
5039 *
5040 * The old EC interface must not use commands 0xdc or higher.
5041 */
5042#define EC_CMD_VERSION0 0x00DC
5043
5044/*****************************************************************************/
5045/*
5046 * PD commands
5047 *
5048 * These commands are for PD MCU communication.
5049 */
5050
5051/* EC to PD MCU exchange status command */
5052#define EC_CMD_PD_EXCHANGE_STATUS 0x0100
5053#define EC_VER_PD_EXCHANGE_STATUS 2
5054
5055enum pd_charge_state {
5056 PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
5057 PD_CHARGE_NONE, /* No charging allowed */
5058 PD_CHARGE_5V, /* 5V charging only */
5059 PD_CHARGE_MAX /* Charge at max voltage */
5060};
5061
5062/* Status of EC being sent to PD */
5063#define EC_STATUS_HIBERNATING BIT(0)
5064
5065struct ec_params_pd_status {
5066 uint8_t status; /* EC status */
5067 int8_t batt_soc; /* battery state of charge */
5068 uint8_t charge_state; /* charging state (from enum pd_charge_state) */
5069} __ec_align1;
5070
5071/* Status of PD being sent back to EC */
5072#define PD_STATUS_HOST_EVENT BIT(0) /* Forward host event to AP */
5073#define PD_STATUS_IN_RW BIT(1) /* Running RW image */
5074#define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
5075#define PD_STATUS_TCPC_ALERT_0 BIT(3) /* Alert active in port 0 TCPC */
5076#define PD_STATUS_TCPC_ALERT_1 BIT(4) /* Alert active in port 1 TCPC */
5077#define PD_STATUS_TCPC_ALERT_2 BIT(5) /* Alert active in port 2 TCPC */
5078#define PD_STATUS_TCPC_ALERT_3 BIT(6) /* Alert active in port 3 TCPC */
5079#define PD_STATUS_EC_INT_ACTIVE (PD_STATUS_TCPC_ALERT_0 | \
5080 PD_STATUS_TCPC_ALERT_1 | \
5081 PD_STATUS_HOST_EVENT)
5082struct ec_response_pd_status {
5083 uint32_t curr_lim_ma; /* input current limit */
5084 uint16_t status; /* PD MCU status */
5085 int8_t active_charge_port; /* active charging port */
5086} __ec_align_size1;
5087
5088/* AP to PD MCU host event status command, cleared on read */
5089#define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
5090
5091/* PD MCU host event status bits */
5092#define PD_EVENT_UPDATE_DEVICE BIT(0)
5093#define PD_EVENT_POWER_CHANGE BIT(1)
5094#define PD_EVENT_IDENTITY_RECEIVED BIT(2)
5095#define PD_EVENT_DATA_SWAP BIT(3)
5096#define PD_EVENT_TYPEC BIT(4)
5097#define PD_EVENT_PPM BIT(5)
5098#define PD_EVENT_INIT BIT(6)
5099
5100struct ec_response_host_event_status {
5101 uint32_t status; /* PD MCU host event status */
5102} __ec_align4;
5103
5104/* Set USB type-C port role and muxes */
5105#define EC_CMD_USB_PD_CONTROL 0x0101
5106
5107enum usb_pd_control_role {
5108 USB_PD_CTRL_ROLE_NO_CHANGE = 0,
5109 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
5110 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
5111 USB_PD_CTRL_ROLE_FORCE_SINK = 3,
5112 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
5113 USB_PD_CTRL_ROLE_FREEZE = 5,
5114 USB_PD_CTRL_ROLE_COUNT
5115};
5116
5117enum usb_pd_control_mux {
5118 USB_PD_CTRL_MUX_NO_CHANGE = 0,
5119 USB_PD_CTRL_MUX_NONE = 1,
5120 USB_PD_CTRL_MUX_USB = 2,
5121 USB_PD_CTRL_MUX_DP = 3,
5122 USB_PD_CTRL_MUX_DOCK = 4,
5123 USB_PD_CTRL_MUX_AUTO = 5,
5124 USB_PD_CTRL_MUX_COUNT
5125};
5126
5127enum usb_pd_control_swap {
5128 USB_PD_CTRL_SWAP_NONE = 0,
5129 USB_PD_CTRL_SWAP_DATA = 1,
5130 USB_PD_CTRL_SWAP_POWER = 2,
5131 USB_PD_CTRL_SWAP_VCONN = 3,
5132 USB_PD_CTRL_SWAP_COUNT
5133};
5134
5135struct ec_params_usb_pd_control {
5136 uint8_t port;
5137 uint8_t role;
5138 uint8_t mux;
5139 uint8_t swap;
5140} __ec_align1;
5141
5142#define PD_CTRL_RESP_ENABLED_COMMS BIT(0) /* Communication enabled */
5143#define PD_CTRL_RESP_ENABLED_CONNECTED BIT(1) /* Device connected */
5144#define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
5145
5146#define PD_CTRL_RESP_ROLE_POWER BIT(0) /* 0=SNK/1=SRC */
5147#define PD_CTRL_RESP_ROLE_DATA BIT(1) /* 0=UFP/1=DFP */
5148#define PD_CTRL_RESP_ROLE_VCONN BIT(2) /* Vconn status */
5149#define PD_CTRL_RESP_ROLE_DR_POWER BIT(3) /* Partner is dualrole power */
5150#define PD_CTRL_RESP_ROLE_DR_DATA BIT(4) /* Partner is dualrole data */
5151#define PD_CTRL_RESP_ROLE_USB_COMM BIT(5) /* Partner USB comm capable */
5152#define PD_CTRL_RESP_ROLE_EXT_POWERED BIT(6) /* Partner externally powerd */
5153
5154struct ec_response_usb_pd_control {
5155 uint8_t enabled;
5156 uint8_t role;
5157 uint8_t polarity;
5158 uint8_t state;
5159} __ec_align1;
5160
5161struct ec_response_usb_pd_control_v1 {
5162 uint8_t enabled;
5163 uint8_t role;
5164 uint8_t polarity;
5165 char state[32];
5166} __ec_align1;
5167
5168/* Values representing usbc PD CC state */
5169#define USBC_PD_CC_NONE 0 /* No accessory connected */
5170#define USBC_PD_CC_NO_UFP 1 /* No UFP accessory connected */
5171#define USBC_PD_CC_AUDIO_ACC 2 /* Audio accessory connected */
5172#define USBC_PD_CC_DEBUG_ACC 3 /* Debug accessory connected */
5173#define USBC_PD_CC_UFP_ATTACHED 4 /* UFP attached to usbc */
5174#define USBC_PD_CC_DFP_ATTACHED 5 /* DPF attached to usbc */
5175
5176/* Active/Passive Cable */
5177#define USB_PD_CTRL_ACTIVE_CABLE BIT(0)
5178/* Optical/Non-optical cable */
5179#define USB_PD_CTRL_OPTICAL_CABLE BIT(1)
5180/* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
5181#define USB_PD_CTRL_TBT_LEGACY_ADAPTER BIT(2)
5182/* Active Link Uni-Direction */
5183#define USB_PD_CTRL_ACTIVE_LINK_UNIDIR BIT(3)
5184
5185struct ec_response_usb_pd_control_v2 {
5186 uint8_t enabled;
5187 uint8_t role;
5188 uint8_t polarity;
5189 char state[32];
5190 uint8_t cc_state; /* enum pd_cc_states representing cc state */
5191 uint8_t dp_mode; /* Current DP pin mode (MODE_DP_PIN_[A-E]) */
5192 uint8_t reserved; /* Reserved for future use */
5193 uint8_t control_flags; /* USB_PD_CTRL_*flags */
5194 uint8_t cable_speed; /* TBT_SS_* cable speed */
5195 uint8_t cable_gen; /* TBT_GEN3_* cable rounded support */
5196} __ec_align1;
5197
5198#define EC_CMD_USB_PD_PORTS 0x0102
5199
5200/* Maximum number of PD ports on a device, num_ports will be <= this */
5201#define EC_USB_PD_MAX_PORTS 8
5202
5203struct ec_response_usb_pd_ports {
5204 uint8_t num_ports;
5205} __ec_align1;
5206
5207#define EC_CMD_USB_PD_POWER_INFO 0x0103
5208
5209#define PD_POWER_CHARGING_PORT 0xff
5210struct ec_params_usb_pd_power_info {
5211 uint8_t port;
5212} __ec_align1;
5213
5214enum usb_chg_type {
5215 USB_CHG_TYPE_NONE,
5216 USB_CHG_TYPE_PD,
5217 USB_CHG_TYPE_C,
5218 USB_CHG_TYPE_PROPRIETARY,
5219 USB_CHG_TYPE_BC12_DCP,
5220 USB_CHG_TYPE_BC12_CDP,
5221 USB_CHG_TYPE_BC12_SDP,
5222 USB_CHG_TYPE_OTHER,
5223 USB_CHG_TYPE_VBUS,
5224 USB_CHG_TYPE_UNKNOWN,
5225 USB_CHG_TYPE_DEDICATED,
5226};
5227enum usb_power_roles {
5228 USB_PD_PORT_POWER_DISCONNECTED,
5229 USB_PD_PORT_POWER_SOURCE,
5230 USB_PD_PORT_POWER_SINK,
5231 USB_PD_PORT_POWER_SINK_NOT_CHARGING,
5232};
5233
5234struct usb_chg_measures {
5235 uint16_t voltage_max;
5236 uint16_t voltage_now;
5237 uint16_t current_max;
5238 uint16_t current_lim;
5239} __ec_align2;
5240
5241struct ec_response_usb_pd_power_info {
5242 uint8_t role;
5243 uint8_t type;
5244 uint8_t dualrole;
5245 uint8_t reserved1;
5246 struct usb_chg_measures meas;
5247 uint32_t max_power;
5248} __ec_align4;
5249
5250
5251/*
5252 * This command will return the number of USB PD charge port + the number
5253 * of dedicated port present.
5254 * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
5255 */
5256#define EC_CMD_CHARGE_PORT_COUNT 0x0105
5257struct ec_response_charge_port_count {
5258 uint8_t port_count;
5259} __ec_align1;
5260
5261/* Write USB-PD device FW */
5262#define EC_CMD_USB_PD_FW_UPDATE 0x0110
5263
5264enum usb_pd_fw_update_cmds {
5265 USB_PD_FW_REBOOT,
5266 USB_PD_FW_FLASH_ERASE,
5267 USB_PD_FW_FLASH_WRITE,
5268 USB_PD_FW_ERASE_SIG,
5269};
5270
5271struct ec_params_usb_pd_fw_update {
5272 uint16_t dev_id;
5273 uint8_t cmd;
5274 uint8_t port;
5275 uint32_t size; /* Size to write in bytes */
5276 /* Followed by data to write */
5277} __ec_align4;
5278
5279/* Write USB-PD Accessory RW_HASH table entry */
5280#define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
5281/* RW hash is first 20 bytes of SHA-256 of RW section */
5282#define PD_RW_HASH_SIZE 20
5283struct ec_params_usb_pd_rw_hash_entry {
5284 uint16_t dev_id;
5285 uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
5286 uint8_t reserved; /*
5287 * For alignment of current_image
5288 * TODO(rspangler) but it's not aligned!
5289 * Should have been reserved[2].
5290 */
5291 uint32_t current_image; /* One of ec_current_image */
5292} __ec_align1;
5293
5294/* Read USB-PD Accessory info */
5295#define EC_CMD_USB_PD_DEV_INFO 0x0112
5296
5297struct ec_params_usb_pd_info_request {
5298 uint8_t port;
5299} __ec_align1;
5300
5301/* Read USB-PD Device discovery info */
5302#define EC_CMD_USB_PD_DISCOVERY 0x0113
5303struct ec_params_usb_pd_discovery_entry {
5304 uint16_t vid; /* USB-IF VID */
5305 uint16_t pid; /* USB-IF PID */
5306 uint8_t ptype; /* product type (hub,periph,cable,ama) */
5307} __ec_align_size1;
5308
5309/* Override default charge behavior */
5310#define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
5311
5312/* Negative port parameters have special meaning */
5313enum usb_pd_override_ports {
5314 OVERRIDE_DONT_CHARGE = -2,
5315 OVERRIDE_OFF = -1,
5316 /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
5317};
5318
5319struct ec_params_charge_port_override {
5320 int16_t override_port; /* Override port# */
5321} __ec_align2;
5322
5323/*
5324 * Read (and delete) one entry of PD event log.
5325 * TODO(crbug.com/751742): Make this host command more generic to accommodate
5326 * future non-PD logs that use the same internal EC event_log.
5327 */
5328#define EC_CMD_PD_GET_LOG_ENTRY 0x0115
5329
5330struct ec_response_pd_log {
5331 uint32_t timestamp; /* relative timestamp in milliseconds */
5332 uint8_t type; /* event type : see PD_EVENT_xx below */
5333 uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */
5334 uint16_t data; /* type-defined data payload */
5335 uint8_t payload[]; /* optional additional data payload: 0..16 bytes */
5336} __ec_align4;
5337
5338/* The timestamp is the microsecond counter shifted to get about a ms. */
5339#define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
5340
5341#define PD_LOG_SIZE_MASK 0x1f
5342#define PD_LOG_PORT_MASK 0xe0
5343#define PD_LOG_PORT_SHIFT 5
5344#define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
5345 ((size) & PD_LOG_SIZE_MASK))
5346#define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
5347#define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
5348
5349/* PD event log : entry types */
5350/* PD MCU events */
5351#define PD_EVENT_MCU_BASE 0x00
5352#define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0)
5353#define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1)
5354/* Reserved for custom board event */
5355#define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2)
5356/* PD generic accessory events */
5357#define PD_EVENT_ACC_BASE 0x20
5358#define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0)
5359#define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1)
5360/* PD power supply events */
5361#define PD_EVENT_PS_BASE 0x40
5362#define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0)
5363/* PD video dongles events */
5364#define PD_EVENT_VIDEO_BASE 0x60
5365#define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
5366#define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1)
5367/* Returned in the "type" field, when there is no entry available */
5368#define PD_EVENT_NO_ENTRY 0xff
5369
5370/*
5371 * PD_EVENT_MCU_CHARGE event definition :
5372 * the payload is "struct usb_chg_measures"
5373 * the data field contains the port state flags as defined below :
5374 */
5375/* Port partner is a dual role device */
5376#define CHARGE_FLAGS_DUAL_ROLE BIT(15)
5377/* Port is the pending override port */
5378#define CHARGE_FLAGS_DELAYED_OVERRIDE BIT(14)
5379/* Port is the override port */
5380#define CHARGE_FLAGS_OVERRIDE BIT(13)
5381/* Charger type */
5382#define CHARGE_FLAGS_TYPE_SHIFT 3
5383#define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT)
5384/* Power delivery role */
5385#define CHARGE_FLAGS_ROLE_MASK (7 << 0)
5386
5387/*
5388 * PD_EVENT_PS_FAULT data field flags definition :
5389 */
5390#define PS_FAULT_OCP 1
5391#define PS_FAULT_FAST_OCP 2
5392#define PS_FAULT_OVP 3
5393#define PS_FAULT_DISCH 4
5394
5395/*
5396 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
5397 */
5398struct mcdp_version {
5399 uint8_t major;
5400 uint8_t minor;
5401 uint16_t build;
5402} __ec_align4;
5403
5404struct mcdp_info {
5405 uint8_t family[2];
5406 uint8_t chipid[2];
5407 struct mcdp_version irom;
5408 struct mcdp_version fw;
5409} __ec_align4;
5410
5411/* struct mcdp_info field decoding */
5412#define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
5413#define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
5414
5415/* Get/Set USB-PD Alternate mode info */
5416#define EC_CMD_USB_PD_GET_AMODE 0x0116
5417struct ec_params_usb_pd_get_mode_request {
5418 uint16_t svid_idx; /* SVID index to get */
5419 uint8_t port; /* port */
5420} __ec_align_size1;
5421
5422struct ec_params_usb_pd_get_mode_response {
5423 uint16_t svid; /* SVID */
5424 uint16_t opos; /* Object Position */
5425 uint32_t vdo[6]; /* Mode VDOs */
5426} __ec_align4;
5427
5428#define EC_CMD_USB_PD_SET_AMODE 0x0117
5429
5430enum pd_mode_cmd {
5431 PD_EXIT_MODE = 0,
5432 PD_ENTER_MODE = 1,
5433 /* Not a command. Do NOT remove. */
5434 PD_MODE_CMD_COUNT,
5435};
5436
5437struct ec_params_usb_pd_set_mode_request {
5438 uint32_t cmd; /* enum pd_mode_cmd */
5439 uint16_t svid; /* SVID to set */
5440 uint8_t opos; /* Object Position */
5441 uint8_t port; /* port */
5442} __ec_align4;
5443
5444/* Ask the PD MCU to record a log of a requested type */
5445#define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5446
5447struct ec_params_pd_write_log_entry {
5448 uint8_t type; /* event type : see PD_EVENT_xx above */
5449 uint8_t port; /* port#, or 0 for events unrelated to a given port */
5450} __ec_align1;
5451
5452
5453/* Control USB-PD chip */
5454#define EC_CMD_PD_CONTROL 0x0119
5455
5456enum ec_pd_control_cmd {
5457 PD_SUSPEND = 0, /* Suspend the PD chip (EC: stop talking to PD) */
5458 PD_RESUME, /* Resume the PD chip (EC: start talking to PD) */
5459 PD_RESET, /* Force reset the PD chip */
5460 PD_CONTROL_DISABLE, /* Disable further calls to this command */
5461 PD_CHIP_ON, /* Power on the PD chip */
5462};
5463
5464struct ec_params_pd_control {
5465 uint8_t chip; /* chip id */
5466 uint8_t subcmd;
5467} __ec_align1;
5468
5469/* Get info about USB-C SS muxes */
5470#define EC_CMD_USB_PD_MUX_INFO 0x011A
5471
5472struct ec_params_usb_pd_mux_info {
5473 uint8_t port; /* USB-C port number */
5474} __ec_align1;
5475
5476/* Flags representing mux state */
5477#define USB_PD_MUX_NONE 0 /* Open switch */
5478#define USB_PD_MUX_USB_ENABLED BIT(0) /* USB connected */
5479#define USB_PD_MUX_DP_ENABLED BIT(1) /* DP connected */
5480#define USB_PD_MUX_POLARITY_INVERTED BIT(2) /* CC line Polarity inverted */
5481#define USB_PD_MUX_HPD_IRQ BIT(3) /* HPD IRQ is asserted */
5482#define USB_PD_MUX_HPD_LVL BIT(4) /* HPD level is asserted */
5483#define USB_PD_MUX_SAFE_MODE BIT(5) /* DP is in safe mode */
5484#define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
5485#define USB_PD_MUX_USB4_ENABLED BIT(7) /* USB4 enabled */
5486
5487struct ec_response_usb_pd_mux_info {
5488 uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5489} __ec_align1;
5490
5491#define EC_CMD_PD_CHIP_INFO 0x011B
5492
5493struct ec_params_pd_chip_info {
5494 uint8_t port; /* USB-C port number */
5495 uint8_t renew; /* Force renewal */
5496} __ec_align1;
5497
5498struct ec_response_pd_chip_info {
5499 uint16_t vendor_id;
5500 uint16_t product_id;
5501 uint16_t device_id;
5502 union {
5503 uint8_t fw_version_string[8];
5504 uint64_t fw_version_number;
5505 };
5506} __ec_align2;
5507
5508struct ec_response_pd_chip_info_v1 {
5509 uint16_t vendor_id;
5510 uint16_t product_id;
5511 uint16_t device_id;
5512 union {
5513 uint8_t fw_version_string[8];
5514 uint64_t fw_version_number;
5515 };
5516 union {
5517 uint8_t min_req_fw_version_string[8];
5518 uint64_t min_req_fw_version_number;
5519 };
5520} __ec_align2;
5521
5522/* Run RW signature verification and get status */
5523#define EC_CMD_RWSIG_CHECK_STATUS 0x011C
5524
5525struct ec_response_rwsig_check_status {
5526 uint32_t status;
5527} __ec_align4;
5528
5529/* For controlling RWSIG task */
5530#define EC_CMD_RWSIG_ACTION 0x011D
5531
5532enum rwsig_action {
5533 RWSIG_ACTION_ABORT = 0, /* Abort RWSIG and prevent jumping */
5534 RWSIG_ACTION_CONTINUE = 1, /* Jump to RW immediately */
5535};
5536
5537struct ec_params_rwsig_action {
5538 uint32_t action;
5539} __ec_align4;
5540
5541/* Run verification on a slot */
5542#define EC_CMD_EFS_VERIFY 0x011E
5543
5544struct ec_params_efs_verify {
5545 uint8_t region; /* enum ec_flash_region */
5546} __ec_align1;
5547
5548/*
5549 * Retrieve info from Cros Board Info store. Response is based on the data
5550 * type. Integers return a uint32. Strings return a string, using the response
5551 * size to determine how big it is.
5552 */
5553#define EC_CMD_GET_CROS_BOARD_INFO 0x011F
5554/*
5555 * Write info into Cros Board Info on EEPROM. Write fails if the board has
5556 * hardware write-protect enabled.
5557 */
5558#define EC_CMD_SET_CROS_BOARD_INFO 0x0120
5559
5560enum cbi_data_tag {
5561 CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5562 CBI_TAG_OEM_ID = 1, /* uint32_t or smaller */
5563 CBI_TAG_SKU_ID = 2, /* uint32_t or smaller */
5564 CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5565 CBI_TAG_OEM_NAME = 4, /* variable length ascii, nul terminated. */
5566 CBI_TAG_MODEL_ID = 5, /* uint32_t or smaller */
5567 CBI_TAG_COUNT,
5568};
5569
5570/*
5571 * Flags to control read operation
5572 *
5573 * RELOAD: Invalidate cache and read data from EEPROM. Useful to verify
5574 * write was successful without reboot.
5575 */
5576#define CBI_GET_RELOAD BIT(0)
5577
5578struct ec_params_get_cbi {
5579 uint32_t tag; /* enum cbi_data_tag */
5580 uint32_t flag; /* CBI_GET_* */
5581} __ec_align4;
5582
5583/*
5584 * Flags to control write behavior.
5585 *
5586 * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5587 * useful when writing multiple fields in a row.
5588 * INIT: Need to be set when creating a new CBI from scratch. All fields
5589 * will be initialized to zero first.
5590 */
5591#define CBI_SET_NO_SYNC BIT(0)
5592#define CBI_SET_INIT BIT(1)
5593
5594struct ec_params_set_cbi {
5595 uint32_t tag; /* enum cbi_data_tag */
5596 uint32_t flag; /* CBI_SET_* */
5597 uint32_t size; /* Data size */
5598 uint8_t data[]; /* For string and raw data */
5599} __ec_align1;
5600
5601/*
5602 * Information about resets of the AP by the EC and the EC's own uptime.
5603 */
5604#define EC_CMD_GET_UPTIME_INFO 0x0121
5605
5606struct ec_response_uptime_info {
5607 /*
5608 * Number of milliseconds since the last EC boot. Sysjump resets
5609 * typically do not restart the EC's time_since_boot epoch.
5610 *
5611 * WARNING: The EC's sense of time is much less accurate than the AP's
5612 * sense of time, in both phase and frequency. This timebase is similar
5613 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5614 */
5615 uint32_t time_since_ec_boot_ms;
5616
5617 /*
5618 * Number of times the AP was reset by the EC since the last EC boot.
5619 * Note that the AP may be held in reset by the EC during the initial
5620 * boot sequence, such that the very first AP boot may count as more
5621 * than one here.
5622 */
5623 uint32_t ap_resets_since_ec_boot;
5624
5625 /*
5626 * The set of flags which describe the EC's most recent reset. See
5627 * include/system.h RESET_FLAG_* for details.
5628 */
5629 uint32_t ec_reset_flags;
5630
5631 /* Empty log entries have both the cause and timestamp set to zero. */
5632 struct ap_reset_log_entry {
5633 /*
5634 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5635 * for details.
5636 */
5637 uint16_t reset_cause;
5638
5639 /* Reserved for protocol growth. */
5640 uint16_t reserved;
5641
5642 /*
5643 * The time of the reset's assertion, in milliseconds since the
5644 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5645 * Set to zero if the log entry is empty.
5646 */
5647 uint32_t reset_time_ms;
5648 } recent_ap_reset[4];
5649} __ec_align4;
5650
5651/*
5652 * Add entropy to the device secret (stored in the rollback region).
5653 *
5654 * Depending on the chip, the operation may take a long time (e.g. to erase
5655 * flash), so the commands are asynchronous.
5656 */
5657#define EC_CMD_ADD_ENTROPY 0x0122
5658
5659enum add_entropy_action {
5660 /* Add entropy to the current secret. */
5661 ADD_ENTROPY_ASYNC = 0,
5662 /*
5663 * Add entropy, and also make sure that the previous secret is erased.
5664 * (this can be implemented by adding entropy multiple times until
5665 * all rolback blocks have been overwritten).
5666 */
5667 ADD_ENTROPY_RESET_ASYNC = 1,
5668 /* Read back result from the previous operation. */
5669 ADD_ENTROPY_GET_RESULT = 2,
5670};
5671
5672struct ec_params_rollback_add_entropy {
5673 uint8_t action;
5674} __ec_align1;
5675
5676/*
5677 * Perform a single read of a given ADC channel.
5678 */
5679#define EC_CMD_ADC_READ 0x0123
5680
5681struct ec_params_adc_read {
5682 uint8_t adc_channel;
5683} __ec_align1;
5684
5685struct ec_response_adc_read {
5686 int32_t adc_value;
5687} __ec_align4;
5688
5689/*
5690 * Read back rollback info
5691 */
5692#define EC_CMD_ROLLBACK_INFO 0x0124
5693
5694struct ec_response_rollback_info {
5695 int32_t id; /* Incrementing number to indicate which region to use. */
5696 int32_t rollback_min_version;
5697 int32_t rw_rollback_version;
5698} __ec_align4;
5699
5700
5701/* Issue AP reset */
5702#define EC_CMD_AP_RESET 0x0125
5703
5704/*
5705 * Get the number of peripheral charge ports
5706 */
5707#define EC_CMD_PCHG_COUNT 0x0134
5708
5709#define EC_PCHG_MAX_PORTS 8
5710
5711struct ec_response_pchg_count {
5712 uint8_t port_count;
5713} __ec_align1;
5714
5715/*
5716 * Get the status of a peripheral charge port
5717 */
5718#define EC_CMD_PCHG 0x0135
5719
5720struct ec_params_pchg {
5721 uint8_t port;
5722} __ec_align1;
5723
5724struct ec_response_pchg {
5725 uint32_t error; /* enum pchg_error */
5726 uint8_t state; /* enum pchg_state state */
5727 uint8_t battery_percentage;
5728 uint8_t unused0;
5729 uint8_t unused1;
5730 /* Fields added in version 1 */
5731 uint32_t fw_version;
5732 uint32_t dropped_event_count;
5733} __ec_align2;
5734
5735enum pchg_state {
5736 /* Charger is reset and not initialized. */
5737 PCHG_STATE_RESET = 0,
5738 /* Charger is initialized or disabled. */
5739 PCHG_STATE_INITIALIZED,
5740 /* Charger is enabled and ready to detect a device. */
5741 PCHG_STATE_ENABLED,
5742 /* Device is in proximity. */
5743 PCHG_STATE_DETECTED,
5744 /* Device is being charged. */
5745 PCHG_STATE_CHARGING,
5746 /* Device is fully charged. It implies DETECTED (& not charging). */
5747 PCHG_STATE_FULL,
5748 /* In download (a.k.a. firmware update) mode */
5749 PCHG_STATE_DOWNLOAD,
5750 /* In download mode. Ready for receiving data. */
5751 PCHG_STATE_DOWNLOADING,
5752 /* Device is ready for data communication. */
5753 PCHG_STATE_CONNECTED,
5754 /* Put no more entry below */
5755 PCHG_STATE_COUNT,
5756};
5757
5758#define EC_PCHG_STATE_TEXT { \
5759 [PCHG_STATE_RESET] = "RESET", \
5760 [PCHG_STATE_INITIALIZED] = "INITIALIZED", \
5761 [PCHG_STATE_ENABLED] = "ENABLED", \
5762 [PCHG_STATE_DETECTED] = "DETECTED", \
5763 [PCHG_STATE_CHARGING] = "CHARGING", \
5764 [PCHG_STATE_FULL] = "FULL", \
5765 [PCHG_STATE_DOWNLOAD] = "DOWNLOAD", \
5766 [PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \
5767 [PCHG_STATE_CONNECTED] = "CONNECTED", \
5768 }
5769
5770/*
5771 * Update firmware of peripheral chip
5772 */
5773#define EC_CMD_PCHG_UPDATE 0x0136
5774
5775/* Port number is encoded in bit[28:31]. */
5776#define EC_MKBP_PCHG_PORT_SHIFT 28
5777/* Utility macro for converting MKBP event to port number. */
5778#define EC_MKBP_PCHG_EVENT_TO_PORT(e) (((e) >> EC_MKBP_PCHG_PORT_SHIFT) & 0xf)
5779/* Utility macro for extracting event bits. */
5780#define EC_MKBP_PCHG_EVENT_MASK(e) ((e) \
5781 & GENMASK(EC_MKBP_PCHG_PORT_SHIFT-1, 0))
5782
5783#define EC_MKBP_PCHG_UPDATE_OPENED BIT(0)
5784#define EC_MKBP_PCHG_WRITE_COMPLETE BIT(1)
5785#define EC_MKBP_PCHG_UPDATE_CLOSED BIT(2)
5786#define EC_MKBP_PCHG_UPDATE_ERROR BIT(3)
5787#define EC_MKBP_PCHG_DEVICE_EVENT BIT(4)
5788
5789enum ec_pchg_update_cmd {
5790 /* Reset chip to normal mode. */
5791 EC_PCHG_UPDATE_CMD_RESET_TO_NORMAL = 0,
5792 /* Reset and put a chip in update (a.k.a. download) mode. */
5793 EC_PCHG_UPDATE_CMD_OPEN,
5794 /* Write a block of data containing FW image. */
5795 EC_PCHG_UPDATE_CMD_WRITE,
5796 /* Close update session. */
5797 EC_PCHG_UPDATE_CMD_CLOSE,
5798 /* End of commands */
5799 EC_PCHG_UPDATE_CMD_COUNT,
5800};
5801
5802struct ec_params_pchg_update {
5803 /* PCHG port number */
5804 uint8_t port;
5805 /* enum ec_pchg_update_cmd */
5806 uint8_t cmd;
5807 /* Padding */
5808 uint8_t reserved0;
5809 uint8_t reserved1;
5810 /* Version of new firmware */
5811 uint32_t version;
5812 /* CRC32 of new firmware */
5813 uint32_t crc32;
5814 /* Address in chip memory where <data> is written to */
5815 uint32_t addr;
5816 /* Size of <data> */
5817 uint32_t size;
5818 /* Partial data of new firmware */
5819 uint8_t data[];
5820} __ec_align4;
5821
5822BUILD_ASSERT(EC_PCHG_UPDATE_CMD_COUNT
5823 < BIT(sizeof(((struct ec_params_pchg_update *)0)->cmd)*8));
5824
5825struct ec_response_pchg_update {
5826 /* Block size */
5827 uint32_t block_size;
5828} __ec_align4;
5829
5830
5831/*****************************************************************************/
5832/* Voltage regulator controls */
5833
5834/*
5835 * Get basic info of voltage regulator for given index.
5836 *
5837 * Returns the regulator name and supported voltage list in mV.
5838 */
5839#define EC_CMD_REGULATOR_GET_INFO 0x012C
5840
5841/* Maximum length of regulator name */
5842#define EC_REGULATOR_NAME_MAX_LEN 16
5843
5844/* Maximum length of the supported voltage list. */
5845#define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
5846
5847struct ec_params_regulator_get_info {
5848 uint32_t index;
5849} __ec_align4;
5850
5851struct ec_response_regulator_get_info {
5852 char name[EC_REGULATOR_NAME_MAX_LEN];
5853 uint16_t num_voltages;
5854 uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
5855} __ec_align2;
5856
5857/*
5858 * Configure the regulator as enabled / disabled.
5859 */
5860#define EC_CMD_REGULATOR_ENABLE 0x012D
5861
5862struct ec_params_regulator_enable {
5863 uint32_t index;
5864 uint8_t enable;
5865} __ec_align4;
5866
5867/*
5868 * Query if the regulator is enabled.
5869 *
5870 * Returns 1 if the regulator is enabled, 0 if not.
5871 */
5872#define EC_CMD_REGULATOR_IS_ENABLED 0x012E
5873
5874struct ec_params_regulator_is_enabled {
5875 uint32_t index;
5876} __ec_align4;
5877
5878struct ec_response_regulator_is_enabled {
5879 uint8_t enabled;
5880} __ec_align1;
5881
5882/*
5883 * Set voltage for the voltage regulator within the range specified.
5884 *
5885 * The driver should select the voltage in range closest to min_mv.
5886 *
5887 * Also note that this might be called before the regulator is enabled, and the
5888 * setting should be in effect after the regulator is enabled.
5889 */
5890#define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
5891
5892struct ec_params_regulator_set_voltage {
5893 uint32_t index;
5894 uint32_t min_mv;
5895 uint32_t max_mv;
5896} __ec_align4;
5897
5898/*
5899 * Get the currently configured voltage for the voltage regulator.
5900 *
5901 * Note that this might be called before the regulator is enabled, and this
5902 * should return the configured output voltage if the regulator is enabled.
5903 */
5904#define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
5905
5906struct ec_params_regulator_get_voltage {
5907 uint32_t index;
5908} __ec_align4;
5909
5910struct ec_response_regulator_get_voltage {
5911 uint32_t voltage_mv;
5912} __ec_align4;
5913
5914/*
5915 * Gather all discovery information for the given port and partner type.
5916 *
5917 * Note that if discovery has not yet completed, only the currently completed
5918 * responses will be filled in. If the discovery data structures are changed
5919 * in the process of the command running, BUSY will be returned.
5920 *
5921 * VDO field sizes are set to the maximum possible number of VDOs a VDM may
5922 * contain, while the number of SVIDs here is selected to fit within the PROTO2
5923 * maximum parameter size.
5924 */
5925#define EC_CMD_TYPEC_DISCOVERY 0x0131
5926
5927enum typec_partner_type {
5928 TYPEC_PARTNER_SOP = 0,
5929 TYPEC_PARTNER_SOP_PRIME = 1,
5930};
5931
5932struct ec_params_typec_discovery {
5933 uint8_t port;
5934 uint8_t partner_type; /* enum typec_partner_type */
5935} __ec_align1;
5936
5937struct svid_mode_info {
5938 uint16_t svid;
5939 uint16_t mode_count; /* Number of modes partner sent */
5940 uint32_t mode_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5941};
5942
5943struct ec_response_typec_discovery {
5944 uint8_t identity_count; /* Number of identity VDOs partner sent */
5945 uint8_t svid_count; /* Number of SVIDs partner sent */
5946 uint16_t reserved;
5947 uint32_t discovery_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5948 struct svid_mode_info svids[];
5949} __ec_align1;
5950
5951/* USB Type-C commands for AP-controlled device policy. */
5952#define EC_CMD_TYPEC_CONTROL 0x0132
5953
5954enum typec_control_command {
5955 TYPEC_CONTROL_COMMAND_EXIT_MODES,
5956 TYPEC_CONTROL_COMMAND_CLEAR_EVENTS,
5957 TYPEC_CONTROL_COMMAND_ENTER_MODE,
5958 TYPEC_CONTROL_COMMAND_TBT_UFP_REPLY,
5959 TYPEC_CONTROL_COMMAND_USB_MUX_SET,
5960 TYPEC_CONTROL_COMMAND_BIST_SHARE_MODE,
5961 TYPEC_CONTROL_COMMAND_SEND_VDM_REQ,
5962};
5963
5964/* Replies the AP may specify to the TBT EnterMode command as a UFP */
5965enum typec_tbt_ufp_reply {
5966 TYPEC_TBT_UFP_REPLY_NAK,
5967 TYPEC_TBT_UFP_REPLY_ACK,
5968};
5969
5970struct typec_usb_mux_set {
5971 uint8_t mux_index; /* Index of the mux to set in the chain */
5972 uint8_t mux_flags; /* USB_PD_MUX_*-encoded USB mux state to set */
5973} __ec_align1;
5974
5975#define VDO_MAX_SIZE 7
5976
5977struct typec_vdm_req {
5978 /* VDM data, including VDM header */
5979 uint32_t vdm_data[VDO_MAX_SIZE];
5980 /* Number of 32-bit fields filled in */
5981 uint8_t vdm_data_objects;
5982 /* Partner to address - see enum typec_partner_type */
5983 uint8_t partner_type;
5984} __ec_align1;
5985
5986struct ec_params_typec_control {
5987 uint8_t port;
5988 uint8_t command; /* enum typec_control_command */
5989 uint16_t reserved;
5990
5991 /*
5992 * This section will be interpreted based on |command|. Define a
5993 * placeholder structure to avoid having to increase the size and bump
5994 * the command version when adding new sub-commands.
5995 */
5996 union {
5997 uint32_t clear_events_mask;
5998 uint8_t mode_to_enter; /* enum typec_mode */
5999 uint8_t tbt_ufp_reply; /* enum typec_tbt_ufp_reply */
6000 struct typec_usb_mux_set mux_params;
6001 /* Used for VMD_REQ */
6002 struct typec_vdm_req vdm_req_params;
6003 uint8_t placeholder[128];
6004 };
6005} __ec_align1;
6006
6007/*
6008 * Gather all status information for a port.
6009 *
6010 * Note: this covers many of the return fields from the deprecated
6011 * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the
6012 * discovery data. The "enum pd_cc_states" is defined with the deprecated
6013 * EC_CMD_USB_PD_CONTROL command.
6014 *
6015 * This also combines in the EC_CMD_USB_PD_MUX_INFO flags.
6016 */
6017#define EC_CMD_TYPEC_STATUS 0x0133
6018
6019/*
6020 * Power role.
6021 *
6022 * Note this is also used for PD header creation, and values align to those in
6023 * the Power Delivery Specification Revision 3.0 (See
6024 * 6.2.1.1.4 Port Power Role).
6025 */
6026enum pd_power_role {
6027 PD_ROLE_SINK = 0,
6028 PD_ROLE_SOURCE = 1
6029};
6030
6031/*
6032 * Data role.
6033 *
6034 * Note this is also used for PD header creation, and the first two values
6035 * align to those in the Power Delivery Specification Revision 3.0 (See
6036 * 6.2.1.1.6 Port Data Role).
6037 */
6038enum pd_data_role {
6039 PD_ROLE_UFP = 0,
6040 PD_ROLE_DFP = 1,
6041 PD_ROLE_DISCONNECTED = 2,
6042};
6043
6044enum pd_vconn_role {
6045 PD_ROLE_VCONN_OFF = 0,
6046 PD_ROLE_VCONN_SRC = 1,
6047};
6048
6049/*
6050 * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2,
6051 * regardless of whether a debug accessory is connected.
6052 */
6053enum tcpc_cc_polarity {
6054 /*
6055 * _CCx: is used to indicate the polarity while not connected to
6056 * a Debug Accessory. Only one CC line will assert a resistor and
6057 * the other will be open.
6058 */
6059 POLARITY_CC1 = 0,
6060 POLARITY_CC2 = 1,
6061
6062 /*
6063 * _CCx_DTS is used to indicate the polarity while connected to a
6064 * SRC Debug Accessory. Assert resistors on both lines.
6065 */
6066 POLARITY_CC1_DTS = 2,
6067 POLARITY_CC2_DTS = 3,
6068
6069 /*
6070 * The current TCPC code relies on these specific POLARITY values.
6071 * Adding in a check to verify if the list grows for any reason
6072 * that this will give a hint that other places need to be
6073 * adjusted.
6074 */
6075 POLARITY_COUNT
6076};
6077
6078#define PD_STATUS_EVENT_SOP_DISC_DONE BIT(0)
6079#define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE BIT(1)
6080#define PD_STATUS_EVENT_HARD_RESET BIT(2)
6081#define PD_STATUS_EVENT_DISCONNECTED BIT(3)
6082#define PD_STATUS_EVENT_MUX_0_SET_DONE BIT(4)
6083#define PD_STATUS_EVENT_MUX_1_SET_DONE BIT(5)
6084#define PD_STATUS_EVENT_VDM_REQ_REPLY BIT(6)
6085#define PD_STATUS_EVENT_VDM_REQ_FAILED BIT(7)
6086#define PD_STATUS_EVENT_VDM_ATTENTION BIT(8)
6087
6088struct ec_params_typec_status {
6089 uint8_t port;
6090} __ec_align1;
6091
6092struct ec_response_typec_status {
6093 uint8_t pd_enabled; /* PD communication enabled - bool */
6094 uint8_t dev_connected; /* Device connected - bool */
6095 uint8_t sop_connected; /* Device is SOP PD capable - bool */
6096 uint8_t source_cap_count; /* Number of Source Cap PDOs */
6097
6098 uint8_t power_role; /* enum pd_power_role */
6099 uint8_t data_role; /* enum pd_data_role */
6100 uint8_t vconn_role; /* enum pd_vconn_role */
6101 uint8_t sink_cap_count; /* Number of Sink Cap PDOs */
6102
6103 uint8_t polarity; /* enum tcpc_cc_polarity */
6104 uint8_t cc_state; /* enum pd_cc_states */
6105 uint8_t dp_pin; /* DP pin mode (MODE_DP_IN_[A-E]) */
6106 uint8_t mux_state; /* USB_PD_MUX* - encoded mux state */
6107
6108 char tc_state[32]; /* TC state name */
6109
6110 uint32_t events; /* PD_STATUS_EVENT bitmask */
6111
6112 /*
6113 * BCD PD revisions for partners
6114 *
6115 * The format has the PD major reversion in the upper nibble, and PD
6116 * minor version in the next nibble. Following two nibbles are
6117 * currently 0.
6118 * ex. PD 3.2 would map to 0x3200
6119 *
6120 * PD major/minor will be 0 if no PD device is connected.
6121 */
6122 uint16_t sop_revision;
6123 uint16_t sop_prime_revision;
6124
6125 uint32_t source_cap_pdos[7]; /* Max 7 PDOs can be present */
6126
6127 uint32_t sink_cap_pdos[7]; /* Max 7 PDOs can be present */
6128} __ec_align1;
6129
6130/*
6131 * Gather the response to the most recent VDM REQ from the AP, as well
6132 * as popping the oldest VDM:Attention from the DPM queue
6133 */
6134#define EC_CMD_TYPEC_VDM_RESPONSE 0x013C
6135
6136struct ec_params_typec_vdm_response {
6137 uint8_t port;
6138} __ec_align1;
6139
6140struct ec_response_typec_vdm_response {
6141 /* Number of 32-bit fields filled in */
6142 uint8_t vdm_data_objects;
6143 /* Partner to address - see enum typec_partner_type */
6144 uint8_t partner_type;
6145 /* enum ec_status describing VDM response */
6146 uint16_t vdm_response_err;
6147 /* VDM data, including VDM header */
6148 uint32_t vdm_response[VDO_MAX_SIZE];
6149 /* Number of 32-bit Attention fields filled in */
6150 uint8_t vdm_attention_objects;
6151 /* Number of remaining messages to consume */
6152 uint8_t vdm_attention_left;
6153 /* Reserved */
6154 uint16_t reserved1;
6155 /* VDM:Attention contents */
6156 uint32_t vdm_attention[2];
6157} __ec_align1;
6158
6159#undef VDO_MAX_SIZE
6160
6161/*
6162 * UCSI OPM-PPM commands
6163 *
6164 * These commands are used for communication between OPM and PPM.
6165 * Only UCSI3.0 is tested.
6166 */
6167
6168#define EC_CMD_UCSI_PPM_SET 0x0140
6169
6170/* The data size is stored in the host command protocol header. */
6171struct ec_params_ucsi_ppm_set {
6172 uint16_t offset;
6173 uint8_t data[];
6174} __ec_align2;
6175
6176#define EC_CMD_UCSI_PPM_GET 0x0141
6177
6178/* For 'GET' sub-commands, data will be returned as a raw payload. */
6179struct ec_params_ucsi_ppm_get {
6180 uint16_t offset;
6181 uint8_t size;
6182} __ec_align2;
6183
6184/*****************************************************************************/
6185/* The command range 0x200-0x2FF is reserved for Rotor. */
6186
6187/*****************************************************************************/
6188/*
6189 * Reserve a range of host commands for the CR51 firmware.
6190 */
6191#define EC_CMD_CR51_BASE 0x0300
6192#define EC_CMD_CR51_LAST 0x03FF
6193
6194/*****************************************************************************/
6195/* Fingerprint MCU commands: range 0x0400-0x040x */
6196
6197/* Fingerprint SPI sensor passthru command: prototyping ONLY */
6198#define EC_CMD_FP_PASSTHRU 0x0400
6199
6200#define EC_FP_FLAG_NOT_COMPLETE 0x1
6201
6202struct ec_params_fp_passthru {
6203 uint16_t len; /* Number of bytes to write then read */
6204 uint16_t flags; /* EC_FP_FLAG_xxx */
6205 uint8_t data[]; /* Data to send */
6206} __ec_align2;
6207
6208/* Configure the Fingerprint MCU behavior */
6209#define EC_CMD_FP_MODE 0x0402
6210
6211/* Put the sensor in its lowest power mode */
6212#define FP_MODE_DEEPSLEEP BIT(0)
6213/* Wait to see a finger on the sensor */
6214#define FP_MODE_FINGER_DOWN BIT(1)
6215/* Poll until the finger has left the sensor */
6216#define FP_MODE_FINGER_UP BIT(2)
6217/* Capture the current finger image */
6218#define FP_MODE_CAPTURE BIT(3)
6219/* Finger enrollment session on-going */
6220#define FP_MODE_ENROLL_SESSION BIT(4)
6221/* Enroll the current finger image */
6222#define FP_MODE_ENROLL_IMAGE BIT(5)
6223/* Try to match the current finger image */
6224#define FP_MODE_MATCH BIT(6)
6225/* Reset and re-initialize the sensor. */
6226#define FP_MODE_RESET_SENSOR BIT(7)
6227/* special value: don't change anything just read back current mode */
6228#define FP_MODE_DONT_CHANGE BIT(31)
6229
6230#define FP_VALID_MODES (FP_MODE_DEEPSLEEP | \
6231 FP_MODE_FINGER_DOWN | \
6232 FP_MODE_FINGER_UP | \
6233 FP_MODE_CAPTURE | \
6234 FP_MODE_ENROLL_SESSION | \
6235 FP_MODE_ENROLL_IMAGE | \
6236 FP_MODE_MATCH | \
6237 FP_MODE_RESET_SENSOR | \
6238 FP_MODE_DONT_CHANGE)
6239
6240/* Capture types defined in bits [30..28] */
6241#define FP_MODE_CAPTURE_TYPE_SHIFT 28
6242#define FP_MODE_CAPTURE_TYPE_MASK (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
6243/*
6244 * This enum must remain ordered, if you add new values you must ensure that
6245 * FP_CAPTURE_TYPE_MAX is still the last one.
6246 */
6247enum fp_capture_type {
6248 /* Full blown vendor-defined capture (produces 'frame_size' bytes) */
6249 FP_CAPTURE_VENDOR_FORMAT = 0,
6250 /* Simple raw image capture (produces width x height x bpp bits) */
6251 FP_CAPTURE_SIMPLE_IMAGE = 1,
6252 /* Self test pattern (e.g. checkerboard) */
6253 FP_CAPTURE_PATTERN0 = 2,
6254 /* Self test pattern (e.g. inverted checkerboard) */
6255 FP_CAPTURE_PATTERN1 = 3,
6256 /* Capture for Quality test with fixed contrast */
6257 FP_CAPTURE_QUALITY_TEST = 4,
6258 /* Capture for pixel reset value test */
6259 FP_CAPTURE_RESET_TEST = 5,
6260 FP_CAPTURE_TYPE_MAX,
6261};
6262/* Extracts the capture type from the sensor 'mode' word */
6263#define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
6264 >> FP_MODE_CAPTURE_TYPE_SHIFT)
6265
6266struct ec_params_fp_mode {
6267 uint32_t mode; /* as defined by FP_MODE_ constants */
6268} __ec_align4;
6269
6270struct ec_response_fp_mode {
6271 uint32_t mode; /* as defined by FP_MODE_ constants */
6272} __ec_align4;
6273
6274/* Retrieve Fingerprint sensor information */
6275#define EC_CMD_FP_INFO 0x0403
6276
6277/* Number of dead pixels detected on the last maintenance */
6278#define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
6279/* Unknown number of dead pixels detected on the last maintenance */
6280#define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
6281/* No interrupt from the sensor */
6282#define FP_ERROR_NO_IRQ BIT(12)
6283/* SPI communication error */
6284#define FP_ERROR_SPI_COMM BIT(13)
6285/* Invalid sensor Hardware ID */
6286#define FP_ERROR_BAD_HWID BIT(14)
6287/* Sensor initialization failed */
6288#define FP_ERROR_INIT_FAIL BIT(15)
6289
6290struct ec_response_fp_info_v0 {
6291 /* Sensor identification */
6292 uint32_t vendor_id;
6293 uint32_t product_id;
6294 uint32_t model_id;
6295 uint32_t version;
6296 /* Image frame characteristics */
6297 uint32_t frame_size;
6298 uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
6299 uint16_t width;
6300 uint16_t height;
6301 uint16_t bpp;
6302 uint16_t errors; /* see FP_ERROR_ flags above */
6303} __ec_align4;
6304
6305struct ec_response_fp_info {
6306 /* Sensor identification */
6307 uint32_t vendor_id;
6308 uint32_t product_id;
6309 uint32_t model_id;
6310 uint32_t version;
6311 /* Image frame characteristics */
6312 uint32_t frame_size;
6313 uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
6314 uint16_t width;
6315 uint16_t height;
6316 uint16_t bpp;
6317 uint16_t errors; /* see FP_ERROR_ flags above */
6318 /* Template/finger current information */
6319 uint32_t template_size; /* max template size in bytes */
6320 uint16_t template_max; /* maximum number of fingers/templates */
6321 uint16_t template_valid; /* number of valid fingers/templates */
6322 uint32_t template_dirty; /* bitmap of templates with MCU side changes */
6323 uint32_t template_version; /* version of the template format */
6324} __ec_align4;
6325
6326/* Get the last captured finger frame or a template content */
6327#define EC_CMD_FP_FRAME 0x0404
6328
6329/* constants defining the 'offset' field which also contains the frame index */
6330#define FP_FRAME_INDEX_SHIFT 28
6331/* Frame buffer where the captured image is stored */
6332#define FP_FRAME_INDEX_RAW_IMAGE 0
6333/* First frame buffer holding a template */
6334#define FP_FRAME_INDEX_TEMPLATE 1
6335#define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
6336#define FP_FRAME_OFFSET_MASK 0x0FFFFFFF
6337
6338/* Version of the format of the encrypted templates. */
6339#define FP_TEMPLATE_FORMAT_VERSION 3
6340
6341/* Constants for encryption parameters */
6342#define FP_CONTEXT_NONCE_BYTES 12
6343#define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
6344#define FP_CONTEXT_TAG_BYTES 16
6345#define FP_CONTEXT_SALT_BYTES 16
6346#define FP_CONTEXT_TPM_BYTES 32
6347
6348struct ec_fp_template_encryption_metadata {
6349 /*
6350 * Version of the structure format (N=3).
6351 */
6352 uint16_t struct_version;
6353 /* Reserved bytes, set to 0. */
6354 uint16_t reserved;
6355 /*
6356 * The salt is *only* ever used for key derivation. The nonce is unique,
6357 * a different one is used for every message.
6358 */
6359 uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
6360 uint8_t salt[FP_CONTEXT_SALT_BYTES];
6361 uint8_t tag[FP_CONTEXT_TAG_BYTES];
6362};
6363
6364struct ec_params_fp_frame {
6365 /*
6366 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
6367 * in the high nibble, and the real offset within the frame in
6368 * FP_FRAME_OFFSET_MASK.
6369 */
6370 uint32_t offset;
6371 uint32_t size;
6372} __ec_align4;
6373
6374/* Load a template into the MCU */
6375#define EC_CMD_FP_TEMPLATE 0x0405
6376
6377/* Flag in the 'size' field indicating that the full template has been sent */
6378#define FP_TEMPLATE_COMMIT 0x80000000
6379
6380struct ec_params_fp_template {
6381 uint32_t offset;
6382 uint32_t size;
6383 uint8_t data[];
6384} __ec_align4;
6385
6386/* Clear the current fingerprint user context and set a new one */
6387#define EC_CMD_FP_CONTEXT 0x0406
6388
6389struct ec_params_fp_context {
6390 uint32_t userid[FP_CONTEXT_USERID_WORDS];
6391} __ec_align4;
6392
6393#define EC_CMD_FP_STATS 0x0407
6394
6395#define FPSTATS_CAPTURE_INV BIT(0)
6396#define FPSTATS_MATCHING_INV BIT(1)
6397
6398struct ec_response_fp_stats {
6399 uint32_t capture_time_us;
6400 uint32_t matching_time_us;
6401 uint32_t overall_time_us;
6402 struct {
6403 uint32_t lo;
6404 uint32_t hi;
6405 } overall_t0;
6406 uint8_t timestamps_invalid;
6407 int8_t template_matched;
6408} __ec_align2;
6409
6410#define EC_CMD_FP_SEED 0x0408
6411struct ec_params_fp_seed {
6412 /*
6413 * Version of the structure format (N=3).
6414 */
6415 uint16_t struct_version;
6416 /* Reserved bytes, set to 0. */
6417 uint16_t reserved;
6418 /* Seed from the TPM. */
6419 uint8_t seed[FP_CONTEXT_TPM_BYTES];
6420} __ec_align4;
6421
6422#define EC_CMD_FP_ENC_STATUS 0x0409
6423
6424/* FP TPM seed has been set or not */
6425#define FP_ENC_STATUS_SEED_SET BIT(0)
6426
6427struct ec_response_fp_encryption_status {
6428 /* Used bits in encryption engine status */
6429 uint32_t valid_flags;
6430 /* Encryption engine status */
6431 uint32_t status;
6432} __ec_align4;
6433
6434/*****************************************************************************/
6435/* Touchpad MCU commands: range 0x0500-0x05FF */
6436
6437/* Perform touchpad self test */
6438#define EC_CMD_TP_SELF_TEST 0x0500
6439
6440/* Get number of frame types, and the size of each type */
6441#define EC_CMD_TP_FRAME_INFO 0x0501
6442
6443struct ec_response_tp_frame_info {
6444 uint32_t n_frames;
6445 uint32_t frame_sizes[];
6446} __ec_align4;
6447
6448/* Create a snapshot of current frame readings */
6449#define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
6450
6451/* Read the frame */
6452#define EC_CMD_TP_FRAME_GET 0x0503
6453
6454struct ec_params_tp_frame_get {
6455 uint32_t frame_index;
6456 uint32_t offset;
6457 uint32_t size;
6458} __ec_align4;
6459
6460/*****************************************************************************/
6461/* EC-EC communication commands: range 0x0600-0x06FF */
6462
6463#define EC_COMM_TEXT_MAX 8
6464
6465/*
6466 * Get battery static information, i.e. information that never changes, or
6467 * very infrequently.
6468 */
6469#define EC_CMD_BATTERY_GET_STATIC 0x0600
6470
6471/**
6472 * struct ec_params_battery_static_info - Battery static info parameters
6473 * @index: Battery index.
6474 */
6475struct ec_params_battery_static_info {
6476 uint8_t index;
6477} __ec_align_size1;
6478
6479/**
6480 * struct ec_response_battery_static_info - Battery static info response
6481 * @design_capacity: Battery Design Capacity (mAh)
6482 * @design_voltage: Battery Design Voltage (mV)
6483 * @manufacturer: Battery Manufacturer String
6484 * @model: Battery Model Number String
6485 * @serial: Battery Serial Number String
6486 * @type: Battery Type String
6487 * @cycle_count: Battery Cycle Count
6488 */
6489struct ec_response_battery_static_info {
6490 uint16_t design_capacity;
6491 uint16_t design_voltage;
6492 char manufacturer[EC_COMM_TEXT_MAX];
6493 char model[EC_COMM_TEXT_MAX];
6494 char serial[EC_COMM_TEXT_MAX];
6495 char type[EC_COMM_TEXT_MAX];
6496 /* TODO(crbug.com/795991): Consider moving to dynamic structure. */
6497 uint32_t cycle_count;
6498} __ec_align4;
6499
6500/*
6501 * Get battery dynamic information, i.e. information that is likely to change
6502 * every time it is read.
6503 */
6504#define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
6505
6506/**
6507 * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
6508 * @index: Battery index.
6509 */
6510struct ec_params_battery_dynamic_info {
6511 uint8_t index;
6512} __ec_align_size1;
6513
6514/**
6515 * struct ec_response_battery_dynamic_info - Battery dynamic info response
6516 * @actual_voltage: Battery voltage (mV)
6517 * @actual_current: Battery current (mA); negative=discharging
6518 * @remaining_capacity: Remaining capacity (mAh)
6519 * @full_capacity: Capacity (mAh, might change occasionally)
6520 * @flags: Flags, see EC_BATT_FLAG_*
6521 * @desired_voltage: Charging voltage desired by battery (mV)
6522 * @desired_current: Charging current desired by battery (mA)
6523 */
6524struct ec_response_battery_dynamic_info {
6525 int16_t actual_voltage;
6526 int16_t actual_current;
6527 int16_t remaining_capacity;
6528 int16_t full_capacity;
6529 int16_t flags;
6530 int16_t desired_voltage;
6531 int16_t desired_current;
6532} __ec_align2;
6533
6534/*
6535 * Control charger chip. Used to control charger chip on the slave.
6536 */
6537#define EC_CMD_CHARGER_CONTROL 0x0602
6538
6539/**
6540 * struct ec_params_charger_control - Charger control parameters
6541 * @max_current: Charger current (mA). Positive to allow base to draw up to
6542 * max_current and (possibly) charge battery, negative to request current
6543 * from base (OTG).
6544 * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
6545 * >= 0.
6546 * @allow_charging: Allow base battery charging (only makes sense if
6547 * max_current > 0).
6548 */
6549struct ec_params_charger_control {
6550 int16_t max_current;
6551 uint16_t otg_voltage;
6552 uint8_t allow_charging;
6553} __ec_align_size1;
6554
6555/* Get ACK from the USB-C SS muxes */
6556#define EC_CMD_USB_PD_MUX_ACK 0x0603
6557
6558struct ec_params_usb_pd_mux_ack {
6559 uint8_t port; /* USB-C port number */
6560} __ec_align1;
6561
6562/*****************************************************************************/
6563/*
6564 * Reserve a range of host commands for board-specific, experimental, or
6565 * special purpose features. These can be (re)used without updating this file.
6566 *
6567 * CAUTION: Don't go nuts with this. Shipping products should document ALL
6568 * their EC commands for easier development, testing, debugging, and support.
6569 *
6570 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
6571 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
6572 *
6573 * In your experimental code, you may want to do something like this:
6574 *
6575 * #define EC_CMD_MAGIC_FOO 0x0000
6576 * #define EC_CMD_MAGIC_BAR 0x0001
6577 * #define EC_CMD_MAGIC_HEY 0x0002
6578 *
6579 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
6580 * EC_VER_MASK(0);
6581 *
6582 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
6583 * EC_VER_MASK(0);
6584 *
6585 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
6586 * EC_VER_MASK(0);
6587 */
6588#define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
6589#define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
6590
6591/*
6592 * Given the private host command offset, calculate the true private host
6593 * command value.
6594 */
6595#define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
6596 (EC_CMD_BOARD_SPECIFIC_BASE + (command))
6597
6598/*****************************************************************************/
6599/*
6600 * Passthru commands
6601 *
6602 * Some platforms have sub-processors chained to each other. For example.
6603 *
6604 * AP <--> EC <--> PD MCU
6605 *
6606 * The top 2 bits of the command number are used to indicate which device the
6607 * command is intended for. Device 0 is always the device receiving the
6608 * command; other device mapping is board-specific.
6609 *
6610 * When a device receives a command to be passed to a sub-processor, it passes
6611 * it on with the device number set back to 0. This allows the sub-processor
6612 * to remain blissfully unaware of whether the command originated on the next
6613 * device up the chain, or was passed through from the AP.
6614 *
6615 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
6616 * AP sends command 0x4002 to the EC
6617 * EC sends command 0x0002 to the PD MCU
6618 * EC forwards PD MCU response back to the AP
6619 */
6620
6621/* Offset and max command number for sub-device n */
6622#define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
6623#define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
6624
6625/*****************************************************************************/
6626/*
6627 * Deprecated constants. These constants have been renamed for clarity. The
6628 * meaning and size has not changed. Programs that use the old names should
6629 * switch to the new names soon, as the old names may not be carried forward
6630 * forever.
6631 */
6632#define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE
6633#define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1
6634#define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE
6635
6636
6637
6638#endif /* __CROS_EC_COMMANDS_H */